
HAL Id: hal-03207778
https://hal.science/hal-03207778

Submitted on 26 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NoC Performance Model for Efficient Network Latency
Estimation

Oumaima Matoussi

To cite this version:
Oumaima Matoussi. NoC Performance Model for Efficient Network Latency Estimation. DATE, Feb
2021, Grenoble (virtual), France. �hal-03207778�

https://hal.science/hal-03207778
https://hal.archives-ouvertes.fr


NoC Performance Model for Efficient Network
Latency Estimation

Oumaima Matoussi <Oumaima.MATOUSSI@cea.fr>
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Abstract—We propose a flexible light-weight and parametric
NoC model designed for fast performance estimation at early
design stages. Our NoC model combines the benefits of both
analytical and simulation-based NoC models. Our NoC features
an abstract router model whose buffers are updated at runtime
with information about the actual traffic. This traffic information
is fed to a closed-form expression that computes packet latency
and that accounts for network contention at a router basis. We
evaluated our hybrid NoC model in terms of estimation accuracy
and simulation speed. We compared the simulation results to the
ones obtained with a cycle accurate NoC simulator called Garnet.
Our NoC model achieves less than 17% error in average network
latency estimation and attains up to 14× speedup for a 8×8 mesh.

Index Terms—NoC modeling and simulation, network con-
tention, network latency estimation, on-chip interconnect

I. INTRODUCTION

As modern MPSoCs continue to scale toward hundreds of
processing cores on a single chip (e.g. TILE-Gx, Kalray MPPA-
256 [1]), the on-chip communication mechanism has, arguably,
become one of the main contributors to the overall system
performance and cost. The significant role played by the NoC
in a complex MPSoC combined with the tight requirements
for performance, cost and time to market, fueled the need for
fast, complexity-effective and reliable NoC models. However,
providing helpful insights on NoC performance characteristics,
bottlenecks and impact on the full system performance for each
feasible NoC design candidate should not be time consuming
nor should it delay the design process. These NoC models are
expected to provide fast and accurate evaluations of design
candidates at early design stages with rapid sweeps of the
network design space.

To address this speed-accuracy trade-off in NoC modeling,
various NoC models at different abstraction levels were pro-
posed. Analytical approaches, for instance, use closed-form
formulae that depend on the system parameters to provide
a safe bound on network performance. This bound is us-
ally pessimistic (worst case latency) and do not account for
unregulated traffic generation. Complementary to analytical
methods, simulation-based approaches attempt to model all key
elements of a NoC (i.e. detailed router microarchitecture). This
level of detail enables comprehensive performance evaluation,
which leads to accurate NoC performance estimates. However,
for large scale systems with hundreds of cores, full system
simulation (FSS) with such accurate NoC models becomes
unaffordable, time-wise, especially at early design stages.

In order to provide fast, scalable and reliable performance
evaluations, we propose a NoC model that exploits the advan-

tages of both analytical and simulation-based NoC modeling
approaches. At the very heart of the proposed hybrid NoC
model is an abstract router represented by a set of FIFO buffers.
This high-level router model that overlooks the architectural
details for the benefit of simulation speed, establishes a closed-
form expression that estimates the packet network latency.
Unlike standard analytical approaches, the devised latency
formula is governed by the state of each router (i.e. buffer
load), which is in turn dictated by the dynamic (i.e. non-
deterministic) behavior of any given workload during simu-
lation. The advantage of our hybrid NoC model is twofold; on
the one hand, it inherits the dynamic aspects of simulation-
based models and is able to reflect the dynamic interactions
between packets and their competition for network resources at
runtime. Therefore, a realistic overview of the system behavior
is somewhat maintained. On the other hand, the NoC model
abstracts away router details and revolves around a simple
formula for network latency, which proves to be beneficial to
the simulation speed. This addresses the scalability challenge
in large-scale NoC simulations. The simplicity and tractability
of the model facilitates its integration in a FSS environment
without compromising the overall simulation speed.

To evaluate the efficiency of our hybrid NoC model, we
compared it, in standalone mode, to a cycle-accurate NoC
simulator called Garnet [2]. This comparison was performed in
terms of simulation speed and average network latency using
different synthetic traffic patterns. We also integrated our NoC
model in a fast FSS environment called VPSim [3] supporting
a 32-core architecture configuration with a 6×6 mesh and a 3-
level cache hierarchy and we evaluated its impact on the overall
simulation speed.

II. NOC BACKGROUND

In this section, we outline basic NoC concepts and review
related work on NoC modeling.

A. NoC Basics

A typical NoC is characterized mainly by its topology (e.g.
mesh, torus, etc.), routing algorithm (e.g. XY, west-first, etc.)
and flow control (e.g. packet-level, Virtual Channel VC-level,
etc.) [4]. The topology is defined by the connection patterns
of router nodes through channels. A packet can thus cross the
network from its source node to its destination node by making
several hops across routers and channels. Routing determines
the actual path that a packet should take through the network
to reach its destination. Finally, flow control is in charge of



allocating internal resources of the router (e.g. buffers) and NoC
channels to packets as they advance through their route.

NoC performance is usually measured by a metric called
packet latency, which is the time required by a packet to reach
its destination. The latency of packet pkti from its source to

Equation 1 Packet Network Latency
Latpkti = Platpkti × nbrhops + (L− 1)× FT︸ ︷︷ ︸

(a)

+Waitpkti︸ ︷︷ ︸
(b)

its destination is expressed as shown in Equation 1, where:
• Platpkti is the physical delay, caused by the network phys-

ical aspects such as switch and link delays.
• nbrhops is the number of routers traversed by the packet and

determined by the routing algorithm.
• FT is the transmission time of one flit.
• L is the packet size in flits.
• Waitpkti is the contention delay.
This latency formula combines a hop-count delay (term 1-
(a)) and a contention delay (term 1-(b)). The hop-count delay
depends on the intra-router delay (i.e. routing delay + prop-
agation delay through the switch), the inter-router delay (i.e.
link propagation delay) and the number of hops taken [4]. The
contention delay is defined in terms of:
• link contention, which occurs when packets’ paths share one

or more links (i.e. packets compete for the same channels),
• buffer congestion happens when limited-size router buffers

reach their full capacity.
In this work, we only consider network latency defined by
Equation 1, which means that we compute both physical and
contention delays but we abstract away the waiting time in
injection queues (a.k.a. source queuing time).

B. Related Work

Network modeling is addressed with a wide range of so-
lutions, from simulation approaches to analytical methods.
There is a variety of network simulators such as Garnet [2],
Noxim [5], BookSim [6], that work at flit-level granularity and
provide cycle-accurate packet latency results. These simulators,
whether written in SystemC (Noxim) or C++ (BookSim, Gar-
net), share common grounds in implementing detailed router
micro-architecture. However, because of their complexity and
highly detailed models, they are not an adequate fit for a large-
scale FSS environment running real applications and operating
systems. For instance, Gem5 [7] supports Garnet [2] as an
accurate NoC simulator, which favors precision to simulation
speed (less than 1 MIPS [8]).

Analytical methods (e.g. [9], [10], [11]) aim at finding an up-
per bound on NoC performance using closed form expressions
that depend on the system parameters [12]. Both real time-
based analysis used in [10] and network calculus-based analysis
employed in [11] compute an upper bound on the traversal time
of a packet. Assumptions like a maximum packet injection
rate to saturate the network or/and buffers filled to their
capacity are usually made to capture the worst-case scenario.
For systems that do not require a deadline constraint, queuing

theory is mostly used (e.g. [9], [13]). Analytical methods are
unable to account for non-deterministic traffic generation by
the components and thus do not take into consideration delays
due to dynamic memory behavior for example. They usually
handle well a regulated flow assumption (i.e. a pre-defined
delay between two nodes). However, their precision could drop
dramatically in the presence of unregulated flows.

An interesting research direction that aims at inspecting a
new way of NoC performance estimation relies on combining
the benefits of NoC analytical models and NoC simulators
(e.g. [14], [15]). In [14], a packet latency estimator called
FIST is proposed. The main idea behind FIST is to model
each router as a set of load-delay curves. There are two
variants of FIST: a static one that relies on offline training
to statically obtain these curves, and a dynamic one that adds
online training to enhance packet latency estimation. Both static
generation of load-delay curves and dynamic training rely on
the existence of a cycle accurate NoC simulator. Moreover,
the static curves are obtained for specific traffic patterns (e.g.
random uniform traffic, neighbor traffic). Also, it is not possible
to capture dynamic phenomena like resource contention and
buffer congestion by FIST.

Simplified NoC models could also be extracted from existing
networks, as presented in [15]. Similar to [14], an accurate
NoC simulator is used as a reference to guide an abstract
NoC model. A time-annotated trace and network parameters
are generated using this reference network and are compared
to a trace of network events generated by a FSS environment
with zero latency assumption. Successive iterations might be
needed following this comparison to refine the abstract NoC
model until it converges to the requirements of the design.
However, this simple NoC model does not consider the load at
a link-basis. As a result, it does not capture network contention.

Following the steps of [14] and [15], we aim at combining the
advantages of simulation and analytical approaches in a hybrid
NoC model, in an effort to reach acceptable accuracy with
little impact on simulation speed and complexity. Our hybrid
NoC model is able to capture the complex interactions between
packets and the NoC’s architectural components at runtime by
abstractly modeling contention at a link-level as well as buffer
congestion. Moreover, unlike [14] and [15], our NoC model is
self-contained in the sense that it does not rely on a third-party
NoC simulator for result adjustments.

III. PROPOSED NOC MODEL

Most NoC structural and functional features (e.g. switching
scheme, arbitration, virtual channel allocation, etc.) have an
impact on the timing behavior. Taking into account all these
details leads to accurate simulation results at the price of
simulation speed [2]. To abstract some implementation details
for the sake of simulation speed, we propose a simple router
model represented by a set of FIFO buffers associated with the
router’s output channels as sketched in Fig. 1-(a). At simulation
time, these buffers help keep track of the packets traversing a
given router and most importantly the ones competing for a
router’s output ports. For example, pkti and pktj in Fig. 1-(a)
share the same output buffer OBE (E for east) of router rx.



An alternative is to consider contention at input buffers instead,
which is thus equivalent to say that pkti and pktj compete for
the West input buffer IBW of the downstream router connected
to rx. Only one type of buffers (input or output) needs to be
modeled. This is explained by the fact that packets that enter
a router through the same input port have undoubtedly arrived
through the same output port of the previous router, where their
interference was already taken into account. Therefore, we only
consider output buffers in our NoC modeling approach.

Thus, we are able to model resource contention effects
on packet latency while omitting intricate NoC details. We
elaborate next packet tracing and contention estimation.

rx p pkti pktjpkt3 pkt3

p
k
t3

p
k
t3

p
k
t3

p
k
t3

p
k
t3

p
k
t3

N

S

EW

(a)

time

pktj

t0

pkti

t1

latpkt j latpkt i

(b)

time

pktj

t0

pkti

t1

latpkt j

wi

latpkt i

(c)

Fig. 1: Router model and contention

A. Overview of the Modeling Approach

Contention modeling implies that the latency computation
of a given packet depends on the latency of other packets
having a route interfering with the one of the packet in
question. Our hybrid NoC model captures this dynamic packet
behavior. Algorithm 1 illustrates how packet information is

Algorithm 1 Trace Packets(packet, contention interval)
1: if (packet is first to arrive to the NoC) then
2: path=Compute Route(packet.src,packet.dest)
3: Update Routers Buffers(packet.id,buffers)
4: Log Packet In Trace(packet.id,path,trace)

. Set contention interval (CI) bounds
5: interval start=packet.timestamp
6: interval end=interval start+contention interval
7: else . packet is not the first in the NoC
8: if ((packet.timestamp ≥ interval start) & (packet.timestamp ≤ inter-

val end)) then
9: Update NoC(packet) . equivalent to lines 2, 3 and 4

10: else
11: if (packet.timestamp>interval end) then . a new CI begins

. compute latency of every packet in previous CI
12: total latency+=Compute Latency(trace)
13: Clear Trace()
14: Clear Buffers()

. set new bounds for CI
15: interval start=packet.timestamp
16: interval end=interval start+contention interval
17: Update NoC(packet) . equivalent to lines 2, 3 and 4

traced at runtime. Each time a packet enters the NoC during
simulation, we compute its path (the XY routing algorithm is
used), Algorithm 1-line 2. Then, we update the output buffers
that are on the packet’s path with the packet’s id (line 3).
We store packet information, namely its path and id, in a
trace (line 4). Packets that share the same output buffer are

susceptible of causing contention delay. However, in addition to
NoC resource-sharing there is another element that determines
whether contention is bound to happen. This deciding element
is packet arrival time to the output buffer. For example, if (i)
a packet pkti requires OBE of rx at time t1 and (ii) another
packet pktj occupied that same buffer at time t0 (t0 < t1) but,
(iii) if by time t1, pktj has already left rx then there is no
contention caused by those packets (Fig 1-(b)).

This timing behavior is tricky to model without simulating
the NoC at a cycle-accurate level, which is not the purpose
of our NoC model. To alleviate the complexity of these time
constraints and still provide an acceptable approximation of the
contention delay, we propose to evaluate resource contention
for a predefined period of time that we coined contention in-
terval (CI). We also assume a uniform inter-arrival distribution
of packets inside the chosen interval.

We use a quantized tracing approach, which means that
information about packets are saved only over the span of a CI.
In this light, a trace is a snapshot of the communication system
state for a given CI. The begining of the first interval is marked
with the arrival time of the first packet to the NoC (Algorithm 1-
line 5). The begining of a new interval is marked by the arrival
time of a packet whose timestamp surpasses the upper bound
of the previous interval (lines 11 and 15). Packet information
collected in a trace over CIi are used in CIi+1 to compute
packet latency (line 12, packet latency computation is explained
in Algorithm 2 hereinafter), then discarded (lines 13 and 14)
to make room for new incoming information. Accordingly,
this simulation model is able to accomodate the variations
in NoC behavior in response to a traffic pattern occuring
during a CI. Packets are stored in the trace as they enter the

Algorithm 2 Compute Latency(trace)
1: for all packets pkt in trace do
2: for all routers rt in (trace[pkt].path) do
3: if (Position(pkt, rt.buffer)==first) then . packet is first in buffer
4: waitpkt=0 . packet waiting time in buffer is null
5: else
6: prev pkt=Previous Packet(pkt,rt.buffer) . find previous packet
7: prev rt=Previous Router(rt,trace[pkt].path) . find previous router
8: if (prev pkt6=Previous Packet(pkt,prev rt.buffer) then

. Account for contention
9: waitpkt+=Queuing Delay(waitprev pkt,Plat,CI,pktsrt.buffer ,VC)

. next router on previous packet’s path
10: next rtprev=Next Router(rt,trace[prev pkt].path)

. next router on current packet’s path
11: next rtcurr=Next Router(rt,trace[pkt].path)
12: if (next rtcurr 6=next rtprev) then . possible HOL blocking
13: if (Position(prev pkt, next rtprev .buffer)≥BS*VC) then

. confirmed HOL blocking
14: waitpkt+=Congestion Delay(prev pkt,next rtprev ,BS,VC)

NoC. So, they are ordered over a CI based on their injection
time, which is crucial when replaying the trace for latency
computation (Algorithm 2-line 1). For each packet in the trace,
its latency evaluation is realized by examining each router,
more precisely each output buffer, encountered on its path
(line 2). The position of a packet in an output buffer is an
essential factor in contention delay estimation. The first packet
in the FIFO does not suffer from contention delay (lines 3



and 4); for example the waiting time of pktj in Fig. 1 is
zero. If a packet occupies any other position, then a contention
delay might occur. We reiterate that only in case the arrival
time of a packet to a router overlaps with the latency of the
previous packet during a CI, that the contention delay is non-
null (e.g. in Fig. 1-(c), the waiting time of pkti in OBE of rx
is wi > 0). Likewise, the position of a packet in a buffer is a
deciding factor in congestion delay computation. If a packet’s
position in a buffer is greater than the predefined buffer size
BS (e.g. Position(pkt, buffer) in Algorithm 2-line 13) then
this packet causes additional delay due to buffer congestion.

Both causes of contention, link contention and buffer conges-
tion (described in Section II-A), are addressed by Algorithm 2
(line 9 for the queue waiting time and line 14 for the congestion
delay, which will be elaborated with the help of Equations 2
and 3 respectively in Section III-B). Moreover, computing link
contention delay of a packet at each crossed router without
considering packet serialization phenomenon could lead to
pessimistic latency estimates. Therefore, the NoC model takes
also into consideration the pipelined behavior of a NoC, in that
the interference between packets in their shared sub-paths is
handled only once at their first convergence router (line 8).

These NoC phenomena, be it contention, congestion or
serialization, require information not only about the currently
treated router on a given path but also routers preceding or/and
succeeding the current router. Knowledge about the state of
packets preceding a given packet is also necessary. For this
reason, we utilize functions like Previous Router(rt, path),
which returns the router preceding router rt in path (e.g.
Algorithm 2-line 7), or Previous Packet(pkt, pos, buffer),
which returns the packet preceding a given packet pkt by pos
positions (default pos = 1) in buffer (e.g. line 6).

B. Network Latency Estimation

The waiting time of a packet in a router’s buffer is the
sum of its Queuing Delay() (line 9 in Algorithm 2) and
Congestion Delay() (line 14 in Algorithm 2). The former
is computed according to Equation 2 and the latter according
to Equation 3. To avoid any confusion, if an equation features
more than one buffer, then the buffers are explicitly designated.
By way of illustration, we express the waiting time of pkti
in buffer [rx → ry], rx is the router to which the buffer
belongs and ry is rx’s neighbor to which pkti is headed, by
waitpkti [rx → ry] instead of simply waitpkti . The queuing

Equation 2 Queuing Delay of pkti in buffer [rm → rn]

waitpkti = waitpktj + Platpktj − CI/pkts[rm → rn],
with pktj = Previous Packet(pkti, [rm → rn]).

delay of a given packet in a buffer, as presented by Equation 2,
depends on the queuing delay and the physical latency of
the previous packet in that same buffer, the duration of the
CI , and the number of packets accumulated in that buffer
(pkts[buffer]) during a CI , assuming a uniformly distributed
packet arrival time within a CI . The example in Fig. 2
delineates the queuing delay of pkt3 across the routers from its
source (router r1 where pkt3 is initially injected by processing

r1

pkt3 pkt1

pkt3 pkt3

PE1

pkt1

pkt3

r2

pkt3 pkt2 pkt1

pkt3 pkt3 pkt3

PE2

pkt2

r1

pkt3 pkt1

pkt3 pkt3

PE1

pkt1

pkt3

r2

pkt3 pkt2 pkt1

pkt3 pkt3 pkt3

PE2

pkt2

r3

PE3

pkt3

r1

time

r2

time

r3

time

start interval

end interval

pkt1

pkt3
Platpkt1

waitpkt3

Platpkt3

pkt1

pkt2

pkt3

Platpkt1

waitpkt2

Platpkt2
waitpkt3

Platpkt3

pkt3

Platpkt3

Fig. 2: Buffer waiting time

element PE1) to its destination (r3 from which pkt3 is ejected
to PE3). In buffer [r1 → r2], pkt3 is preceded by pkt1, which
is the head of the buffer. Applying the formula in Equation 2
results in: waitpkt3 [r1 → r2] = 0 + Platpkt1 [r1 → r2] − CI

2 ,
where waitpkt1 [r1 → r2] = 0 as pkt1 is the first packet in
the buffer. In router r2, the delivery of pkt3 to its destination
might be further delayed by the arrival of pkt2 to r2. Three
packets are now competing for output buffer [r2 → r3]. Thus,
waitpkt3 [r2 → r3] = waitpkt2 [r2 → r3]+Platpkt2 [r2 → r3]−
CI
3 , where waitpkt2 [r2 → r3] depends on the physical delay of
pkt1 in that same buffer. Finally, waitpkt3 [r3 → PE3] = 0 as
pkt3 is the only packet occupying the output buffer leading to
PE3. The overall latency of pkt3 from source to destination,
in the absence of congestion delay, is thus the sum of its
physical latency and queuing delay across the different routers
on its path: Latpkt3 = Platpkt3 [r1 → r2] + waitpkt3 [r1 →
r2] +Platpkt3 [r2 → r3] +waitpkt3 [r2 → r3] +Platpkt3 [r3 →
PE3] +waitpkt3 [r3 → PE3]. Congestion delay might occur

r1

pkt4 pkt3

pkt3 pkt3

PE1

pkt3

pkt4

r2

p pkt5 pkt4

pkt3 pkt3 pkt3

PE2

pkt1

pkt2

r3

PE3

pkt4

r5

p
k
t3

p
k
t2

p
k
t1

p
k
t5

p
k
t2

p
k
t2

PE5

pkt5

... ...

p pkt5 pkt4 buffer size=2 f its

Fig. 3: Head of Line blocking example

Equation 3 HOL Blocking Delay of pkti in buffer [rm → rn]

hol delaypkti = waitpktk [rm → rp],
with pktk = Previous Packet(pktj , BS − 1, [rm → rp])
and pktj = Previous Packet(pkti, [rl → rm]).

due to a phenomenon called Head of Line (HoL) blocking.
HoL blocking happens when packet pkti (e.g. pkt4 in Fig. 3)



is blocked by packet pktj (e.g. pkt3) such that (i) pkti and
pktj share the same output buffer of a given router (e.g.
[r1 → r2]), (ii) pktj is positioned at the head of that buffer,
(iii) both packets are heading to different output ports of the
next router (e.g. pkt3 is headed to [r2 → r5] and pkt4 is
headed to [r2 → r3]) and (iv) the output buffer to which pktj
is headed is congested (e.g. buffer [r2 → r5] is holding two
packets pkt1 and pkt2, which is its full capacity). Although
pkti and pktj are not competing for the same output port, pkti
has to wait for pktj because the output buffer to which it’s
headed is at its maximum capacity. The waiting time of pkti
due to HoL blocking (expressed by Equation 3) is actually the
waiting time of pktj to be granted access to its destination
buffer (i.e. time for a spot to be freed in the buffer). Applying
Equation 3 to the example in Fig. 3 results in: HoL blocking
delay of pkt4 in buffer [r2 → r3] is the time taken by pkt2 =
Previous Packet(pkt3, BS− 1, [r2 → r5]) to reach the head
of buffer [r2 → r5], which corresponds to when a slot is made
available for pkt3 = Previous Packet(pkt4, [r1 → r2]) in
buffer [r2 → r5].

Given that NoC performance is influenced by the number of
its virtual channels, a high-level approximation of the impact of
VCs on network latency is also supported by the NoC model.
We chose not to include the VC parameter in the equations
presented above for simplicity reasons. In Equations 2 and 3,
we consider that each physical channel is represented by one
FIFO buffer (i.e. 1 VC). In case of more than 1 VC, we
associate as many FIFO buffers as specified VCs to each output
port (i.e. a FIFO buffer per VC per output port). So Equations 2
and 3 can be applied the same way to these VC buffers. In this
case, the number of packets is computed at a VC buffer level
instead of the physical channel buffer.

IV. NOC EVALUATION

We evaluate our hybrid NoC performance model with respect
to its network latency estimation results and its simulation
speed. Our NoC model could be used in standalone mode with
traffic generators or execution traces or integrated in FSS.

A. NoC Model in Standalone Mode

Our NoC model is evaluated in standalone mode under
various synthetic traffic patterns. The results generated by our
NoC model are compared to the ones provided by Garnet [2],
a cycle accurate NoC simulator used as a reference. To enable
fast evaluation of different NoC parameters and facilitate design
configurability, the NoC model offers different tunable param-
eters such as mesh size, router latency, link latency, buffer size,
number of virtual channels and CI.

Fig. 4 showcases average network latency under uniform
random traffic for different packet injection rates, while varying
the mesh size. The number of VCs is fixed to 2 VCs per
physical channel and the buffer size is fixed to one packet.
Graphs (a)-(c) in Fig. 4 depict two curves, one for the proposed
NoC model and the other one for Garnet. The similarity
between the two curves in response to the different injection
rates can be noticed in the different graphs. A maximum error
of 12% in average network latency is observed. In addition to

mesh size, we also evaluated the impact of the number of virtual
channels on average latency. Fig. 5 shows the results obtained
with three different VC configurations applied to a 4×4 mesh
under uniform random traffic. Again, the curves obtained using
the proposed NoC model are very close to the ones obtained
using Garnet, reaching a maximum estimation error of 14%. In

traffic pattern
injection rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

uniform-random 2.6 0.5 2.56 2.66 2.5 4.75 5.6 0.8
bit-complement 1.61 4.77 10 14.82 7.1 2.92 - -
transpose 1.25 4.19 5.63 17 0.58 - - -

TABLE I: Error(%) in average network latency w.r.t. Garnet
addition to the uniform random traffic pattern, other patterns
were injected into the NoC to ensure that irrespective of the
traffic the NoC behavior does not deviate from our reference,
the Garnet model. The error in average network latency of a
sample from the traffic patterns that we tested is reported in
Table I. These results were generated with a 4×4 mesh and 2
VCs per physical channel. We observed that the proposed NoC
model does not stray away from the reference model under
different kinds of traffic. Moreover, our NoC model obtains
these latency estimates faster than Garnet and we provide a
simulation speed comparison for different mesh sizes in the bar
graph in Fig. 6. A speedup of approximately 14× is reached
with an 8×8 mesh under an injection rate of 0.8 flits/node/cycle.

B. NoC Model in Full System Simulation

As a proof of concept, the NoC performance model was inte-
grated in a FSS called VPSim [3]. VPSim is a SystemC/TLM-
based virtual prototyping platform for fast software/hardware
co-validation and design space exploration of complex archi-
tectures, fast being the operative word. So, integrating a NoC
model in VPSim should not strip this simulator from one of its
main features, which is simulation speed.

To make the integration of our NoC performance model in
VPSim possible, a functional NoC model is needed alongside
the performance model. The former ensures communication
between the different components by forwarding transactions
from initiators to targets by means of TLM sockets and trans-
port functions. When a packet enters the NoC, key information
such as the source-destination pair and the packets’ timestamps
is determined and fed to the timing model. Once network
latency computation is completed, the packet is delivered to its
destination while carrying timing information updated with the
NoC latency. To evaluate the impact of integrating the NoC

swaptions radiosity barnes fmm blackscholes water-spatial
slowdown 1.63 2.5 1.54 2.31 2 1.5

TABLE II: Slowdown in MIPS of VPSim with the NoC model
model in VPSim on the overall simulation speed, we used
workloads from PARSEC and SPLASH-2 benchmark suites
running on a Linux kernel. Table II illustrates the slowdown
(measured in MIPS) observed for a sample of the executed
workloads. This slowdown is obtained in comparison to VPSim
with a simple hop-count NoC model. In these experiments,
we simulated a 32-core architecture composed of two private



(a) 2*2 mesh (b) 4*4 mesh (c) 8*8 mesh

Fig. 4: Average network latency of different mesh sizes under uniform random traffic

(a) 1 VC (b) 3 VCs (c) 4 VCs

Fig. 5: Impact of VC variation on average network latency of a 4*4 mesh under uniform random traffic

Fig. 6: Speedup of proposed NoC model w.r.t. Garnet

L1/L2 caches per core, a shared 32-bank L3, a physically
distributed off-chip memory of 4 DDRs and a 6×6 NoC.
These experiments give an overview of the possible simulation
overhead due to the integration of our NoC model in VPSim.
Since the real system is not available, analyzing the overall
accuracy of VPSim augmented with the NoC performance
model is not possible yet. Instead, we validated the accuracy
of the NoC separately as reported in the previous section.

V. CONCLUSION

We proposed a NoC modeling approach that defines an
appropriate abstraction level providing reasonable performance
estimates with little impact on simulation speed. A router was
modeled as a set of buffers, where packets are stored during
simulation for a predefined time interval. This router model
is coupled with an analytical formula that computes packet
network latency based on the state of the router at runtime. Our
hybrid NoC model is able to capture resource contention and
buffer congestion. The experiments showed that our NoC model
ensures representative results (less than 17% error in network
latency estimation) with good simulation speed (14× speedup

compared to Garnet) and is fit for FSS (≤2.5× slowdown in
overall simulation speed when paired with VPSim).

ACKNOWLEDGMENT

This work is partially funded by H2020 European Processor
Initiative (grant agreement No 826647).

REFERENCES

[1] B. D. de Dinechin and A. Graillat, “Network-on-chip service guarantees
on the kalray mppa-256 bostan processor,” in AISTECS, NY, USA, 2017.

[2] N. Agarwal, T. Krishna, L.-S. Peh, and N. Jha, “Garnet: A detailed on-
chip network model inside a full-system simulator,” 04 2009, pp. 33–42.

[3] A. Charif, G. Busnot, R. Mameesh, T. Sassolas, and N. Ventroux,
“Fast virtual prototyping for embedded computing systems design and
exploration,” in RAPIDO ’19, 2019.

[4] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks, CA, USA, 2003.

[5] V. Catania, A. Mineo, S. Monteleone, and et al., “Noxim: An open,
extensible and cycle-accurate network on chip simulator,” in ASAP, 2015.

[6] Nan Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour, B. Towles,
D. E. Shaw, J. Kim, and W. J. Dally, “A detailed and flexible cycle-
accurate network-on-chip simulator,” in ISPASS, 2013.

[7] N. Binkert, B. Beckmann, G. Black, and et al., “The gem5 simulator,”
SIGARCH Comput. Archit. News, Aug. 2011.

[8] S.-h. Kang, J. Kang, and S. Ha, “Fast parallel simulation of a manycore
architecture with a flit-level on-chip network model,” in SAMOS, 2018.

[9] U. Y. Ogras, P. Bogdan, and R. Marculescu, “An analytical approach for
network-on-chip performance analysis,” CADICS, 2010.

[10] L. Abdallah, M. Jan, J. Ermont, and C. Fraboul, “Wormhole networks
properties and their use for optimizing worst case delay analysis of many-
cores,” in SIES, 2015.

[11] F. Giroudot and A. Mifdaoui, “Tightness and computation assessment of
worst-case delay bounds in wormhole networks-on-chip,” in Real-Time
Networks and Systems, 2019.

[12] Z. Qian, P. Bogdan, C.-Y. Tsui, and R. Marculescu, “Performance
evaluation of noc-based multicore systems: From traffic analysis to noc
latency modeling,” ACM Trans. Des. Autom. Electron. Syst., vol. 21, 2016.

[13] N. Nikitin and J. Cortadella, “A performance analytical model for
network-on-chip with constant service time routers,” in ICCAD, 2009.

[14] M. K. Papamichael, J. C. Hoe, and O. Mutlu, “Fist: A fast, lightweight,
fpga-friendly packet latency estimator for noc modeling in full-system
simulations,” in the Fifth ACM/IEEE International Symposium, 2011.

[15] D. Lugones, D. Franco, D. Rexachs, J. C. Moure, E. Luque, E. Argollo,
A. Falcon, D. Ortega, and P. Faraboschi, “High-speed network modeling
for full system simulation,” in IISWC, 2009.


