
HAL Id: hal-03207755
https://hal.science/hal-03207755v1

Submitted on 26 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Within Reach? Learning to touch objects without prior
models

François de La Bourdonnaye, Céline Teulière, Thierry Chateau, Jochen Triesch

To cite this version:
François de La Bourdonnaye, Céline Teulière, Thierry Chateau, Jochen Triesch. Within Reach? Learn-
ing to touch objects without prior models. Joint IEEE 9th International Conference on Development
and Learning and Epigenetic Robotics (ICDL-EpiRob), Aug 2019, Oslo, Norway. �hal-03207755�

https://hal.science/hal-03207755v1
https://hal.archives-ouvertes.fr

Within Reach? Learning to touch objects without
prior models

François de La Bourdonnaye§, Céline Teulière†, Thierry Chateau†, and Jochen Triesch§
§Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany

† Université Clermont Auvergne, CNRS, Institut Pascal, Clermont-Ferrand, France

Abstract—Human infants learn to manipulate objects in a
largely autonomous fashion, starting without precise models of
their bodies’ kinematics and dynamics. Replicating such learning
abilities in robots would make them more flexible and robust and
is considered a grand challenge of Developmental Robotics. In
this paper, we propose a developmental method that allows a
robot to learn to touch an object, while also learning to predict
if the object is within reach or not. Importantly, our method
does not rely on any forward or inverse kinematics models.
Instead it uses a stage-wise learning approach combining deep
reinforcement learning and a form of self-supervised learning.
In this approach, complex skills such as touching an object or
predicting if it is within reach are learned on top of more basic
skills such as object fixation and eye-hand-coordination.

Index Terms—Sensori-motor learning, reinforcement learning,
object reachability

I. INTRODUCTION

For any manipulation robot, estimating the reachability of
objects is a very important ability. Traditionally, the problem
has been approached by using inverse kinematics, i.e. a
mapping from 3D world coordinates to robot joint angles
that would bring the robot’s gripper to the desired 3D lo-
cation. For example, [1] represents the reachable workspace
of a humanoid robot as a set of 3D Cartesian points. Their
method samples random 3D positions and simply checks if
inverse kinematics provide a solution. Goal babbling [2] can
be considered as a way to learn reachable 3D points while
also learning inverse kinematics, provided that the forward
kinematics are known. Finally, [3] estimates the workspace
reachability of a mobile manipulator using a probabilistic
motion planner. Importantly, all of these methods assume
knowledge of the forward and/or inverse kinematics, which
is undesirable in the context of Developmental Robotics. In
contrast, [4] can dispense with it, because the reachability
estimation is based directly on the robot’s gaze. Specifically,
the pan, tilt, and vergence angles of the binocular vision
system implicitly encode the 3D position of an object. Thus,
they can be used as a surrogate of a 3D Cartesian point,

This work was funded by the French government research program “In-
vestissements d’avenir” through the IMobS3 Laboratory of Excellence (ANR-
10-LABX-16-01), by the European Union through the Horizon 2020 Research
and Innovation Programme under grant agreement no. 713010 (GOAL-Robots
Goal-based Open-ended Autonomous Learning Robots) and through the
program Regional competitiveness and employment (ERDF Auvergne region),
and by the Auvergne region. J. Triesch acknowledges support from the Quandt
foundation.

which may be more biologically plausible [5]. Here, we take
inspiration from this idea and combine it with our own prior
work on the learning of an object touching skill using deep
reinforcement learning [6].

Our learning approach comprises three stages during which
successively more sophisticated skills are acquired. Impor-
tantly, the entire learning process does not require any forward
or inverse kinematics models, but relies exclusively on (deep)
reinforcement learning and a form of self-supervised learning.
In this sense, the complex behavior is essentially learned
from scratch. The three learning stages are as follows. First,
the robot learns to fixate an object to localise it. Second, it
jointly learns to fixate on its own end-effector while learning
a hand-eye coordination mapping. In the third stage, the robot
uses the skills acquired in the two previous stages to jointly
learn to reach for and touch objects and predict if an object
is within reach or not. The eye-hand-coordination mapping
learned during the second stage essentially substitutes for the
forward kinematics during the final stage.

The fixation tasks as well as the reaching behaviours are
learned using deep reinforcement learning. The hand-eye co-
ordination and the reachability prediction are learned using a
form of self-supervised learning which uses supervised learn-
ing with self-generated data. The final reachability prediction
outputs a probability of the target object being within reach
given the joint angles of the robot’s cameras when fixating the
target object.

II. METHODS

A. Background

1) Reinforcement learning: Reinforcement learning (RL) is
a class of algorithms used to solve sequential decision making
problems through learning. Most RL algorithms are based on
Markov decision processes < S,A,R, T > where S is the set
of states, A the set of actions, T the transition model (T :
S ×A→ S) and R the reward function (R : S ×A→ R).

The agent learns from interaction with the environment and
gathers transitions < s,a, r, s′ >. s represents a state and a
the action performed at state s. After the execution of a, the
agent receives a reward r and reaches a new state s′.

The goal of an RL agent is to adapt its behaviour to max-
imise the amount of future rewards. In this paper, we consider
the sum of discounted future rewards: J =

∑∞
k=0 rkγ

k, where
γ ∈ [0, 1] is a discount factor and rk the reward value at step

k. To optimise this criterion, we train a deterministic policy
π : S → A jointly with the state-action value function Q in
an actor-critic set-up:

Qπ(s,a) = Eπ

[∞∑
k=0

rkγ
k

∣∣∣∣∣s,a
]
, (s,a) ∈ S ×A. (1)

2) Deep reinforcement learning: RL suffers from the curse
of dimensionality. The common approach for dealing with this
problem is to use function approximation, in particular using
neural networks. This approach has become very popular with
the arrival of GPUs and the wide-spread application of deep
learning. In our work, we use the DDPG algorithm [7], which
can solve RL problems with a high-dimensional state space
and a continuous action space. This algorithm combines the
deterministic policy gradient algorithm [8] and the deep Q
network [9].

DDPG is an “actor-critic” algorithm updating the critic Qφ
with parameters φ and the deterministic policy πθ with param-
eters θ as follows. At each time-step, we sample (uniformly)
a mini-batch of Nb transitions from a large memory buffer
Tbuf of size Ntrans:
< si,ai, ri, s

′
i >i∈{1,...,Nb}∈ S ×A× R× S.

The targets of the Qφ neural network are computed using
a TD(0) update with a learning rate equal to 1:

∀i ∈ {1, ..., Nb}, yi = ri + γQφ′ (s′i,πθ′(s′i)) . (2)

φ′ and θ′ are the parameters of the target networks updated
using a rate parameter τ (t denotes a time-step):

φ′
t+1 = τφt + (1− τ)φ′

t , θ′t+1 = τθt + (1− τ)θ′t , (3)

The Qφ network updates its weights by minimizing the
squared error 1

2Nb

∑Nb

i=1 (yi −Qφ(si, ai))
2. Using target net-

works greatly contributes to the learning stability of the neural
networks and using a memory buffer helps to satisfy the
constraint of i.i.d samples for learning with neural networks.

Using the Qφ network and the fact that the policy is
deterministic, the following policy gradient is derived:

∂Qφ
∂θ
' 1

Nb

Nb∑
i=1

∂Qφ (si,πθ(si))

∂a

∂πθ(si)

∂θ
. (4)

This update makes the policy select the actions that maximise
the Q function at the batch states. In addition to this algorithm,
we use the inverting gradient procedure of [10] to bound the
actions.

B. Task definition

The robot’s goal is to learn to reach for and touch an object
on a table in front of the robot and to predict if a successful
reach is possible. We use a 7 DOF arm with a pair of cameras
(see Fig. 1). Successful reaching means that the robot touches
the object with the “palm” of its end-effector. For reachability
prediction the robot maps its gaze angles onto a prediction
whether the object is within reach or not. Learning occurs in a
stage-wise approach, where the robot first learns simpler skills

Fig. 1. Illustration of the reachability prediction skill. In our experiments, the
robot’s left arm (from the robot’s view) is used.

Fig. 2. Overall scheme of the stage-wise learning procedure

of object fixation and hand-eye coordination before learning
the reaching skill (see Fig. 2 for a schematic view).

We use the following notations:

• I = (I left, Iright) represents the images from the left
and right cameras.

• q = (qcamera, qrobot) represents the 3 camera joint
angles (one common tilt angle and two independent pan
angles) and 7 robot arm joint angles.

• cb represents the touch sensation of the robot. It is an 8-
element binary vector representing 8 areas of the robot’s
fingers. They correspond to the proximal, medial, and
distal areas of the three fingers, with the exception of the
proximal area of one finger which is linked to the palm.
When in contact, the corresponding entry in cb becomes
1 and 0 otherwise.

The reachability prediction takes the form of a function
mapping camera joint angles qcamera to a probability P ∈
[0, 1] that the robot will be able to touch the object. This
mapping is approximated by a feed-forward neural network
trained with example pairs (qcamera, PT) collected while the
robot learns to reach. More precisely, after each episode, we

record the pair (qcamera, PT), where PT is defined as:

PT =

{
1, if reach was successful,
0, otherwise.

(5)

Our stage-wise learning framework involves three succes-
sive tasks that are described in the following.

C. Learning object fixation

First, the robot learns from raw pixels to fixate on the object
with its two cameras [11]. This consists of moving the cameras
such that the object comes to the image centers of both
cameras. This task is learned using the DDPG algorithm with a
weakly supervised reward function. The learned object fixation
policy is noted πfix

ψ . The reward signal is computed using
an anomaly object localisation technique and requires neither
calibration parameters nor hand-crafted visual modules (see
[11] for details). At the end of an object fixation, the camera
joint angles qcamera

fix implicitly encode the object position in
3D space. This object localisation technique has been proven
efficient to learn to touch an object [6].

D. Learning hand-eye coordination

In the second step, the robot learns a hand-eye coordination
function fη , which maps arm joint angles to “virtual” camera
joint angles:

qcamera
virt = fη(qrobot). (6)

These “virtual” camera joint angles correspond to the ones
which would make the camera system fixate on the end-
effector. The function fη is approximated by a feed-forward
neural network and the input-output pairs (qrobot, qcamera

virt)
are generated via the parallel learning of an end-effector
fixation task. The latter is learned from raw pixels using
the DDPG algorithm and a reward function requiring little
prior knowledge. The reward signal is computed based on the
localisation of the end-effector in the left and right images
using a pre-defined motion of an end-effector finger (see [6]
for details).

E. Learning reaching skills

1) Learning to reach: In the final learning step, the object
fixation policy πfix

ψ and the hand-eye coordination mapping
fη are utilised to learn reaching and reachability prediction.
The reaching behaviour is learned using the DDPG algorithm.
The state space S is composed of the arm and camera joint
angles q as well as eight binary tactile sensors cb attached to
the fingers of the hand. Images are not required here because
we use a single object and consider that the camera joint
angles give sufficient information about the 3D object position.
However, they would be necessary if objects with different
shapes were used in the experiments. The actions are changes
of the robot joint angles: a = ∆qrobot, which are seven real-
valued scalars. The reward signal for the reaching task is the
sum of three components:

r = rtouch + rcontact + rshaping. (7)

rtouch defines the objective of the task:

rtouch =

{
1, if success,
0, otherwise,

(8)

where success means that the robot has reached the object
with its hand’s palm, ending the episode.
rcontact penalises contacts between the end-effector and the

table. This term is negative when contact occurs and prevents
the robot from exploring too much areas in which one of the
fingers (but not the palm) touches the table:

rcontact =

{
−0.01, if contact,
0, otherwise.

(9)

The constant contact value has been empirically found and its
absolute value must be small compared to the sparse reward
value. If it is too high, the arm is repelled by the table and
this slows down learning.
rshaping is an additional shaping reward which favors ac-

tions that bring the robot end-effector closer to the point the
robot is fixating with its cameras:

rshaping =

{
0, if success,
− 1

30 ||q
camera
fix − qcamera

virt ||2, otherwise.
(10)

Here, qcamera
fix is the vector of camera joint angles which

makes the camera system fixate on the object. To obtain it,
the object fixation policy πfix

ψ is used. qcamera
virt is computed

using (6) and represents the camera joint angles which make
the camera system fixate on the end-effector. This requires
instantaneous robot joint angles qrobot and the learned hand-
eye coordination mapping fη . As for rcontact, the shaping term
should be small with respect to the sparse reward value. The
coefficient of − 1

30 has been found empirically.
The sum of these three reward terms has been proven

efficient to learn the object reaching task for various initial
conditions and requires little prior knowledge [6].

The learning of the reaching policy uses an episodic set-up.
For each episode, the robot uses πfix

ψ to fixate on the object and
the arm joint angles are set to their initial values qrobot

0 . The
robot learns to reach during Ntot episodes of at most Nmax

iterations. An episode ends if the robot successfully reaches
the object or after Nmax iterations. For exploration, we use the
Ornstein-Uhlenbeck process. A noise term εj(t) is added to the
motor command ∆qrobot in every time-step and is computed
as follows:

εj(t) = θjµj + (1− θj)εj(t− 1) + ξj(t). (11)

θj is called the mean reversion speed, µj is the equilibrium
value, εj(t− 1) is the noise computed at time-step t− 1 and
ξj(t) is a centered Gaussian noise of standard deviation σj .
This exploration strategy is particularly helpful for discovering
behaviours that imply a succession of actions which have the
same direction.

To accelerate learning, we use a strategy to avoid situations
where the robot’s movement is blocked because of unwanted
contact of the fingers with the table or the object. When such

a contact occurs, the robot takes a backward action to go to a
previous contact-free position.

2) Learning reachability: The reachability mapping Reα
is learned using supervised learning. The input-output pairs
are collected during the learning of reaching movements.
Specifically, the data (qcamera, PT) are added to a database
when the reaching policy starts to perform well (from Nstart

episodes) and reachability learning starts when this database
contains a sufficient number of elements Nupd.

The database of the reachability mapping D is a circular
buffer of size ND. This architecture is chosen because it
allows to forget episodes in which the reaching policy is not
performing well. If, e.g., the robot does not reach a reachable
object position, the algorithm should be able to forget this
corrupted datum. Algorithm 1 summarises the whole joint
learning procedure.

III. EXPERIMENTS

The experiments are carried out in a simulated environment
using the Gazebo simulator jointly with the ROS middleware.

A. Implementation details

For all the neural network algorithms, we use the caffe
library [12]. A GPU (nvidia GeForce GTX Titan X) is used
for the experiments. For the reaching task, the Q network has
3 fully connected layers with 250, 200 and 1 neural units. The
policy network involves 3 fully connected layers with 200, 150
and 7 neural units. The hand-eye coordination function is a
neural network with 2 fully connected hidden layers of 10 and
5 neurons. The neural network representing the reachability
prediction has 2 fully connected hidden layers of 5 units. The
neural network structures approximating the policy and the
Q function for the fixation tasks are described in [11]. The
Adam solver [13] is used to update the weights. Parameter
values from Algorithm 1 are listed in Table I, II and III.

Parameters γ Nmax Nb Ntrans Ntot

Values 0.99 100 256 60 000 40 000
TABLE I

PARAMETER VALUES (1/2)

Parameters Nupd ND Nstart

Values 200 20 000 20 000
TABLE II

PARAMETER VALUES (2/2)

Parameters θj µj σ1, σ2, σ3, σ4 σ5, σ6, σ7
Values 0.8 0 0.01 0.04

TABLE III
ORNSTEIN-UHLENBECK PROCESS PARAMETERS

B. Ground-truth reachability estimate

To evaluate the learned reachability network, we need to
estimate the ground-truth workspace reachability. For this
estimation, we build on the knowledge of the robot structure.
First, we empirically know that the left arm can reach an
object if it is put at the bottom left of the table (from the
robot’s point of view). Second, we know from the geometry
that the furthest points that the robot can reach follow two

Algorithm 1 Joint learning of reaching and reachability
Parameters:

1: Ntrans: size of circular transition buffer
2: γ: discount factor
3: Γ: parameters of the Ornstein-Uhlenbeck process
4: Ntot: total number of episodes
5: Nmax: maximum number of iterations per episode
6: Nb: number of transitions per batch
7: Nupd: number of samples in the reachability database

required to start the learning of reachability
8: ND: size of the reachability database
9: Nstart: number of episodes required to start the learning

of reachability
Inputs:
10: qrobot

0 : initial arm joint angles
11: πfix

ψ : fixation policy
12: fη: hand-eye coordination mapping
Outputs: Qφ, πθ, Reα
Steps:

1: Initialise D, Tbuf , Qφ, πθ and Reα
2: neps ← 0
3: while neps < Ntot do
4: t← 0 and cond← False
5: Reset arm joint angles and randomly place the object
6: Fixate on the object using πfix

ψ

7: Go to the position qrobot
0

8: while !cond do
9: if blocked then

10: Apply a backward action at
11: else
12: Update εΓ(t) using equation (11)
13: Apply at ← πθ(st) + εΓ(t)

14: Compute the reward signal rt and sense st+1

15: Add < st,at, rt, st+1 > to Tbuf

16: Pick Nb random transitions from Tbuf

17: Update Qφ and πθ using DDPG
18: cond← (Success) or (t == Nmax − 1)
19: t← t+ 1

20: if neps ≥ Nstart then
21: Append (qcamera, Success) to D
22: if (size(D) ≥ Nupd) then
23: Update Reα
24: neps ← neps + 1

circular arcs of different radii. Indeed, in Fig. 3, we can see
the ways to reach the furthest points. In the first configuration,
the arm is outstretched and the second revolute joint can
make the arm move while keeping the arm outstretched. The
second configuration corresponds to the position where the
robot cannot move around its second revolute joint, because
it would be hitting its structure. Thus, the arm can reach the
furthest points only by moving around its fourth revolute joint
and forcing the end-effector to keep a given orientation.

Using these facts, the workspace limits are some borders of

Fig. 3. Top views of the left arm illustrating the limits of reachability. The left
figure illustrates construction of the first circular arc by rotating the shoulder
joint. The right figure illustrates the construction of the second circular arc
by rotating the elbow joint.

the table and the mentioned circular arcs. Then, we fit the two
circular arcs on measured points using least mean squares.

C. Training evaluation

Our experiments start by the analysis of the training data,
which has two objectives. First, we want to evaluate how
accurate the learned reachability mapping is compared to
the estimated ground-truth reachability. For this, we plot the
reachability prediction error, which is the difference between
the prediction of the learned mapping and the ground-truth
estimate prediction, as a function of episode number. The
prediction of the learned mapping is obtained by thresholding
the output of the reachability prediction network at 1/2.
Second, we wish to evaluate how often the robot matches the
ground-truth prediction (through the learned reaching policy).
To this end, we compare the reaching success with the ground-
truth object reachability. We call this measure the reaching
performance, because we measure whether the policy reaches
reachable positions. For each of these measures, we provide
95 percent confidence intervals [µ− 1.96σ√

Nrun
, µ+ 1.96σ√

Nrun
]. Nrun

(equal to 3) is the number of run experiments, µ and σ are the
average and the standard deviation of the measure at a given
episode.

In Figure 4, we notice first that the reaching performance
converges to a decent performance of around 95%. This shows
that the reaching learning framework allows to learn to reach
in most areas where the object is reachable. Besides, we notice
that the reachability prediction error falls below 10% within
the 40,000 episodes of training.

D. Resulting reachability

After analysing the training data, we wish to evaluate the
learned reachability network. For a regular grid of object
positions on the table, the object fixation policy πfix

ψ is applied.
Then, the resulting camera joint angles qcamera

fix feed the
reachability prediction network. Figure 5 represents a heat map
of the predicted reaching probabilities. The white curve rep-
resents the border of the estimated ground-truth reachability.

We observe that the overall results are very good. The border
of the learned reachability prediction mostly matches the one
of the estimated ground-truth reachability. The small errors
close to the border may occur because of object localisation

0 5 10 15 20 25 30 35 40

Episodes / 1000
0

10

20

30

40

50

60

70

80

90

100

R
ea

ch
in

g
pe

rf
or

m
an

ce
 (%

)

0

10

20

30

40

50

60

70

80

90

100

R
ea

ch
ab

ili
ty

 p
re

di
ct

io
n

er
ro

r (
%

)

Fig. 4. Reaching performance and reachability prediction error as a function
of episode number. Lines are averages from three independent experiments
and dashed regions show 95 percent confidence intervals.

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

x (m)
0.4

0.6

0.8

1.0

1.2

y
(m

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fig. 5. Prediction of reachability across the table. The solid white curve
shows the estimated ground truth reachability limit. The dashed white curve
shows the convex hull of the projections of the end-effector positions used
during training of the hand-eye coordination onto the table. The robot base
is located at the origin of the coordinate system.

errors implied by the object fixation policy. Furthermore, we
observe that the robot can still efficiently learn both to reach
and the reachability in most of the reachable and unvisited
(during hand-eye coordination training) area. In Figure 5,
the latter is localised outside the space surrounded by a
dashed curve and inside the one surrounded by the full curve.
However, it has difficulties with a specific area. To explain
this phenomenon, the most probable hypothesis is that the
hand-eye coordination outputs aberrant values for some arm
joint angles required to reach these object positions. Then,
this slows down the learning of reaching and reachability. We
believe that these object positions could be mastered if we
make experiments run longer or if the hand-eye coordination
is trained on a larger domain.

IV. DISCUSSION

Building robots that can autonomously learn to interact with
their environment, manipulate objects, and communicate with
people remains a grand challenge for Developmental Robotics.

Here, we have proposed a learning approach through which
a robot can learn to reach for and touch objects while also
learning if an object is within reach or not. Importantly and in
contrast to prior work, our approach works completely without
the use of any forward or inverse kinematics models. Our
approach also does not require any calibration parameters,
visual markers, or hand-tuned vision modules. Instead, it
relies on a combination of deep reinforcement learning and a
form of self-supervised learning, where input-output training
samples are generated through the robot’s own behavior. Thus,
our learning is more autonomous, as it requires less prior
knowledge or structures than previous approaches.

Several studies used also fixation and/or hand-eye coordi-
nation to learn reaching behaviours [14], [15]. However, they
do not learn an explicit model of reachability. In contrast, [4]
jointly learned reaching and reachability, but their approach
differs from ours in some crucial aspects. First, in our method
the binocular fixation and the reaching control are learned us-
ing reinforcement learning whereas in their case the binocular
fixation task is pre-wired and the reaching task is achieved
through the inversion of a learned hand-eye coordination
mapping. Second, unlike their approach, we do not assume
any visual marker or hand-crafted segmentation to detect the
pixellic end-effector and object localisations. Third, both our
method and theirs learn the reachability as a function mapping
the robot’s gaze to the reachability prediction. However, we
differ in the ways the targets (for supervised learning) are
generated. [4] detects if an object has been reached from the
distance between the end-effector and the object in terms of
camera joint angles. Then, the targets are computed based
on this distance if the object has not been reached and on
the optimality of the resulting arm configuration otherwise. In
our strategy, we assume that the robot has reached the object
when the palm of the end-effector touches the object. Then,
we generate a binary target according to the reaching success.
This means that the orientation control of the end-effector
is involved in our learning of reaching and implies a more
complex reaching behaviour. The experiments in simulation
show that our framework is efficient to learn both reaching
and reachability.

Despite the benefits of our method, the learning procedure
still has a number of limitations. First, in our approach we
strictly enforce a specific ordered sequence in which the
different skills are learned. This makes the approach somewhat
inflexible. If, e.g., the hand-eye coordination mapping needs
to be re-learned because of some damage to the robot or
problem with the joint encoders, a human has to decide this. A
system that can autonomously recalibrate “on the job” would
be superior and more biologically plausible, see, e.g., [16].
In the future, it will also be interesting to investigate to what
extent such a stage-wise learning could emerge autonomously
as a result of a curiosity mechanism [17].

A second shortcoming is that once the robot fixates the
target object, the subsequent reaching does not make use of
any visual information anymore, but only relies on the learned
eye-hand-coordination model. Thus the proposed approach

would not be suitable for reaching towards moving objects.
Note that using images for reaching is not incompatible with
our framework since they can be added to the state space.

Third, our approach has been proven efficient only in a
simulated environment and may need substantial efforts to be
validated using a physical robot.

Despite these limitations, an advantage of our framework is
its generality. While we have focused on learning to touch an
object with the palm of the hand, it seems likely that a whole
repertoire of skills could be learned in the future by providing
different reward functions during additional learning phases.

REFERENCES

[1] Y. Guan and K. Yokoi, “Reachable Space Generation of A Humanoid
Robot Using The Monte Carlo Method,” in IROS, 2006.

[2] M. Rolf, “Goal babbling with unknown ranges: A direction-sampling
approach,” in ICDL, 2013.

[3] J. Yang, P. Dymond, and M. Jenkin, “Exploiting hierarchical proba-
bilistic motion planning for robot reachable workspace estimation,” in
Informatics in Control Automation and Robotics, 2011.

[4] L. Jamone, M. Brandao, L. Natale, K. Hashimoto, G. Sandini, and
A. Takanishi, “Autonomous online generation of a motor representation
of the workspace for intelligent whole-body reaching,” Robotics and
Autonomous Systems, 2014.

[5] W. P. Medendorp, H. C. Goltz, T. Vilis, and J. D. Crawford, “Gaze-
centered updating of visual space in human parietal cortex,” Journal of
Neuroscience, 2003.

[6] F. de La Bourdonnaye, C. Teulière, J. Triesch, and T. Chateau, “Stage-
Wise Learning of Reaching Using Little Prior Knowledge,” Frontiers in
Robotics and AI, 2018.

[7] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning.” in ICLR, 2016.

[8] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic Policy Gradient Algorithms,” in ICML, Beijing, China,
2014.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, 2015.

[10] M. J. Hausknecht and P. Stone, “Deep Reinforcement Learning in
Parameterized Action Space.” in ICLR, 2016.

[11] F. de La Bourdonnaye, C.Teulière, T.Chateau, and J.Triesch, “Learning
of binocular fixations using anomaly detection with deep reinforcement
learning.” in IJCNN, 2017.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” in ACM, 2014.

[13] D. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in ICLR, 2015.

[14] A. Ghadirzadeh, A. Maki, and M. Björkman, “A sensorimotor approach
for self-learning of hand-eye coordination,” IROS, 2015.

[15] E. Chinellato, M. Antonelli, B. J. Grzyb, and A. P. del Pobil, “Implicit
sensorimotor mapping of the peripersonal space by gazing and reaching,”
IEEE Transactions on Autonomous Mental Development, 2011.

[16] L. Lonini, S. Forestier, C. Teulière, Y. Zhao, B. E. Shi, and J. Triesch,
“Robust active binocular vision through intrinsically motivated learning,”
Frontiers in neurorobotics, 2013.

[17] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsic motivation
systems for autonomous mental development,” IEEE transactions on
evolutionary computation, 2007.

