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In this paper we study the following linear regression model in continuous time

dy t =   q j=1 β j u j (t)   dt + dξ t , 0 ≤ t ≤ T , (1) 
where the functions (u j ) 1≤j≤q are known linear independent 1-periodic R → R functions, the duration of observations T is an integer number and (ξ t ) t≥0 is an unobservable noise process defined in Section 2. The process (1) is observed only at the fixed time moments (y t j ) 0≤j≤n , t j = j p and n = pT ,

where the observations frequency p is some fixed integer number. We consider the model (1) in the case when the parameter dimension is grater than the number of observations, i.e., q > n. Such models are called big data or high dimension regression in continuous time (see, for example, in [START_REF] Fujimori | The Danzing selector for a linear model of diffusion processes[END_REF] for diffusion processes). The problem is to estimate the unknown parameters (β j ) 1≤j≤q on the basis of the observations (2). Usually for such problems one uses either the Lasso algorithm or the Dantzig selector method. It should be emphasized that to apply these methods one needs to assume sparsity conditions which provide the non large ("reasonable") number of the nonzero unknown parameters and, moreover, the parameter dimension q must be known (see, for example, in [START_REF] Hasttie | The Elements of Statistical Leaning. Data Mining, Inference and Prediction[END_REF]). It should be noted also that the case of unknown parameter dimension q is one of the crucial points in important practical problems such as, for example, signal and image statistical processing (see, for example, [START_REF] Beltaief | Model selection for the robust efficient signal processing observed with small Levy noise[END_REF] and the references therein). In this paper we study the model (1) in the nonparametric setting as the estimation problem for the function

S(t) = q j=1
β j u j (t) ,

i.e. dy t = S(t)dt + dξ t , 0 ≤ t ≤ T ,

where S is an unknown 1-periodic R → R function from L 2 [0, 1]. Here, we assume neither sparsity conditions, nor the condition that the parameter dimension is known, i.e., in particular, we can assume that q = +∞. Now the problem is to estimate the unknown function S in the model (3) on the basis of observations (2). Originally, such problems were considered in the framework "signal+white noise" models (see, for example, [START_REF] Ibragimov | Statistical Estimation: Asymptotic Theory[END_REF]; [START_REF] Kutoyants | Identification of dynamical systems with small noise[END_REF]; [START_REF] Pinsker | Optimal filtration of square integrable signals in gaussian white noise[END_REF]). Later, it was extended to the "color noise" models defined through non Gaussian Ornstein-Uhlenbeck processes [START_REF] Barndorff-Nielsen | Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial mathematics[END_REF]; Konev andPergamenshchikov (2012, 2015). The problem here is that the dependence defined on the basis of the Ornstein-Uhlenbeck processes disappears very fast, at a geometric rate. This means that such models are asymptotically equivalent to models with independent observations. To keep the dependence in the observations for large time periods for the estimation problem on the complete data in the paper Barbu, Beltaief and Pergamenshchikov (2019a) it is proposed to define the model (3) through semi-Markov processes with jumps. Such models considerably extend the potential applications of statistical results in many important practical fields such as finance, insurance, signals and image processing, reliability, biology (see, for example, Barbu, Beltaief and Pergamenshchikov (2019a); [START_REF] Barbu | Semi-Markov Chains and Hidden Semi-Markov Models toward Applications -Their use in Reliability and DNA Analysis[END_REF] and the references therein). In this paper we extend the semi-Markov regression models to the generalized semi-Markov processes by introducing an additional dependence in jump sizes of (ξ t ) t≥0 .

Methods

In this paper, in order to estimate the function S, we develop model selection methods using the quadratic risks defined as

R Q ( S T , S) = E Q,S S T -S 2 , f 2 = 1 0 f 2 (s)ds , (4) 
where S T (•) is some estimate (i.e. any periodical function measurable with respect to the observations σ{y t 0 , . . . y t n }) and E Q,S is the expectation with respect to the distribution P Q,S of the process (3) corresponding to the unknown noise distribution Q in the Skorokhod space D[0, T ] and to the function S. We assume that this distribution belongs to some distribution family Q T specified in Section 2. To study the properties of the estimators uniformly over the noise distribution (what is really needed in practice), we use the robust risk defined as

R * T ( S T , S) = sup Q∈Q T R Q ( S T , S) . (5) 
It should be noted that statistical procedures which are optimal in the sense of this risk possess stable mean square accuracy uniformly over all possible admissible noise distributions in the model (3). This means that the corresponding statistical optimal algorithms have high noise immunity and, therefore, significantly improve the quality and reliability of statistical inferences obtained on their basis.

To construct model selection procedures on the basis of the discrete data (2) we use the approach proposed in [START_REF] Konev | Robust model selection for a semimartingale continuous time regression from discrete data[END_REF]. It should be noted that the main analytic tool in this paper is based on the exponential decrease rate of the dependence in Ornstein-Uhlenbeck models, and, therefore, we cannot apply these methods to semi-Markov models, which can retain a dependence in noises for a long time. So, in this paper, to study the estimation problem on the discrete observations (2) for the model (3) with noises defined through semi-Markov processes we develop new methods based on the special renewal theory from Barbu, Beltaief and Pergamenshchikov (2019a); based on these techniques we can analyse the approximation errors in the discrete observations and obtain non asymptotic sharp oracle inequalities. Moreover, as a consequence, we found constructive sufficient conditions on the observations frequency which provide the robust efficiency for proposed model selection procedures in adaptive setting, i.e. in the case when the regularity properties of the function S are unknown.

Main contributions of this paper

In this paper we use for the first time nonparametric adaptive methods for estimation problems in the framework of the big data generalized semi-Markov regression models. To this end we develop model selection procedures and corresponding analytical tools providing, under some constructive sufficient conditions, the optimality in the sharp oracle inequality sense and the robust adaptive efficiency in the minimax sense for the proposed estimators. It turns out that these conditions hold true for important practical cases such as, for example, regression models constructed through truncated fractional Poisson processes introduced in Barbu, Beltaief and Pergamenshchikov (2019b). Moreover, in this paper, we extend for the first time the model from Barbu, Beltaief and Pergamenshchikov (2019a) using the generalized semi-Markov models obtained by introducing a dependence structure in the sizes of the jumps. As an example, we use spherically symmetric random variables, which play very important role in many practical applications (see, for example, [START_REF] Fourdrinier | Improved selection model method for the regression with dependent noise[END_REF] and the references therein).

Organization of the paper

The rest of the paper is organized as follows. In Section 2 we state the main conditions under which we consider the model (3). In Section 3 we represent fractional Poisson processes and its main properties. In Section 4 we construct model selection procedures on the basis of weighted least squares estimates. In Section 5 we state the main results. In section 6 we develop the stochastic calculus for the generalized semi-Markov processes. Section 7 gives the proofs of the main results. Some auxiliary tools are given in an Appendix.

Main conditions

First, we assume that the noise process (ξ t ) t≥ 0 in the model ( 3) is defined as

ξ t = 1 w t + 2 L t + 3 z t , (6) 
where 1 , 2 and 3 are unknown coefficients, (w t ) t≥ 0 is a standard Brownian motion,

L t = t 0 R *
x(µ(ds, dx) -µ(ds, dx)), µ(ds dx) is the jump measure with deterministic compensator µ(ds dx) = dsΠ(dx), Π(•) is the Lévy measure on R * = R\{0} (see, for example [START_REF] Liptser | Theory of Martingales[END_REF] for details), with Π(x 2 ) = 1 and Π(x 8 ) < ∞ .

(7)

Here we use the usual notations for Π(|x| m ) = R |z| m Π(dz). Note that Π(|x|) may be equal to +∞. In this paper we assume that the "dependent part" in the noise ( 6) is modelled by the generalized semi-Markov process (z t ) t≥ 0 defined as

z t = N t i=1 ζ i , (8) 
where (ζ i ) i≥ 1 are random variables satisfying the following conditions:

C 1 ) ∀i ≥ 1 the expectations E ζ i = 0, E ζ 2 i = 1 and sup l≥1 E ζ 4 l < ∞; C 2 ) E ζ i ζ j = 0 for any i = j; C 3 ) For any 1 ≤ k 1 < k 2 < k 3 < k 4 the random variables (ζ k i ) 1≤i≤4 are such that E ζ ι 1 k 1 ζ ι 2 k 2 ζ ι 3 k 3 ζ ι 4 k 4
= 0 for any ι 1 , . . . , ι 4 ∈ {0, 1, 2, 3} for which 3 ≤ 4 i=1 ι i ≤ 4 and at least one among them is equal to one. Now we give some examples for the correlation conditions C 1 ) -C 3 ). To this end, we first remind the definition of spherically symmetric distribution (see, for example, in [START_REF] Fourdrinier | Improved selection model method for the regression with dependent noise[END_REF] 

g(t) = E 1 (2πs) d/2 e -t 2s 2 , ( 9 
)
where s is a non negative random variable. It should be emphasized that in radio-physics such distributions are very popular for statistical signal processing (see, for example, [START_REF] Middleton | Canonical non-Gaussian noise models: their implications for measurement and for prediction of receiver performance[END_REF]; [START_REF] Kassam | Signal detection in non-Gaussian noise[END_REF]). Using these definitions it is easy to see that the following random variables satisfy the conditions C 1 ) -C 3 ):

- In (8) the process N t is a general counting process defined as

N t = ∞ k=1 1 { k l=1 τ l ≤t} (10) 
with (τ l ) l≥ 1 an i.i.d. sequence of positive integrated random variables with the distribution η and mean τ = E Q τ 1 > 0. We assume that the processes (N t ) t≥0 , (Y i ) i≥ 1 and (L t ) t≥0 are independent. In the sequel we will use the renewal measure defined as

η = ∞ l=1 η (l) , (11) 
where η (l) is the lth convolution power of the measure η.

Remark 1 Note that in the case when the random variables (ζ j ) j≥1 are i.i.d. random variables, then (8) is the semi-Markov process used in Barbu, Beltaief and Pergamenshchikov (2019a).

To use the renewal methods from Barbu, Beltaief and Pergamenshchikov (2019a) we assume that the distribution η has a density g for which the following conditions hold true.

H 1 ) Assume that, for any x ∈ R, there exist the finite limits g(x-) = lim z→x-g(z) and g(x+) = lim z→x+ g(z) and, for any ∀K > 0, ∃δ = δ(K) > 0 for which

sup |x|≤K δ 0 |g(x + t) + g(x -t) -g(x+) -g(x-)| t dt < ∞. H 2 ) ∀γ > 0 the upper bound sup z≥0 z γ |2g(z) -g(z-) -g(z+)| < ∞. H 3 ) There exists β > 0 such that R + e βx g(x) dx < ∞.
H 4 ) ∃t * > 0 such that the Fourier transformation g(θ-it) belongs to L 1 (R) for any 0 ≤ t ≤ t * , where g(z) = (2π) -1 R e izv g(v)dv. Moreover, to check these conditions we will use the following assumption.

H * 4 ) The density g is two time continuously differentiable on R + with g(0) = 0 and there exists β > 0 such that +∞ 0

e βx g(x) + |g (x)| + |g (x)| dx < ∞ and lim x→∞ e βx g(x) + |g (x)| = 0.
It is clear that the conditions H 1 )-H 3 ) hold true in this case. To obtain the condition H 4 ) it suffices to calculate the integral in g, integrating by parts two times. For example, one can take gamma distribution of order m ≥ 2

g(x) = a m x m-1 m! e -ax 1 {x≥0} and a > 0 . ( 12 
)
It should be noted that in view of Proposition 5.2 from Barbu, Beltaief and Pergamenshchikov (2019a), Conditions H 1 )-H 4 ) imply that the renewal measure (11) has a continuous density ρ such that

Υ 1 = +∞ 0 |Υ (x)| dx < ∞ and Υ (x) = ρ(x) - 1 τ . ( 13 
)
Remark 2 It should be noted that Condition H 4 ) does not hold for the exponential random variable (τ j ) j≥1 since its density is not continuous in zero. But for exponential random variables, i.e. in the case when (N t ) t≥0 is a Poisson process, the renewal density can be calculated directly, i.e. ρ(x) ≡ 1/τ and Υ ≡ 0.

Now we describe the class of possible admissible noise distributions used in the robust risk (5). To this end we set

σ Q = 2 1 + 2 2 + 2 3 τ . ( 14 
)
As to the parameters in (6), we assume that

ς * ≤ σ Q ≤ ς * , (15) 
where the unknown bounds 0 < ς * ≤ ς * can be functions of T , i.e. ς * = ς * (T ) and ς * = ς * (T ), such that for any b > 0 lim

T →∞ T b ς * (T ) = +∞ and lim T →∞ ς * (T ) T b = 0 . ( 16 
)
We denote by Q T the family of all distributions of the process (6) in D[0, T ] satisfying the properties ( 15) -( 16).

Remark 3 As we will see later, the parameter ( 14) is the limit of the Fourier transform of the noise process ( 6). This limit is called variance proxy (see [START_REF] Konev | Efficient robust nonparametric in a semimartingale regression model[END_REF]).

Truncated fractional Poisson processes

As an example of the process (10) satisfies the conditions H 1 ) -H 4 ) we give the truncated fractional Poisson process introduced in Barbu, Beltaief and Pergamenshchikov (2019b). To this end, we remind the definition of the fractional Poisson process (see, for example, Biard and Saussereaur (2014); [START_REF] Laskin | Fractional Poisson processes[END_REF]). The process ( 10) is called fractional Poisson process if the i.i.d. random variables (τ j ) have the Mittag-Leffler distribution which, for some a > 0, is defined as

P(τ 1 > t) = E H (-at H ) , (17) 
where 0 < H ≤ 1 is called the Hurst index,

E H (z) = ∞ k=0 z k Γ (1 + Hk) and Γ (x) = +∞ 0 t x-1 e -t dt .
Note that, if H = 1, then we obtain the exponential distribution with parameter a > 0 and, therefore, the process ( 10) is a Poisson process. If 0 < H < 1, then the density of the distribution (17) (see, for example, [START_REF] Repin | Fractional Poisson law. -Radiophys[END_REF]) can be represented as

f H (t) = a sin(πH) π +∞ 0 x H e -tx x 2H + a 2 + 2ax H cos(πH) dx . (18) 
Form here we can directly obtain that

f H (t) ∼ t H-1 , f H (t) ∼ t H-2 , f H (t) ∼ t H-3 as t → 0 (19) 
and

f H (t) ∼ t -H-1 , f H (t) ∼ t -H-2 , f H (t) ∼ t -H-3 as t → ∞ . (20) 
In particular, this implies that the Mittag-Leffler distribution has a heavy tail, i.e.

P(τ 1 > t) ∼ t -H as t → ∞ , (21) 
i.e. Eτ 1 = +∞. Therefore, the condition H 3 ) does not hold for the distribution (17). To correct this effect, in Barbu, Beltaief and Pergamenshchikov (2019b) it is proposed to replace the Mittag-Leffler random variables in (10) with i.i.d. random variables distributed as

τ * 1 = min(X b * , X * )
, where X * is a Mittag-Leffler with 0 < H < 1, 0 < b ≤ H/3 and X * is a positive random variable satisfying the condition H * 4 ). Such processes are called truncated Poisson processes. Using the asymptotic properties ( 19) and ( 20) one can check directly that the random variable τ * 1 satisfies the condition H * 4 ) and, therefore, the conditions H 1 ) -H 4 ) hold true for this case.

Remark 4 It should be noted also that the process (10) with the Mittag-Leffler random variables has a "memory" in its increments (see, for example, Maheshwari and Vellaisamy ( 2016)) in the sense that, for any δ > 0 and s > 0, the correlation coefficient

Corr N s+δ -N s , N t+δ -N t ∼ t -3-H 2 as t → ∞ .
It should be noted that this property is very important for many practical problems and allows essentially to expand the possible applications of statistical results. Unfortunately, we can't use directly the fractional Poisson process in the regression model (3) since the impulse noise of the fractional Poisson processes will be very rare, since the time between jumps is not integrable, i.e. very large and, therefore, they have almost negligible influence in the observation models. On the contrary, the truncated process has an exponential moment, i.e. the same property as Poisson processes, and, moreover, it keeps a dependence on large time intervals.

Model selection

In this section we construct a model selection procedure for estimating the unknown function S given in (3) starting from the discrete-time observations

(2) and we establish the oracle inequality for the associated risk. To this end, note that for any function f

: [0, T ] → R from L 2 [0, T ], the integral I T (f ) = T 0 f (s)dξ s (22) 
is well defined, with E Q I T (f ) = 0. Moreover, as it is shown in Lemma 1 under the conditions H 1 )-H 4 ),

E Q I 2 T (f ) ≤ κ Q T 0 f 2 s d s and κ Q = 2 1 + 2 2 + 2 3 |ρ| * ( 23 
)
where

|ρ| * = sup t≥0 |ρ(t)| < ∞.
In this paper we will use the trigonometric basis (φ j ) j≥ 1 in L 2 [0, 1] defined as

φ 1 = 1 , φ j (x) = √ 2Tr j (2π[j/2]x) , j ≥ 2 , ( 24 
)
where the function Tr j (x) = cos(x) for even j and Tr j (x) = sin(x) for odd j, [x] denotes the integer part of x. Note, that these functions are orthonormal on the points (t j ) 1≤j≤p , i.e. for any 1 ≤ i, j ≤ p

(φ i , φ j ) p = 1 p p l=1 φ i (t l )φ j (t l ) = 1 {i=j} . ( 25 
)
In the sequel we denote by x 2 p = (x, x) p . Now note that, for any 1 ≤ l ≤ p, S(t l ) = p j=1 θ j,p φ j (t l ) and θ j,p = (S, φ j ) p .

(26)

Using the approach from [START_REF] Konev | Robust model selection for a semimartingale continuous time regression from discrete data[END_REF], we estimate the Fourier coefficients θ j,p as

θ j,p = 1 T T 0 ψ j,p (t)d y t , and ψ j,p (t) = n l=1 φ j (t l )1 {t l-1 <t≤t l } . ( 27 
)
It is clear that the functions (ψ j,p

) 1≤j≤p are orthonormal in L 2 [0, 1], i.e. (ψ j,p , ψ i,p ) = 1 0 ψ j,p (t)ψ i,p (t)d t = (φ j , φ i ) p = 1 {i=j} . ( 28 
)
The Fourier coefficients of S in the basis can be represented as

θ j,p = (S, ψ i,p ) = 1 0 S(t)ψ i,p (t)d t = θ j,p + h j,p , (29) 
where h j,p (S) =

p l=1 t l t l-1 φ j (t l )(S(t) -S(t l ))d t. Therefore, (27) implies θ j,p = θ j,p + 1 √ T ξ j,p and ξ j,p = 1 √ T I T (ψ j,p ) . (30) 
As in Barbu, Beltaief and Pergamenshchikov (2019a) we use the model selection procedures based on the following weighted least squares estimators

S λ (t) = p j=1 λ(j) θ j,p ψ j,p (t) , 0 ≤ t ≤ 1 , (31) 
where the weight vector λ = (λ(1), . . . , λ(p)) belongs to some finite set Λ from [0, 1] p . Here the prime denotes the transposition. Moreover, we set

m * = card(Λ) and Λ * = max λ∈Λ p j=1 1 {λ(j)>0} , (32) 
where card(Λ) is the cardinal number of the set Λ. We assume that Λ * ≤ n. Now we use the same criteria as in Barbu, Beltaief and Pergamenshchikov (2019a) to chose a weight vector in Λ, i.e.we minimize the empirical error

Err(λ) = S λ -S 2 , ( 33 
)
which can be represented as

Err(λ) = p j=1 λ 2 (j) θ 2 j,p -2 p j=1 λ(j) θ j,p θ j,p + S 2 . ( 34 
)
Note that the Fourier coefficients (θ j ) j≥ 1 are unknown. Therefore, using the approach from Barbu, Beltaief and Pergamenshchikov (2019a) to minimize this function we replace the terms θ j,p θ j,p by their estimators

θ j,p = θ 2 j,p - σ Q T ,
where the proxy variance σ Q is defined in (15). In the case when this variance is unknown we use its estimator, i.e.

θ j,p = θ 2 j,p - σ T T and σ T = T p p j=[ √ T ] θ 2 j,p . (35) 
Now, using this estimator we define the penalty term as

P T (λ) = σ T |λ| 2 T and |λ| 2 = p j=1 λ 2 (j) . ( 36 
)
In the case, when the variance σ Q is known we set

P T (λ) = σ Q |λ| 2 T . (37) 
Finally, we define the cost function as

J T (λ) = p j=1 λ 2 (j) θ 2 j,T -2 p j=1 λ(j) θ j,T + δ P T (λ), (38) 
where δ > 0 is some threshold which will be specified later. Now we set the model selection procedure as

S * = S λ and λ = argmin λ∈Λ J T (λ) . (39) 
In the case when λ is not unique we take one of them.

5 Main results

Oracle inequalities

Firstly, we obtain the non asymptotic oracle inequality for the model selection procedure (39). To this end we need a condition for the observations frequency.

H 5 ) Assume that the frequency p is a function of T , i.e. p = p T , such that lim inf

T →∞ p T T 5/6 > 0 and lim sup

T →∞ p T T < ∞ . ( 40 
)
Theorem 1 Assume that the conditions C 1 ) -C 3 ) and H 1 )-H 5 ) hold true.

Then, there exists some constant c * > 0 such that for any T ≥ 1 and any noise distribution Q ∈ Q T and 0 < δ ≤ 1/6, the procedure (39) satisfies the following oracle inequality

R Q ( S * , S) ≤ 1 + 3δ 1 -3δ min λ∈Λ R Q ( S λ , S) + c * m * δT 1 + σ 2 Q + Λ * E Q | σ T -σ Q | . (41) 
In the case when σ Q is known the inequality (41) has the following form.

Corollary 1 Assume that the conditions C 1 ) -C 3 ) and H 1 )-H 5 ) hold true and that the proxy variance σ Q is known. Then there exists some constant c * > 0 such that for any T ≥ 1 and for any noise distribution Q ∈ Q T and 0 < δ ≤ 1/6, the procedure (39) with σ T = σ Q , satisfies the following oracle inequality

R Q ( S * , S) ≤ 1 + 3δ 1 -3δ min λ∈Λ R Q ( S λ , S) + c * (1 + σ 2 Q )m * δT .
Now we study the estimator σ T defined in (35).

Proposition 1 Assume that the conditions C 1 ) -C 3 ) and H 1 ) -H 5 ) hold true for the model (3) and that S(•) is continuously differentiable. Then, there exists a constant c * > 0 such that for any

T ≥ 2, Q ∈ Q T and p > √ T , E Q,S | σ T -σ Q | ≤ c * (1 + | Ṡ| 2 )(1 + σ Q ) 2 g * T,p , (42) 
where

g * T,p = √ T /p + 1/ √ p.
Now Theorem 1 and this proposition imply directly the following result.

Theorem 2 Assume that the function S is continuously differentiable and that the conditions C 1 ) -C 3 ) and H 1 )-H 5 ) hold true. Then there exists some constant c * > 0 such that for any continuously differentiable function S for any T ≥ 2, for any noise distribution

Q ∈ Q T , p > √ T and 0 < δ ≤ 1/6, R Q ( S * , S) ≤ 1 + 3δ 1 -3δ min λ∈Λ R Q ( S λ , S) + c * m * δT (1 + σ Q ) 2 1 + | Ṡ| 2 1 + Λ * g * T,p .
To study robust properties of the procedure (39) we need a condition for weights. Theorem 3 Assume that the function S is continuously differentiable, the conditions the conditions C 1 ) -C 3 ) and H 1 )-H 6 ) hold true. Then, the procedure (39) for any T ≥ 2, p > √ T and 0 < δ < 1/6 satisfies the following oracle inequality

R * ( S * , S) ≤ 1 + 3δ 1 -3δ min λ∈Λ R * ( S λ , S) + U * T T δ ,
where the term U * T > 0 is such that for any r > 0 and b > 0, lim

T →∞ sup Ṡ ≤r T -b U * T = 0 . ( 43 
)
In order to obtain the efficiency property, we specify the weight coefficients in the procedure (39). Consider, for some fixed 0 < ε < 1, a numerical grid of the form

A = {1, . . . , k * } × {ε, . . . , mε} , m = [1/ε 2 ] , (44) 
where k * ≥ 1 and ε are functions of T , i.e. k * = k * (T ) and

ε = ε(T ), such that      lim T →∞ k * (T ) = +∞ , lim T →∞ k * (T ) ln T = 0 , lim T →∞ ε(T ) = 0 and lim T →∞ T b ε(T ) = +∞ (45)
for any b > 0. One can take, for example, for T ≥ 2

ε(T ) = 1 ln T and k * (T ) = k * 0 + √ ln T ,
where k * 0 ≥ 0 is a fixed constant. For each α = (k, r) ∈ A, we set the vector

λ α = (λ α (j)) 1≤j≤p
through its components which are defined as

λ α (j) = 1 {1≤j<ln T } + 1 -(j/ω α ) k 1 {ln T ≤j≤ω α } ,
where

ω α = (k + 1)(2k + 1) π 2k k rυ T 1/(2k+1)
, υ T = T /ς * and ς * is introduced in (15). Now we define the set Λ as

Λ = {λ α , α ∈ A} . (46) 
These weight coefficients are used in Konev Pergamenshchikov (2009a); Konev andPergamenshchikov (2012, 2015) for continuous time regression models to show the asymptotic efficiency. Note also that in this case the cardinal of the set Λ is m * = k * m. Moreover, taking into account that for k ≥ 1 the coefficient ω α < (rυ T ) 1/(2k+1) , we obtain that the norm of the set Λ defined in (32) can be bounded as Λ * ≤ sup α∈A ω α ≤ (υ T /ε) 1/3 . Therefore, the properties (45) imply the condition H 6 ).

Robust asymptotic efficiency

Now we study the asymptotic efficiency properties for the procedure (39), ( 46) with respect to the robust risks (5) defined by the distribution family ( 15) -( 16). To this end, we assume that the unknown function S in the model (3) belongs to the Sobolev ball

W r,k =    f ∈ C k per [0, 1] : k j=0 f (j) 2 ≤ r    , (47) 
where r > 0, k ≥ 1 are some unknown parameters,

C k per [0, 1] is the set of k times continuously differentiable functions f : [0, 1] → R such that f (i) (0) = f (i) (1) for all 0 ≤ i ≤ k. Note, that the class (47) is an ellipsoid, i.e. W r,k =    f = j≥1 θ j φ j : ∞ j=1 a j θ 2 j ≤ r    ( 48 
)
where

a j = k i=0 (2π[j/2]) 2i .
Similarly to Barbu, Beltaief and Pergamenshchikov (2019a) we will show here that the asymptotic sharp lower bound for the normalized robust risk ( 5) is given by the well-known Pinsker constant defined as

l * = l * (r) = ((2k + 1)r) 1/(2k+1) k (k + 1)π 2k/(2k+1)
.

(49)

To study efficient properties we need to use the set Ξ T of all possible estimators S T measurable with respect to the sigma-algebra σ{y t , 0 ≤ t ≤ T }.

Theorem 4 For the risk (5) with the coefficient rate υ T = T /ς * lim inf

T →∞ υ 2k/(2k+1) T inf S T ∈Ξ T sup S∈W r,k R * T ( S T , S) ≥ l * . ( 50 
)
Note that, if the radius r and the regularity k are known, i.e. for the nonadaptive estimation problem on the continuous observations (y t ) 0≤t≤T , in Barbu, Beltaief and Pergamenshchikov (2019a) it is proposed to use the estimate S λ 0 defined in (31) with the weights ( 46)

λ 0 = λ α 0 , α 0 = (k, r 0 ) and r 0 = [r/ε]ε . (51) 
Now, we show the same result for the discrete observations (2).

Proposition 2 Assume that the conditions the conditions C 1 ) -C 2 ) and H 1 )-H 5 ) hold true. Then

lim T →∞ υ 2k/(2k+1) T sup S∈W r,k R * T ( S λ 0 , S) ≤ l * . ( 52 
)
For the adaptive estimation we user the model selection procedure (39) with the parameter δ defined as a function of T , i.e. δ = δ T , such that lim

T -→∞ δ T = 0 and lim T -→∞ T b δ T = +∞ (53)
for any b > 0. For example, we can take δ T = (6 + ln T ) -1 .

Theorem 5 Assume that the conditions C 1 ) -C 3 ) and H 1 )-H 6 ) hold true.

Then the robust risk (5) for the procedure (39) with the coefficients (46) and the parameter δ = δ T satisfying (53) has the following upper bound lim sup

T →∞ υ 2k/(2k+1) T sup S∈W r,k R * T ( S * , S) ≤ l * .
Theorem 4 and Theorem 5 imply the following result.

Theorem 6 Assume that the conditions C 1 ) -C 3 ) and H 1 )-H 6 ) hold true.

Then the procedure (39) with the weight coefficients (46) and the parameter δ = δ T satisfying (53) is asymptotically efficient, i.e.

lim T →∞ inf S T ∈Ξ T sup S∈W r,k R * T ( S T , S) sup S∈W r,k R * T ( S * , S) = 1
and lim

T →∞ υ 2k/(2k+1) T sup S∈W r,k R * T ( S * , S) = l * .
Remark 5 It is well known that the optimal (minimax) risk convergence rate for the Sobolev ball W r,k is T 2k/(2k+1) (see, for example, [START_REF] Pinsker | Optimal filtration of square integrable signals in gaussian white noise[END_REF]; Konev Pergamenshchikov (2009b)). We see here that the efficient robust rate is υ 2k/(2k+1) T

, i.e. if the distribution upper bound ς * → 0 as T → ∞ we obtain a faster rate with respect to T 2k/(2k+1) , and if ς * → ∞ as T → ∞ we obtain a slower rate. In the case when ς * is constant the robust rate is the same as the classical non robust convergence rate.

Big data analysis for the model (1)

Now we consider the estimation problem for the parameters (β j ) 1≤j≤q in (3) with unknown q. In this case we have to estimate the sequence β = (β j ) j≥1 in which β j = 0 for j ≥ q + 1. To this end we assume that the functions (u j ) j≥1 are orthonormal in L 2 [0, 1], i.e. (u i , u j ) = 1 {i =j} . Indeed, we can use always the Gram-Schmidt orthogonalization procedure to provide this property. Thus, in this case we estimate the parameters β = (β j ) j≥1 through the estimator (39) as β * = ( β * ,j ) j≥1 and β * ,j = (u j , S * ). Similarly, using the weighted estimators (31) we define the basic estimators ( β λ ) λ∈Λ as β λ = ( β j,λ ) j≥1 and β j,λ = (u j , S λ ). Taking into account that in this case

| β * -β| 2 = ∞ j=1 ( β * ,j -β j ) 2 = S * -S 2 and | β λ -β| 2 = S λ -S 2 ,
Theorem 3 implies the following oracle inequality.

Theorem 7 Assume that the function (3) is continuously differentiable and the conditions C 1 ) -C 3 ), H 1 )-H 5 ) and ( 15)-( 16) hold true. Then, for any n ≥ 1 and 0 < δ < 1/6, the following oracle inequality holds true

sup Q∈Q T E Q,S | β * -β| 2 ≤ 1 + 3δ 1 -3δ min λ∈Λ sup Q∈Q T E Q,S | β λ -β| 2 + U * T T δ ,
where the term U * T > 0 satisfies the property (43).

Moreover, Theorem 6 implies the following efficiency property.

Theorem 8 Assume that the conditions C 1 ) -C 3 ) and H 1 )-H 6 ) hold true.

Then the estimator β * constructed through the procedure (39) with the weight coefficients (46) and the parameter δ = δ T satisfying (53) is asymptotically efficient in the minimax sense, i.e.

lim T →∞ inf β T sup S∈W r,k sup Q∈Q T E Q,S | β T -β| 2 sup S∈W r,k sup Q∈Q T E Q,S | β * -β| 2 = 1 (54)
and lim

T →∞ υ 2k/(2k+1) T sup S∈W r,k sup Q∈Q T E Q,S | β * -β| 2 = l * ,
where the infimum is taken over all possible estimators β T measurable with respect the field σ{y t , 0 ≤ t ≤ T } and the lower bound l * is defined in (49).

Remark 6 It should be emphasized that the efficiency properties ( 54) are obtained without sparse conditions on the number of non zero parameters β j in the model (1) (see, for example, in [START_REF] Hasttie | The Elements of Statistical Leaning. Data Mining, Inference and Prediction[END_REF]). Moreover, we do not use even the parameter dimension q which can be equal to +∞.

Stochastic calculus for generalized semi-Markov processes

In this section we study some properties of the stochastic integrals ( 22). First, note that using the conditions C 1 ) and C 2 ) and the stochastic calculus developed in Barbu, Beltaief and Pergamenshchikov (2019a) for semi-Markov processes we can show the following Lemmas 1 and 2.

Lemma 1 Assume that the conditions C 1 ) -C 2 ) and H 1 )-H 4 ) hold true.

Then, for any non random functions f and h from L 2 [0, T ]

E Q I t (f )I t (h) = ( 2 1 + 2 2 ) (f, h) t + 2 3 (f, hρ) t , (55) 
where (f, h) t = t 0 f (s) h(s)ds and ρ is the density of the renewal measure (11).

It should be noted that this lemma implies directly that the stochastic integral ( 22) satisfies the properties (23).

Lemma 2 Assume that the conditions C 1 ) -C 2 ) and H 1 )-H 4 ) hold true. Then, for any bounded [0, ∞) → R functions f and h and for any k ≥ 1,

E Q I t k -(f ) I t k -(h) | G = ( 2 1 + 2 2 )(f , h) t k + 2 3 k-1 l=1 f (t l ) h(t l ),
where

t k = k j=1 τ j and G = σ{t l , l ≥ 1}.
Lemma 3 Assume that the conditions C 1 ) -C 3 ) and H 1 )-H 4 ) hold true.

Then, for any nonrandom bounded [0, T ] → R functions f and h, the expectation

E Q T 0 I 2 t-(f )I t-(h)h(t)dξ t = 0.
Proof. Setting Ľt = 1 w t + 2 L t , we can represent the integral ( 22) as

I t (f ) = Ǐt (f ) + 3 I z t (f ) , (56) 
where Ǐt (f ) = t 0 f (u)d Ľu and

I z t (f ) = t 0 f (u)dz u .
Note here, that using the condition ( 7) and the inequality for martingales from [START_REF] Novikov | On discontinuous martingales[END_REF] we can obtain that

E Q sup 0≤t≤T Ǐ8 t (f ) < ∞. Since Ľt and z t are independent, we get E Q T 0 I 2 t-(f )I t-(h)h(t)d Ľt = 0. Moreover, the conditions C 1 ) -C 3 ) yield, that for any non random (c i,j ) and k ≥ 1 E k-1 j=1 c 1,j ζ j 2 ζ k = 0 and E k-1 j=1 c 1,j ζ j 2 k-1 j=1 c 2,j ζ j ζ k = 0.
Therefore, taking into account that the sequence (ζ k ) k≥1 does not depend on the moments (t k ) k≥1 and the process ( Ľt ) t≥0 , and using the same method as in the proof of Lemma 8.4 from Barbu, Beltaief and Pergamenshchikov (2019a) we obtain

E Q T 0 I 2 t-(f )I t-(h)h(t)dz t = E Q k≥1 1 {t k ≤T } I 2 t k -(f )I t k -(h)h(t k )ζ k = 0 .
This implies Lemma 3. Now we study the integrals defined in (64) as functions of f .

Proposition 3 Assume that the conditions C 1 ) -C 3 ) and H 1 )-H 4 ) hold true. Then, for any [0, ∞) → R functions f, h such that |f | * ≤ 1 and |h| * ≤ 1, one has |E Q I T (f ) I T (h)| ≤ 12σ 2 Q (1 + τ ) 2 (f, h) 2 T + T c , (57) 
where c = (2 + Π(x 4 ) + 2|ρ| * )(1 + Υ 2 1 ) and |f | * = sup t≥0 |f (t)|.
Proof. First of all, note that in view of the Ito formula and using the fact that for the process (6) the jumps ∆z s ∆L s = 0 a.s. for any s ≥ 0, we obtain that

dI 2 t (f ) = 2I t-(f )dI t (f ) + 2 1 f 2 (t)d t + 2 2 d 0≤s≤t f 2 (s)(∆L s ) 2 + 2 3 d 0≤s≤t f 2 (s)(∆z s ) 2 .
Note also that Lemma 1 yields

E Q I 2 t (f ) = ( 2 1 + 2 2 ) f 2 t + 2 3 f √ ρ 2 t with f 2 t = t 0 f 2 (t)dt. Therefore, d I t (f ) = 2I t-(f )f (t)dξ t + f 2 (t)d m t , m t = 2 2 mt + 2 3 m t ,
where mt = 0≤s≤t (∆L s ) 2 -t and m t = 0≤s≤t (∆z s ) 2 -t 0 ρ(s)ds. Thus,

E Q I T (f ) I T (h) = E Q T 0 I t-(f )d I t (h)+E Q T 0 I t-(h)d I t (f )+E Q [ I(f ), I(h) ] T .
Using here Lemma 3 and, taking into account that ( mt ) t≥0 is a square integrated martingale, we get

E Q T 0 I t-(f )d I t (h) = E Q T 0 I t-(f )h 2 (t)d m t = ρ 2 3 E Q T 0 I 2 t-(f )h 2 (t)dm t .
The last integral can be represented as

E Q T 0 I 2 t-(f )h 2 (t)dm t = J 1 -J 2 , (58) 
where

J 1 = E Q k≥1 I 2 t k -(f )h 2 (t k )1 {t k ≤T } and J 2 = T 0 E Q I 2 t (f )h 2 (t)ρ(t)dt. By Lemma 2 we get J 1 = E Q k≥1 E Q I 2 t k -(f )|G h 2 (t k )1 {t k ≤T } = ( 2 1 + 2 2 )J 1,1 + 2 3 J 1,2 ,
where

J 1,1 = E Q k≥1 f 2 t k h 2 (t k )1 {t k ≤T } = T 0 f 2 t h 2 (t)ρ(t)dt and J 1,2 = E Q k≥1 k-1 l=1 f 2 (t l ) h 2 (t k )1 {t k ≤T } = E Q l≥1 f 2 (t l ) k≥l+1 h 2 (t k )1 {t k ≤T } = T 0 f 2 (x) T -x 0 h 2 (x + t)ρ(t)dt ρ(x)dx .
Moreover, using Lemma 1 for the last term in (58), we obtain that

J 2 = ( 2 1 + 2 2 ) T 0 f 2 t h 2 (t)ρ(t)dt + 2 3 T 0 f √ ρ 2 t h 2 (t)ρ(t)dt
and we can represent the expectation in ( 58) as

E Q T 0 I 2 t-(f )h 2 (t)dm t = 2 3 T 0 f 2 (x) T x h 2 (t)(Υ (t -x) -Υ (t))dt ρ(x)dx ,
i.e. we can estimate this as

|E Q T 0 I 2 t-(f )h 2 (t)dm t | ≤ 2 2 3 T Υ 1 . Therefore, |E Q T 0 I t-(f )d I t (h)| + |E Q T 0 I t-(h)d I t (f )| ≤ 4 4 3 T Υ 1 . (59) 
Furthermore, note that

[ I(f ), I(h)] T =< I c (f ), I c (h) > T +D T (f, h) ,
where

I c t (f ) = 2 1 t 0 I s (f )f (s)dw s and D T (f, h) = 0≤t≤T ∆ I d t (f )∆ I d t (h). In this case I d t (f ) = 2 t 0 I s-(f )f (s)dξ d s + t 0 f 2 (s)d m s and ξ d t = 2 L t + 3 z t . Therefore, in view of Lemma 1, E Q < I c (f ), I c (h) > T = 4ρ 2 1 T 0 E Q (I t (f )I t (h))f (t)h(t)dt = 4ρ 2 1 (ρ 2 1 + ρ 2 2 ) T 0 (f, h) t f (t)h(t)dt + 4ρ 2 1 ρ 2 3 T 0 (f, hρ) t f (t)h(t)dt = 4ρ 2 1 σ Q (f, h) 2 T + 4ρ 2 1 ρ 2 3 T 0 (f, gΥ ) t f (t)h(t)dt . Since |f | * ≤ 1 and |h| * ≤ 1, we get T 0 |(f, hΥ ) t f (t)h(t)|dt ≤ T Υ 1 and E Q < I c (f ), I c (h) > T ≤ 4σ 2 Q (f, h) 2 T + T τ Υ 1 . (60) 
To study the process D T (f, h) note that ∆ξ d t ∆ m t = 3 2 (∆L t ) 3 + 3 3 (∆z t ) 3 . Note also that for any t ≥ 0 the expectation E Q I t (f ) = 0. Therefore, using the definition of the process L t we obtain through the Fubini theorem, that for any bounded [0, T ] → R measurable non random functions V

E Q 0≤t≤T V (t) I t-(f )(∆L t ) 3 = Π(x 3 ) T 0 V (t)E Q I t (f )dt = 0 .
Moreover, since the processes ( Ľt ) t≥0 and (z t ) t≥0 are independent we get

E Q 0≤t≤T V (t) Ǐt-(f )(∆z t ) 3 = E Q k≥1 V (t k )ζ 3 k E Q Ǐt k -(f )|G z = 0 ,
where the integral Ǐt (f ) is defined in ( 56) and the G z = σ{z t , t ≥ 0}. Note that the condition C 3 ) implies that for any k ≥ 1 and nonrandom (c j ) j≥1

E Q k-1 j=1 c j ζ j ζ 3 k = 0. Therefore, E Q 0≤t≤T V (t)I z t-(f )(∆z t ) 3 = 0 and E Q 0≤t≤T I t-(f )f (t)h 2 (t)∆ξ d t ∆ m t = E Q 0≤t≤T I t-(h)h(t)f 2 (t)∆ξ d t ∆ m t = 0 .
So, the expectation of D T (f, h) can be represented as

E Q D T (f, h) = 4 2 2 E Q D 1,T (f, h) + 4 2 3 E Q D 2,T (f, h) + E Q D 3,T (f, h) , where D 1,T (f, h) = 0≤t≤T I t-(f )I t-(h)f (t)h(t)(∆L t ) 2 , D 2,T (f, h) = 0≤t≤T I t-(f )I t-(h)f (t)h(t)(∆z t ) 2 and D 3,T (f, h) = 0≤t≤T f 2 (t) h 2 (t)(∆ m t ) 2 . First, since Π(x 2 ) = 1, we get E Q D 1,T (f, h) = T 0 f (t)h(t)E Q I t (f )I t (h) dt = ( 2 1 + 2 2 ) T 0 f (t)h(t) (f, h) t dt + 2 3 T 0 f (t)h(t) (f, hρ) t dt = σ Q (f, h) 2 T + 2 3 T 0 f (t)h(t) (f, hΥ ) t dt and |E Q D 1,T (f, h)| ≤ σ Q (f, h) 2 T + T τ Υ 1 .
Then, taking into account that E ζ 2 j = 1 and using Lemma 2, we represent the expectation for D 2,T (f, h) as

E Q D 2,T (f, h) = E k≥1 E Q I t k -(f )I t k -(h)|G f (t k )h(t k ) 1 {t k ≤T } = ( 2 1 + 2 2 )E Q k≥1 (f , h) t k f (t k )h(t k ) 1 {t k ≤T } + 2 3 E Q D 2,T (f, h) = ( 2 1 + 2 2 ) T 0 (f, h) t f (t)h(t)ρ(t)dt + 2 3 E Q D 2,T (f, h) , where D 2,T (f, h) = k≥1 k-1 l=1 f (t l ) h(t l )f (t k )h(t k ) 1 {t k ≤T } . Note, that T 0 (f, h) t f (t)g(t)ρ(t)dt = 1 2τ (f, h) 2 T + T 0 (f, h) t f (t)g(t)Υ (t)dt , i.e. T 0 (f, h) t f (t)g(t)ρ(t)dt ≤ 1 2τ (f, h) 2 T + T Υ 1 .
Furthermore, the expectation of D 2,T (f, h) can be represented as

E Q D 2,T (f, h) = E Q l≥1 f (t l ) h(t l ) k≥l+1 f (t k )h(t k ) 1 {t k ≤T } = T 0 f (x)g(x) T -x 0 f (x + t)h(x + t)ρ(t)dt ρ(x)dx = 1 2τ 2 (f, h) 2 T + D 2,T (f, h) ,
where

D 2,T (f, h) = T 0 f (x)h(x) T -x 0 f (x + t)h(x + t)Υ (t)dt ρ(x)dx + 1 τ T 0 f (x)h(x) T -x 0 f (x + t)h(x + t)Υ (t)dt Υ (x)dx . This implies |D 2,T (f, h)| ≤ T (|ρ| * + 1/τ )(1 + Υ 2 1
) and, therefore,

|E Q D 2,T (f, h)| ≤ σ Q (f, h) 2 T τ + T (2 + τ |ρ| * )(1 + Υ 2 1 )
.

Moreover, we can calculate directly

E Q D 3,T (f, h) = 4 2 Π(x 4 ) T 0 f 2 (t) h 2 (t)dt + 4 3 T 0 f 2 (t) h 2 (t)ρ(t)dt and E Q D 3,T (f, h) ≤ T σ 2 Q Π(x 4 ) + |ρ| * (1 + τ ) 2
. From here we obtain that

|E Q D T (f, h)| ≤ σ 2 Q (1+τ ) 2 4(f, h) 2 T + T c
, where c is given in (57). From this and (60) we find

E Q [ I(f ), I(h)] T ≤ 8σ 2 Q (1 + τ ) 2 (f, h) 2 T + T c
. This bound and ( 59) implies (57). Hence the proof is achieved.

In order to prove the oracle inequalities we need to study the conditions introduced in [START_REF] Konev | Efficient robust nonparametric in a semimartingale regression model[END_REF] for the general semimartingale model (3). To this end, we set for any x ∈ R p the functions

B 1,Q (x) = p j=1 x j E Q ξ 2 j,p -σ Q and B 2,Q (x) = p j=1 x j ξ j,p , (61) 
where σ Q is defined in (15) and ξ j,p = ξ 2 j,p -E Q ξ 2 j,p .

Proposition 4 Assume that the conditions C 1 )-C 2 ), H 1 )-H 5 ) hold true.

Then there exists some constant c * > 0 such that for any

Q ∈ ∪ k≥1 Q k L 1,Q = sup T ≥3 sup x∈[-1,1] p B 1,Q (x) < c * σ Q (62) and L 2,Q = sup T ≥3 sup |x|≤1 E Q B 2 2,Q (x) ≤ c * σ 2 Q , (63) 
where

|x| 2 = p j=1 x 2 j .
Proof. Firstly, using here Lemma 1, we obtain that

Eξ 2 j,p = 2 1 + 2 2 + 2 3 T T 0 ψ 2 j,p (x) ρ(x)d x = σ Q + 2 3 T T 0 ψ 2 j,p (x) Υ (x)d x .
From (13) it follows that E Q ξ 2 j,p -σ Q ≤ 2 2 3 Υ 1 /T and, therefore, the condition H 5 ) implies the inequality (62). Next, note that

E Q   p j=2 x j ξ j,p   2 ≤ 1 T 2 p j=1 p l=1 |x j | |x l ||E Q I T (ψ j,p ) I T (ψ l,p )| , (64) 
where

I T (f ) = I 2 T (f ) -E Q I 2 T (f )
. Now Proposition 3 and the property (28) imply, that for some constant c * > 0 and for |x| ≤ 1

E Q   p j=2 x j ξ j,p   2 ≤ c *   |x| 2 + 1 T   p j=1 |x j |   2    ≤ c * 1 + p T .
The condition H 5 ) implies directly Proposition 4.

Proofs

Proof of Theorem 1

Using the cost function given in (38), we can rewrite the empirical squared error in (34) as follows

Err(λ) = J T (λ) + 2 p j=1 λ(j)ϑ j,p + S 2 -δ P T (λ), (65) 
where

ϑ j,p = θ j,p -θ j,p θ j,p = 1 √ T θ j,p ξ j,p + 1 T ξ j,p + 1 T ς j,T + σ Q -σ T T , with ς j,p = E Q ξ 2 j,p -σ Q and ξ j,p = ξ 2 j,p -E Q ξ 2 j,p . Setting M(λ) = 1 √ T p j=1 λ(j)θ j ξ j,p and L(λ) = p j=1 λ(j) (66) 
and using the functions (61) through the penalty term (37), we rewrite (65) as

Err(λ) = J T (λ) + 2 σ Q -σ T T L(λ) + 2M (λ) + 2 T B 1,Q (λ) + 2 P T (λ) B 2,Q (ν(λ)) σ Q T + S 2 -δ P T (λ), (67) 
where ν(λ) = λ/|λ|. Let λ 0 = (λ 0 (j)) 1≤j≤ p be a fixed sequence in Λ and λ be defined as in (39). Substituting λ 0 and λ in (67), we obtain

Err( λ) -Err(λ 0 ) = J T ( λ) -J T (λ 0 ) + 2 σ Q -σ T T L( ) + 2 T B 1,Q ( ) + 2M ( ) + 2 P T ( λ) B 2,Q ( ν) σ Q T -2 P T (λ 0 ) B 2,Q (ν 0 ) σ Q T -δ P T ( λ) + δ P T (λ 0 ), where = λ -λ 0 , ν = ν( λ) and ν 0 = ν(λ 0 ). Now, in view of the inequality 2|ab| ≤ δa 2 + δ -1 b 2 we get that 2 P T (λ) |B 2,Q (ν(λ))| σ Q T ≤ δP T (λ) + B 2 2,Q (ν(λ)) δσ Q T .
Then, taking into account that |L( )| ≤ L( λ) + L(λ) ≤ 2Λ * and using the definition (62) we get

Err( λ) ≤ Err(λ 0 ) + 2M( ) + 2L 1,Q T + 2B * 2,Q δσ Q T + 4Λ * | σ T -σ Q | T + 2δ P T (λ 0 ) , where B * 2,Q = sup λ∈Λ B 2 2,Q ((ν(λ)).
To estimate the second term in the right side of this inequality we set S x = p j=1 x(j)θ j,p ψ j,p for x = (x(j)) 1≤j≤p ∈ R p . Thanks to (23) we estimate the term M(x) for any x ∈ R p as

E Q M 2 (x) ≤ κ Q 1 T p j=1 x 2 (j)θ 2 j,p = κ Q S x 2 T . (68) 
Setting here

Z * = sup x∈Λ 1 T M 2 (x)/ S x 2 and Λ 1 = Λ -λ 0 , we get 2|M(x)| ≤ δ S x 2 + Z * T δ . ( 69 
)
The last term here can be estimated from above as

E Q Z * ≤ x∈Λ 1 T E Q M 2 (x) S x 2 ≤ x∈Λ 1 κ Q = κ Q m * ,
where m * = card(Λ). Moreover, note that, for any

x ∈ Λ 1 , S x 2 -S x 2 = p j=1 x 2 (j)(θ 2 j,p -θ 2 j,p ) ≤ -2M 1 (x), (70) 
where M 1 (x) = T -1/2 p j=1 x 2 (j)θ 2 j,p ξ j,T . Taking into account now that, for any x ∈ Λ 1 , the components |x(j)| ≤ 1, we can estimate this term as in (68), i.e. E Q M 2 1 (x) ≤ κ Q S x 2 /T . Similarly to the previous reasoning setting

Z * 1 = sup x∈Λ 1 T M 2 1 (x)/ S x 2 , we get E Q Z * 1 ≤ κ Q m * .
Using the same type of arguments as in (69), we can derive

2|M 1 (x)| ≤ δ S x 2 + Z * 1 T δ . (71) 
From here and (70), we get

S x 2 ≤ S x 2 1 -δ + Z * 1 T δ(1 -δ) (72) 
for any 0 < δ < 1. Using this bound in (69) yields

2M (x) ≤ δ S x 2 1 -δ + Z * + Z * 1 T δ(1 -δ) . Taking into account that | S | 2 ≤ 2 (Err( λ) + Err(λ 0 )), we obtain 2M ( ) ≤ 2δ(Err( λ) + Err(λ 0 )) 1 -δ + Z * + Z * 1 T δ(1 -δ)
and, therefore,

Err( λ) ≤ 1 + δ 1 -3δ Err(λ 0 ) + Z * + Z * 1 T δ(1 -3δ) + 2L 1,Q T (1 -3δ) + 2B * 2,Q δ(1 -3δ)σ Q T + (4Λ * + 2) T (1 -3δ) | σ T -σ Q | + 2δ (1 -3δ) P T (λ 0 ).
Moreover, for 0 < δ < 1/6 we can rewrite this inequality as

Err( λ) ≤ 1 + δ 1 -3δ Err(λ 0 ) + 2(Z * + Z * 1 ) T δ + 4L 1,Q T + 4B * 2,Q δσ Q T + (8Λ * + 2)| σ T -σ Q | T + 2δ (1 -3δ) P T (λ 0 ).
Now, using the upper bound (63), we get

E Q B * 2,Q ≤ λ∈Λ E Q B 2 2,Q (ν(λ)) ≤ m * L 2,Q . Now, taking into account that Λ * ≥ 1, we get R Q ( S * , S) ≤ 1 + δ 1 -3δ R Q ( S λ 0 , S) + 4κ Q m * T δ + 4L 1,Q T + 4m * L 2,Q δσ Q T + 10Λ * E Q | σ T -σ Q | T + 2δ (1 -3δ) P T (λ 0 ).
By using the upper bound for P T (λ 0 ) in Lemma 4, we obtain that

R Q ( S * , S) ≤ 1 + 3δ 1 -3δ R Q ( S λ 0 , S) + 4κ Q m * T δ + 4L 1,Q T + 4m * L 2,Q δσ Q T + 10Λ * T E Q | σ T -σ Q | + 2δL 1,Q (1 -3δ)T .
Taking into account here that 1 -3δ ≥ 1/2 for 0 < δ < 1/6 and, moreover, that κ Q ≤ (1 + τ |ρ| * )σ Q and using the bounds ( 62) and ( 63) we obtain the inequality (41). Hence we obtain the desired result. 

where M is given in (66). Setting x = (x j ) 1≤j≤p and x j = p -1/2 1 {[ √ T ] j p} , one can write the last term on the right hand side of (73) as

1 p p j=[ √ T ] ξ 2 j,p = 1 √ p B 2,Q (x ) + 1 p B 1,Q (x ) + (p -[ √ T ] + 1)σ Q p ,
where the functions B 1,Q and B 2,Q are defined in (61). Using Proposition 4 and Lemma 6 , we come to the following upper bound

E Q | σ T -σ Q | ≤ 16| Ṡ| 2 T [ √ T ]p + 2T p E Q |M(x )| + L 1,Q p + L 2,Q √ p + σ Q ([ √ T ] -1) p .
In the same way as in (68) through Lemma 6, we obtain

E Q |M (x )| ≤   κ Q T p j=[ √ T ] θ 2 j,p   1/2 ≤ 4(κ Q | Ṡ| 2 ) 1/2 [ √ T ] .
Taking into account that κ Q ≤ (1 + τ |ρ| * )σ Q and using the bounds ( 62) and ( 63) we obtain the inequality (42). Hence Proposition 1 holds true.

Proof of Theorem 2

This proof directly follows from Theorem 1 and Proposition 1.

Proof of Theorem 4

First, we denote by Q 0 the distribution in D[0, n] of the noise (6) with the parameter 1 = ς * , 2 = 0 and 3 = 0, i.e., the distribution for the "signal + white noise" model. So, we can estimate from below the robust risk R * T ( S T , S) ≥ R Q 0 ( S T , S). Now, Theorem 6.1 from Konev Pergamenshchikov (2009b) yields the bound (50). Hence we obtain the desired result.

Proof of Proposition 2

First, we note that in view of (31) one can represent the quadratic risk for the empiric norm • p defined in ( 25) as

E Q S λ 0 -S 2 p = 1 T p j=1 λ 2 0 (j) E Q ξ 2 j,p + Θ p ,
where Θ p = p j=1 θ j,p -λ 0 (j) θ j,p 2 . First, note that Now, from (29) we obtain that for any 0 < ε < 1

Θ p ≤ (1 + ε) Θ p + (1 + ε -1 ) p j=1 h 2 j,p , (75) 
where Θ p = p j=1 (1 -λ 0 (j)) 2 θ 2 j,p . Moreover, in view of the definition (51)

Θ p = [ω 0 ]
j=ι 0

(1 -λ 0 (j)) 2 θ 2 j,p + (1 -λ 0 (j)) 2 θ 2 j + 4π 2 r(1 + ε -1 ) ω 3 0 p -2 .

Through Lemma 7 we have Θ 2,p ≤ (1 + ε) j≥[ω 0 ]+1 θ 2 j + (1 + ε -1 ) r p -2 . Hence, Θ p ≤ (1 + ε) Θ * + (1 + ε -1 ) 4π 2 rω 3 0 + r p -2 , where the first term Θ * = j≥ln T (1 -λ 0 (j)) 2 θ 2 j . Moreover, note that sup (1 -λ 0 (j)) 2 /a j ,

where the sequence (a j ) j≥1 is defined in (48). This leads to the inequality sup 

Using now Lemma 5 and the condition H 5 ), we get the upper bound (52).

Hence we obtain the desired result.
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H 6 )

 6 The parameters m * and Λ * defined in (32) can be functions of T , i.e. m * = m * (T ) and Λ * = Λ * (T ), such that for any b > 0 lim T →∞ T -b m * (T ) = 0 and lim T →∞ T -1/3-b Λ * (T ) = 0. Now, Theorem 2 implies the following oracle inequality.

7. 2

 2 Proof of Proposition 1 Let x = (x j ) 1≤j≤p with x j = 1

  ) + L 1,Q . where L * 1,T = sup Q∈Q T L 1,Q .Taking into account that υ T = T /σ * , we get sup

  := Θ 1,p + Θ 2,p , where ω 0 = ω α 0 = (τ k r 0 υ T ) 1/(2k+1) and r 0 = [r/ε] ε. Lemma 8 yields Θ 1,p ≤ (1 + ε) [ω 0 ] j=[ln T ]

  ≤ Ṡ 2 p -2 ≤ r p -2 .Moreover, W r,k ⊆ W r,2 for any k ≥ 2. From here and Lemma 9 ≤ r p -1 1 {k=1} + 3p -2 1 {k≥2} and, therefore, in view of the condition H 5 )

E

  2 j ≤ U T r . Using lim T →∞ r 0 = r, we get lim sup T →∞ U T ≤ π -2k (τ k r) -2k/(2k+1) , where the coefficient τ k is given in (74). This implies immediately that lim supT →∞ υ 2k/(2k+1) T sup S∈W r,k Θ p ≤ r 1/(2k+1) π 2k (τ k ) 2k/(2k+1) . Q S λ 0 -S 2 p ≤ l * .

Note that there is a very important particular case of the spherically symmetric vectors represented by Gaussian mixture distributions. The vector ζ = (ζ 1 , . . . , ζ d ) is called Gaussian mixture in R d if it has the spherically symmetric distribution with

  ). A random vector ζ = (ζ 1 , . . . , ζ d ) is called spherically symmetric if its density in R d has the form g(| • | 2 ) for some nonnegative function g. Here the prime denotes the transposition.

  (ζ j ) j≥ 1 are i.i.d. random variables satisfying condition C 1 ); for some d > 1 the random vector (ζ 1 , . . . , ζ d ) that has a spherically symmetric distribution in R d , with E ζ 2 1 = 1, E ζ 4 1 < ∞ and the random variables (ζ j ) j> d are independent and satisfying condition C 1 ); for any d ≥ 1 a random vector (ζ 1 , . . . , ζ d ) is a Gaussian mixture with mixture variable s for which E s 2 = 1 and E s 4 < ∞.
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Appendix

A.1 Property of the penalty term Lemma 4 For any n ≥ 1 and λ ∈ Λ,

where the coefficient P T (λ) is defined in (66) and L 1,Q is defined in (62).

Proof. From ( 30) and ( 33) we obtain

Hence we obtain the result.

A.2 Properties of the Fourier coefficients

Lemma 5 Let f be an absolutely continuous function,

, where c j are some constants. Then, for any ε > 0, the function ∆ = f -g satisfies the following inequalities

Lemma 6 Let the function S(t) in (3) be absolutly continuous and have an absolutely integrable derivative. Then the coefficients (θ j,p ) 1 j p defined in (29) satisfy the inequalities |θ 1,p | S 1 and max 2 j p j|θ j,p | 2 √ 2| Ṡ| 1 .

Lemma 7 For any p ≥ 2, 1 ≤ N ≤ p and r > 0, the coefficients (θ j,p ) 1≤j≤p of functions S from the class W r,1 satisfy, for any ε > 0, the following inequality

Lemma 8 For any p ≥ 2 and r > 0, the coefficients (θ j,p ) 1≤j≤p of functions S satisfy the inequality max 1≤j≤p sup S∈W r,1 |θ j,p -θ j | -2π √ r j p -1 ≤ 0.

Lemma 9 For any p ≥ 2 and r > 0 the correction coefficients from (29) satisfy the inequality sup S∈W r,2 p j=1 h 2 j,p ≤ 3r p -2 .

Lemmas 5 -9 are proven in [START_REF] Konev | Robust model selection for a semimartingale continuous time regression from discrete data[END_REF].