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Abstract In this paper we study generalized semi-Markov high dimension
regression models in continuous time observed in fixed discrete time moments.
The generalized semi-Markov process has dependent jumps and, therefore, it is
an extension of the semi-Markov regression introduced in Barbu, Beltaief and
Pergamenshchikov (2019a). For such models we consider estimation problems
in nonparametric setting. To this end we develop model selection procedures
for which sharp non-asymptotic oracle inequalities for the robust risks are
obtained. Moreover, we give constructive sufficient conditions which provide
through the obtained oracle inequalities the adaptive robust efficiency property
in minimax sense. It should be noted also that for these results we do not
use either sparse conditions or the parameter dimension in the model. As
examples, it is considered regression models constructed through spherical
symmetric noise impulses and truncated fractional Poisson processes. Numeric
Monte-Carlo simulations confirming the theoretical results are given in the
supplementary materials.
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1 Introduction

1.1 Motivations

In this paper we study the following linear regression model in continuous time

dyt =

 q∑
j=1

βjuj(t)

 dt+ dξt , 0 ≤ t ≤ T , (1)

where the functions (uj)1≤j≤q are known linear independent 1-periodic R→ R
functions, the duration of observations T is an integer number and (ξt)t≥0 is
an unobservable noise process defined in Section 2. The process (1) is observed
only at the fixed time moments

(ytj )0≤j≤n , tj =
j

p
and n = pT , (2)

where the observations frequency p is some fixed integer number. We consider
the model (1) in the case when the parameter dimension is grater than the
number of observations, i.e., q > n. Such models are called big data or high
dimension regression in continuous time (see, for example, in Fujimori (2019)
for diffusion processes). The problem is to estimate the unknown parameters
(βj)1≤j≤q on the basis of the observations (2). Usually for such problems one
uses either the Lasso algorithm or the Dantzig selector method. It should
be emphasized that to apply these methods one needs to assume sparsity
conditions which provide the non large (“reasonable”) number of the non-
zero unknown parameters and, moreover, the parameter dimension q must
be known (see, for example, in Hasttie, Friedman and Tibshirani (2008)). It
should be noted also that the case of unknown parameter dimension q is one of
the crucial points in important practical problems such as, for example, signal
and image statistical processing (see, for example, Beltaief, Chernoyarov and
Pergamenshchikov (2020) and the references therein). In this paper we study
the model (1) in the nonparametric setting as the estimation problem for the
function

S(t) =

q∑
j=1

βjuj(t) ,

i.e.

dyt = S(t)dt+ dξt , 0 ≤ t ≤ T , (3)
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where S is an unknown 1-periodic R → R function from L2[0, 1]. Here, we
assume neither sparsity conditions, nor the condition that the parameter di-
mension is known, i.e., in particular, we can assume that q = +∞. Now the
problem is to estimate the unknown function S in the model (3) on the basis of
observations (2). Originally, such problems were considered in the framework
“signal+white noise” models (see, for example, Ibragimov and Khasminskii
(1981); Kutoyants (1994); Pinsker (1981)). Later, it was extended to the “color
noise” models defined through non Gaussian Ornstein-Uhlenbeck processes
Barndorff-Nielsen and Shephard (2001); Konev and Pergamenshchikov (2012,
2015). The problem here is that the dependence defined on the basis of the
Ornstein-Uhlenbeck processes disappears very fast, at a geometric rate. This
means that such models are asymptotically equivalent to models with indepen-
dent observations. To keep the dependence in the observations for large time
periods for the estimation problem on the complete data in the paper Barbu,
Beltaief and Pergamenshchikov (2019a) it is proposed to define the model (3)
through semi-Markov processes with jumps. Such models considerably extend
the potential applications of statistical results in many important practical
fields such as finance, insurance, signals and image processing, reliability, biol-
ogy (see, for example, Barbu, Beltaief and Pergamenshchikov (2019a); Barbu
and Limnios (2008) and the references therein). In this paper we extend the
semi-Markov regression models to the generalized semi-Markov processes by
introducing an additional dependence in jump sizes of (ξt)t≥0.

1.2 Methods

In this paper, in order to estimate the function S, we develop model selection
methods using the quadratic risks defined as

RQ(ŜT , S) = EQ,S ‖ŜT − S‖2 , ‖f‖2 =

∫ 1

0

f2(s)ds , (4)

where ŜT (·) is some estimate (i.e. any periodical function measurable with
respect to the observations σ{yt0 , . . . ytn}) and EQ,S is the expectation with

respect to the distribution PQ,S of the process (3) corresponding to the un-
known noise distribution Q in the Skorokhod space D[0, T ] and to the function
S. We assume that this distribution belongs to some distribution family QT
specified in Section 2. To study the properties of the estimators uniformly over
the noise distribution (what is really needed in practice), we use the robust
risk defined as

R∗
T

(ŜT , S) = sup
Q∈QT

RQ(ŜT , S) . (5)

It should be noted that statistical procedures which are optimal in the sense of
this risk possess stable mean square accuracy uniformly over all possible admis-
sible noise distributions in the model (3). This means that the corresponding
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statistical optimal algorithms have high noise immunity and, therefore, signif-
icantly improve the quality and reliability of statistical inferences obtained on
their basis.

To construct model selection procedures on the basis of the discrete data
(2) we use the approach proposed in Konev and Pergamenshchikov (2015).
It should be noted that the main analytic tool in this paper is based on the
exponential decrease rate of the dependence in Ornstein-Uhlenbeck models,
and, therefore, we cannot apply these methods to semi-Markov models, which
can retain a dependence in noises for a long time. So, in this paper, to study
the estimation problem on the discrete observations (2) for the model (3) with
noises defined through semi-Markov processes we develop new methods based
on the special renewal theory from Barbu, Beltaief and Pergamenshchikov
(2019a); based on these techniques we can analyse the approximation errors in
the discrete observations and obtain non asymptotic sharp oracle inequalities.
Moreover, as a consequence, we found constructive sufficient conditions on the
observations frequency which provide the robust efficiency for proposed model
selection procedures in adaptive setting, i.e. in the case when the regularity
properties of the function S are unknown.

1.3 Main contributions of this paper

In this paper we use for the first time nonparametric adaptive methods for es-
timation problems in the framework of the big data generalized semi-Markov
regression models. To this end we develop model selection procedures and
corresponding analytical tools providing, under some constructive sufficient
conditions, the optimality in the sharp oracle inequality sense and the robust
adaptive efficiency in the minimax sense for the proposed estimators. It turns
out that these conditions hold true for important practical cases such as, for
example, regression models constructed through truncated fractional Poisson
processes introduced in Barbu, Beltaief and Pergamenshchikov (2019b). More-
over, in this paper, we extend for the first time the model from Barbu, Beltaief
and Pergamenshchikov (2019a) using the generalized semi-Markov models ob-
tained by introducing a dependence structure in the sizes of the jumps. As
an example, we use spherically symmetric random variables, which play very
important role in many practical applications (see, for example, Fourdrinier
and Pergamenshchikov (2007) and the references therein).

1.4 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we state the main
conditions under which we consider the model (3). In Section 3 we represent
fractional Poisson processes and its main properties. In Section 4 we construct
model selection procedures on the basis of weighted least squares estimates.
In Section 5 we state the main results. In section 6 we develop the stochastic
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calculus for the generalized semi-Markov processes. Section 7 gives the proofs
of the main results. Some auxiliary tools are given in an Appendix.

2 Main conditions

First, we assume that the noise process (ξt)t≥ 0 in the model (3) is defined as

ξt = %1wt + %2Lt + %3zt , (6)

where %1, %2 and %3 are unknown coefficients, (wt)t≥ 0 is a standard Brownian

motion, Lt =
∫ t
0

∫
R∗
x(µ(ds,dx) − µ̃(ds,dx)), µ(dsdx) is the jump measure

with deterministic compensator µ̃(dsdx) = dsΠ(dx), Π(·) is the Lévy mea-
sure on R∗ = R\{0} (see, for example Liptser and Shiryaev (1989) for details),
with

Π(x2) = 1 and Π(x8) < ∞ . (7)

Here we use the usual notations forΠ(|x|m) =
∫
R |z|

mΠ(dz). Note thatΠ(|x|)
may be equal to +∞. In this paper we assume that the “dependent part” in the
noise (6) is modelled by the generalized semi-Markov process (zt)t≥ 0 defined
as

zt =

Nt∑
i=1

ζi, (8)

where (ζi)i≥ 1 are random variables satisfying the following conditions:

C1) ∀i ≥ 1 the expectations E ζi = 0, E ζ2
i

= 1 and sup
l≥1 E ζ

4
l
<∞;

C2) E ζi ζj = 0 for any i 6= j;
C3) For any 1 ≤ k1 < k2 < k3 < k4 the random variables (ζki)1≤i≤4

are such that E ζ
ι1
k1
ζ
ι2
k2
ζ
ι3
k3
ζ
ι4
k4

= 0 for any ι1, . . . , ι4 ∈ {0, 1, 2, 3} for which

3 ≤
∑4
i=1 ιi ≤ 4 and at least one among them is equal to one.

Now we give some examples for the correlation conditions C1) – C3). To
this end, we first remind the definition of spherically symmetric distribution
(see, for example, in Fourdrinier and Pergamenshchikov (2007)). A random
vector ζ = (ζ1, . . . , ζd)

′ is called spherically symmetric if its density in Rd has
the form g(| · |2) for some nonnegative function g. Here the prime denotes
the transposition. Note that there is a very important particular case of the
spherically symmetric vectors represented by Gaussian mixture distributions.
The vector ζ = (ζ1, . . . , ζd)

′ is called Gaussian mixture in Rd if it has the
spherically symmetric distribution with

g(t) = E
1

(2πs)d/2
e−

t
2s2 , (9)

where s is a non negative random variable. It should be emphasized that in
radio-physics such distributions are very popular for statistical signal process-
ing (see, for example, Middleton (1979); Kassam (1988)). Using these defini-
tions it is easy to see that the following random variables satisfy the conditions
C1) – C3):
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– (ζj)j≥ 1 are i.i.d. random variables satisfying condition C1);
– for some d > 1 the random vector (ζ1, . . . , ζd)

′ that has a spherically sym-
metric distribution in Rd, with E ζ2

1
= 1, E ζ4

1
< ∞ and the random vari-

ables (ζj)j> d are independent and satisfying condition C1);
– for any d ≥ 1 a random vector (ζ1, . . . , ζd)

′ is a Gaussian mixture with
mixture variable s for which Es2 = 1 and Es4 <∞.

In (8) the process Nt is a general counting process defined as

Nt =

∞∑
k=1

1{∑k

l=1
τl≤t} (10)

with (τl)l≥ 1 an i.i.d. sequence of positive integrated random variables with
the distribution η and mean τ = EQ τ1 > 0. We assume that the processes
(Nt)t≥0, (Yi)i≥ 1 and (Lt)t≥0 are independent. In the sequel we will use the
renewal measure defined as

η =

∞∑
l=1

η(l) , (11)

where η(l) is the lth convolution power of the measure η.

Remark 1 Note that in the case when the random variables (ζj)j≥1 are i.i.d.
random variables, then (8) is the semi-Markov process used in Barbu, Beltaief
and Pergamenshchikov (2019a).

To use the renewal methods from Barbu, Beltaief and Pergamenshchikov
(2019a) we assume that the distribution η has a density g for which the fol-
lowing conditions hold true.

H1) Assume that, for any x ∈ R, there exist the finite limits g(x−) =
limz→x− g(z) and g(x+) = limz→x+ g(z) and, for any ∀K > 0, ∃δ = δ(K) > 0
for which

sup
|x|≤K

∫ δ

0

|g(x+ t) + g(x− t)− g(x+)− g(x−)|
t

dt < ∞.

H2) ∀γ > 0 the upper bound sup
z≥0 z

γ |2g(z)− g(z−)− g(z+)| < ∞.

H3) There exists β > 0 such that
∫
R+

eβx g(x) dx <∞.
H4) ∃t∗ > 0 such that the Fourier transformation ĝ(θ−it) belongs to L1(R)

for any 0 ≤ t ≤ t∗, where ĝ(z) = (2π)−1
∫
R e

izvg(v)dv.
Moreover, to check these conditions we will use the following assumption.

H∗
4
) The density g is two time continuously differentiable on R+ with

g(0) = 0 and there exists β > 0 such that
∫ +∞
0

eβx
(
g(x) + |g′(x)|+ |g′′(x)|

)
dx <

∞ and limx→∞ eβx
(
g(x) + |g′(x)|

)
= 0.
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It is clear that the conditions H1)–H3) hold true in this case. To obtain the
condition H4) it suffices to calculate the integral in ĝ, integrating by parts two
times. For example, one can take gamma distribution of order m ≥ 2

g(x) =
amxm−1

m!
e−ax1{x≥0} and a > 0 . (12)

It should be noted that in view of Proposition 5.2 from Barbu, Beltaief and
Pergamenshchikov (2019a), Conditions H1)–H4) imply that the renewal mea-
sure (11) has a continuous density ρ such that

‖Υ‖1 =

∫ +∞

0

|Υ (x)|dx <∞ and Υ (x) = ρ(x)− 1

τ
. (13)

Remark 2 It should be noted that Condition H4) does not hold for the expo-
nential random variable (τj)j≥1 since its density is not continuous in zero. But
for exponential random variables, i.e. in the case when (Nt)t≥0 is a Poisson
process, the renewal density can be calculated directly, i.e. ρ(x) ≡ 1/τ and
Υ ≡ 0.

Now we describe the class of possible admissible noise distributions used in
the robust risk (5). To this end we set

σQ = %21 + %22 +
%23
τ
. (14)

As to the parameters in (6), we assume that

ς∗ ≤ σQ ≤ ς∗ , (15)

where the unknown bounds 0 < ς∗ ≤ ς∗ can be functions of T , i.e. ς∗ = ς∗(T )
and ς∗ = ς∗(T ), such that for any b > 0

lim
T→∞

Tb ς∗(T ) = +∞ and lim
T→∞

ς∗(T )

Tb
= 0 . (16)

We denote by QT the family of all distributions of the process (6) in D[0, T ]
satisfying the properties (15) – (16).

Remark 3 As we will see later, the parameter (14) is the limit of the Fourier
transform of the noise process (6). This limit is called variance proxy (see
Konev and Pergamenshchikov (2012)).
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3 Truncated fractional Poisson processes

As an example of the process (10) satisfies the conditions H1) – H4) we give
the truncated fractional Poisson process introduced in Barbu, Beltaief and
Pergamenshchikov (2019b). To this end, we remind the definition of the frac-
tional Poisson process (see, for example, Biard and Saussereaur (2014); Laskin
(2003)). The process (10) is called fractional Poisson process if the i.i.d. ran-
dom variables (τj) have the Mittag-Leffler distribution which, for some a > 0,
is defined as

P(τ1 > t) = EH(−atH) , (17)

where 0 < H ≤ 1 is called the Hurst index,

EH(z) =

∞∑
k=0

zk

Γ (1 +Hk)
and Γ (x) =

∫ +∞

0

tx−1 e−t dt .

Note that, if H = 1, then we obtain the exponential distribution with param-
eter a > 0 and, therefore, the process (10) is a Poisson process. If 0 < H < 1,
then the density of the distribution (17) (see, for example, Repin and Saichev
(2000)) can be represented as

fH(t) =
a sin(πH)

π

∫ +∞

0

xH e−tx

x2H + a2 + 2axH cos(πH)
dx . (18)

Form here we can directly obtain that

fH(t) ∼ tH−1 , f
′

H
(t) ∼ tH−2 , f

′′

H
(t) ∼ tH−3 as t→ 0 (19)

and

fH(t) ∼ t−H−1 , f
′

H
(t) ∼ t−H−2 , f

′′

H
(t) ∼ t−H−3 as t→∞ . (20)

In particular, this implies that the Mittag-Leffler distribution has a heavy tail,
i.e.

P(τ1 > t) ∼ t−H as t→∞ , (21)

i.e. Eτ1 = +∞. Therefore, the condition H3) does not hold for the distribution
(17). To correct this effect, in Barbu, Beltaief and Pergamenshchikov (2019b)
it is proposed to replace the Mittag-Leffler random variables in (10) with i.i.d.
random variables distributed as τ∗

1
= min(Xb

∗ , X
∗), where X∗ is a Mittag-

Leffler with 0 < H < 1, 0 < b ≤ H/3 and X∗ is a positive random variable
satisfying the condition H∗

4
). Such processes are called truncated Poisson pro-

cesses. Using the asymptotic properties (19) and (20) one can check directly
that the random variable τ∗

1
satisfies the condition H∗

4
) and, therefore, the

conditions H1) – H4) hold true for this case.
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Remark 4 It should be noted also that the process (10) with the Mittag-Leffler
random variables has a “memory” in its increments (see, for example, Mahesh-
wari and Vellaisamy (2016)) in the sense that, for any δ > 0 and s > 0, the
correlation coefficient

Corr
((
Ns+δ −Ns

)
,
(
Nt+δ −Nt

))
∼ t−

3−H
2 as t→∞ .

It should be noted that this property is very important for many practical
problems and allows essentially to expand the possible applications of statisti-
cal results. Unfortunately, we can’t use directly the fractional Poisson process
in the regression model (3) since the impulse noise of the fractional Poisson
processes will be very rare, since the time between jumps is not integrable,
i.e. very large and, therefore, they have almost negligible influence in the ob-
servation models. On the contrary, the truncated process has an exponential
moment, i.e. the same property as Poisson processes, and, moreover, it keeps
a dependence on large time intervals.

4 Model selection

In this section we construct a model selection procedure for estimating the
unknown function S given in (3) starting from the discrete-time observations
(2) and we establish the oracle inequality for the associated risk. To this end,
note that for any function f : [0, T ]→ R from L2[0, T ], the integral

IT (f) =

∫ T

0

f(s)dξs (22)

is well defined, with EQ IT (f) = 0. Moreover, as it is shown in Lemma 1 under
the conditions H1)–H4),

EQ I
2
T

(f) ≤ κQ
∫ T

0

f2
s

d s and κQ = %21 + %22 + %23 |ρ|∗ (23)

where |ρ|∗ = sup
t≥0 |ρ(t)| <∞.

In this paper we will use the trigonometric basis (φj)j≥ 1 in L2[0, 1] defined as

φ1 = 1 , φj(x) =
√

2Trj(2π[j/2]x) , j ≥ 2 , (24)

where the function Trj(x) = cos(x) for even j and Trj(x) = sin(x) for odd j,
[x] denotes the integer part of x. Note, that these functions are orthonormal
on the points (tj)1≤j≤p, i.e. for any 1 ≤ i, j ≤ p

(φi, φj)p =
1

p

p∑
l=1

φi(tl)φj(tl) = 1{i=j} . (25)



10 Vlad Stefan Barbu et al.

In the sequel we denote by ‖x‖2
p

= (x, x)p. Now note that, for any 1 ≤ l ≤ p,

S(tl) =

p∑
j=1

θj,p φj(tl) and θj,p = (S, φj)p . (26)

Using the approach from Konev and Pergamenshchikov (2015), we estimate
the Fourier coefficients θj,p as

θ̂j,p =
1

T

∫ T

0

ψj,p(t)d yt, and ψj,p(t) =

n∑
l=1

φj(tl)1{tl−1<t≤tl} . (27)

It is clear that the functions (ψj,p)1≤j≤p are orthonormal in L2[0, 1], i.e.

(ψj,p, ψi,p) =

∫ 1

0

ψj,p(t)ψi,p(t)d t = (φj , φi)p = 1{i=j} . (28)

The Fourier coefficients of S in the basis can be represented as

θj,p = (S, ψi,p) =

∫ 1

0

S(t)ψi,p(t)d t = θj,p + hj,p, (29)

where hj,p(S) =
∑p

l=1

∫ tl
tl−1

φj(tl)(S(t)− S(tl))d t. Therefore, (27) implies

θ̂j,p = θj,p +
1√
T
ξj,p and ξj,p =

1√
T
IT (ψj,p) . (30)

As in Barbu, Beltaief and Pergamenshchikov (2019a) we use the model selec-
tion procedures based on the following weighted least squares estimators

Ŝλ(t) =

p∑
j=1

λ(j)θ̂j,pψj,p(t) , 0 ≤ t ≤ 1 , (31)

where the weight vector λ = (λ(1), . . . , λ(p))′ belongs to some finite set Λ from
[0, 1]p. Here the prime ′ denotes the transposition. Moreover, we set

m∗ = card(Λ) and Λ∗ = max
λ∈Λ

p∑
j=1

1{λ(j)>0} , (32)

where card(Λ) is the cardinal number of the set Λ. We assume that Λ∗ ≤ n.
Now we use the same criteria as in Barbu, Beltaief and Pergamenshchikov
(2019a) to chose a weight vector in Λ, i.e.we minimize the empirical error

Err(λ) = ‖Ŝλ − S‖2 , (33)

which can be represented as

Err(λ) =

p∑
j=1

λ2(j)θ̂2
j,p
− 2

p∑
j=1

λ(j)θ̂j,pθj,p + ‖S‖2 . (34)
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Note that the Fourier coefficients (θj)j≥ 1 are unknown. Therefore, using the
approach from Barbu, Beltaief and Pergamenshchikov (2019a) to minimize

this function we replace the terms θ̂j,pθj,p by their estimators

θ̃j,p = θ̂2
j,p
−
σQ
T
,

where the proxy variance σQ is defined in (15). In the case when this variance
is unknown we use its estimator, i.e.

θ̃j,p = θ̂2
j,p
− σ̂T

T
and σ̂T =

T

p

p∑
j=[
√
T ]

θ̂2
j,p
. (35)

Now, using this estimator we define the penalty term as

P̂T (λ) =
σ̂T |λ|2

T
and |λ|2 =

p∑
j=1

λ2(j) . (36)

In the case, when the variance σQ is known we set

PT (λ) =
σQ|λ|2

T
. (37)

Finally, we define the cost function as

JT (λ) =

p∑
j=1

λ2(j)θ̂2
j,T
− 2

p∑
j=1

λ(j)θ̃j,T + δ P̂T (λ), (38)

where δ > 0 is some threshold which will be specified later. Now we set the
model selection procedure as

Ŝ∗ = Ŝλ̂ and λ̂ = argmin
λ∈ΛJT (λ) . (39)

In the case when λ̂ is not unique we take one of them.

5 Main results

5.1 Oracle inequalities

Firstly, we obtain the non asymptotic oracle inequality for the model selection
procedure (39). To this end we need a condition for the observations frequency.

H5) Assume that the frequency p is a function of T , i.e. p = pT , such that

lim inf
T→∞

pT
T 5/6

> 0 and lim sup
T→∞

pT
T

<∞ . (40)
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Theorem 1 Assume that the conditions C1) – C3) and H1)–H5) hold true.
Then, there exists some constant c∗ > 0 such that for any T ≥ 1 and any
noise distribution Q ∈ QT and 0 < δ ≤ 1/6, the procedure (39) satisfies the
following oracle inequality

RQ(Ŝ∗, S) ≤1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S)

+ c∗
m∗
δT

(
1 + σ2

Q
+ Λ∗EQ|σ̂T − σQ|

)
. (41)

In the case when σQ is known the inequality (41) has the following form.

Corollary 1 Assume that the conditions C1) – C3) and H1)–H5) hold true
and that the proxy variance σQ is known. Then there exists some constant
c∗ > 0 such that for any T ≥ 1 and for any noise distribution Q ∈ QT and
0 < δ ≤ 1/6, the procedure (39) with σ̂T = σQ, satisfies the following oracle
inequality

RQ(Ŝ∗, S) ≤ 1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S) + c∗

(1 + σ2
Q

)m∗

δT
.

Now we study the estimator σ̂T defined in (35).

Proposition 1 Assume that the conditions C1) – C3) and H1) – H5) hold
true for the model (3) and that S(·) is continuously differentiable. Then, there
exists a constant c∗ > 0 such that for any T ≥ 2, Q ∈ QT and p >

√
T ,

EQ,S |σ̂T − σQ| ≤ c∗ (1 + |Ṡ|2)(1 + σQ)2 g∗
T,p

, (42)

where g∗
T,p

=
√
T/p+ 1/

√
p.

Now Theorem 1 and this proposition imply directly the following result.

Theorem 2 Assume that the function S is continuously differentiable and
that the conditions C1) – C3) and H1)–H5) hold true. Then there exists some
constant c∗ > 0 such that for any continuously differentiable function S for
any T ≥ 2, for any noise distribution Q ∈ QT , p >

√
T and 0 < δ ≤ 1/6,

RQ(Ŝ∗, S) ≤ 1 + 3δ

1− 3δ
min
λ∈Λ
RQ(Ŝλ, S)

+ c∗
m∗
δT

(1 + σQ)2
(

1 + |Ṡ|2
)(

1 + Λ∗g
∗
T,p

)
.

To study robust properties of the procedure (39) we need a condition for
weights.

H6) The parameters m∗ and Λ∗ defined in (32) can be functions of T , i.e.
m∗ = m∗(T ) and Λ∗ = Λ∗(T ), such that for any b > 0 limT→∞ T−bm∗(T ) =
0 and limT→∞ T−1/3−bΛ∗(T ) = 0.
Now, Theorem 2 implies the following oracle inequality.
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Theorem 3 Assume that the function S is continuously differentiable, the
conditions the conditions C1) – C3) and H1)–H6) hold true. Then, the pro-
cedure (39) for any T ≥ 2, p >

√
T and 0 < δ < 1/6 satisfies the following

oracle inequality

R∗(Ŝ∗, S) ≤ 1 + 3δ

1− 3δ
min
λ∈Λ
R∗(Ŝλ, S) +

U∗
T

Tδ
,

where the term U∗
T
> 0 is such that for any r > 0 and b > 0,

lim
T→∞

sup
‖Ṡ‖≤r

T−bU∗
T

= 0 . (43)

In order to obtain the efficiency property, we specify the weight coefficients in
the procedure (39). Consider, for some fixed 0 < ε < 1, a numerical grid of
the form

A = {1, . . . , k∗} × {ε, . . . ,mε} , m = [1/ε2] , (44)

where k∗ ≥ 1 and ε are functions of T , i.e. k∗ = k∗(T ) and ε = ε(T ), such
that  limT→∞ k∗(T ) = +∞ , limT→∞

k∗(T )

lnT
= 0 ,

limT→∞ ε(T ) = 0 and limT→∞ Tbε(T ) = +∞
(45)

for any b > 0. One can take, for example, for T ≥ 2

ε(T ) =
1

lnT
and k∗(T ) = k∗

0
+
√

lnT ,

where k∗
0
≥ 0 is a fixed constant. For each α = (k, r) ∈ A, we set the vector

λα = (λα(j))1≤j≤p

through its components which are defined as

λα(j) = 1{1≤j<lnT} +
(
1− (j/ωα)k

)
1{lnT≤j≤ωα} ,

where

ωα =

(
(k + 1)(2k + 1)

π2kk
rυT

)1/(2k+1)

, υT = T/ς∗

and ς∗ is introduced in (15). Now we define the set Λ as

Λ = {λα , α ∈ A} . (46)

These weight coefficients are used in Konev Pergamenshchikov (2009a); Konev
and Pergamenshchikov (2012, 2015) for continuous time regression models to
show the asymptotic efficiency. Note also that in this case the cardinal of the
set Λ is m∗ = k∗m. Moreover, taking into account that for k ≥ 1 the coefficient
ωα < (rυT )1/(2k+1), we obtain that the norm of the set Λ defined in (32) can
be bounded as Λ∗ ≤ sup

α∈A ωα ≤ (υT /ε)
1/3. Therefore, the properties (45)

imply the condition H6).
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5.2 Robust asymptotic efficiency

Now we study the asymptotic efficiency properties for the procedure (39), (46)
with respect to the robust risks (5) defined by the distribution family (15) –
(16). To this end, we assume that the unknown function S in the model (3)
belongs to the Sobolev ball

Wr,k =

f ∈ Ckper[0, 1] :

k∑
j=0

‖f (j)‖2 ≤ r

 , (47)

where r > 0, k ≥ 1 are some unknown parameters, Ck
per

[0, 1] is the set of k times

continuously differentiable functions f : [0, 1]→ R such that f (i)(0) = f (i)(1)
for all 0 ≤ i ≤ k. Note, that the class (47) is an ellipsoid, i.e.

Wr,k =

f =
∑
j≥1

θjφj :

∞∑
j=1

aj θ
2
j
≤ r

 (48)

where aj =
∑k

i=0
(2π[j/2])

2i
. Similarly to Barbu, Beltaief and Pergamen-

shchikov (2019a) we will show here that the asymptotic sharp lower bound
for the normalized robust risk (5) is given by the well-known Pinsker constant
defined as

l∗ = l∗(r) = ((2k + 1)r)
1/(2k+1)

(
k

(k + 1)π

)2k/(2k+1)

. (49)

To study efficient properties we need to use the set ΞT of all possible estimators

ŜT measurable with respect to the sigma-algebra σ{yt , 0 ≤ t ≤ T}.

Theorem 4 For the risk (5) with the coefficient rate υT = T/ς∗

lim inf
T→∞

υ
2k/(2k+1)
T inf

ŜT∈ΞT
sup

S∈Wr,k

R∗
T

(ŜT , S) ≥ l∗ . (50)

Note that, if the radius r and the regularity k are known, i.e. for the non-
adaptive estimation problem on the continuous observations (yt)0≤t≤T , in
Barbu, Beltaief and Pergamenshchikov (2019a) it is proposed to use the esti-

mate Ŝλ0
defined in (31) with the weights (46)

λ0 = λα0
, α0 = (k, r0) and r0 = [r/ε]ε . (51)

Now, we show the same result for the discrete observations (2).

Proposition 2 Assume that the conditions the conditions C1) – C2) and
H1)–H5) hold true. Then

lim
T→∞

υ
2k/(2k+1)
T sup

S∈Wr,k

R∗
T

(Ŝλ0
, S) ≤ l∗ . (52)
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For the adaptive estimation we user the model selection procedure (39) with
the parameter δ defined as a function of T , i.e. δ = δT , such that

lim
T−→∞

δT = 0 and lim
T−→∞

Tb δT = +∞ (53)

for any b > 0. For example, we can take δT = (6 + lnT )−1.

Theorem 5 Assume that the conditions C1) – C3) and H1)–H6) hold true.
Then the robust risk (5) for the procedure (39) with the coefficients (46) and
the parameter δ = δT satisfying (53) has the following upper bound

lim sup
T→∞

υ
2k/(2k+1)
T sup

S∈Wr,k

R∗
T

(Ŝ∗, S) ≤ l∗ .

Theorem 4 and Theorem 5 imply the following result.

Theorem 6 Assume that the conditions C1) – C3) and H1)–H6) hold true.
Then the procedure (39) with the weight coefficients (46) and the parameter
δ = δT satisfying (53) is asymptotically efficient, i.e.

lim
T→∞

inf ŜT∈ΞT
sup

S∈Wr,k
R∗
T

(ŜT , S)

sup
S∈Wr,k

R∗
T

(Ŝ∗, S)
= 1

and
lim
T→∞

υ
2k/(2k+1)
T sup

S∈Wr,k

R∗
T

(Ŝ∗, S) = l∗ .

Remark 5 It is well known that the optimal (minimax) risk convergence rate
for the Sobolev ball Wr,k is T 2k/(2k+1) (see, for example, Pinsker (1981);
Konev Pergamenshchikov (2009b)). We see here that the efficient robust rate

is υ
2k/(2k+1)
T , i.e. if the distribution upper bound ς∗ → 0 as T →∞ we obtain

a faster rate with respect to T 2k/(2k+1), and if ς∗ → ∞ as T → ∞ we obtain
a slower rate. In the case when ς∗ is constant the robust rate is the same as
the classical non robust convergence rate.

5.3 Big data analysis for the model (1)

Now we consider the estimation problem for the parameters (βj)1≤j≤q in (3)
with unknown q. In this case we have to estimate the sequence β = (βj)j≥1 in
which βj = 0 for j ≥ q + 1. To this end we assume that the functions (uj)j≥1
are orthonormal in L2[0, 1], i.e. (ui,uj) = 1{i 6=j}. Indeed, we can use always
the Gram-Schmidt orthogonalization procedure to provide this property. Thus,
in this case we estimate the parameters β = (βj)j≥1 through the estimator

(39) as β̂∗ = (β̂∗,j)j≥1 and β̂∗,j = (uj , Ŝ∗). Similarly, using the weighted

estimators (31) we define the basic estimators (β̂λ)λ∈Λ as β̂λ = (β̂j,λ)j≥1 and

β̂j,λ = (uj , Ŝλ). Taking into account that in this case

|β̂∗−β|2 =
∑∞
j=1

(β̂∗,j−βj)2 = ‖Ŝ∗−S‖2 and |β̂λ−β|2 = ‖Ŝλ−S‖2, Theorem

3 implies the following oracle inequality.
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Theorem 7 Assume that the function (3) is continuously differentiable and
the conditions C1) – C3), H1)–H5) and (15)–(16) hold true. Then, for any
n ≥ 1 and 0 < δ < 1/6, the following oracle inequality holds true

sup
Q∈QT

EQ,S |β̂∗ − β|2 ≤
1 + 3δ

1− 3δ
min
λ∈Λ

sup
Q∈QT

EQ,S |β̂λ − β|2 +
U∗
T

Tδ
,

where the term U∗
T
> 0 satisfies the property (43).

Moreover, Theorem 6 implies the following efficiency property.

Theorem 8 Assume that the conditions C1) – C3) and H1)–H6) hold true.

Then the estimator β̂∗ constructed through the procedure (39) with the weight
coefficients (46) and the parameter δ = δT satisfying (53) is asymptotically
efficient in the minimax sense, i.e.

lim
T→∞

inf β̂T
sup

S∈Wr,k
sup

Q∈QT
EQ,S |β̂T − β|2

sup
S∈Wr,k

sup
Q∈QT

EQ,S |β̂∗ − β|2
= 1 (54)

and

lim
T→∞

υ
2k/(2k+1)
T sup

S∈Wr,k

sup
Q∈QT

EQ,S |β̂∗ − β|2 = l∗ ,

where the infimum is taken over all possible estimators β̂T measurable with
respect the field σ{yt , 0 ≤ t ≤ T} and the lower bound l∗ is defined in (49).

Remark 6 It should be emphasized that the efficiency properties (54) are ob-
tained without sparse conditions on the number of non zero parameters βj in
the model (1) (see, for example, in Hasttie, Friedman and Tibshirani (2008)).
Moreover, we do not use even the parameter dimension q which can be equal
to +∞.

6 Stochastic calculus for generalized semi-Markov processes

In this section we study some properties of the stochastic integrals (22). First,
note that using the conditions C1) and C2) and the stochastic calculus de-
veloped in Barbu, Beltaief and Pergamenshchikov (2019a) for semi-Markov
processes we can show the following Lemmas 1 and 2.

Lemma 1 Assume that the conditions C1) – C2) and H1)–H4) hold true.
Then, for any non random functions f and h from L2[0, T ]

EQ It(f)It(h) = (%2
1

+ %2
2
) (f, h)t + %2

3
(f, hρ)t , (55)

where (f, h)t =
∫ t
0
f(s)h(s)ds and ρ is the density of the renewal measure

(11).
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It should be noted that this lemma implies directly that the stochastic integral
(22) satisfies the properties (23).

Lemma 2 Assume that the conditions C1) – C2) and H1)–H4) hold true.
Then, for any bounded [0,∞)→ R functions f and h and for any k ≥ 1,

EQ

(
Itk−(f) Itk−(h) | G

)
= (%2

1
+ %2

2
)(f , h)tk + %2

3

k−1∑
l=1

f(tl)h(tl),

where tk =
∑k

j=1
τj and G = σ{tl , l ≥ 1}.

Lemma 3 Assume that the conditions C1) – C3) and H1)–H4) hold true.
Then, for any nonrandom bounded [0, T ]→ R functions f and h, the expecta-

tion EQ
∫ T
0
I2
t−(f)It−(h)h(t)dξt = 0.

Proof. Setting Ľt = %1wt + %2Lt , we can represent the integral (22) as

It(f) = Ǐt(f) + %3I
z
t
(f) , (56)

where Ǐt(f) =
∫ t
0
f(u)dĽu and Iz

t
(f) =

∫ t
0
f(u)dzu. Note here, that using

the condition (7) and the inequality for martingales from Novikov (1975) we
can obtain that EQ sup

0≤t≤T Ǐ8
t
(f) < ∞. Since Ľt and zt are independent,

we get EQ
∫ T
0
I2
t−(f)It−(h)h(t)dĽt = 0. Moreover, the conditions C1) – C3)

yield, that for any non random (ci,j) and k ≥ 1 E
(∑k−1

j=1
c1,jζj

)2
ζk = 0 and

E
(∑k−1

j=1
c1,jζj

)2 (∑k−1
j=1

c2,jζj

)
ζk = 0. Therefore, taking into account that

the sequence (ζk)k≥1 does not depend on the moments (tk)k≥1 and the process

(Ľt)t≥0, and using the same method as in the proof of Lemma 8.4 from Barbu,
Beltaief and Pergamenshchikov (2019a) we obtain

EQ

∫ T

0

I2
t−(f)It−(h)h(t)dzt = EQ

∑
k≥1

1{tk≤T} I
2
tk−

(f)Itk−(h)h(tk)ζk = 0 .

This implies Lemma 3. �
Now we study the integrals defined in (64) as functions of f .

Proposition 3 Assume that the conditions C1) – C3) and H1)–H4) hold
true. Then, for any [0,∞)→ R functions f, h such that |f |∗ ≤ 1 and |h|∗ ≤ 1,
one has

|EQĨT (f)ĨT (h)| ≤ 12σ2
Q

(1 + τ)2
(
(f, h)2

T
+ T c̃

)
, (57)

where c̃ = (2 +Π(x4) + 2|ρ|∗)(1 + ‖Υ‖2
1
) and |f |∗ = sup

t≥0 |f(t)|.
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Proof. First of all, note that in view of the Ito formula and using the fact
that for the process (6) the jumps ∆zs∆Ls = 0 a.s. for any s ≥ 0, we obtain
that

dI2
t
(f) = 2It−(f)dIt(f) + %2

1
f2(t)d t

+ %2
2
d
∑

0≤s≤t

f2(s)(∆Ls)
2 + %2

3
d
∑

0≤s≤t

f2(s)(∆zs)
2 .

Note also that Lemma 1 yields EQI
2
t
(f) = (%2

1
+ %2

2
)‖f‖2

t
+ %2

3
‖f√ρ‖2

t
with

‖f‖2
t

=
∫ t
0
f2(t)dt. Therefore,

dĨt(f) = 2It−(f)f(t)dξt + f2(t)dm̃t , m̃t = %2
2
m̌t + %2

3
mt ,

where m̌t =
∑

0≤s≤t(∆Ls)
2 − t and mt =

∑
0≤s≤t(∆zs)

2 −
∫ t
0
ρ(s)ds. Thus,

EQĨT (f)ĨT (h) = EQ

∫ T

0

Ĩt−(f)dĨt(h)+EQ

∫ T

0

Ĩt−(h)dĨt(f)+EQ [Ĩ(f), Ĩ(h) ]T .

Using here Lemma 3 and, taking into account that (m̌t)t≥0 is a square inte-
grated martingale, we get

EQ

∫ T

0

Ĩt−(f)dĨt(h) = EQ

∫ T

0

Ĩt−(f)h2(t)dm̃t = ρ2
3
EQ

∫ T

0

I2
t−(f)h2(t)dmt .

The last integral can be represented as

EQ

∫ T

0

I2
t−(f)h2(t)dmt = J1 − J2 , (58)

where J1 = EQ
∑
k≥1 I

2
tk−

(f)h2(tk)1{tk≤T} and J2 =
∫ T
0

EQ I
2
t
(f)h2(t)ρ(t)dt.

By Lemma 2 we get

J1 = EQ
∑
k≥1

EQ

(
I2
tk−

(f)|G
)
h2(tk)1{tk≤T} = (%2

1
+ %2

2
)J1,1 + %2

3
J1,2 ,

where J1,1 = EQ
∑
k≥1 ‖f‖

2
tk
h2(tk)1{tk≤T} =

∫ T
0
‖f‖2

t
h2(t)ρ(t)dt and

J1,2 = EQ
∑
k≥1

k−1∑
l=1

f2(tl)h
2(tk)1{tk≤T} = EQ

∑
l≥1

f2(tl)
∑
k≥l+1

h2(tk)1{tk≤T}

=

∫ T

0

f2(x)

(∫ T−x

0

h2(x+ t)ρ(t)dt

)
ρ(x)dx .

Moreover, using Lemma 1 for the last term in (58), we obtain that

J2 = (%2
1

+ %2
2
)

∫ T

0

‖f‖2
t
h2(t)ρ(t)dt+ %2

3

∫ T

0

‖f√ρ‖2
t
h2(t)ρ(t)dt
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and we can represent the expectation in (58) as

EQ

∫ T

0

I2
t−(f)h2(t)dmt = %2

3

∫ T

0

f2(x)

(∫ T

x

h2(t)(Υ (t− x)− Υ (t))dt

)
ρ(x)dx ,

i.e. we can estimate this as |EQ
∫ T
0
I2
t−(f)h2(t)dmt| ≤ 2%2

3
T‖Υ‖1. Therefore,

|EQ
∫ T

0

Ĩt−(f)dĨt(h)|+ |EQ
∫ T

0

Ĩt−(h)dĨt(f)| ≤ 4%4
3
T‖Υ‖1 . (59)

Furthermore, note that

[Ĩ(f), Ĩ(h)]T =< Ĩc(f), Ĩc(h) >T +DT (f, h) ,

where Ĩc
t
(f) = 2%1

∫ t
0
Is(f)f(s)dws and DT (f, h) =

∑
0≤t≤T ∆Ĩ

d
t
(f)∆Ĩd

t
(h).

In this case Ĩd
t
(f) = 2

∫ t
0
Is−(f)f(s)dξd

s
+
∫ t
0
f2(s)dm̃s and ξd

t
= %2Lt + %3zt.

Therefore, in view of Lemma 1,

EQ < Ĩc(f),Ĩc(h) >T= 4ρ21

∫ T

0

EQ(It(f)It(h))f(t)h(t)dt

= 4ρ21(ρ21 + ρ22)

∫ T

0

(f, h)t f(t)h(t)dt+ 4ρ21ρ
2
3

∫ T

0

(f, hρ)tf(t)h(t)dt

= 4ρ21σQ (f, h)2
T

+ 4ρ21ρ
2
3

∫ T

0

(f, gΥ )tf(t)h(t)dt .

Since |f |∗ ≤ 1 and |h|∗ ≤ 1, we get
∫ T
0
|(f, hΥ )tf(t)h(t)|dt ≤ T‖Υ‖1 and∣∣∣EQ < Ĩc(f), Ĩc(h) >T

∣∣∣ ≤ 4σ2
Q

(
(f, h)2

T
+ Tτ‖Υ‖1

)
. (60)

To study the process DT (f, h) note that ∆ξd
t
∆m̃t = %3

2
(∆Lt)

3 + %3
3
(∆zt)

3.
Note also that for any t ≥ 0 the expectation EQIt(f) = 0. Therefore, using
the definition of the process Lt we obtain through the Fubini theorem, that
for any bounded [0, T ]→ R measurable non random functions V

EQ
∑

0≤t≤T

V (t) It−(f)(∆Lt)
3 = Π(x3)

∫ T

0

V (t)EQ It(f)dt = 0 .

Moreover, since the processes (Ľt)t≥0 and (zt)t≥0 are independent we get

EQ
∑

0≤t≤T

V (t)Ǐt−(f)(∆zt)
3 = EQ

∑
k≥1

V (tk)ζ3
k
EQ

(
Ǐtk−(f)|Gz

)
= 0 ,

where the integral Ǐt(f) is defined in (56) and the Gz = σ{zt , t ≥ 0}. Note
that the condition C3) implies that for any k ≥ 1 and nonrandom (cj)j≥1

EQ

(∑k−1
j=1

cjζj

)
ζ3
k

= 0. Therefore, EQ
∑

0≤t≤T V (t)Iz
t−(f)(∆zt)

3 = 0 and

EQ
∑

0≤t≤T

It−(f)f(t)h2(t)∆ξd
t
∆m̃t = EQ

∑
0≤t≤T

It−(h)h(t)f2(t)∆ξd
t
∆m̃t = 0 .
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So, the expectation of DT (f, h) can be represented as

EQDT (f, h) = 4%2
2
EQD1,T (f, h) + 4%2

3
EQD2,T (f, h) + EQD3,T (f, h) ,

where D1,T (f, h) =
∑

0≤t≤T It−(f)It−(h)f(t)h(t)(∆Lt)
2,

D2,T (f, h) =
∑

0≤t≤T

It−(f)It−(h)f(t)h(t)(∆zt)
2

and D3,T (f, h) =
∑

0≤t≤T f2(t)h2(t)(∆m̃t)
2. First, since Π(x2) = 1, we get

EQD1,T (f, h) =

∫ T

0

f(t)h(t)EQ It(f)It(h) dt = (%2
1

+ %2
2
)

∫ T

0

f(t)h(t) (f, h)t dt

+ %2
3

∫ T

0

f(t)h(t) (f, hρ)t dt = σQ(f, h)2
T

+ %2
3

∫ T

0

f(t)h(t) (f, hΥ )t dt

and |EQD1,T (f, h)| ≤ σQ
(
(f, h)2

T
+ Tτ‖Υ‖1

)
. Then, taking into account that

E ζ2
j

= 1 and using Lemma 2, we represent the expectation for D2,T (f, h) as

EQD2,T (f, h) = E
∑
k≥1

EQ

(
Itk−(f)Itk−(h)|G

)
f(tk)h(tk)1{tk≤T}

= (%2
1

+ %2
2
)EQ

∑
k≥1

(f , h)tkf(tk)h(tk)1{tk≤T} + %2
3
EQD

′

2,T
(f, h)

= (%2
1

+ %2
2
)

∫ T

0

(f, h)t f(t)h(t)ρ(t)dt+ %2
3
EQD

′

2,T
(f, h) ,

where D
′

2,T
(f, h) =

∑
k≥1

∑k−1
l=1

f(tl)h(tl)f(tk)h(tk)1{tk≤T}. Note, that∫ T

0

(f, h)t f(t)g(t)ρ(t)dt =
1

2τ
(f, h)2

T
+

∫ T

0

(f, h)t f(t)g(t)Υ (t)dt ,

i.e. ∣∣∣∣∣
∫ T

0

(f, h)t f(t)g(t)ρ(t)dt

∣∣∣∣∣ ≤ 1

2τ
(f, h)2

T
+ T‖Υ‖1 .

Furthermore, the expectation of D
′

2,T
(f, h) can be represented as

EQD
′

2,T
(f, h) = EQ

∑
l≥1

f(tl)h(tl)
∑
k≥l+1

f(tk)h(tk)1{tk≤T}

=

∫ T

0

f(x)g(x)

(∫ T−x

0

f(x+ t)h(x+ t)ρ(t)dt

)
ρ(x)dx

=
1

2τ2
(f, h)2

T
+ D

′′

2,T
(f, h) ,
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where

D
′′

2,T
(f, h) =

∫ T

0

f(x)h(x)

(∫ T−x

0

f(x+ t)h(x+ t)Υ (t)dt

)
ρ(x)dx

+
1

τ

∫ T

0

f(x)h(x)

(∫ T−x

0

f(x+ t)h(x+ t)Υ (t)dt

)
Υ (x)dx .

This implies |D′′
2,T

(f, h)| ≤ T (|ρ|∗ + 1/τ)(1 + ‖Υ‖2
1
) and, therefore,

|EQD2,T (f, h)| ≤ σQ
(

(f, h)2
T

τ
+ T (2 + τ |ρ|∗)(1 + ‖Υ‖2

1
)

)
.

Moreover, we can calculate directly

EQD3,T (f, h) = %4
2
Π(x4)

∫ T

0

f2(t)h2(t)dt+ %4
3

∫ T

0

f2(t)h2(t)ρ(t)dt

and EQD3,T (f, h) ≤ Tσ2
Q

(
Π(x4) + |ρ|∗

)
(1 + τ)2. From here we obtain that

|EQDT (f, h)| ≤ σ2
Q

(1+τ)2
(
4(f, h)2

T
+ T c̃

)
, where c̃ is given in (57). From this

and (60) we find EQ [Ĩ(f), Ĩ(h)]T ≤ 8σ2
Q

(1 + τ)2
(
(f, h)2

T
+ T c̃

)
. This bound

and (59) implies (57). Hence the proof is achieved. �
In order to prove the oracle inequalities we need to study the condi-

tions introduced in Konev and Pergamenshchikov (2012) for the general semi-
martingale model (3). To this end, we set for any x ∈ Rp the functions

B1,Q(x) =

p∑
j=1

xj

(
EQξ

2
j,p
− σQ

)
and B2,Q(x) =

p∑
j=1

xj ξ̃j,p , (61)

where σQ is defined in (15) and ξ̃j,p = ξ2
j,p
−EQξ

2
j,p

.

Proposition 4 Assume that the conditions C1)–C2), H1)–H5) hold true.
Then there exists some constant c∗ > 0 such that for any Q ∈ ∪k≥1Qk

L1,Q = sup
T≥3

sup
x∈[−1,1]p

∣∣B1,Q(x)
∣∣ < c∗ σQ (62)

and

L2,Q = sup
T≥3

sup
|x|≤1

EQB
2
2,Q

(x) ≤ c∗ σ2
Q
, (63)

where |x|2 =
∑p

j=1
x2
j
.

Proof. Firstly, using here Lemma 1, we obtain that

Eξ2
j,p

= %2
1

+ %2
2

+
%23
T

∫ T

0

ψ2
j,p

(x) ρ(x)dx = σQ +
%23
T

∫ T

0

ψ2
j,p

(x)Υ (x)dx .
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From (13) it follows that
∣∣∣EQξ2j,p − σQ∣∣∣ ≤ 2%23‖Υ‖1/T and, therefore, the con-

dition H5) implies the inequality (62). Next, note that

EQ

 p∑
j=2

xj ξ̃j,p

2

≤ 1

T 2

p∑
j=1

p∑
l=1

|xj | |xl||EQ ĨT (ψj,p)ĨT (ψl,p)| , (64)

where ĨT (f) = I2
T

(f) − EQI
2
T

(f). Now Proposition 3 and the property (28)
imply, that for some constant c∗ > 0 and for |x| ≤ 1

EQ

 p∑
j=2

xj ξ̃j,p

2

≤ c∗

|x|2 +
1

T

 p∑
j=1

|xj |

2
 ≤ c∗ (1 +

p

T

)
.

The condition H5) implies directly Proposition 4. �

7 Proofs

7.1 Proof of Theorem 1

Using the cost function given in (38), we can rewrite the empirical squared
error in (34) as follows

Err(λ) = JT (λ) + 2

p∑
j=1

λ(j)ϑj,p + ‖S‖2 − δP̂T (λ), (65)

where

ϑj,p = θ̃j,p − θj,pθ̂j,p =
1√
T
θj,pξj,p +

1

T
ξ̃j,p +

1

T
ςj,T +

σQ − σ̂T
T

,

with ςj,p = EQξ
2
j,p
− σQ and ξ̃j,p = ξ2

j,p
−EQξ

2
j,p

. Setting

M(λ) =
1√
T

p∑
j=1

λ(j)θjξj,p and L(λ) =

p∑
j=1

λ(j) (66)

and using the functions (61) through the penalty term (37), we rewrite (65)
as

Err(λ) = JT (λ) + 2
σQ − σ̂T

T
L(λ) + 2M(λ) +

2

T
B1,Q(λ)

+ 2
√
PT (λ)

B2,Q(ν(λ))√
σQT

+ ‖S‖2 − δP̂T (λ), (67)
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where ν(λ) = λ/|λ|. Let λ0 = (λ0(j))1≤j≤ p be a fixed sequence in Λ and λ̂ be

defined as in (39). Substituting λ0 and λ̂ in (67), we obtain

Err(λ̂)− Err(λ0) = JT (λ̂)− JT (λ0) + 2
σQ − σ̂T

T
L($) +

2

T
B1,Q($) + 2M($)

+ 2

√
PT (λ̂)

B2,Q(ν̂)√
σQT

− 2
√
PT (λ0)

B2,Q(ν0)√
σQT

− δP̂T (λ̂) + δP̂T (λ0),

where $ = λ̂ − λ0, ν̂ = ν(λ̂) and ν0 = ν(λ0). Now, in view of the inequality
2|ab| ≤ δa2 + δ−1b2 we get that

2
√
PT (λ)

|B2,Q(ν(λ))|√
σQT

≤ δPT (λ) +
B2

2,Q
(ν(λ))

δσQ T
.

Then, taking into account that |L($)| ≤ L(λ̂) + L(λ) ≤ 2Λ∗ and using the
definition (62) we get

Err(λ̂) ≤ Err(λ0) + 2M($) +
2L1,Q

T
+

2B∗
2,Q

δσQT
+

4Λ∗|σ̂T − σQ|
T

+ 2δP̂T (λ0) ,

where B∗
2,Q

= sup
λ∈ΛB

2
2,Q

((ν(λ)). To estimate the second term in the right

side of this inequality we set Sx =
∑p

j=1
x(j)θj,pψj,p for x = (x(j))1≤j≤p ∈ Rp.

Thanks to (23) we estimate the term M(x) for any x ∈ Rp as

EQM
2(x) ≤ κQ

1

T

p∑
j=1

x2(j)θ
2

j,p
= κQ

‖Sx‖2

T
. (68)

Setting here Z∗ = sup
x∈Λ1

TM2(x)/‖Sx‖2 and Λ1 = Λ− λ0, we get

2|M(x)| ≤ δ‖Sx‖2 +
Z∗

Tδ
. (69)

The last term here can be estimated from above as

EQZ
∗ ≤

∑
x∈Λ1

TEQM
2(x)

‖Sx‖2
≤
∑
x∈Λ1

κQ = κQm∗ ,

where m∗ = card(Λ). Moreover, note that, for any x ∈ Λ1,

‖Sx‖2 − ‖Ŝx‖2 =

p∑
j=1

x2(j)(θ
2

j,p
− θ̂2

j,p
) ≤ −2M1(x), (70)

where M1(x) = T−1/2
∑p

j=1
x2(j)θ

2

j,p
ξj,T . Taking into account now that, for

any x ∈ Λ1, the components |x(j)| ≤ 1, we can estimate this term as in (68),
i.e. EQM2

1
(x) ≤ κQ ‖Sx‖2/T . Similarly to the previous reasoning setting
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Z∗
1

= sup
x∈Λ1

TM2
1(x)/‖Sx‖2, we get EQ Z

∗
1 ≤ κQm∗. Using the same type

of arguments as in (69), we can derive

2|M1(x)| ≤ δ‖Sx‖2 +
Z∗1
Tδ

. (71)

From here and (70), we get

‖Sx‖2 ≤
‖Ŝx‖2

1− δ
+

Z∗1
Tδ(1− δ)

(72)

for any 0 < δ < 1. Using this bound in (69) yields

2M(x) ≤ δ‖Ŝx‖2

1− δ
+

Z∗ + Z∗1
Tδ(1− δ)

.

Taking into account that |Ŝ$|2 ≤ 2 (Err(λ̂) + Err(λ0)), we obtain

2M($) ≤ 2δ(Err(λ̂) + Err(λ0))

1− δ
+

Z∗ + Z∗1
Tδ(1− δ)

and, therefore,

Err(λ̂) ≤ 1 + δ

1− 3δ
Err(λ0) +

Z∗ + Z∗1
Tδ(1− 3δ)

+
2L1,Q

T (1− 3δ)
+

2B∗
2,Q

δ(1− 3δ)σQT

+
(4Λ∗ + 2)

T (1− 3δ)
|σ̂T − σQ|+

2δ

(1− 3δ)
PT (λ0).

Moreover, for 0 < δ < 1/6 we can rewrite this inequality as

Err(λ̂) ≤ 1 + δ

1− 3δ
Err(λ0) +

2(Z∗ + Z∗1 )

Tδ
+

4L1,Q

T
+

4B∗
2,Q

δσQT

+
(8Λ∗ + 2)|σ̂T − σQ|

T
+

2δ

(1− 3δ)
PT (λ0).

Now, using the upper bound (63), we get

EQB
∗
2,Q
≤
∑
λ∈Λ

EQB
2
2,Q

(ν(λ)) ≤m∗L2,Q .

Now, taking into account that Λ∗ ≥ 1, we get

RQ(Ŝ∗, S) ≤ 1 + δ

1− 3δ
RQ(Ŝλ0

, S) +
4κQm∗
Tδ

+
4L1,Q

T
+

4m∗L2,Q

δσQT

+
10Λ∗EQ |σ̂T − σQ|

T
+

2δ

(1− 3δ)
PT (λ0).
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By using the upper bound for PT (λ0) in Lemma 4, we obtain that

RQ(Ŝ∗, S) ≤1 + 3δ

1− 3δ
RQ(Ŝλ0

, S) +
4κQm∗
Tδ

+
4L1,Q

T
+

4m∗L2,Q

δσQT

+
10Λ∗
T

EQ |σ̂T − σQ|+
2δL1,Q

(1− 3δ)T
.

Taking into account here that 1 − 3δ ≥ 1/2 for 0 < δ < 1/6 and, moreover,
that κQ ≤ (1 + τ |ρ|∗)σQ and using the bounds (62) and (63) we obtain the
inequality (41). Hence we obtain the desired result. �

7.2 Proof of Proposition 1

Let x
′

= (x
′

j
)1≤j≤p with x

′

j
= 1{[

√
T ]6j6p}. Then (30) and (35) yield

σ̂T =
T

p

p∑
j=l

(θj,p)
2 +

2T

p
M(x

′
) +

1

p

p∑
j=l

ξ2
j,p
, (73)

where M is given in (66). Setting x
′′

= (x
′′

j
)1≤j≤p and x

′′

j
= p−1/21{[

√
T ]6j6p},

one can write the last term on the right hand side of (73) as

1

p

p∑
j=[
√
T ]

ξ2
j,p

=
1
√
p
B2,Q(x

′′
) +

1

p
B1,Q(x

′
) +

(p− [
√
T ] + 1)σQ
p

,

where the functions B1,Q and B2,Q are defined in (61). Using Proposition 4
and Lemma 6 , we come to the following upper bound

EQ|σ̂T − σQ| ≤
16|Ṡ|2T
[
√
T ]p

+
2T

p
EQ |M(x

′
)|+

L1,Q

p
+

√
L2,Q√
p

+
σQ([
√
T ]− 1)

p
.

In the same way as in (68) through Lemma 6, we obtain

EQ |M(x
′
)| ≤

κQ
T

p∑
j=[
√
T ]

θ
2

j,p

1/2

≤
4(κQ|Ṡ|2)1/2

[
√
T ]

.

Taking into account that κQ ≤ (1 + τ |ρ|∗)σQ and using the bounds (62) and
(63) we obtain the inequality (42). Hence Proposition 1 holds true. �

7.3 Proof of Theorem 2

This proof directly follows from Theorem 1 and Proposition 1. �
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7.4 Proof of Theorem 4

First, we denote by Q0 the distribution in D[0, n] of the noise (6) with the
parameter %1 = ς∗, %2 = 0 and %3 = 0, i.e., the distribution for the “sig-
nal + white noise” model. So, we can estimate from below the robust risk
R∗
T

(S̃T , S) ≥ RQ0
(S̃T , S). Now, Theorem 6.1 from Konev Pergamenshchikov

(2009b) yields the bound (50). Hence we obtain the desired result. �

7.5 Proof of Proposition 2

First, we note that in view of (31) one can represent the quadratic risk for the
empiric norm ‖ · ‖p defined in (25) as

EQ ‖Ŝλ0
− S‖2

p
=

1

T

p∑
j=1

λ2
0
(j)EQ ξ

2
j,p

+Θp ,

where Θp =
∑p
j=1

(
θj,p − λ0(j) θj,p

)2
. First, note that

sup
Q∈QT

EQ

p∑
j=1

λ2
0
(j) ξ2

j,p
≤ ς∗

p∑
j=1

λ2
0
(j) + L1,Q .

where L∗
1,T

= sup
Q∈QT

L1,Q. Taking into account that υT = T/σ∗, we get

sup
Q∈QT

EQ ‖Ŝλ0
− S‖2

p
≤ 1

υT

p∑
j=1

λ2
0
(j) +

L∗
1,T

T
+Θp .

Note here that

lim
T→∞

∑T
j=1 λ

2
0
(j)

υ
1/(2k+1)
T

=
2(τk r)1/(2k+1) k2

(k + 1)(2k + 1)
, τk =

(k + 1)(2k + 1)

π2kk
. (74)

Now, from (29) we obtain that for any 0 < ε̃ < 1

Θp ≤ (1 + ε̃)Θp + (1 + ε̃−1)

p∑
j=1

h2
j,p
, (75)

where Θp =
∑p
j=1 (1− λ0(j))2 θ2

j,p
. Moreover, in view of the definition (51)

Θp =

[ω0]∑
j=ι0

(1− λ0(j))2 θ2
j,p

+

p∑
j=[ω0]+1

θ2
j,p

:= Θ1,p +Θ2,p ,

where ω0 = ωα0
= (τkr0υT )

1/(2k+1)
and r0 = [r/ε] ε. Lemma 8 yields

Θ1,p ≤ (1 + ε̃)

[ω0]∑
j=[lnT ]

(1− λ0(j))2 θ2
j

+ 4π2r(1 + ε̃−1)ω3
0
p−2 .
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Through Lemma 7 we have Θ2,p ≤ (1 + ε̃)
∑
j≥[ω0]+1

θ2
j

+ (1 + ε̃−1) r p−2.

Hence, Θp ≤ (1 + ε̃)Θ∗ + (1 + ε̃−1)
(
4π2rω3

0
+ r
)
p−2, where the first term

Θ∗ =
∑
j≥lnT (1− λ0(j))2 θ2

j
. Moreover, note that

sup
S∈Wr,1

max
1≤j≤p

h2
j,p
≤ ‖Ṡ‖2 p−2 ≤ r p−2 .

Moreover, Wr,k ⊆ Wr,2 for any k ≥ 2. From here and Lemma 9 we get

sup
S∈Wr,k

p∑
j=1

h2
j,p
≤ r

(
p−1 1{k=1} + 3p−21{k≥2}

)
and, therefore, in view of the condition H5)

lim
T→∞

υ
2k/(2k+1)
T

(
p−11{k=1} + ω3

0
p−21{k≥2}

)
= 0 .

This implies, that

lim sup
T→∞

υ
2k/(2k+1)
T sup

S∈Wr,k

Θp ≤ lim sup
T→∞

υ
2k/(2k+1)
T sup

S∈Wr,k

Θ∗ .

To estimate the term Θ∗ we set

UT = υ
2k/(2k+1)
T sup

j≥lnT
(1− λ0(j))2/aj ,

where the sequence (aj)j≥1 is defined in (48). This leads to the inequality

sup
S∈Wr,1

υ
2k/(2k+1)
T Θ∗ ≤ UT

∑
j≥1

aj θ
2
j
≤ UT r .

Using limT→∞ r0 = r, we get lim supT→∞ UT ≤ π−2k (τk r)
−2k/(2k+1)

, where
the coefficient τk is given in (74). This implies immediately that

lim sup
T→∞

υ
2k/(2k+1)
T sup

S∈Wr,k

Θp ≤
r1/(2k+1)

π2k(τk)2k/(2k+1)
. (76)

Therefore, from (74) and (76) it follows that

lim
T→∞

υ
2k/(2k+1)
T sup

S∈Wr,k

sup
Q∈QT

EQ ‖Ŝλ0
− S‖2

p
≤ l∗ . (77)

Using now Lemma 5 and the condition H5), we get the upper bound (52).
Hence we obtain the desired result. �
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8 Appendix

A.1 Property of the penalty term

Lemma 4 For any n ≥ 1 and λ ∈ Λ,

PT (λ) ≤ RQ(Ŝλ, S) +
L1,Q

T
,

where the coefficient PT (λ) is defined in (66) and L1,Q is defined in (62).

Proof. From (30) and (33) we obtain

Err(λ) ≥
p∑
j=1

(
λ(j)θ̂j,p − θj,p

)2
=

p∑
j=1

(
(λ(j)− 1)θj,p +

λ(j)

T
ξj,p

)2

.

Now Proposition 4 implies

RQ(Ŝλ, S) = EQ Err(λ) ≥ 1

T

p∑
j=1

λ2(j)EQ ξ
2
j,p
≥ PT (λ)−

L1,Q

T
.

Hence we obtain the result. �

A.2 Properties of the Fourier coefficients

Lemma 5 Let f be an absolutely continuous function, f : [0, 1] → R, with
‖ḟ‖ < ∞ and g be a simple function, g : [0, 1] → R of the form g(t) =∑p
j=1 cj χ(tj−1,tj ]

(t), where cj are some constants. Then, for any ε > 0, the
function ∆ = f − g satisfies the following inequalities

‖∆‖2 ≤ (1+ ε̃)‖∆‖2
p

+(1+ ε̃−1)
‖ḟ‖2

p2
, ‖∆‖2

p
≤ (1+ ε̃)‖∆‖2 +(1+ ε̃−1)

‖ḟ‖2

p2
.

Lemma 6 Let the function S(t) in (3) be absolutly continuous and have an
absolutely integrable derivative. Then the coefficients (θj,p)16j6p defined in

(29) satisfy the inequalities |θ1,p| 6 ‖S‖1 and max26j6p j|θj,p| 6 2
√

2|Ṡ|1.

Lemma 7 For any p ≥ 2, 1 ≤ N ≤ p and r > 0, the coefficients (θj,p)1≤j≤p of
functions S from the class Wr,1 satisfy, for any ε̃ > 0, the following inequality∑p

j=N
θ2
j,p
≤ (1 + ε̃)

∑
j≥N θ2

j
+ (1 + ε̃−1) r p−2.

Lemma 8 For any p ≥ 2 and r > 0, the coefficients (θj,p)1≤j≤p of functions

S satisfy the inequality max1≤j≤p sup
S∈Wr,1

(
|θj,p − θj | − 2π

√
r j p−1

)
≤ 0.

Lemma 9 For any p ≥ 2 and r > 0 the correction coefficients from (29)
satisfy the inequality sup

S∈Wr,2

∑p

j=1
h2
j,p
≤ 3r p−2.

Lemmas 5 – 9 are proven in Konev and Pergamenshchikov (2015).
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