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We propose a flexible light-weight and parametric NoC model designed for fast performance estimation at early design stages. Our NoC model combines the benefits of both analytical and simulation-based NoC models. Our NoC features an abstract router model whose buffers are updated at runtime with information about the actual traffic. This traffic information is fed to a closed-form expression that computes packet latency and that accounts for network contention at a router basis. We evaluated our hybrid NoC model in terms of estimation accuracy and simulation speed. We compared the simulation results to the ones obtained with a cycle accurate NoC simulator called Garnet. Our NoC model achieves less than 17% error in average network latency estimation and attains up to 14× speedup for a 8×8 mesh.

I. INTRODUCTION

As modern MPSoCs continue to scale toward hundreds of processing cores on a single chip (e.g. TILE-Gx, Kalray MPPA-256 [START_REF] De Dinechin | Network-on-chip service guarantees on the kalray mppa-256 bostan processor[END_REF]), the on-chip communication mechanism has, arguably, become one of the main contributors to the overall system performance and cost. The significant role played by the NoC in a complex MPSoC combined with the tight requirements for performance, cost and time to market, fueled the need for fast, complexity-effective and reliable NoC models. However, providing helpful insights on NoC performance characteristics, bottlenecks and impact on the full system performance for each feasible NoC design candidate should not be time consuming nor should it delay the design process. These NoC models are expected to provide fast and accurate evaluations of design candidates at early design stages with rapid sweeps of the network design space.

To address this speed-accuracy trade-off in NoC modeling, various NoC models at different abstraction levels were proposed. Analytical approaches, for instance, use closed-form formulae that depend on the system parameters to provide a safe bound on network performance. This bound is usally pessimistic (worst case latency) and do not account for unregulated traffic generation. Complementary to analytical methods, simulation-based approaches attempt to model all key elements of a NoC (i.e. detailed router microarchitecture). This level of detail enables comprehensive performance evaluation, which leads to accurate NoC performance estimates. However, for large scale systems with hundreds of cores, full system simulation (FSS) with such accurate NoC models becomes unaffordable, time-wise, especially at early design stages.

In order to provide fast, scalable and reliable performance evaluations, we propose a NoC model that exploits the advan-tages of both analytical and simulation-based NoC modeling approaches. At the very heart of the proposed hybrid NoC model is an abstract router represented by a set of FIFO buffers. This high-level router model that overlooks the architectural details for the benefit of simulation speed, establishes a closedform expression that estimates the packet network latency. Unlike standard analytical approaches, the devised latency formula is governed by the state of each router (i.e. buffer load), which is in turn dictated by the dynamic (i.e. nondeterministic) behavior of any given workload during simulation. The advantage of our hybrid NoC model is twofold; on the one hand, it inherits the dynamic aspects of simulationbased models and is able to reflect the dynamic interactions between packets and their competition for network resources at runtime. Therefore, a realistic overview of the system behavior is somewhat maintained. On the other hand, the NoC model abstracts away router details and revolves around a simple formula for network latency, which proves to be beneficial to the simulation speed. This addresses the scalability challenge in large-scale NoC simulations. The simplicity and tractability of the model facilitates its integration in a FSS environment without compromising the overall simulation speed.

To evaluate the efficiency of our hybrid NoC model, we compared it, in standalone mode, to a cycle-accurate NoC simulator called Garnet [START_REF] Agarwal | Garnet: A detailed onchip network model inside a full-system simulator[END_REF]. This comparison was performed in terms of simulation speed and average network latency using different synthetic traffic patterns. We also integrated our NoC model in a fast FSS environment called VPSim [START_REF] Charif | Fast virtual prototyping for embedded computing systems design and exploration[END_REF] supporting a 32-core architecture configuration with a 6×6 mesh and a 3level cache hierarchy and we evaluated its impact on the overall simulation speed.

II. NOC BACKGROUND

In this section, we outline basic NoC concepts and review related work on NoC modeling.

A. NoC Basics

A typical NoC is characterized mainly by its topology (e.g. mesh, torus, etc.), routing algorithm (e.g. XY, west-first, etc.) and flow control (e.g. packet-level, Virtual Channel VC-level, etc.) [START_REF] Dally | Principles and Practices of Interconnection Networks[END_REF]. The topology is defined by the connection patterns of router nodes through channels. A packet can thus cross the network from its source node to its destination node by making several hops across routers and channels. Routing determines the actual path that a packet should take through the network to reach its destination. Finally, flow control is in charge of allocating internal resources of the router (e.g. buffers) and NoC channels to packets as they advance through their route.

NoC performance is usually measured by a metric called packet latency, which is the time required by a packet to reach its destination. The latency of packet pkt i from its source to Equation 1 Packet Network Latency

Lat pkt i = P lat pkt i × nbr hops + (L -1) × F T (a) + W ait pkt i (b)
its destination is expressed as shown in Equation 1, where:

• P lat pkti is the physical delay, caused by the network physical aspects such as switch and link delays. • nbr hops is the number of routers traversed by the packet and determined by the routing algorithm. • F T is the transmission time of one flit.

• L is the packet size in flits.

• W ait pkti is the contention delay. This latency formula combines a hop-count delay (term 1-(a)) and a contention delay (term 1-(b)). The hop-count delay depends on the intra-router delay (i.e. routing delay + propagation delay through the switch), the inter-router delay (i.e. link propagation delay) and the number of hops taken [START_REF] Dally | Principles and Practices of Interconnection Networks[END_REF]. The contention delay is defined in terms of:

• link contention, which occurs when packets' paths share one or more links (i.e. packets compete for the same channels), • buffer congestion happens when limited-size router buffers reach their full capacity. In this work, we only consider network latency defined by Equation 1, which means that we compute both physical and contention delays but we abstract away the waiting time in injection queues (a.k.a. source queuing time).

B. Related Work

Network modeling is addressed with a wide range of solutions, from simulation approaches to analytical methods. There is a variety of network simulators such as Garnet [START_REF] Agarwal | Garnet: A detailed onchip network model inside a full-system simulator[END_REF], Noxim [START_REF] Catania | Noxim: An open, extensible and cycle-accurate network on chip simulator[END_REF], BookSim [START_REF] Jiang | A detailed and flexible cycleaccurate network-on-chip simulator[END_REF], that work at flit-level granularity and provide cycle-accurate packet latency results. These simulators, whether written in SystemC (Noxim) or C++ (BookSim, Garnet), share common grounds in implementing detailed router micro-architecture. However, because of their complexity and highly detailed models, they are not an adequate fit for a largescale FSS environment running real applications and operating systems. For instance, Gem5 [START_REF] Binkert | The gem5 simulator[END_REF] supports Garnet [START_REF] Agarwal | Garnet: A detailed onchip network model inside a full-system simulator[END_REF] as an accurate NoC simulator, which favors precision to simulation speed (less than 1 MIPS [START_REF] Kang | Fast parallel simulation of a manycore architecture with a flit-level on-chip network model[END_REF]).

Analytical methods (e.g. [START_REF] Ogras | An analytical approach for network-on-chip performance analysis[END_REF], [START_REF] Abdallah | Wormhole networks properties and their use for optimizing worst case delay analysis of manycores[END_REF], [START_REF] Giroudot | Tightness and computation assessment of worst-case delay bounds in wormhole networks-on-chip[END_REF]) aim at finding an upper bound on NoC performance using closed form expressions that depend on the system parameters [START_REF] Qian | Performance evaluation of noc-based multicore systems: From traffic analysis to noc latency modeling[END_REF]. Both real timebased analysis used in [START_REF] Abdallah | Wormhole networks properties and their use for optimizing worst case delay analysis of manycores[END_REF] and network calculus-based analysis employed in [START_REF] Giroudot | Tightness and computation assessment of worst-case delay bounds in wormhole networks-on-chip[END_REF] compute an upper bound on the traversal time of a packet. Assumptions like a maximum packet injection rate to saturate the network or/and buffers filled to their capacity are usually made to capture the worst-case scenario. For systems that do not require a deadline constraint, queuing theory is mostly used (e.g. [START_REF] Ogras | An analytical approach for network-on-chip performance analysis[END_REF], [START_REF] Nikitin | A performance analytical model for network-on-chip with constant service time routers[END_REF]). Analytical methods are unable to account for non-deterministic traffic generation by the components and thus do not take into consideration delays due to dynamic memory behavior for example. They usually handle well a regulated flow assumption (i.e. a pre-defined delay between two nodes). However, their precision could drop dramatically in the presence of unregulated flows.

An interesting research direction that aims at inspecting a new way of NoC performance estimation relies on combining the benefits of NoC analytical models and NoC simulators (e.g. [START_REF] Papamichael | Fist: A fast, lightweight, fpga-friendly packet latency estimator for noc modeling in full-system simulations[END_REF], [START_REF] Lugones | High-speed network modeling for full system simulation[END_REF]). In [START_REF] Papamichael | Fist: A fast, lightweight, fpga-friendly packet latency estimator for noc modeling in full-system simulations[END_REF], a packet latency estimator called FIST is proposed. The main idea behind FIST is to model each router as a set of load-delay curves. There are two variants of FIST: a static one that relies on offline training to statically obtain these curves, and a dynamic one that adds online training to enhance packet latency estimation. Both static generation of load-delay curves and dynamic training rely on the existence of a cycle accurate NoC simulator. Moreover, the static curves are obtained for specific traffic patterns (e.g. random uniform traffic, neighbor traffic). Also, it is not possible to capture dynamic phenomena like resource contention and buffer congestion by FIST.

Simplified NoC models could also be extracted from existing networks, as presented in [START_REF] Lugones | High-speed network modeling for full system simulation[END_REF]. Similar to [START_REF] Papamichael | Fist: A fast, lightweight, fpga-friendly packet latency estimator for noc modeling in full-system simulations[END_REF], an accurate NoC simulator is used as a reference to guide an abstract NoC model. A time-annotated trace and network parameters are generated using this reference network and are compared to a trace of network events generated by a FSS environment with zero latency assumption. Successive iterations might be needed following this comparison to refine the abstract NoC model until it converges to the requirements of the design. However, this simple NoC model does not consider the load at a link-basis. As a result, it does not capture network contention.

Following the steps of [START_REF] Papamichael | Fist: A fast, lightweight, fpga-friendly packet latency estimator for noc modeling in full-system simulations[END_REF] and [START_REF] Lugones | High-speed network modeling for full system simulation[END_REF], we aim at combining the advantages of simulation and analytical approaches in a hybrid NoC model, in an effort to reach acceptable accuracy with little impact on simulation speed and complexity. Our hybrid NoC model is able to capture the complex interactions between packets and the NoC's architectural components at runtime by abstractly modeling contention at a link-level as well as buffer congestion. Moreover, unlike [START_REF] Papamichael | Fist: A fast, lightweight, fpga-friendly packet latency estimator for noc modeling in full-system simulations[END_REF] and [START_REF] Lugones | High-speed network modeling for full system simulation[END_REF], our NoC model is self-contained in the sense that it does not rely on a third-party NoC simulator for result adjustments.

III. PROPOSED NOC MODEL

Most NoC structural and functional features (e.g. switching scheme, arbitration, virtual channel allocation, etc.) have an impact on the timing behavior. Taking into account all these details leads to accurate simulation results at the price of simulation speed [START_REF] Agarwal | Garnet: A detailed onchip network model inside a full-system simulator[END_REF]. To abstract some implementation details for the sake of simulation speed, we propose a simple router model represented by a set of FIFO buffers associated with the router's output channels as sketched in Fig. 1-(a). At simulation time, these buffers help keep track of the packets traversing a given router and most importantly the ones competing for a router's output ports. For example, pkt i and pkt j in Fig. 1-(a) share the same output buffer OB E (E for east) of router r x .

An alternative is to consider contention at input buffers instead, which is thus equivalent to say that pkt i and pkt j compete for the West input buffer IB W of the downstream router connected to r x . Only one type of buffers (input or output) needs to be modeled. This is explained by the fact that packets that enter a router through the same input port have undoubtedly arrived through the same output port of the previous router, where their interference was already taken into account. Therefore, we only consider output buffers in our NoC modeling approach.

Thus, we are able to model resource contention effects on packet latency while omitting intricate NoC details. We elaborate next packet tracing and contention estimation. Update NoC(packet) equivalent to lines 2, 3 and 4 traced at runtime. Each time a packet enters the NoC during simulation, we compute its path (the XY routing algorithm is used), Algorithm 1-line 2. Then, we update the output buffers that are on the packet's path with the packet's id (line 3). We store packet information, namely its path and id, in a trace (line 4). Packets that share the same output buffer are susceptible of causing contention delay. However, in addition to NoC resource-sharing there is another element that determines whether contention is bound to happen. This deciding element is packet arrival time to the output buffer. For example, if (i) a packet pkt i requires OB E of r x at time t1 and (ii) another packet pkt j occupied that same buffer at time t0 (t0 < t1) but, (iii) if by time t1, pkt j has already left r x then there is no contention caused by those packets (Fig 1-(b)). This timing behavior is tricky to model without simulating the NoC at a cycle-accurate level, which is not the purpose of our NoC model. To alleviate the complexity of these time constraints and still provide an acceptable approximation of the contention delay, we propose to evaluate resource contention for a predefined period of time that we coined contention interval (CI). We also assume a uniform inter-arrival distribution of packets inside the chosen interval.

We use a quantized tracing approach, which means that information about packets are saved only over the span of a CI. In this light, a trace is a snapshot of the communication system state for a given CI. The begining of the first interval is marked with the arrival time of the first packet to the NoC (Algorithm 1line 5). The begining of a new interval is marked by the arrival time of a packet whose timestamp surpasses the upper bound of the previous interval (lines 11 and 15). Packet information collected in a trace over CI i are used in CI i+1 to compute packet latency (line 12, packet latency computation is explained in Algorithm 2 hereinafter), then discarded (lines 13 and 14) to make room for new incoming information. Accordingly, this simulation model is able to accomodate the variations in NoC behavior in response to a traffic pattern occuring during a CI. Packets are stored in the trace as they enter the Algorithm 2 Compute Latency(trace) NoC. So, they are ordered over a CI based on their injection time, which is crucial when replaying the trace for latency computation (Algorithm 2-line 1). For each packet in the trace, its latency evaluation is realized by examining each router, more precisely each output buffer, encountered on its path (line 2). The position of a packet in an output buffer is an essential factor in contention delay estimation. The first packet in the FIFO does not suffer from contention delay (lines 3 and 4); for example the waiting time of pkt j in Fig. 1 is zero. If a packet occupies any other position, then a contention delay might occur. We reiterate that only in case the arrival time of a packet to a router overlaps with the latency of the previous packet during a CI, that the contention delay is nonnull (e.g. in Fig. 1-(c), the waiting time of pkt i in OB E of r x is w i > 0). Likewise, the position of a packet in a buffer is a deciding factor in congestion delay computation. If a packet's position in a buffer is greater than the predefined buffer size BS (e.g. P osition(pkt, buf f er) in Algorithm 2-line 13) then this packet causes additional delay due to buffer congestion. Both causes of contention, link contention and buffer congestion (described in Section II-A), are addressed by Algorithm 2 (line 9 for the queue waiting time and line 14 for the congestion delay, which will be elaborated with the help of Equations 2 and 3 respectively in Section III-B). Moreover, computing link contention delay of a packet at each crossed router without considering packet serialization phenomenon could lead to pessimistic latency estimates. Therefore, the NoC model takes also into consideration the pipelined behavior of a NoC, in that the interference between packets in their shared sub-paths is handled only once at their first convergence router (line 8).

These NoC phenomena, be it contention, congestion or serialization, require information not only about the currently treated router on a given path but also routers preceding or/and succeeding the current router. Knowledge about the state of packets preceding a given packet is also necessary. For this reason, we utilize functions like P revious Router(rt, path), which returns the router preceding router rt in path (e.g. Algorithm 2-line 7), or P revious P acket(pkt, pos, buf f er), which returns the packet preceding a given packet pkt by pos positions (default pos = 1) in buf f er (e.g. line 6).

B. Network Latency Estimation

The waiting time of a packet in a router's buffer is the sum of its Queuing Delay() (line 9 in Algorithm 2) and Congestion Delay() (line 14 in Algorithm 2). The former is computed according to Equation 2 and the latter according to Equation 3. To avoid any confusion, if an equation features more than one buffer, then the buffers are explicitly designated. By way of illustration, we express the waiting time of pkt i in buffer [r x → r y ], r x is the router to which the buffer belongs and r y is r x 's neighbor to which pkt i is headed, by wait pkti [r x → r y ] instead of simply wait pkti . The queuing

Equation 2 Queuing Delay of pkt i in buffer [r m → r n ] wait pkt i = wait pkt j + P lat pkt j -CI/pkts[rm → rn],
with pkt j = P revious P acket(pkt i , [rm → rn]).

delay of a given packet in a buffer, as presented by Equation 2, depends on the queuing delay and the physical latency of the previous packet in that same buffer, the duration of the CI, and the number of packets accumulated in that buffer (pkts[buf f er]) during a CI, assuming a uniformly distributed packet arrival time within a CI. The example in Fig. 2 delineates the queuing delay of pkt 3 across the routers from its source (router r 1 where pkt 3 is initially injected by processing element P E 1 ) to its destination (r 3 from which pkt 3 is ejected to P E 3 ). In buffer [r 1 → r 2 ], pkt 3 is preceded by pkt 1 , which is the head of the buffer. Applying the formula in Equation 2results in:

wait pkt3 [r 1 → r 2 ] = 0 + P lat pkt1 [r 1 → r 2 ] -CI 2 
, where wait pkt1 [r 1 → r 2 ] = 0 as pkt 1 is the first packet in the buffer. In router r 2 , the delivery of pkt 3 to its destination might be further delayed by the arrival of pkt 2 to r 2 . Three packets are now competing for output buffer [r 2 → r 3 ]. Thus,

wait pkt3 [r 2 → r 3 ] = wait pkt2 [r 2 → r 3 ]+P lat pkt2 [r 2 → r 3 ]- CI 3
, where wait pkt2 [r 2 → r 3 ] depends on the physical delay of pkt 1 in that same buffer. Finally, wait pkt3 [r 3 → P E 3 ] = 0 as pkt 3 is the only packet occupying the output buffer leading to P E 3 . The overall latency of pkt 3 from source to destination, in the absence of congestion delay, is thus the sum of its physical latency and queuing delay across the different routers on its path: due to a phenomenon called Head of Line (HoL) blocking. HoL blocking happens when packet pkt i (e.g. pkt 4 in Fig. 3) is blocked by packet pkt j (e.g. pkt 3 ) such that (i) pkt i and pkt j share the same output buffer of a given router (e.g.

Lat pkt3 = P lat pkt3 [r1 → r2] + wait pkt3 [r 1 → r 2 ] + P lat pkt3 [r 2 → r 3 ] + wait pkt3 [r 2 → r 3 ] + P lat pkt3 [r 3 → P E 3 ] + wait pkt3 [
[r 1 → r 2 ]), (ii) pkt j is positioned at the head of that buffer, (iii) both packets are heading to different output ports of the next router (e.g. pkt 3 is headed to [r 2 → r 5 ] and pkt 4 is headed to [r 2 → r 3 ]) and (iv) the output buffer to which pkt j is headed is congested (e.g. buffer [r 2 → r 5 ] is holding two packets pkt 1 and pkt 2 , which is its full capacity). Although pkt i and pkt j are not competing for the same output port, pkt i has to wait for pkt j because the output buffer to which it's headed is at its maximum capacity. The waiting time of pkt i due to HoL blocking (expressed by Equation 3) is actually the waiting time of pkt j to be granted access to its destination buffer (i.e. time for a spot to be freed in the buffer). Applying Equation 3 to the example in Fig. 3 Given that NoC performance is influenced by the number of its virtual channels, a high-level approximation of the impact of VCs on network latency is also supported by the NoC model. We chose not to include the VC parameter in the equations presented above for simplicity reasons. In Equations 2 and 3, we consider that each physical channel is represented by one FIFO buffer (i.e. 1 VC). In case of more than 1 VC, we associate as many FIFO buffers as specified VCs to each output port (i.e. a FIFO buffer per VC per output port). So Equations 2 and 3 can be applied the same way to these VC buffers. In this case, the number of packets is at a VC buffer level instead of the physical channel buffer.

IV. NOC EVALUATION

We evaluate our hybrid NoC performance model with respect to its network latency estimation results and its simulation speed. Our NoC model could be used in standalone mode with traffic generators or execution traces or integrated in FSS.

A. NoC Model in Standalone Mode

Our NoC model is evaluated in standalone mode under various synthetic traffic patterns. The results generated by our NoC model are compared to the ones provided by Garnet [START_REF] Agarwal | Garnet: A detailed onchip network model inside a full-system simulator[END_REF], a cycle accurate NoC simulator used as a reference. To enable fast evaluation of different NoC parameters and facilitate design configurability, the NoC model offers different tunable parameters such as mesh size, router latency, link latency, buffer size, number of virtual channels and CI.

Fig. 4 showcases average network latency under uniform random traffic for different packet injection rates, while varying the mesh size. The number of VCs is fixed to 2 VCs per physical channel and the buffer size is fixed to one packet. Graphs (a)-(c) in Fig. 4 depict two curves, one for the proposed NoC model and the other one for Garnet. The similarity between the two curves in response to the different injection rates can be noticed in the different graphs. A maximum error of 12% in average network latency is observed. In addition to mesh size, we also evaluated the impact of the number of virtual channels on average latency. Fig. 5 shows the results obtained with three different VC configurations applied to a 4×4 mesh under uniform random traffic. Again, the curves obtained using the proposed NoC model are very close to the ones obtained using Garnet, reaching a maximum estimation error of 14%. In 

B. NoC Model in Full System Simulation

As a proof of concept, the NoC performance model was integrated in a FSS called VPSim [START_REF] Charif | Fast virtual prototyping for embedded computing systems design and exploration[END_REF]. VPSim is a SystemC/TLMbased virtual prototyping platform for fast software/hardware co-validation and design space exploration of complex architectures, fast being the operative word. So, integrating a NoC model in VPSim should not strip this simulator from one of its main features, which is simulation speed.

To make the integration of our NoC performance model in VPSim possible, a functional NoC model is needed alongside the performance model. The former ensures communication between the different components by forwarding transactions from initiators to targets by means of TLM sockets and transport functions. When a packet enters the NoC, key information such as the source-destination pair and the packets' timestamps is determined and fed to the timing model. Once network latency computation is completed, the packet is delivered to its destination while carrying timing information updated with the NoC latency. To evaluate the impact of integrating the NoC These experiments give an overview of the possible simulation overhead due to the integration of our NoC model in VPSim. Since the real system is not available, analyzing the overall accuracy of VPSim augmented with the NoC performance model is not possible yet. Instead, we validated the accuracy of the NoC separately as reported in the previous section.

V. CONCLUSION

We proposed a NoC modeling approach that defines an appropriate abstraction level providing reasonable performance estimates with little impact on simulation speed. A router was modeled as a set of buffers, where packets are stored during simulation for a predefined time interval. This router model is coupled with an analytical formula that computes packet network latency based on the state of the router at runtime. Our hybrid NoC model is able to capture resource contention and buffer congestion. The experiments showed that our NoC model ensures representative results (less than 17% error in network latency estimation) with good simulation speed (14× speedup compared to Garnet) and is fit for FSS (≤2.5× slowdown in overall simulation speed when paired with VPSim).
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 1 Fig. 1: Router model and contention A. Overview of the Modeling Approach Contention modeling implies that the latency computation of a given packet depends on the latency of other packets having a route interfering with the one of the packet in question. Our hybrid NoC model captures this dynamic packet behavior. Algorithm 1 illustrates how packet information is Algorithm 1 Trace Packets(packet, contention interval)
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 33 Fig. 3: Head of Line blocking example Equation 3 HOL Blocking Delay of pkt i in buffer [r m → r n ] hol delay pkt i = wait pkt k [rm → rp],with pkt k = P revious P acket(pkt j , BS -1, [rm → rp]) and pkt j = P revious P acket(pkt i , [r l → rm]).
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 456 Fig. 4: Average network latency of different mesh sizes under uniform random traffic

  results in: HoL blocking delay of pkt 4 in buffer [r 2 → r 3 ] is the time taken by pkt 2 = P revious P acket(pkt 3 , BS -1, [r 2 → r 5 ]) to reach the head of buffer [r 2 → r 5 ], which corresponds to when a slot is made available for pkt 3 = P revious P acket(pkt 4 , [r 1 → r 2 ]) in buffer [r 2 → r 5 ].

TABLE I :

 I Error(%) in average network latency w.r.t. Garnet addition to the uniform random traffic pattern, other patterns were injected into the NoC to ensure that irrespective of the traffic the NoC behavior does not deviate from our reference, the Garnet model. The error in average network latency of a sample from the traffic patterns that we tested is reported in TableI. These results were generated with a 4×4 mesh and 2 VCs per physical channel. We observed that the proposed NoC model does not stray away from the reference model under different kinds of traffic. Moreover, our NoC model obtains these latency estimates faster than Garnet and we provide a simulation speed comparison for different mesh sizes in the bar graph in Fig.6. A speedup of approximately 14× is reached with an 8×8 mesh under an injection rate of 0.8 flits/node/cycle.

TABLE II :

 II Slowdown in MIPS of VPSim with the NoC model model in VPSim on the overall simulation speed, we used workloads from PARSEC and SPLASH-2 benchmark suites running on a Linux kernel. Table II illustrates the slowdown (measured in MIPS) observed for a sample of the executed workloads. This slowdown is obtained in comparison to VPSim with a simple hop-count NoC model. In these experiments, we simulated a 32-core architecture composed of two private
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