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Database for Echo-aware Signal Processing
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Gannot2

Abstract

This paper presents dEchorate: a new database of measured multichannel Room Impulse Responses (RIRs)
including annotations of early echo timings and 3D positions of microphones, real sources and image sources
under different wall configurations in a cuboid room. These data provide a tool for benchmarking recent
methods in echo-aware speech enhancement, room geometry estimation, RIR estimation, acoustic echo
retrieval, microphone calibration, echo labeling and reflectors estimation. The database is accompanied with
software utilities to easily access, manipulate and visualize the data as well as baseline methods for
echo-related tasks.

Keywords: Echo-aware signal processing; Acoustic echoes; Room impulse response; Audio database; Acoustic
Echo Retrieval; Spatial Filtering; Room Geometry Estimation; Microphone arrays

1 Introduction
When sound travels from a source to a microphone
in a indoor space, it interacts with the environment
by being delayed and attenuated due to the distance;
and reflected, absorbed and diffracted due to the sur-
faces. The Room Impulse Response (RIR) represents
this phenomenon as a linear and causal time-domain
filter. As depicted in Figure 1, RIRs are commonly
subdivided into 3 parts: the direct-path, correspond-
ing to the line-of-sight propagation; the early echoes,
stemming from few disjoint reflections on the closest
reflectors; and the late reverberation comprising the
dense accumulation of later reflections and scattering
effects.

The late reverberation is indicative of the environ-
ment size and reverberation time, producing the so-
called listener envelopment, i.e., the degree of immer-
sion in the sound field [1]. In contrast, the direct path
and the early echoes carry precise information on the
scene’s geometry, such as the position of the source
and room surfaces relative to the receiver position [2],
and on the surfaces’ reflectivity. Such relation is well
explained by the Image Source Method (ISM) [3], in
which the echoes are associated with the contribution
of virtual sound sources lying outside the real room.
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Figure 1 Depiction of a measured room impulse response
from the database.

Therefore, one may consider early echoes as “spatial-

ized” copies of the source signal, whose Times of Ar-

rival (TOAs) are related to the source and reflector

positions.

Based on this idea, so-called echo-aware meth-

ods have been introduced a few decades ago, where

matched filters (or rake receivers) are used to con-

structively sum the sound reflections [4–6] and build

beamformers achieving much better sound qualities

[7]. These methods have recently regained interested

as manifested by the European project SCENIC [8]
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and the UK research project S3A[1]. Later, a few
studies showed that knowing the properties of a few
early echoes could boost the performance of typical in-
door audio inverse problems such as Speech Enhance-
ment (SE) [9, 10], sound source localization [11–14]
and separation [15–18], and speaker verification [19].

Another fervent area of research spanning trans-
versely the audio signal processing field is estimating
the room geometry blindly from acoustic signals [20–
23]. As recently reviewed by Crocco et al. in [22], end-
to-end Room Geometry Estimation (RooGE) involves
a number of subtasks: RIR estimation, peak picking,
microphones calibration, echo labeling and reflectors’
position estimation. As interesting applications, these
methods have been recently used in active setting (i.e.,
knowing the transmitted signals) on unmanned aerial
vehicles (UAVs, a.k.a. drones) [24, 25] and on mobile-
phones [26]. The lowest common denominator of all
these tasks is Acoustic Echo Retrieval (AER), that is,
estimating the properties of early echoes, such as their
TOAs and energies. The former problem is typically
referred to as TOA estimation, or Time Difference of
Arrival (TDOA) estimation when the direct-path is
taken as reference.

As listed in [27] and in [28], a number of recorded
RIRs corpora are freely available online, each of them
meeting the demands of certain applications. Table 1
summarizes the main characteristics of some of them.
One can broadly identify two main classes of echo-
aware RIR datasets in the literature: SE/Automatic
Speech Recognition (ASR)-oriented datasets, e.g. [27,
30, 31], and RooGE-oriented datasets, e.g. [21–23].
The former regards acoustic echoes as highly corre-
lated interfering sources coming from close reflectors,
such as a table in a meeting room or a near wall. This
typically presents a challenge in estimating the cor-
rect source’s Direction of Arrival (DOA) with further
consequences in DOA-based enhancement algorithm,
e.g., beamformers. Although this factor is taken into
account, such datasets lack proper annotation of these
echoes in the RIRs or the absolute position of objects
inside the room. The latter group typically features
design choices, such as microphones scattered across
the room, which are not suitable for SE applications.
Indeed, these typically involve compact or ad hoc ar-
rays. The main common drawback of these datasets in
that they cannot be easily used for other tasks than
the ones which they are designed for.

To bypass the complexity of recording and annotat-
ing real RIR datasets, acoustic simulators based on the
ISM are extensively used instead [32, 33, 33–35]. While
such data are more versatile, simpler and quicker to
obtain, they fail to fully capture the complexity and

[1]http://www.s3a-spatialaudio.org/

richness of real acoustic environments. Due to this,
methods trained, calibrated, or validated on them may
fail to generalize to real conditions, as will be shown
in this paper. Interestingly, in the context of learning-
based blind room volume estimation, the authors of
[28] combined multiple real and synthetic RIR datasets
in order to find a balance between number of training
data and realism.

A good echo-oriented RIR dataset should include
a variety of environments (room geometries and sur-
face materials), of microphone placings (close to or
away from reflectors, scattered or forming ad-hoc ar-
rays) and, most importantly, precise annotations of the
scene’s geometry and echo timings in the RIRs. More-
over, in order to be versatile and used in both SE and
RooGE applications, geometry and timing annotations
should be fully consistent. Such data are difficult to
collect since it involves precise measurements of the
positions and orientations of all the acoustic emitters,
receivers and reflective surfaces inside the environment
with dedicated planimetric equipment.

To fill this gap, we present the dEchorate dataset:
a fully calibrated multichannel RIR database with ac-
curate annotation of the geometry and echo timings
in different configurations of a cuboid room with vary-
ing wall acoustic profiles. The database currently fea-
tures 1800 annotated RIRs obtained from 6 arrays of
5 microphones each, 6 sound sources and 11 different
acoustic conditions. All the measurements were carried
out at the acoustic lab at Bar-Ilan University following
a consolidated protocol previously established for the
realization of two other multichannel RIRs databases:
the BIU’s Impulse Response Database [29] gathering
RIRs of different reverberation levels sensed by uni-
form linear arrays (ULAs); and MIRaGE [31] providing
a set of measurements for a source placed on a dense
position grid. The dEchorate dataset is designed for
AER with linear arrays, and is more generally aimed at
analyzing and benchmarking RooGE and echo-aware
signal processing methods on real data. In particu-
lar, it can be used to assess robustness against the
number of reflectors, the reverberation time, additive
spatially-diffuse noise and non-ideal frequency and di-
rective characteristics of microphone-source pairs and
surfaces in a controlled way. Due to the amount of
data and recording conditions, it could also be used
to train machine learning models or as a reference to
improve RIR simulators. The database is accompanied
with a Python toolbox that can be used to process and
visualize the data, perform analysis or annotate new
datasets.

The remainder of the paper is organized as follows.
Section 2 describes the construction and the com-
position of the dataset, while Section 3 provides an

http://www.s3a-spatialaudio.org/
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Table 1 Comparison between some existing RIR databases that account for early acoustic reflections. Receiver positions are indicated in
terms of number of microphones per array times number of different positions of the array (∼ stands for partially available information).
The read is invited to refer to [27, 28] for more complete list of existing RIR datasets.
†The dataset in [23] is originally intended for RooGE and further extended for (binaural) SE in [18] with a similar setup.
‡These datasets have been recorded in the same room.

Database Name
Annotated Number of Key characteristics Purpose

Pos. Echoes Rooms RIRs Rooms Mic×Pos. Src

Dokmanić et al. [21] 3 ∼ ∼ 15 3 5 1 Non shoebox rooms RooGE

Crocco et al. [22] 3 ∼ 3 204 1 17 12
Accurate 3D calibration
Many mic and src positions

RooGE

Remaggi et al. [23]† 3 ∼ 3 ∼1.5k 4 48×2 4-24
Circural dense array
Circular placement of sources

RooGE
SE

Remaggi et al. [18]† 3 ∼ 3 ∼1.6k 4
48×2
+2×2

3-24
Circural dense array
Binaural Recordings

RooGE
SE

BIU’s Database [29]‡ 3 7 7 ∼1.8k 3 8×3 26
Linear array with different spacing
Circular placement of sources

SE

BUT-Reverb [27] 3 7 ∼ ∼1.3k 8 (2-10)×6 3-11
Accurate metadata
different device/arrays
various rooms

SE/ASR

VoiceHome [30] 3 7 7 188 12 8×2 7-9 Various rooms, real homes SE/ASR

MIRaGE [31]‡ 3 7 7 371k 3 5×6 25 (+ 4104)
4104 src. pos. in a dense grid
different acoustic rooms

SE/ASR

dEchorate‡ 3 3 3 ∼1.8k 11 5×6 6
Accurate echo annotation
different surface absorptions

RooGE
SE/ASR

Figure 2 Broad-view picture of the acoustic lab at Bar-Ilan university.

overview of the data, studying the variability of typi-
cal acoustic parameters. To validate the data, in Sec-
tion 4 two echo-aware application are presented, one
in speech enhancement and one is room geometry esti-
mation. Finally, in Section 5 the paper closes with the
conclusions and and offers leads for work.

2 Database Description
2.1 Recording setup
The recording setup is placed in a cuboid room with
dimension 6 m × 6 m × 2.4 m. The 6 facets of the
room (walls, ceiling, floor) are covered by acoustic
panels allowing controllable reverberation time (RT60).
We placed 4 directional loudspeakers (direct sources)
facing the center of the room and 30 microphones
mounted on 6 static linear arrays parallel to the

Table 2 Measurement and recording equipment.

Loudspeakers (directional, direct) 4× Avanton
(directional, indirect) 2× Avanton
(omnidirectional) 1× B&G
(babble noise) 4× 6301bx Fostex

Microphones 30× AKG CK32
Array 6× nULA (5 mics each, handcrafted)

A/D Converter ANDIAMO.MC

Indoor Positioning Marvelmind Starter Set HW v4.9
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Figure 3 Illustration of the recording setup - top view.

ground. An additional channel is used for the loop-
back signal, which serves to compute the time of emis-
sion and detect errors. Each loudspeaker and each ar-
ray is positioned close to one of the walls in such a
way that the source of the strongest echo can be eas-
ily identified. Moreover, their positioning was chosen
to cover a wide distribution of source-to-receiver dis-
tances, hence, a wide range of Direct-to-Reverberant
ratios (DRRs). Further, 2 more loudspeakers were po-
sitioned pointing towards the walls (indirect sources).
This was done to study the case of early reflections
being stronger than the direct-path.

Each linear array consists of 5 microphones with
non-uniform inter-microphone spacings of [4, 5, 7.5, 10]
cm[2]. Hereinafter we will refer to these elements as
non-Uniform Linear Arrays (nULAs).

2.2 Measurements

The main feature of this room is the possibility to
change the acoustic profile of each of its facets by
flipping double-sided panels with one reflective (made
of Formica Laminate sheets) and one absorbing face
made of perforated panels filled with rock-wool). A
complete list of the materials of the room is available
in Section 5. This allows to achieve diverse values of
RT60 that range from 0.1 to almost 1 second. In this
dataset, the panels of the floor were always kept ab-
sorbent.

[2]that is, [−12.25,−8.25,−3.25, 3.25, 13.25] cm w.r.t. the
barycenter

Table 3 Surface coding in the dataset: each binary digit indicates
if the surface is absrobent (0, 7) or reflective (1, 3).

Surfaces: Floor Ceil West South East North

o
n

e-
h

o
t

010000 7 3 7 7 7 7

001000 7 7 3 7 7 7

000100 7 7 7 3 7 7

000010 7 7 7 7 3 7

000001 7 7 7 7 7 3

in
cr

em
en

ta
l 000000 7 7 7 7 7 7

010000 7 3 7 7 7 7

011000 7 3 3 7 7 7

011100 7 3 3 3 7 7

011110 7 3 3 3 3 7

011111 7 3 3 3 3 3

f. 010001∗ 7 3 7 7 7 3

Two types of measurement sessions were considered,
namely, one-hot and incremental. For the first type,
a single facet was placed in reflective mode while all
the others were kept absorbent. For the second type,
starting from fully-absorbent mode, facets were pro-
gressively switched to reflective one after the other
until all but the floor are reflective, as shown in Ta-
ble 3. The dataset features an extra recording session.
For this session, office furnitures (chairs, coat-hanger
and a table) were positioned in the room to simulate a
typical meeting room with chairs and tables (see Fig-
ure 2). Theses recordings may be used to assert the
robustness of echo-aware methods in a more realistic
scenario

For each room configuration and loudspeaker, three
different excitation signals were played and recorded
in sequence: chirps, white noise and speech utterances.
The former consists in a repetition of 3 Exponentially
Swept-frequency Sine (ESS) signals of duration 10 sec-
onds and frequency range from 100 Hz to 14 kHz inter-
spersed with 2 seconds of silence. Such frequency range
was chosen to match the characteristics of the loud-
speakers. To prevent rapid phase changes and “pop-
ping” effects, the signals were linearly faded in and
out over 0.2 seconds with a Tuckey taper window.[3]

Second, 10 seconds bursts of white noise and 3 ane-
choic speech utterances from the Wall Street Journal
(WSJ) dataset [36] were played in the room. Through
all recordings, at least 40 dB of sound dynamic range
compared to the room silence was asserted, and a room
temperature of 24◦ ± 0.5◦C and 80% relative humid-
ity were registered. In these conditions the speed of
sounds is cair = 346.98 m/s. In addition, 1 minute of
room tone (i.e., silence) and 4 minutes of diffuse bab-
ble noise were recorded for each session. The latter was

[3]The code to generate the reference signals and to process them
is available together with the data. The code is based on the
pyrirtools Python library

https://github.com/maj4e/pyrirtool
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Figure 4 Picture of the acoustic lab. From left to right: the overall setup, one microphone array, the setup with revolved panels.

simulated by transmitting different chunks of the same
single-channel babble noise recording from additional
loudspeakers facing the four corners of the room.

All microphone signals were synchronously acquired
and digitally converted to 48 kHz with 32 bit/sample
using the equipment listed in Table 2. The polarity
of each microphone was recorded by clapping a book
in the middle of the room and their gain is corrected
using the room tone.

Finally, RIRs are estimated with the ESS tech-
nique [37] where an exponential time-growing fre-
quency sweep is using as probe signal. Then, the RIR
is estimated by devolving the microphone signal, im-
plemented as division in the frequency domain (The
authors used the same code mentioned in Footnote 3).

2.3 Dataset annotation
2.3.1 RIRs annotation
The objective of this database is to feature annota-
tions in the “geometrical space”, namely the micro-
phone, facet and source positions, that are fully con-
sistent with annotations in the “signal space”, namely
the echo timings within the RIRs. This is achieved as
follows:
(i) First, the ground-truth positions of the array and

source centres are acquired via a Beacon indoor
positioning system (bIPS). This system consists
in 4 stationary bases positioned at the corners of
the ceiling and a movable probe used for mea-
surements which can be located within errors of
±2 cm.

(ii) The estimated RIRs are superimposed on syn-
thetic RIRs computed with the Image Source
Method (ISM) from the geometry obtained in the
previous step. A Python GUI[4] (showed in Fig-
ure 5), is used to manually tune a peak finder and
label the echoes corresponding to found peaks,
that is, annotate their timings and their corre-
sponding image source position and room facet
label.

[4]This GUI is available in the dataset package.

(iii) By solving a simple Multi-Dimensional Scaling
(MDS) problem [38–40], refined microphone and
source positions are computed from echo timings.
The non-convexity of the problem is alleviated by
using a good initialization (obtained at the previ-
ous step), by the high SNR of the measurements
and, later, by including additional image sources
in the formulation. The prior information about
the arrays’ structures reduced the number of vari-
ables of the problem, leaving the 3D positions of
the sources and of the arrays’ barycenters in ad-
dition to the arrays’ tilt on the azimuthal plane.

(iv) By employing a multilateration algorithm [41],
where the positions of one microphone per array
serve as anchors and the TOAs are converted into
distances, it is possible to localize image sources
alongside the real sources. This step will be fur-
ther discussed in Section 4.

Knowing the geometry of the room, in step (i) we were
able to initially guess the position of the echoes in the
RIR. Then, by iterating through steps (ii), (iii) and
(iv), the position of the echoes are refined to be con-
sistent under the ISM.

The final geometrical and signal annotation was cho-
sen as a compromise between the bIPS measurements
and the MDS output. While the former ones are noisy
but consistent with the scene’s geometry, the latter
ones match the TOAs but not necessarily the physi-
cal world. In particular, geometrical ambiguities such
as global rotation, translation and up-down flips were
observed. Instead of manually correcting this error, we
modified the original problem from using only the di-
rect path distances (dMDS) to considering the image
sources’ TOA of the ceiling as well in the cost func-
tion (dcMDS). Table 4 shows numerically the mismatch
(in cm) between the geometric space (defined by the
bIPS measurements) and the signal space (the one de-
fined by the echo timings, converted to cm based on
the speed of sound). To better quantify it, we intro-
duce here a Goodness of Match (GoM) metric: it mea-
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Table 4 Mismatch between geometric measurements and signal
measurements in terms of maximum (Max.), average (Avg.) and
standard deviation (Std) of absolute mismatch in centimeters.
The goodness of match (GoM) between the signal and
geometrical measurements is reported as the fraction of matching
echo timings for different thresholds in milliseconds.

Metrics bIPS dMDS dcMDS

G
eo

m
.

Max. 0 6.1 1.07
Avg.±Std. 0 1.8± 1.4 0.39± 0.2

S
ig

n
a

l

Max. 5.86 1.20 1.86
Avg.±Std. 1.85± 1.5 0.16± 0.2 0.41± 0.3

M
is

m
a

tc
h GoM (0.5 ms) 97.9% 93.4% 98.1%

GoM (0.1 ms) 26.6% 44.8% 53.1%
GoM (0.05 ms) 12.5% 14.4% 30.2%

sures the fraction of (first-order) echo timings anno-
tated in the RIRs matching the annotation produced
by the geometry within a threshold. Including the ceil-
ing information, dcMDS produces a geometrical configu-
ration which has a small mismatch (0.4 cm on average,
1.86 cm max) in both the signal and geometric spaces
with a 98.1% matching all the first order echoes within
a 0.5 ms threshold (i.e., the position of all the image
sources within about 17 cm error). It is worth noting
that the bIPS measurements produce a significantly
less consistent annotation with respect to the signal
space.

2.3.2 Other tools for RIRs annotation
Finally, we would like to add that the following tools
and techniques were found useful in annotating the
echoes.

The “skyline” visualization consists in presenting the
intensity of multiple RIRs as an image, such that the
wavefronts corresponding to echoes can be highlighted
[42]. Let hn(l) be an RIR from the database, where l =
0, . . . , L− 1 denotes sample index and n = 0, . . . , N −
1 is an arbitrary indexing of all the microphones for
a fixed room configuration. Then, the skyline is the
visualization of the L×N matrix H created by stacking
column-wise N normalized echograms [5], that is

Hl,n =| hn(l) | /max | hn(l) |, (1)

where | · | denotes the absolute value.
Figure 6 shows an example of skyline for 120 RIRs

corresponding to 4 directional sources, 30 micro-
phones and the most reflective room configuration,
stacked horizontally, preserving the order of micro-
phones within the arrays. One can notice several clus-
ters of 5 adjacent bins of similar color (intensity) corre-
sponding to the arrivals at the 5 sensors of each nULA.

[5]The echogram is defined either as the absolute value or as the
squared value of the RIR.

Thanks to the usage of linear arrays, this visualization
allowed us to identify both TOAs and their labeling.

Direct path deconvolution/equalization was used to
compensate for the frequency response of the source
loudspeaker and microphone [20, 43]. In particular,
the direct path of the RIR was manually isolated and
used as an equalization filter to enhance early reflec-
tions from their superimposition before proceed with
peak picking. Each RIR was equalized with its respec-
tive direct path. As depicted in Figure 5, in some cases
this process was required for correctly identifying the
underlying TOAs’ peaks.

Different facet configurations for the same geome-
try influenced the peaks’ predominance in the RIR,
hence facilitating its echo annotation. An example of
RIRs corresponding to 2 different facet configurations
is shown in Figure 5: the reader can notice how the
peak predominance changes for the different configu-
rations.

An automatic peak finder was used on equalized
echograms η̄n(l) to provide an initial guess on the
peak positions. In this work, peaks are found using
the Python library peakutils whose parameters were
manually tuned.

2.4 Limitations of current annotation
As stated in [44], we want to emphasize that annotat-
ing the correct TOAs of echoes and even the direct
path in “clean” real RIRs is far from straightforward.
The peaks can be blurred out by the loudspeaker char-
acteristics or the concurrency of multiple reflections.
Nevertheless, as showed in Table 4, the proposed an-
notation was found to be sufficiently consistent both
in the geometric and in the echo/signal space. Thus,
no further refinement was done. This database can be
used as a first basis to develop better AER methods
which could be used to iteratively improve the anno-
tation, for instance including 2nd order reflections.

2.5 The dEchorate package
The dataset comes with both data and code to parse
and process it. The data are presented in 2 modalities:
the raw data, that is, the collection of recorded wave
files, are organized in folders and can be retrieved by
querying a simple database table; the processed data,
which comprise the estimated RIRs and the geomet-
rical and signal annotations, are organized in tensors
directly importable in Matlab or Python (e.g. all the
RIRs are stored in a tensor of dimension L×I×J×D,
respectively corresponding to the RIR length in sam-
ples, the number of microphones, of sources and of

https://bitbucket.org/lucashnegri/peakutils/
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Measured RIRs – Rooms: 010100, 010010 Direct Path Deconvolution – current room conf

Peak Finder (current room conf) RIR skyline (current array)

a) b)

d)c)

Figure 5 Detail of the GUI used to manually annotate the RIRs. For a given source and a microphone in an nULA, a) and b) each
shows 2 RIRs for 2 different room configurations (blue and orange) before and after the direct path deconvolution. c) shows the
results of the peak finder for one of the deconvolved RIRs, and d) is a detail on the RIR skyline (See Figure 6) on the corresponding
nULA, transposed to match the time axis.

room configurations).
Together with the data a Python package is available
on the same website. This includes wrappers, GUI, ex-
amples as well as the code to reproduce this study. In
particular, all the scripts used for estimating the RIRs
and annotating them are available and can be used to
further improve and enrich the annotation or as base-
lines for future works.

3 Analysing the Data
In this section we will illustrate some characteristics
of the collected data in term of acoustic descriptors,
namely the RT60, the DRR and the Direct-to-Early Ra-
tio (DER). While the former two are classical acoustic
descriptors used to evaluate SE and ASR technolo-
gies [45], the latter is less common and used in strongly
echoic situations [46, 47].

3.1 Reverberation Time
The RT60 is the time required for the sound level in a
room to decrease by 60 dB after the source is turned
off, thus, it measures reverberation level. This value

is one the most common acoustic descriptor for room
acoustics. Besides, as reverberation affects detrimen-
tally the performances of speech processing technolo-
gies, the robustness against RT60 has become a com-
mon evaluation metric in SE and ASR.

Table 5 reports estimated RT60(b) values per octave
band b ∈ {500, 1000, 2000, 4000} (Hz) for each of the
room in the dataset. These values were estimated us-
ing the Schroeder’s integration methods [48–50] in each
octave band. For the octave bands centred at 125 Hz
and 250 Hz, the measured RIRs did not exhibit suffi-
cient power for a reliable estimation. This observation
found confirmation in the frequency response provided
by the loudspeakers’ manufacturer, which decays ex-
ponentially from 300 Hz downwards.

Ideally, for the RT60 to be reliably estimated, the
Schroeder curve, i.e. the log of the square-integrated,
octave-band-passed RIR, would need to feature a lin-
ear decay for 60 dB of dynamic range, which would
occur in an ideal diffuse sound regime. However, such
range is never observable in practice, due to the pres-
ence of noise and possible non-diffuse effects. Hence,
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Figure 6 The RIR skyline annotated with observed peaks (×) together with their geometrically-expected position (◦) computed
with the Pyroomacoustic acoustic simulator. As specified in the legend, markers of different colors are used to indicate the room
facets responsible for the reflection: direct path (d), ceiling (c), floor (f), west wall (w), . . . , north wall (n).

a common technique is to compute, e.g., the RT10 on
the range [−5,−15] dB of the Schroeder curve and to
extrapolate the RT60 by multiplying it by 6. We visu-
ally inspected all the RIRs of the dataset correspond-
ing to directional sources 1, 2 and 3, i.e., 90 RIRs in
each of the 10 rooms. Then, two sets were created.
Set A features all the Schroeder curves featuring lin-
ear log-energy decays allowing for reliable RT10 esti-
mates. Set B contains all the other curves. In prac-
tice, 49% of the 3600 Schroeder curves were placed in
the set B. These mostly correspond to the challenging
measurement conditions purposefully included in our
dataset, i.e., strong early echoes, loudspeakers facing
towards reflectors or receivers close to reflectors. Fi-
nally, the RT60 value of each room and octave band
was calculated from the median of RT10 corresponding
to Schroeder curves in A only.

As can be seen in Table 5, obtained reverberation
values are consistent with the room progressions de-
scribed in section 2. Considering the 1000 Hz octave
band, the RT60 ranges from 0.14 s for the fully ab-
sorbent room (000000) to 0.73 s for the most reflective
room (011111). When only one surfaces is reflective
the RT60 values remains around 0.19 s.

3.2 Direct To Early and Reverberant Ratio
In order to characterize an acoustic environment, it is
common to provide the ratio between the energy of the
direct and the indirect propagation paths. In particu-
lar, one can compute the so-called DRR directly from

a measured RIR h(l) [45] as

DRR = 10 log10

∑
l∈D h

2(l)∑
l∈R h

2l)
[dB], (2)

where D denotes the time support comprising the di-
rect propagation path (set to ±120 samples around its
time of arrival, blue part in Figure 1), andR comprises
the remainder of the RIR, including both echoes and
late reverberation (orange and green parts in Figure 1).

Similarly, the DER defines the ratio between the en-
ergy of the direct path and the early echoes only, that
is,

DER = 10 log10

∑
l∈D h

2(l)∑
l∈E h

2(l)
[dB], (3)

where E is the time support of the early echoes only
(green part in Figure 1).

Differently from the RT60 which mainly describes the
diffuse regime, both DER and DRR are highly depen-
dent on the position of the source and receiver in the
room. Therefore, for each room, wide ranges of these
parameters were registered. For the loudspeakers fac-
ing the microphones, the DER ranges from 2 dB to
6 dB in one-hot room configurations and from -2 dB
to 6 dB in the most reverberant rooms. Similarly, the
DRR has a similar trend featuring lower values, such
as -2 dB in one-hot rooms and down to -7.5 dB for
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Table 5 Reverberation time per octave bands RT60(b) calculated in the 10 room configurations. For each coefficient, the number of
corresponding Schroeder curves in A used to compute the median estimate is given in parentheses.

Room 1 Room 2 Room 3 Room 4 Room 5 Room 6 Room 7 Room 8 Room 9 Room 10
000000 011000 011100 011110 011111 001000 000100 000010 000001 010001∗

500 Hz 0.18 (11) 0.40 (7) 0.46 (20) 0.60 (51) 0.75 (48) 0.22 (8) 0.21 (5) 0.21 (8) 0.22 (7) 0.37 (12)
1000 Hz 0.14 (62) 0.33 (83) 0.34 (86) 0.56 (89) 0.73 (90) 0.19 (79) 0.19 (74) 0.18 (69) 0.19 (70) 0.26 (72)
2000 Hz 0.16 (65) 0.25 (81) 0.30 (86) 0.48 (82) 0.68 (88) 0.18 (74) 0.20 (64) 0.18 (66) 0.18 (67) 0.24 (69)
4000 Hz 0.22 (15) 0.25 (17) 0.37 (22) 0.55 (16) 0.81 (29) 0.22 (17) 0.23 (12) 0.26 (14) 0.24 (18) 0.28 (14)

the most reverberant ones. A complete annotation of
these metrics is available in the database.

4 Using the Data
The dEchorate database is now used to investigate the
performance of state-of-the-art methods on two echo-
aware acoustic signal processing applications on both
synthetic and measured data, namely, spatial filtering
and room geometry estimation.

4.1 Application: Echo-aware Beamforming
Let I microphones acquire to a single static point
sound source, contaminated by noise sources. In the
short-time Fourier transform (STFT) domain, we
stack the I complex-valued microphone observations
at frequency f and time t into a vector x(f, t) ∈ CI .
Let us denote s(f, t) ∈ C and n(f, t) ∈ CI the source
signal and the noise signals at microphones, which are
assumed to be statistically independent. By denoting
h ∈ CI the Fourier transforms of the RIRs, the ob-
served microphone signals in the STFT domain can
be expressed a follows:

x(f, t) = h(f)s(f, t) + n(f, t). (4)

Here, the STFT windows are assumed long enough so
that the discrete convolution-to-multiplication approx-
imation holds well.

Beamforming is one of the most widely used tech-
niques for enhancing multichannel microphone record-
ings. The literature on this topic spans several decades
of array processing and a recent review can be found
in [51]. In the frequency domain, the goal of beamform-
ing is to estimate a set of coefficients w(f) ∈ CI that
are applied to x(f, t), such that s(f, t) ≈ wHx(f, t).
Hereinafter, we will consider only the distortionless
beamformers aiming at retrieving the clean target
speech signal, as it is generated at the source position.

As mentioned throughout the paper, the knowledge
of early echoes is expected to boost spatial filtering
performances. However, estimating these elements is
difficult in practice. To quantify this, we compare echo-
agnostic and echo-aware beamformers. In order to
study their empirical potential, we will evaluate their
performance using both synthetic and measured data,
as available in the presented dataset.

Echo-agnostic beamformers do not need any echo-
estimation step: they either ignore their contribu-
tions, as in the direct-path delay-and-sum beamformer
(DS) [52], or they consider coupling filters between
pairs of microphones, called Relative Transfer Func-
tions (ReTFs) [7]. Note that contrary to RIRs, there
exist efficient methods to estimate ReTFs from multi-
channel recordings of unknown sources (see [51, Sec-
tion VI.B] for a review). The ReTFs can then be
naturally incorporated in powerful beamforming al-
gorithms achieving speech dereverberation and noise
reduction in static [53] and dynamic scenarios [54].
In this work, ReTFs are estimated using Generalized
Eigenvector Decomposition (GEVD) method [55], us-
ing the approach illustanted in [56].

Echo-aware beamformers fall in the category of rake
receivers, borrowing the idea from telecommunication
where an antenna rakes (i.e., combines) coherent sig-
nals arriving from different propagation paths [4–6]. To
this end, they typically consider that for each RIR i,
the delays and frequency-independent attenuation co-
efficients of R early echoes are known, denoted here as

τ
(r)
i and α

(r)
i . In the frequency domain, this translates

into the following:

h(f) =

[
R−1∑
r=0

α
(r)
i exp

(
2πjfτ

(r)
i

)]
i

, (5)

where r = 0, . . . , R− 1 denotes the reflection order,

Recently, these methods have been used for noise and
interferer suppression in [9, 57] and for noise and re-
verberation reduction in [10, 58]. The main limitation
of these works is that echo properties, or alternatively
the position of image sources, must be known a pri-
ori. Hereafter, we will assume these properties known
by using the annotations of the dEchorate dataset, as
described in Section 2.3. In particular, we will assume
that the RIRs follow the echo model (5) with R = 4,
corresponding to the 4 strongest echoes. Knowing the
echo delays, the associated attenuation coefficients are
retrieved from the RIRs using a simple maximum-
likelihood approach, as in [59, Eq. 10].

We evaluate the performance of both types of beam-
formers on the task of noise and late reverberation



Di Carlo et al. Page 10 of 14

suppression. Different Minimum Variance Distortion-
less Response (MVDR) beamformers are considered,
assuming either spatially white noise (i.e., classical DS
design), diffuse noise (i.e., the Capon filter) or diffuse
noise plus the late reverberation [60]. In the latter case,
the late reverberation statistics are modeled by a spa-
tial coherence matrix [61] weighted by the late rever-
beration power, which is estimated using the procedure
described in [60].

Overall, the different RIR models considered are di-
rect propagation (DP, i.e., ignoring echoes), multipath
propagation (Rake, i.e., using 4 known early echoes) [9,
10] or the full reverberant propagation (ReTF) [7,
56].Table 6 summarizes the considered beamformers
designs.

Table 6 Summary of the considered beamformers. “n.” and “lr.”
are used as short-hand for noise and late reverberation. (*)
denotes echo-aware beamformers.

Acronym Steering Vectors Noise Model

DS [52] Direct Path AOA Spatially white n.
MVDR-DP [52] Direct Path AOA Diffuse n.
MVDR-ReTF [7] ReTF Diffuse n.
MVDR-Rake* [9] 4 Echoes/chan. Diffuse n.
MVDR-DP-Late [10] Direct Path AOA Spat.ly white n.+lr.
MVDR-ReTF-Late [56] ReTF Diffuse n. + lr.
MVDR-Rake-Late* [10] 4 Echoes/chan. Diffuse n. + lr.

Performances of the different designs are compared
on the task of enhancing a target speech signal in a
5-channel mixture using the nULAs in the dEchorate

dataset. They are tested in scenarios featuring high
reverberation and diffuse babble noise, appropriately
scaled to pre-defined signal-to-noise ratios SNR ∈
{0, 10, 20}. Using the dEchorate data, we consider
the room configuration 011111 (RT60 ≈ 600 ms) and
all possible combinations of (target, array) positions.
Both real and corresponding synthetic RIRs are used,
which are then convolved with anechoic utterances
from the WSJ corpus [36] and corrupted by recorded
diffuse babble noise. The synthetic RIRs are computed
with the Python library pyroomacoustics [62], based
purely on the ISM. Hence, on synthetic RIRs, the
known echo timings perfectly match the components
in their early part (no model mismatch).

The evaluation is conducted similarly to the one
in [10] where the following metrics are considered:

• the Signal-to-Noise plus Reverberation Ratio im-
provement (iSNRR) in dB, computed as the dif-
ference between the input SNRR at the reference
microphone and the SNRR at the filter output;

• the Speech-to-Reverberation energy Modulation
Ratio improvement (iSRMR) [63] to measure
dereverberation;

• the Perceptual Evaluation of Speech Quality im-
provement (iPESQ) score [64] to assess the per-

ceptual quality of the signal and indirectly the
amount of artifacts.

Implementations of the SRMR and Perceptual Eva-
lution of Speech Quality (PESQ) metrics are avail-
able in the Python library speechmetrics. Both the
Signal-to-Noise plus Reverberation Ratio (SNRR) and
the PESQ are relative metrics, meaning they require a
target reference signal. Here we consider the clean tar-
get signal as the dry source signal convolved with the
early part of the RIR (up to R-th echo) of the reference
(first) microphone. On the one hand, this choice nu-
merically penalizes both direct-path-based and ReTF-
based beamformers, which respectively aim at extract-
ing the direct-path signal and the full reverberant sig-
nal in the reference microphone. On the other hand,
considering only the direct path or the full reverber-
ant signal would be equally unfair for the other beam-
formers. Moreover, including early echoes in the target
signal is perceptually motivated since they are known
to contribute to speech intelligibility [65].

Numerical results are reported in Figure 7. On syn-
thetic data, as expected, one can see that the more in-
formation is used, the better performances are. Includ-
ing late reverberation statistics considerably boosts
performance in all cases. Both the ReTFs-based and
the echo-aware beamformers significantly outperform
the simple designs based on direct path only. While the
two designs perform comparably in terms of iSNRR
and iPESQ, the former has a slight edge over the latter
in terms of median iSRMR. A possible explanation is
that GEVD methods tend to consider the stronger and
more stable components of the ReTFs, which in the
considered scenarios may identify with the earlier por-
tion of the RIRs. Moreover, since it is not constrained
by a fixed echo model, the ReTFs can capture more
information, e.g., frequency-dependent attenuation co-
efficients. Finally, one should consider the compacity
of the model (5) with respect to the ReTF model in
terms of the number of parameters to be estimated. In
fact, when considering 4 echoes, only 8 parameters per
channel are needed, as opposed to several hundreds for
the ReTF (ideally, as many as the number of frequency
bins per channel).

When it comes to measured RIRs, however, the
trends are different. Here, the errors in echo tim-
ings due to calibration mismatch and the richness
of real acoustic propagation lead to a drop in per-
formance for echo-aware methods, both in terms of
means and variances. This is clearest when consider-
ing the iPESQ metric, which also accounts for arti-
facts. the echo-agnostic beamformer considering late
reverberation MVDR-ReTF-Late outperforms the other
methods, maintaining the trend exhibited on simu-
lated data. Finally, conversely to the MVDR-ReTF-Late,

https://github.com/LCAV/pyroomacoustics
https://github.com/aliutkus/speechmetrics/
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Figure 7 Boxplot showing the comparison of different echo-agnostic and echo-aware (*) beamformers for the room configuration
011111 (RT60 ≈ 600 ms) on measured and synthetic data for all combinations of source-array positions in the dEchorate dataset.
Mean values is indicated as +, while whiskers indicates extreme values.

the MVDR-Rake-Late yields a significant portion of neg-
ative performances. As already observed in [10], this
is probably due to the tiny annotation mismatches in
echo timings as well as the fact that their frequency-
dependent strengths, induced by reflective surfaces,
are not modeled in rake beamformers. This suggests
that in order to be applicable to real conditions, fu-
ture work in echo-aware beamforming should include
finer blind estimates of early echo properties from sig-
nals, as investigated in, e.g., [35, 66].

4.2 Application: Room Geometry Estimation
The shape of a convex room can be estimated know-
ing the positions of first-order image sources. Sev-
eral methods have been proposed which take into ac-
count different levels of prior information and noise
(see [23, 67] for a review). When the echoes’ TOA
and their labeling are known for 4 non-coplanar mi-
crophones, one can perform this task using simple ge-
ometrical reasoning as in [21]. In details, the 3D coor-
dinates of each image source can be retrieved solving
a multilateration problem [68], namely the extension
of the trilateration problem to 3D space, where the
goal is to estimate the relative position of an object
based on the measurement of it distance with respect
to anchor points. Finally, the position and orientation
of each room facet can be easily derived from the ISM
equations as the plane bisecting the line joining the
real source position and the position of its correspond-
ing image (see Figure 8)

In dEchorate, the annotation of all the first order
echo timings are available, as well as correspondences
between echoes and room facets. This information can
be used directly as input for the above-mentioned mul-
tilateration algorithm. We illustrate the validity of
these annotations by employing the RooGE technique
in [21] (with know labels) based on them.

Table 7 shows the results of the estimation of the
room facets position in terms of Distance Error (DE)
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images

Figure 8 Images source estimation and reflector estimation for
one of the sound sources in the dataset.

(in centimeters) and surface orientation error, (dubbed
here Angular Error (AE), in degrees) using a single
source and all 30 microphones, namely the 6 arrays.
Room facets are estimated using each of the sources
#1 to #4 as a probe. Despite a few outliers, the ma-
jority of facets are estimated correctly in terms of their
placement and orientation with respect to the coordi-
nate system computed in Section 2.3. For instance, us-
ing source #4, all 6 surfaces were localized with 1.49
cm DE on average and their inclinations with 1.3◦ AE
on average. Apart from the outliers, these results are
in line with the ones reported by Dokmanić et al.in the
work [21] using a setup of 5 microphones listening to
1 sound source.
Furthermore, one can use all the 4 sources to estimate
the room geometry as suggested in [22]. By doing so,
the entire room geometry estimation results in 1.15 cm
DE and 2.6◦ AE on average.

The small errors are due to a concurrency of multi-
ple factors, such as tiny offsets in the annotations and
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Table 7 Distance Error (DE) in centimeters and Angular Error (AE) in degrees between ground truth and estimated room facets using
each of the sound sources (#1 to #4) as a probe. For each wall, bold font is used for the source yielding the best DE and AE, while
italic highlights outliers when present.

source id 1 2 3 4
wall DE AE DE AE DE AE DE AE
west 0.74 8.99◦ 4.59 8.32◦ 5.89 5.75◦ 0.05 2.40◦

east 0.81 0.08◦ 0.9 0.50◦ 69 .51 55 .70◦ 0.31 0.21◦

south 3.94 16.08◦ 0.18 1.77◦ 14 .37 18 .55◦ 0.82 1.65◦

north 1.34 0.76◦ 1.40 8.94◦ 0.63 0.17◦ 2.08 1.38◦

floor 5.19 1.76◦ 7.27 2.66◦ 7.11 2.02◦ 5.22 1.90◦

ceiling 1.16 0.28◦ 0.67 0.76◦ 0.24 1.16◦ 0.48 0.26◦

the ideal shoebox approximation. In the real record-
ing room, some gaps were present between revolving
panels in the room facet. In addition, it is possible
that for some (image source, receiver) pairs the far-
field assumption is not verified, causing inaccuracies
when inverting the ISM. The 2 outliers for source #3
are due to a wrong annotation caused by the source di-
rectivity which induced an echo mislabeling. When a
wall is right behind a source, the energy of the related
1st reflection is very small and might not appear in the
RIRs. This happened for the eastern wall and a second
order image was taken instead. Finally, the contribu-
tion of multiple reflections arriving at the same time
can result in large late spikes in estimated RIRs. This
effect is particularly amplified when the microphone
and loudspeakers exhibit long impulse responses. As a
consequence, some spikes can be miss-classified. This
happened for the southern-wall where again a second-
order image was taken instead. Note that such echo
mislabelings can either be corrected manually or us-
ing Euclidean distance matrix criteria as proposed in
[21]. Overall, this experiment illustrates well the inter-
esting challenge of estimating and exploiting acoustic
echoes in RIRs when typical sources and receivers with
imperfect characteristics are used.

ec

5 Conclusions and Perspectives
This paper introduced a new database of room im-
pulse responses featuring accurate annotation of early
echo timings that are consistent with source, micro-
phone and room facet positions. These data can be
used to test methods in the room geometry estima-
tion pipeline and in echo-aware audio signal process-
ing. In particular, robustness of these methods can be
validated against different levels of RT60, SNR, surface
reflectivity, proximity, or early echo density.

This dataset paves the way to a number of interest-
ing future research directions. By making this dataset
freely available to the audio signal processing commu-
nity, we hope to foster research in AER and echo-aware
signal processing in order to improve the performance
of existing methods on real data. Moreover, the dataset

could be updated by including more robust annota-
tions derived from more advanced algorithms for cali-
bration and AER.

In addition, the data analysis conducted in this work
brings the attention to exploring the impact of mis-
match between simulated and real RIRs on audio sig-
nal processing methods. Finally, by using the pairs of
simulated vs. real RIRs available in the dataset, it
should be possible to develop techniques to convert
one to the other, using style transfer or domain adap-
tation techniques, thus opening the way to new types
of learning-based acoustic simulators.

Appendix
Room materials

Table 8 Materials covering the acoustic laboratory in Bar-Ilan
University.

Surface Mode Material

Floor absorbent Hairy carpet
Ceiling absorbent Glass wool mats covered with porous tin
Ceiling reflective Formica (20 mm thick)
Walls absorbent Glass wool mats covered with porous tin
Walls reflective Panels: Formica (20 mm thick)

Wall: Plaster
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Abbreviations
AE Angular Error

AER Acoustic Echo Retrieval

ASR Automatic Speech Recognition

DE Distance Error

DER Direct-to-Early Ratio

DRR Direct-to-Reverberant ratio

DOA Direction of Arrival

ESS Exponentially Swept-frequency Sine

GEVD Generalized Eigenvector Decomposition

GoM Goodness of Match

MDS Multi-Dimensional Scaling

MVDR Minimum Variance Distortionless Response

nULA non-Uniform Linear Array

PESQ Perceptual Evalution of Speech Quality

RIR Room Impulse Response
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ReTF Relative Transfer Function

TOA Time of Arrival

TDOA Time Difference of Arrival

ISM Image Source Method

SE Speech Enhancement

SNRR Signal-to-Noise plus Reverberation Ratio

iPESQ Perceptual Evaluation of Speech Quality improvement

iSNRR Signal-to-Noise plus Reverberation Ratio improvement

iSRMR Speech-to-Reverberation energy Modulation Ratio improvement

RooGE Room Geometry Estimation

WSJ Wall Street Journal

Author details
1Univ Rennes, Inria, CNRS, IRISA, France. 2Faculty of Engineering,

Bar-Ilan University, Ramat-Gan, 5290002, Israel. 3UMRAE, Cerema, Univ.

Gustave Eiffel, Ifsttar, Strasbourg, 67035, France. 4Université de Lorraine,
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