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WEIGHTED L2 VERSION OF MERGELYAN AND

CARLEMAN APPROXIMATION

SÉVERINE BIARD, JOHN ERIK FORNÆSS, AND JUJIE WU

Abstract. We study the density of polynomials in H2(E,ϕ), the space
of square integrable functions with respect to e−ϕdm and holomorphic
on the interior of E in C, where ϕ is a subharmonic function and dm is
a measure on E. We give a result where E is the union of a Lipschitz
graph and a Carathéodory domain, which we state as a weighted L2-
version of the Mergelyan theorem. We also prove a weighted L2-version
of the Carleman theorem.
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1. Introduction

Let E ⊂ C be a measurable set, m a measure on E and ϕ a measurable
function, locally bounded above on E. Denote by L2(E,ϕ) the space of
measurable functions f in E which are square integrable with respect to the
measure e−ϕdm i.e.,

L2(E,ϕ) :=

{
f | ‖f‖2L2(E,ϕ) =

∫

E
|f |2e−ϕdm <∞

}
.

Set
H2(E,ϕ) = L2(E,ϕ) ∩ O(E̊)

1
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where O(E̊) stands for the space of holomorphic functions on the interior of
E.

In this paper, we generalize the classical holomorphic approximation the-
orems to weighted L2-spaces. The theory of holomorphic approximation
started in 1885 with two now classical theorems: the Weierstrass theorem
and the Runge theorem. The first one states that a continuous function on
a bounded interval of R can be approximated arbitrarily well by polyno-
mials for the uniform convergence on the interval. We prove the following
weighted L2-version of the Weierstrass theorem:

Theorem 1.1. Let γ be a Lipschitz graph over a bounded interval and ϕ a

subharmonic function in a neighborhood of γ in C. Then polynomials are

dense in L2(γ, ϕ).

Recall that a Carathéodory domain Ω is a simply-connected bounded
planar domain whose boundary ∂Ω is also the boundary of an unbounded
domain. Combined with Theorem 1.3 from [2], it leads us to the following
weighted L2-version of the Mergelyan theorem:

Theorem 1.2. Let Ω ⊂ C be a Carathéodory domain and γ ⊂ C a Lipschitz

graph with one endpoint p in Ω, the rest of γ be in the unbounded component

of the complement of Ω. Assume that the boundary of Ω is C2 near p. Let

ϕ be a subharmonic function in a neighborhood of Ω ∪ γ. Then polynomials

are dense in H2(Ω ∪ γ, ϕ).

Here,

H2(Ω ∪ γ, ϕ) := {f is measurable on Ω ∪ γ with f |Ω ∈ O(Ω)

and

∫

Ω
|f(z)|2e−ϕ(z)dλz +

∫

γ
|f |2e−ϕds <∞

}
,

where dλz is the Lebesgue measure on Ω and ds is the arc length element.

We can even generalize to

Theorem 1.3. We use the previous notations and assumptions. If Kℓ,

ℓ = 1, · · · , N is either a Lipschitz graph or a bounded Carathéodory domain

in C as in Theorem 1.2 such that C \
(⋃N

ℓ=1Kℓ

)
is connected, Ki and Kj

have at most one common point {pij} and Kj is outside of the relatively

compact connected component of Ki
c
for each i 6= j. Let ϕ be a subhar-

monic function in a neighborhood of
⋃N
ℓ=1Kℓ. Then polynomials are dense

in H2(
⋃N
ℓ=1Kℓ, ϕ).
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Figure 1. Case avoided: the arc Kj is in the bounded com-

ponent of Ki
c
where Ki is the outer snake

Let Γ be the graph of a locally Lipschitz function over the real axis in
C. We may assume Γ = {(t, φ(t))} with φ : R → R a locally Lipschitz con-
tinuous function. Thanks to Theorem 1.1, we prove the following weighted
L2-version of the Carleman theorem:

Theorem 1.4. Let Γ be the graph of a locally Lipschitz function over the

real axis in C and ϕ a subharmonic function in a neighborhood of Γ. Denote

by Γn, n ∈ Z the part of the graph Γ over the interval [n, n + 1]. Then for

any f ∈ L2(γ, ϕ) and for any positive numbers εn, there exists an entire

function F , so that for each n ∈ Z,
∫

Γn

|F − f |2e−ϕds < εn.

The paper is organized as follows: In Section 2, we give a necessary and
sufficient condition in terms of Lelong number for the exponential e−ϕ to
be integrable on an arc in C. In Section 3, we prove Theorem 1.1. In Sec-
tion 4, we prove Theorem 1.2. In Section 5, we prove Theorem 1.4. In the
last section, we give an example which shows that there are no non-zero
polynomials in L2(γ, ϕ) for some rectifiable non-Lipschitz arc γ and some
subharmonic function ϕ.

2. “Exponential integrability” on arcs in C

In the following, we assume that ϕ is subharmonic on C, even though it
is enough to assume it to be subharmonic in a neighborhood of the given
subset. This fact relies on the following lemmas.

Lemma 2.1. Let µ ≥ 0 be a measure on C with finite mass on each compact

set. Then there exists a subharmonic function ϕ on C so that ∆ϕ = µ.
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Proof. Set

µ =
∞∑

n=1

µn, µn = µ|{n−1≤|z|<n}
.

Let ϕn(z) =
∫
log |z−ζ|dµn(ζ). Then ϕn(z) is harmonic on {z : |z| < n−1}.

Thus there exists a holomorphic function hn(z) on {z : |z| < n− 1} so that
ϕn(z) = Rehn(z). By using the classical Mergelyan theorem to hn(z) on
{z : |z| ≤ n− 2} there exists a polynomial Pn(z) so that

|hn(z)− Pn(z)| <
1

2n
, on {|z| ≤ n− 2}.

Then ϕ(z) =
∞∑
n=1

Re(hn(z)− Pn(z)) is subharmonic on C and ∆ϕ = µ. �

Lemma 2.2. Let U ⊂⊂ V be two open sets and ϕ a subharmonic function

on V . Then there exists a subharmonic function ψ on C so that ϕ = ψ + h
on U , where h is harmonic on U .

Proof. Choose a smooth cut off function χ : C → [0, 1] so that χ ≡ 1 on
a neighborhood of U and suppχ ⊂ V. Then µ := (∆ϕ) · χ is a positive
measure with finite mass on each compact set in C. By Lemma 2.1 there
is a globally defined subharmonic function ψ such that ∆ψ = µ. But then
ϕ = ψ + h on U for some harmonic function h. �

Since h is uniformly bounded on U , as a direct consequence, we get

Lemma 2.3. Let E ⊂⊂ U and ϕ,ψ be as in Lemma 2.2. Then the Hilbert

spaces L2(E,ϕ) = L2(E,ψ) and the norms are “equivalent”, i.e., there exist

positive constants C1, C2 so that

C1‖f‖L2(E,ϕ) ≤ ‖f‖L2(E,ψ) ≤ C2‖f‖L2(E,ϕ).

We prove similar statements to those in Section 2 of [5] but on an arc
γ. Those results will allow us to prove at the end of the section the local
integrability of the exponential e−ϕ at a point x ∈ γ if and only if the Lelong
number ν(ϕ)(x) is strictly less than 1.

Definition 2.4. A function f : E → R, E ⊂ R, is said to be L−Lipschitz,
L ≥ 0, if

|f(t1)− f(t2)| ≤ L|t1 − t2|
for every pair of points (t1, t2) ∈ E×E. We say that a function is Lipschitz
if it is L−Lipschitz for some L.

Lemma 2.5 (Chapter 5 of [13]). If f : [a, b] → R is a Lipschitz function,

then f is differentiable at almost every point in [a, b] and

f(b)− f(a) =

∫ b

a
f ′(t)dt.
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Let γ be the graph of a Lipschitz function y(t) : [a, b] → R. In the
following, we say that γ is a Lipschitz graph if γ is the graph of an L-
Lipschitz function y on [a, b], a, b < ∞. Locally Lipschitz graph means
that for each point p ∈ γ, there exists a neighborhood U where the graph
is Lipschitz, up to a rotation of γ. We denote by |γ| the arc length of γ,
defined as follows

|γ| :=
∫

γ
ds =

∫ b

a
|γ′(t)|dt,

where |γ′(t)| =
√

1 + (y′(t))2.

Let z0 = (t0, y0) ∈ C and 0 < β < 1.

Lemma 2.6. Let γ be a graph, then |γ(t)− z0| ≥ |t− t0| on [a, b].

Lemma 2.7. Let γ be a Lipschitz graph, then

∫ b

a

1

|γ(t) − z0|β
|γ′(t)|dt ≤ ConstL,a,b,β.

Proof. By Lemma 2.6 we have

∫ b

a

1

|γ(t)− z0|β
|γ′(t)|dt ≤ (L+ 1)

∫ b

a

1

|t− t0|β
dt.

If t0 > b, then

(L+ 1)

∫ b

a

1

|t− t0|β
dt ≤ (L+ 1)

∫ b

a

1

|t− b|β dt

= (L+ 1)
(b − t)1−β |ab

1− β

= (L+ 1)
(b − a)(1−β)

1− β
;

If t0 < a, then

(L+ 1)

∫ b

a

1

|t− t0|β
dt ≤ (L+ 1)

∫ b

a

1

|t− a|β dt

= (L+ 1)
(t− a)1−β |ba

1− β

= (L+ 1)
(b− a)(1−β)

1− β
;
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If a ≤ t0 ≤ b, then

(L+ 1)

∫ b

a

1

|t− t0|β
dt ≤ (L+ 1)

∫ t0

a

1

(t0 − t)β
dt+ (L+ 1)

∫ b

t0

1

(t− t0)β
dt

≤ (L+ 1)
(t0 − t)1−β

1− β
|at0 +(L+ 1)

(t− t0)
1−β

1− β
|bt0

≤ 2(L+ 1)
(b− a)(1−β)

1− β
.

Thus no matter whatever the condition on t0, we have that
∫ b

a

1

|γ(t) − z0|β
|γ′(t)|dt ≤ ConstL,a,b,β.

�

We generalize the previous Lemma to a product

Lemma 2.8. Let γ be a Lipschitz graph. Suppose zi ∈ C, βi > 0, for

i = 1, · · · ,m and
∑m

i=1 βi = β < 1. Then
∫ b

a

m∏

i=1

(
1

|γ(t)− zi|

)βi
|γ′(t)|dt < ConstL,a,b,β.

Proof. According to Corollary 2.3 in [5] we know that
m∏

i=1

(
1

|γ(t)− zi|

)βi
≤

m∑

i=1

βi
β

(
1

|γ(t)− zi|

)β
.

By Lemma 2.7, we finally have
∫ b

a

m∏

i=1

(
1

|γ(t)− zi|

)βi
|γ′(t)|dt < ConstL,a,b,β.

�

Let γ be a Lipschitz graph. We take an arc length parametrization of γ
that we denote by s. Let h be a function on γ, define

∫

γ
hds :=

∫ b

a
h(γ(t))|γ′(t)|dt.

From Lemma 2.8, we are able to prove

Theorem 2.9. Let γ be a Lipschitz graph. Let µ be any nonnegative measure

with total mass β < 1 on an open set U in C containing γ. If ϕ(z) =∫
log |z − ζ|dµ(ζ), then we have

∫

γ
e−ϕds < CL,β,a,b

where CL,β,a,b > 0 is a constant depending on L, β, a, b.
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Proof. Define ψn(z, ζ) = max{log |z − ζ|,−n} and

ϕn(z) =

∫
ψn(z, ζ)dµ(ζ).

Then ϕn is continuous and ϕn ց ϕ pointwise. Hence e−ϕn(z) ր e−ϕ(z).
Therefore, it is enough to show

∫

γ
e−ϕnds ≤ CL,β,a,b +

1

n
.

We fix n. Let δ > 0. Since ψn is continuous, by Lemma 2.4 in [5], there exist
ζi ∈ U such that the measure µn =

∑m
i=1 βiδζi has total mass β < 1 and

|ϕ̃n − ϕn| < δ, where

ϕ̃n(z) :=

∫
ψn(z, ζ)dµn(ζ) =

m∑

i=1

βiψn(z, ζi) ≥
m∑

i=1

βi log |z − ζi|.

Hence, we get
∫

γ
e−ϕnds ≤ eδ

∫

γ
e−ϕ̃nds

≤ eδ
∫ b

a

m∏

i=1

1

|γ(t)− ζi|βi
|γ′(t)|dt.(2.1)

By Lemma 2.8, we get

(2.2)

∫ b

a

m∏

i=1

1

|γ(t) − ζi|βi
|γ′(t)|dt < CL,β,a,b.

Hence, by combining (2.1) and (2.2) and by choosing δ small enough, we get
∫

γ
e−ϕnds ≤ CL,β,a,b +

1

n
.

�

Corollary 2.10. Theorem 2.9 holds with possibly larger constant for sub-

harmonics function ϕ on a neighborhood U of γ in C with µ :=
1

2π
∆ϕ|U

being of total mass on U strictly less than 1.

Proof. By Riesz decomposition theorem (see for example Theorem 3.7.9 in
[12]), we can decompose any subharmonic function as ϕ(z) =

∫
U log |z −

ζ|dµ(ζ) + h(z) where h is harmonic. Because h is bounded on U , Theorem
2.9 gives the result with a constant depending, in addition, on h. �

We recall now the definition of the Lelong number ν(ϕ) of a subharmonic
function ϕ at a point z in C, where ϕ 6≡ −∞, that is equal to the mass
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of the “Riesz” measure µ =
1

2π
∆ϕ at the point z. Below is an equivalent

definition given by [8, 9],

ν(ϕ)(z) := lim
r→0+

max|ζ−z|=r ϕ(ζ)

log r
.

From this definition, Kiselman [8], Theorem 4.1 proves that if e−ϕ is locally
integrable at z in C

n then ν(ϕ)(z) < 2n.

We recall the following result which is a converse of the previous property
in complex dimension one:

Theorem 2.11. If ϕ 6≡ −∞ is subharmonic and ν(ϕ)(z) < 2 for a point z,
then e−ϕ is locally integrable in a neighborhood of z.

Proof. We refer to the note at top of p. 99 in Hörmander’s book [7]. This is
also a consequence of Theorem 2.5 in [5]. We also refer to Proposition 7.1
in [14] for a generalization to higher dimensions1. �

Now we state the previous Theorem for points in a Lipschitz graph.

Theorem 2.12. Let γ be a Lipschitz graph and ϕ 6≡ −∞ a subharmonic

function on C. Then ν(ϕ)(γ(t)) < 1 for a point γ(t) ∈ γ if and only if e−ϕ

is locally integrable in a neighborhood of γ(t) on γ.

Proof. ⇒) By hypothesis, ν(ϕ)(γ(t)) =
1

2π
∆ϕ(γ(t)) < 1 so this is a direct

consequence of Corollary 2.10.

⇐) If there exists z0 = (t0, y0) ∈ γ so that ν(ϕ)(z0) ≥ 1, then we have
1
2π∆ϕ(z0) ≥ 1. Therefore we have 1

2π∆ϕ − δz0 ≥ 0 on C. Hence we may

find a subharmonic function ψ on C such that 1
2π∆ψ = 1

2π∆ϕ− δz0 . Up to
a harmonic function we may write ϕ = log |z − z0|+ ψ. Thus

1 Many authors refer to this result as “Skoda’s exponential integrability”
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∫

U(z0)∩γ
e−ϕds =

∫

U(z0)∩γ

1

|z − z0|
e−ψds, ψ is locally bounded above near z0

≥ C

∫

U(z0)∩γ

1

|z − z0|
ds

≥ C

∫ t0+η

t0−η

1√
1 + L2|t− t0|

dt

= C
1√

1 + L2

(∫ t0

t0−η

1

t0 − t
dt+

∫ t0+η

t0

1

t− t0
dt

)

= C
1√

1 + L2

(
lim
ε→0+

∫ t0−ε

t0−η

1

t0 − t
dt+ lim

ε→0+

∫ t0+η

t0+ε

1

t− t0
dt

)

= 2C
1√

1 + L2
lim
ε→0+

(ln η − ln ε)

= ∞,

where η is a sufficiently small constant. �

Let α > 0. We will write ν(ϕ) < α to mean that ν(ϕ)(z) < α for all
points z in the given subset. However, ν(ϕ) ≥ α should be understood as
there exist at least one point z such that ν(ϕ)(z) ≥ α.

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 which generalizes the Weierstrass
theorem to weighted L2-spaces on Lipschitz graphs. The particularity here
is to allow the weight ϕ to have singularities on the given set. We will then
carefully take the local integrability of e−ϕ (Section 2) into account.

We first recall some classical results

Theorem 3.1 (Weierstrass 1883 [15]). Suppose f is a continuous function

on a closed bounded interval [a, b] ⊂ R. For each ε > 0 there exists a

polynomial P such that

|f(x)− P (x)| < ε, ∀x ∈ [a, b].

Theorem 3.2 (Lavrent’ev, 1936 [10]). Let K ⊂ C be compact with C \K
connected. Suppose that f is continuous on K. If K̊ = ∅, then for each

ε > 0 there exists a polynomial P such that

|f(x)− P (x)| < ε, ∀x ∈ K.

Theorem 3.3 (Mergelyan, 1951 [11]). Let K ⊂ C be compact with C \ K
connected. Suppose that f is continuous on K and holomorphic on K̊. Then,

for each ε > 0 there exists a polynomial P such that

|f(x)− P (x)| < ε, ∀x ∈ K.
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In order to prove Theorem 1.1, we first prove

Theorem 3.4. Let γ be a Lipschitz graph over [a, b]. Suppose that ϕ is

measurable on γ and that ∫

γ
e−ϕds <∞.

Then polynomials are dense in L2(γ, ϕ).

In order to prove this theorem we need the following Lemma.

For each nonnegative real valued f ∈ L2(γ, ϕ), define fn = min{f, n}.
Lemma 3.5. fn → f in L2(γ, ϕ) as nր ∞.

Proof. We need to prove that
∫
γ |f − fn|2e−ϕds → 0. Now |f |2e−ϕ is an L1

function and |f−fn|2e−ϕ ≤ |f |2e−ϕ. Moreover |f −fn|2e−ϕ → 0 a.e.. Hence
by the Lebesgue dominated convergence theorem, we have that∫

γ
|f − fn|2e−ϕds→ 0.

�

Proof of Theorem 3.4. Let f be such that
∫
γ |f |2e−ϕds < ∞. To approxi-

mate f by polynomials, it suffices to consider the case when f ≥ 0. If P is
any polynomial, then ‖P − f‖L2(γ,ϕ) ≤ ‖P − fn‖L2(γ,ϕ)+ ‖fn− f‖L2(γ,ϕ). So
by Lemma 3.5, it suffices to approximate nonnegative bounded measurable
functions fn by polynomials.

Each bounded measurable function fn can be uniformly approximated by
simple functions on γ. Since

∫
γ e

−ϕds <∞, this approximation also holds in

the weighted norm of L2(γ, ϕ). Each simple function is the finite linear com-
bination of characteristic functions on measurable sets in γ, hence it suffices
to approximate a characteristic function by polynomials on measurable sets
in γ. Since e−ϕ is L1 integrable, there exists for any ε > 0 a constant δ > 0
so that if E is any measurable set in γ with Lebesgue measure |E| < δ, then∫
E e

−ϕds < ε. For any measurable set F there exists a finite union of graphs
over intervals I so that |F \ I|, |I \ F | < δ/2. Hence ‖χF − χI‖L2(F,ϕ) < ε.
Then it suffices to approximate a characteristic function of a graph over an
interval in [a, b] in γ.

Let I be a graph over an interval in γ and δ > 0. There exists f ∈ C0(I,C)
so that

B := {s ∈ C | f(s) 6= χI(s)} has a Lebesgue measure less than
δ

8
.

So ∫

I
|f − χI |2e−ϕds ≤

∫

B
e−ϕds ≤ ε.

By the Lavrent’ev theorem, it suffices to approximate a continuous func-
tion by polynomials, and then we are done. �
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Remark 3.6. Theorem 3.4 holds for non-Lipschitz rectifiable graphs.

Theorem 1.1 generalizes Theorem 3.4 by relaxing the assumption on the
integrability of e−ϕ on γ. To prove this generalization, we need the following
result.

Theorem 3.7. Let γ be a Lipschitz graph over [a, b] and ϕ a subharmonic

function on C. Then polynomials are dense in L2(γ, ϕ) if and only if the

function
√
Q can be approximated arbitrarily well by polynomials in L2(γ, ϕ)

where Q is a polynomial vanishing at the points γ(t) to order [ν(ϕ)(γ(t))]
with Lelong number ν(ϕ)(γ(t)) ≥ 1.

Here [ν(ϕ)(γ(t))] := max{m ∈ Z | ν(ϕ)(γ(t)) ≥ m} is also called the floor
function of ν(ϕ) at γ(t).

Proof. By Theorem 2.12 and Theorem 3.4, it suffices to consider ν(ϕ) ≥ 1.
Then there exist finitely many points γ(t1), · · · , γ(tn) such that ν(ϕ)(γ(ti)) ≥
1 for ti ∈ [a, b], i = 1, . . . , n and Q which can be expressed as Q(z) =∏n
j=1(z − γ(ti))

[ν(ϕ)(γ(ti))]. We may then choose a subharmonic function ψ

so that ϕ = ψ + log |Q| with ν(ψ) < 1 on γ.
⇒) Remark that

√
Q ∈ L2(γ, ϕ) by Theorem 2.12:

∫

γ
|
√
Q|2e−ϕds =

∫

γ
|
√
Q|2e−ψ−log |Q|ds =

∫

γ
e−ψds <∞.

Then by assumption, there exists a polynomial that approximates arbitrarily
well

√
Q.

⇐) Remark that f ∈ L2(γ, ϕ) is equivalent to
∫

γ

∣∣∣∣
f√
Q

∣∣∣∣
2

e−ψds <∞.

So
f√
Q

∈ L2(γ, ψ) and by Theorem 3.4, for each ε > 0, there exists a

polynomial P so that
∫

γ

∣∣∣∣
f√
Q

− P

∣∣∣∣
2

e−ψds =
∫

γ
|f − P

√
Q|2e−ϕds < ε.

Thus if
√
Q can be approximated arbitrarily well by polynomials in L2(γ, ϕ),

then f can be approximated by polynomials in L2(γ, ϕ). �

Proof of Theorem 1.1. By Theorem 2.12 again, it suffices to consider ν(ϕ) ≥
1. Let Q and ψ be as in the proof of Theorem 3.7. We prove that for every
ε > 0, there is a polynomial P that vanishes at γ(ti) to order [ν(ϕ)(γ(ti))]
so that

(3.1)

∫

γ

∣∣∣
√
Q− P

∣∣∣
2
e−ϕds =

∫

γ

∣∣∣∣1−
P√
Q

∣∣∣∣
2

e−ψds < ε.
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For convenience, we look for P such as

P (z) = Q(z) · P̃ (z) =
n∏

j=1

(z − γ(tj))
[ν(ϕ)(γ(tj ))] · P̃ (z).

Then (3.1) is equivalent to find some polynomial P̃ so that

∫

γ

∣∣∣∣∣1−
Q · P̃√
Q

∣∣∣∣∣

2

e−ψds < ε.(3.2)

Let δ > 0. Set g(z) =
1√
Q(z)

except on the arcs Ii on γ with length 2δ and

center at γ(ti). We can make g continuous and |
√
Q(z)g(z)| ≤ 1 on such

arcs of length 2δ. Then

∫

γ

∣∣∣1−
√
Qg

∣∣∣
2
e−ψds ≤ 4

n∑

i=1

∫

Ii

e−ψds

= 4

∫
⋃n

i=1 Ii

e−ψds.(3.3)

Since
⋃n
i=1 Ii is a measurable set of measure 2δn and e−ψ ∈ L1

loc, we may
choose δ sufficiently small in order for (3.3) to be < ε. Since g ∈ L2(γ, ψ),
by Theorem 3.4, there exists a polynomial A satisfying

∫

γ
|g −A|2e−ψds < ε

(
max
γ(t)∈γ

|Q(γ(t))|
)2 .

Then by Cauchy-Schwarz and the previous estimate,

∫

γ
|
√
Q|2|g −A|2e−ψds(3.4)

≤
(∫

γ
|
√
Q|4|g −A|2e−ψds

)1/2 (∫

γ
|g −A|2e−ψds

)1/2

,

≤
(
max
γ

|Q|
)2

·
∫

γ
|g −A|2e−ψds,

< ε.

Combine (3.3) and (3.4), we may choose P̃ = A. �

Remark 3.8. In fact we show that P∩L2(γ, ϕ) is dense in L2(γ, ϕ) where P
is the set of all polynomials. If ν(ϕ) ≥ 1, not all polynomials are in L2(γ, ϕ),
e.g. 1 /∈ L2(γ, ϕ).
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4. Proof of Theorem 1.2

In this section, we give a weighted L2- version of the Mergelyan theorem
for compact sets in C that are the union of bounded Carathéodory domains
and Lipschitz graphs. Recall the following theorem

Theorem 4.1 (Theorem 1.3 in [2]). Let Ω ⊂ C be a Carathéodory do-

main and ϕ a subharmonic function in C. Then polynomials are dense in

H2(Ω, ϕ).

One generalization of Theorem 4.1 is the following

Theorem 4.2. Let Ω1 ⊂ C be a Carathéodory domain, let Ω2 be another

Carathéodory domain which is inside of a bounded component of Ω1
c
. Let

ϕ be a subharmonic function in C. Then polynomials are dense in H2(Ω1 ∪
Ω2, ϕ).

Ω2

Ω1

Figure 2. Example of a situation that might happen in The-
orem 4.2 where Ω1 and Ω2 are outer snakes with no common
point.

In order to prove this theorem we need the following proposition which
can be easily deduced from the proof of Proposition 1.2 in [2].

Proposition 4.3. Let Ω be a bounded Carathéodory domain and ϕ a sub-

harmonic function in C. Then for each f ∈ H2(Ω, ϕ) there exist functions

fn ∈ H2(Ωn, ϕ) such that ‖fn − f‖L2(Ω,ϕ) → 0 and ‖fn‖L2(Ωn\Ω,ϕ) → 0 as

n → ∞, where Ωn ⊃ Ω is a sequence of bounded simply-connected domains

so that ∂Ωn converges to ∂Ω in the sense of the Hausdorff distance.
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Proof of Theorem 4.2. First we consider the case

ν(ϕ) < 2 on Ω1 ∪ Ω2.(4.1)

By Theorem 4.1, for each ε > 0 there exists a holomorphic polynomial P1

so that

∫

Ω2

|f − P1|2e−ϕdλz <
ε

26
.(4.2)

Put

g =

{
f − P1 on Ω1

0 on Ω2.

Since Ωi, i = 1, 2 is a Carathéodory domain, there exists a sequence {Ωi,n}
of Jordan domains such that Ωi ⊂ Ωi,n and Ωi,n+1 ⊂ Ωi,n and the Hausdorff
distance between ∂Ωi,n and ∂Ωi tends to zero as n → ∞ (see Chapter I,
Section 3 of [6]). Let n be sufficiently large so that Ω1 ∩ Ω2,n = ∅.
Since g ∈ H2(Ω1, ϕ), by using Proposition 4.3 on Ω1, for each ε > 0 we get
for large enough n functions g1,n ∈ H2(Ω1,n, ϕ) so that

‖g1,n − g‖L2(Ω1,ϕ) <
ε

26
(4.3)

and

‖g1,n‖L2(Ω1,n\Ω1,ϕ) <
ε

26
.(4.4)

By Theorem 4.1, for each n there exists a polynomial Qn so that

∫

Ω1,n

|g1,n −Qn|2e−ϕdλ <
ε

26
.(4.5)

Thus for sufficiently large n we have

∫

Ω1

|f − P1 −Qn|2e−ϕdλz

≤ 2

∫

Ω1

|f − P1 − g1,n|2e−ϕdλz + 2

∫

Ω1

|g1,n −Qn|2e−ϕdλz

≤ 2

∫

Ω1

|g − g1,n|2e−ϕdλz +
ε

13
by (4.5)

≤ 2ε

13
by( 4.3);
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and
∫

Ω2

|f − P1 −Qn|2e−ϕdλz

≤ 2

∫

Ω2

|f − P1|2e−ϕdλz + 2

∫

Ω2

|Qn|2e−ϕdλz

≤ 2ε

26
+ 4

∫

Ω2

|Qn − g1,n|2e−ϕdλz + 4

∫

Ω2

|g1,n|2e−ϕdλz by (4.2)

≤ 5ε

13
by (4.4), (4.5).

Next we consider the case ν(ϕ) ≥ 2. Then there exist finitely many points
zj ∈ Ω1 ∪ Ω2, 1 ≤ j ≤ N so that ν(ϕ) ≥ 2 at those points. We may find a
polynomial Q with zeros at those points, subharmonic function ψ satisfying
ϕ = ψ + 2 log |Q| and ν(ψ) < 2 on Ω1 ∪ Ω2. Let f ∈ O(Ω1 ∪ Ω2) ∪ L2(Ω1 ∪
Ω2, ϕ),

f

Q
∈ O(Ω1 ∪ Ω2) ∩ L2(Ω1 ∪Ω2, ψ).

Then by the first case, f
Q can be approximated by a polynomial P in L2(Ω1∪

Ω2, ψ). Thus f can be approximated by the polynomial P · Q in L2(Ω1 ∪
Ω2, ϕ). �

The proof of the main theorem of this section, Theorem 1.2, is divided
into 3 cases that correspond to the locus of the zeros of the polynomial Q
in the decomposition of the weight function ϕ = ψ + log |Q|. We will then
need the following result:

Theorem 4.4. Let Ω be a Carathéodory domain and ϕ a subharmonic func-

tion in C. Suppose P is a polynomial with
∫
Ω |P |2e−ϕdλ < ∞. Let p ∈ ∂Ω

and a disc ∆ ⊂ Ωc with p ∈ ∂∆. Then we can approximate P by P̃ which is

holomorphic on a neighborhood of Ω with P̃ (p) = 0 in the norm of L2(Ω, ϕ).

Proof. Set M =
∫
Ω |P (z)|2e−ϕ(z)dλz. Then for each ε > 0 there exists a

small neighborhood U(p) of p so that

∫

U(p)∩Ω
|P (z)|2e−ϕ(z)dλz <

ε

2
.

Take hn(z) =
(
p−q
z−q

)n
, choose n sufficiently large so that

|hn(z)|2 <
ε

2M
on (U(p))c ∩Ω and |hn(z)|2 < 1 on U(p) ∩Ω.
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Now fix such n. Set P̃ (z) = (1− hn(z)) · P (z), then P̃ is holomorphic on a

neighborhood of Ω with P̃ (p) = 0 satisfying
∫

Ω
|P̃ (z)− P (z)|2e−ϕ(z)dλz =

∫

U(p)∩Ω
|hn(z)P (z)|2e−ϕ(z)dλz +

∫

Ω\U(p)
|hn(z)P (z)|2e−ϕ(z)dλz

≤ max
z∈U(p)∩Ω

|hn(z)|2 ·
∫

U(p)∩Ω
|P (z)|2e−ϕ(z)dλz

+ max
z∈(U(p))c∩Ω

|hn(z)|2 ·
∫

(U(p))c∩Ω
|P (z)|2e−ϕ(z)dλz

<
ε

2
+
ε

2
= ε.

�

Remark 4.5. The assumption on the existence of such a disc on the bound-
ary of Ω is verified when ∂Ω is C2.

Proof of Theorem 1.2. First we consider: Case 1:

ν(ϕ) < 1 on γ and ν(ϕ) < 2 on Ω.

Let f ∈ O(Ω) ∪ L2(Ω ∪ γ, ϕ). By Theorem 4.1, for each ε > 0, there exists
polynomial P1 so that

∫

Ω
|f(z)− P1(z)|2e−ϕ(z)dλz <

ε

16
.(4.6)

By the Theorem 1.1, there exists polynomial P2 so that
∫

γ
|f − P2|2e−ϕds <

ε

16
.(4.7)

Since Ω is a Carathéodory domain, there exists a sequence {Ωj} of bounded

simply-connected domains such that Ω ⊂ Ωj and Ωj+1 ⊂ Ωj and the Haus-
dorff distance between ∂Ωj and ∂Ω tends to zero as j → ∞. By Corollary
2.10 we may choose j sufficiently large so that

max

{∫

γ∩Ωj

|f |2e−ϕds,
∫

γ∩Ωj

|P1|2 e−ϕds
}
<

ε

64
.(4.8)

Now fix such j. Let χ : C → [0, 1] be a smooth function with χ ≡ 1 on Ωj+1

and χ ≡ 0 outside of Ωj . Set

h(z) = χ(z)P1(z) + (1− χ(z))P2(z).
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Then h(z) is holomorphic on Ω, continuous on Ω ∪ γ. Set

M =

∫

Ω
e−ϕ(z)dλz +

∫

γ
e−ϕds.

By Mergelyan approximation theorem, there exists a polynomial P so that

|P − h|2 < ε

16M
on Ω ∪ γ.

Then

‖f − P‖2L2(Ω∪γ,ϕ)

≤ 2‖f − h‖2L2(Ω∪γ,ϕ) + 2‖h− P‖2L2(Ω∪γ,ϕ)

≤ 2

∫

Ω
|f(z)− P1(z)|2e−ϕ(z)dλz + 2

∫

(Ωj)
c∩γ

|f − P2|2e−ϕds

+2

∫

γ∩Ωj

|f − h|2e−ϕds+ ε

8

≤ 2

∫

γ∩Ωj

|f − χ · P1 − (1− χ)P2|2e−ϕds +
3ε

8
by (4.6), (4.7)

≤ 4

∫

γ∩Ωj

|f − P1|2χ2e−ϕds

+4

∫

γ∩Ωj

|f − P2|2(1− χ)2e−ϕds+
3ε

8

≤ 8

∫

γ∩Ωj

|f |2e−ϕds+ 8

∫

γ∩Ωj

|P1|2e−ϕds+
5ε

8
by (4.7)

≤ 7ε

8
by (4.8).

Now we consider Case 2:

1 ≤ ν(ϕ) < 2 on γ and ν(ϕ)(z) < 2 on Ω.

Then there exist finitely many points γ(ti) ∈ γ, ti ∈ [a, b], 1 ≤ i ≤ N such
that

t1 < t2 < t3 < · · · < tN and 1 ≤ ν(ϕ)(γ(ti)) < 2,

a polynomial Q and a subharmonic function ψ satisfying ϕ = ψ + log |Q|
where Q vanishes only at γ(ti) and ν(ψ) < 1 on γ. Since the polynomial Q
has no zeros on Ω \ {γ(a)}, ν(ψ)(z) = ν(ϕ)(z) for each z ∈ Ω \ {γ(a)}.
We need now to distinguish two subcases depending on the nature of p :=
γ(a):
Subcase A: If t1 = a. Let f ∈ O(Ω) ∪ L2(Ω ∪ γ, ϕ). Then by Theorem 4.1
there exists a polynomial P1 satisfying

‖f − P1‖L2(Ω,ϕ) < ε.
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Since the boundary of Ω is C2 near p, by Theorem 4.4, we may choose a
holomorphic function P1 on Ωj satisfying

P1(p) = 0 and ‖f − P1‖L2(Ω,ϕ) <
ε

16
.(4.9)

By the construction in the proof of Theorem 1.1, there exists a polynomial
P2 so that

∫

γ
|f − P2 ·Q|2e−ϕds < ε

16
.(4.10)

Set M =

∫

Ω
e−ψ(z)dλz +

∫

γ
e−ψds. Since f ∈ O(Ω) ∪ L2(Ω ∪ γ, ϕ), by (4.9)

we may choose j sufficiently large so that γ(ti) ∈ (Ωj)
c, 2 ≤ i ≤ N and

max

{∫

γ∩Ωj

|f |2e−ϕds,
∫

γ∩Ωj

|P1|2 e−ϕds
}
<

ε

64
.(4.11)

Now fix such j. Choose χ be as above and

h(z) = χ(z)P1(z) + (1− χ(z))P2(z)Q(z).

Then h and h
Q are holomorphic on Ωj, continuous on Ωj ∪ γ. By Theorem

3.3 there exists a polynomial G so that

∣∣∣∣
h

Q
−G

∣∣∣∣
2

<
ε

32M ·max
Ωj∪γ

|Q| on Ω ∪ γ.
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Then

‖f −G ·Q‖2L2(Ω∪γ,ϕ)

=

∥∥∥∥
f√
Q

−G ·
√
Q

∥∥∥∥
2

L2(Ω∪γ,ψ)

=

∥∥∥∥
f√
Q

− h√
Q

+
h√
Q

−G ·
√
Q

∥∥∥∥
2

L2(Ω∪γ,ψ)

≤ 2

∥∥∥∥
f√
Q

− h√
Q

∥∥∥∥
2

L2(Ω∪γ,ψ)
+ 2

∥∥∥∥
h√
Q

−G ·
√
Q

∥∥∥∥
2

L2(Ω∪γ,ψ)

≤ 2‖f − h‖2L2(Ω∪γ,ϕ) + 2M ·max
Ω∪γ

|Q| ·max
Ω∪γ

∣∣∣∣
h

Q
−G

∣∣∣∣
2

≤ 2

∫

Ω
|f(z)− P1(z)|2 e−ϕ(z)dλz + 2

∫

γ∩(Ωj)c
|f − P2 ·Q|2 e−ϕds

+2

∫

γ∩(Ωj\Ω)
|f − h|2 e−ϕds+ ε

16

≤ 2

∫

γ∩Ωj

|f − χP1 − (1− χ)P2 ·Q|2 e−ϕds+ 5ε

16
by (4.9), (4.10)

≤ 4

∫

γ∩Ωj

|f − P1|2 χ2e−ϕds+ 4

∫

γ∩Ωj

|f − P2 ·Q|2 (1− χ)2e−ϕds+
5ε

16

≤ 8

∫

γ∩Ωj

|f |2e−ϕds+ 8

∫

γ∩Ωj

|P1|2 e−ϕds+
9ε

16
by (4.10)

≤ 13ε

16
by (4.11).

Subcase B: If γ(t1) 6= p. We may choose j sufficiently large so that γ(ti) ∈
(Ωj)

c ∩ γ, 1 ≤ i ≤ N and the formula (4.11) also holds. Then the following
proof is similar to subcase A.

Finally we consider: Case 3: ν(ϕ) ≥ 2. There exist finitely many points
zj ∈ Ω, γ(tj) ∈ γ so that ν(ϕ) ≥ 2 at those points. We may find a polynomial
Q1 with zeros at those points, subharmonic function ψ satisfying ϕ = ψ +
2 log |Q1| and ν(ψ) < 2 on Ω ∪ γ. Let f ∈ O(Ω) ∪ L2(Ω ∪ γ, ϕ),

f

Q1
∈ O(Ω) ∩ L2(Ω ∪ γ, ψ).

Then by Case 1 or 2, f
Q1

can be approximated by a polynomial P in L2(Ω∪
γ, ψ). Thus f can be approximated by the polynomial P · Q1 in L2(Ω ∪
γ, ϕ). �
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5. Proof of Theorem 1.4

The classical Carleman approximation theorem applies to continuous func-
tion f on R. Let ε(x) > 0 be a continuous function.

Theorem 5.1 ([3]). There exists an entire function F so that |F (x) −
f(x)| < ε(x) on R.

This theorem is equivalent to the following corollary

Corollary 5.2. Let f be a continuous function on R. For any {εn}∞n=−∞
with εn > 0, there exists an entire function F so that for each n,

|F (x) − f(x)| < εn, ∀x ∈ [n, n+ 1].

It was pointed out by Alexander [1] that Carleman’s proof actually gives

Theorem 5.3 ([3, 1]). If γ : R → C, γ is a locally rectifiable curve and

properly embedded, then for each continuous function f on γ and continuous

function ε > 0, there exists an entire function F so that |F − f | < ε on γ.

We prove below Theorem 1.4 which is a weighted L2- version of this
generalization for Lipschitz graphs.

Let Γ be the graph of a locally Lipschitz function over the real axis in
C. We may assume Γ = {(t, φ(t))} with φ : R → R a locally Lipschitz
continuous function. For each [n, n + 1], Γn := {(t, φ(t))| n ≤ t ≤ n+ 1} is
a Lipschitz graph.

Proof of Theorem 1.4. Case 1: ν(ϕ) < 1 on Γ. Let f ∈ L2(Γ, ϕ). By
Theorem 3.4, there exists a continuous function gn on Jn := {(t, φ(t))| n −
1 ≤ t ≤ n+ 2} so that

∫

Jn

|f − gn|2e−ϕds <
1

40
min{εn−1, εn, εn+1} ≤ 1

40
εn.

Choose a partition of unity {χn}n∈Z of Γ so that χn ≥ 0 on Γ, χn = 0
outside of Jn and

∑
n χn = 1 on Γ. Let g =

∑
n χngn. Then g is continuous
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on Γ and for each n,
∫

Γn

|f − g|2e−ϕds

=

∫

Γn

|χn−1(f − gn−1) + χn(f − gn) + χn+1(f − gn+1)|2e−ϕds

≤ 2

∫

Γn

|χn−1(f − gn−1) + χn(f − gn)|2e−ϕds+ 2

∫

Γn

|χn+1(f − gn+1)|2e−ϕds

≤ 4

∫

Γn

|χn−1(f − gn−1)|2e−ϕds+ 4

∫

Γn

|χn(f − gn)|2e−ϕds

+2

∫

Γn

|χn+1(f − gn+1)|2e−ϕds

≤ 1

4
εn.

(5.1)

By using Theorem 5.3 on the continuous function g of Γ, we can find an
entire function F so that for each n

|F − g|2 < εn
4
∫
Γn
e−ϕds

on Γn.

Thus ∫

Γn

|g − F |2e−ϕds < εn
4
.

Hence we have
∫

Γn

|f − F |2e−ϕds

≤ 2

∫

Γn

|f − g|2e−ϕds+ 2

∫

Γn

|g − F |2e−ϕds
< εn.

Now we consider: Case 2: ν(ϕ) ≥ 1. We may list the points {Γ(tj)}j
with ν(ϕ)(Γ(tj)) ≥ 1, where Γ(tj) = (tj, φ(tj)). Then there exists an entire
function Q which vanishes at each Γ(tj) to exact order [ν(ϕ)(Γ(tj))]. We
may define

√
Q to be continuous on Γ, without loss of generality we may

set Q(z) =
∏
j
(z − Γ(tj))

[ν(ϕ)(Γ(tj ))]epj(z), where pj(z) are entire functions.

Then there exists a subharmonic function ψ such that ϕ = ψ + log |Q| with
ν(ψ) < 1 on Γ. Let f ∈ L2(Γ, ϕ). Then f√

Q
∈ L2(Γ, ψ). By Case 1, there

exists an entire function F so that for each n

(5.2)

∫

Γn

∣∣∣∣
f√
Q

− F

∣∣∣∣
2

e−ψds =
∫

Γn

|f − F ·
√
Q|2e−ϕds < εn

4
.
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Thus it suffices to find an entire function H vanishing at Γ(tj) to order
[ν(ϕ)(Γ(tj))] so that for each n
(5.3)∫

Γn

∣∣∣
√
Q−H

∣∣∣
2
e−ϕds =

∫

Γn

∣∣∣∣1−
H√
Q

∣∣∣∣
2

e−ψds <
εn

4 max
Γ(t)∈Γn

|F (Γ(t))|2 .

We look for H for convenience as

H(z) = Q(z) · H̃(z) =

∞∏

j=1

(z − Γ(tj))
[ν(ϕ)(Γ(tj ))]epj(z) · H̃(z).

The estimate (5.3) is then equivalent to find an entire function H̃ so that

∫

Γn

∣∣∣∣∣1−
Q · H̃√
Q

∣∣∣∣∣

2

e−ψds <
εn

4 max
Γ(t)∈Γn

|F (Γ(t))|2 , ∀ n.(5.4)

Let δj > 0. Set g(z) =
1√
Q(z)

except on arcs Γj of Γ with length 2δj and

center at Γ(tj). We can make g continuous and |√Q · g| ≤ 1 on such arcs of
length 2δj . Then

∫

Γn

∣∣∣1−
√
Q · g

∣∣∣
2
e−ψds ≤ 4

∑

Γ(tj )∈Jn

∫

Γj

e−ψds.

Since
⋃

Γ(tj)∈Jn
Γj is a measurable set and e−ψ ∈ L1

loc, we may choose δj

sufficiently small in order to

∑

Γ(tj)∈Jn

∫

Γj

e−ψds <
εn

32 max
Γ(t)∈Γn

|F (Γ(t))|2 .

Since g is continuous on Γ, by the classical Carleman approximation theorem
there exists an entire function A satisfying for each n

|g −A|2 ≤ εn
8 max
Γ(t)∈Γn

|Q(Γ(t))| · max
Γ(t)∈Γn

|F (Γ(t))|2 ·
∫
Γn
e−ψds

, ∀Γ(t) ∈ Γn.
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Then by Cauchy-Schwarz and the previous estimate, for each n,
∫

Γn

|
√
Q|2|g −A|2e−ψds

=

∫

Γn

|
√
Q|2|g −A|2e−ψds

≤
(∫

Γn

|
√
Q|4|g −A|2e−ψds

)1
2

·
(∫

Γn

|g −A|2e−ψds
)1

2

≤ max
Γ(t)∈Γn

|Q(Γ(t))| ·
∫

Γn

|g −A|2e−ψds

≤ εn
8 max
Γ(t)∈Γn

|F (Γ(t))|2 .

By taking H̃ = A, we get (5.4) and then (5.3). Hence there exist entire
functions F,Q,A so that for each n

∫

Γn

|f − F ·Q · A|2e−ϕds

≤ 2

∫

Γn

|f − F
√
Q|2e−ϕds+ 2

∫

Γn

|F
√
Q− F ·Q ·A|2e−ϕds

≤ εn
2

+
εn
2

= εn.

�

6. Rectifiable non-Lipschitz arcs

Here we construct a rectifiable non-Lipschitz arc γ and a subharmonic
function ϕ in a neighborhood of γ so that the conclusion of Theorem 1.1
does not hold. To find such an arc, we first look at the vertical arcs γa =
{(a, it), |t| ≤ a}. Let 0 < α < 1, z0 = 0. We then notice that

|γa| = 2a ∼ a,

and ∫

γa

ds

|z − z0|α
=

∫ a

−a

1(√
a2 + t2

)α dt.

Since

2√
2
αa

1−α ≤
∫ a

−a

1(√
a2 + t2

)α dt ≤ 2a1−α
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we get that
∫
γa

ds
|z−z0|α ∼ a1−α uniformly in α.

Let bn ∈ [0, 1], n = 1, 2, 3, · · · , be a decreasing sequence which tends to

0. We will fix bn later. We remark that by setting ϕ(z) =
∞∑
n=1

αn log
∣∣ z−bn

2

∣∣,

where αn = 1
n3 a rapidly then ϕ is subharmonic on ∆(0, 2 − b1): ϕ is

the limit of the decreasing sequence {ϕk} of subharmonic functions, ϕk =
k∑

n=1
αn log

∣∣z−bn
2

∣∣. Now let’s build a rectifiable non-Lipschitz arc γ such that

(1) |γ| <∞;
(2)

∫
γn
e−ϕds = ∞.

Here γn is a curve with endpoints (bn+1, 0) and (bn, 0) and γ consists of the
union of the γn and the origin. Define cn so that

c
1

1−αn+1
n =

1

n2
αn+1

1− αn+1
=

1

n2 ((n+ 1)3 − 1)
.

We define {bn} by the following conditions:

bn − bn+1 = c
1

1−αn+1
n =

1

n2 ((n+ 1)3 − 1)

add the requirement that bn → 0. Then we have that

bn =
∞∑

k≥n
(bk − bk+1) =

∞∑

k≥n

1

k2 ((k + 1)3 − 1)
.

Now define bkn ∈ [bn+1, bn] satisfying

bkn = bn+1 +
(cn
k

) 1
1−αn+1

= bn+1 +
1

n2 ((n+ 1)3 − 1)

(
1

k

) 1
1−αn+1

(6.1)

Then bkn → bn+1 as k → ∞ and b1n = bn. Finally, we define γn =
(
∪∞
k=1γ

k
n

)
∪

Tn ∪ Sn, where

γkn =: {bkn + iy, 0 ≤ y ≤ bkn − bn+1},

Tn = ∪∞
ℓ=0{yx − bn+1, b

2ℓ+2
n ≤ x ≤ b2ℓ+1

n } and Sn = ∪∞
ℓ≥1{y = 0, b2ℓ+1

n ≤
x ≤ b2ℓn } which connect the γkn making γn an arc. Then |γkn| = (bkn − bn+1),
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|Tn| <
√
2(bn− bn+1) =

√
2(b1n − bn+1) and |Sn| < bn − bn+1. Then, we have

|γ| =
∞∑

n=1

|γn|

=

∞∑

n=1

∞∑

k=1

|γkn|+
∞∑

n=1

|Tn|+
∞∑

n=1

|Sn|

≤
∞∑

n=1

∞∑

k=1

(bkn − bn+1) +

∞∑

n=1

(
√
2 + 1)(b1n − bn+1)

=
∞∑

n=1

∞∑

k=1

1

n2 ((n+ 1)3 − 1)

(
1

k

) 1
1−αn+1

+ (
√
2 + 1)

∞∑

n=1

1

n2 ((n+ 1)3 − 1)

Since

∞∑

k=1

(
1

k

) 1
1−αn+1 ∼

∫ ∞

1

(
1

x

) (n+1)3

(n+1)3−1

dx = (n+ 1)3 − 1

we know that

|γ| ≤ C
∞∑

n=1

1

n2
+ (

√
2 + 1)

∞∑

n=1

1

n2 ((n+ 1)3 − 1)
<∞.(6.2)

Thus γ is a rectifiable non-Lipschitz arc.
On the other hand, we have

∫

γn

e−ϕds ≥
∞∑

k=1

∫

γkn

e−ϕds

≥
∞∑

k=1

∫

γkn

1

|z − bn+1|αn+1
ds

∼
∞∑

k=1

(bkn − bn+1)
1−αn+1

∼
∞∑

k=1

cn
k

by (6.1)

∼
∫ ∞

1

cn
x
dx

= ∞, ∀n.(6.3)

Now we will prove that polynomials are not dense in L2(γ, ϕ). By contra-
diction, for each f ∈ L2(γ, ϕ), if there exists a sequence of polynomials PN
so that ∫

γ
|f − PN |e−ϕds → 0, if N → ∞,



26 SÉVERINE BIARD, JOHN ERIK FORNÆSS, AND JUJIE WU

then by (6.3) we have PN (bn) = 0 for any n if N is sufficiently large. Since
bn → 0 by uniqueness property of holomorphic function we know PN ≡
0. Thus

∫
γ |f |2e−ϕds = 0. That is f = 0 a.e. on γ. Thus L2(γ, ϕ) =

{0}. On the other hand f(z) := e
ϕ
2 =

√
Π
∣∣ z−bn

2

∣∣αn ∈ L2(γ, ϕ). This is a

contradiction.

Remark 6.1. In this example, there are no non-zero polynomials in L2(γ, ϕ)
and polynomials are not dense in L2(γ, ϕ). The key to this example is that
Theorem 2.12 does not hold for rectifiable non-Lipschitz arcs. However, we
don’t know if there exists a rectifiable non-Lipschitz arc γ and a subhar-
monic function ϕ so that all the polynomials are in L2(γ, ϕ) but not dense
in it.
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