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Extreme quantile regression in a proportional
tail framework.

Benjamin Bobbia∗, Clément Dombry∗, Davit Varron∗

Abstract

The model of heteroscedastic extremes initially introduced by Ein-
mahl et al. (JRSSB, 2016) describes the evolution of a non stationary
sequence whose extremes evolve over time. We revisit this model and
adapt it into a general extreme quantile regression framework. We pro-
vide estimates for the extreme value index and the integrated skedasis
function and prove their joint asymptotic normality. Our results are
quite similar to those developed for heteroscedastic extremes but with
a different proof approach emphasizing coupling arguments. We also
propose a pointwise estimator of the skedasis function and a Weissman
estimator of conditional extreme quantiles and prove the asymptotic
normality of both estimators.

1 Introduction and main results

1.1 Framework

One of the main goals of extreme value theory is to propose estimators of
extreme quantiles: given an i.i.d. sample Y1, . . . , Yn with distribution F , one
wants to estimate the quantile of order 1−αn defined as q(αn) := F←(1−αn),
with αn → 0 as n→∞ and

F←(u) := inf{x ∈ R : F (x) ≥ u}, u ∈ (0, 1)

denotes the quantile function. The extreme regime corresponds to the case
when αn < 1/n in which case extrapolation beyond the sample maximum is
needed. Considering an application in hydrology, these mathematical prob-
lems correspond to the following situation: given a record over n = 50 years
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of the level of a river, can we estimate the 100-year return level ? The answer
to this question is provided by the univariate extreme value theory and we
refer to the monographs by Coles [6], Beirlant et al. [2] or de Haan and
Ferreira [8] for a general background.

In many situations, auxiliary information is available and represented
by a covariate X taking values in Rd and, given x ∈ Rd, one wants to
estimate q(αn|x), the conditional (1−αn)-quantile of Y with respect to some
given values of the covariate X = x. This is an extreme quantile regression
problem. Recent advances in extreme quantile regression include the works
by Chernozhukov [5], El Methni et al. [13] or Daouia et al. [7].

In this paper we develop the proportional tail framework for extreme
quantile regression. It is an adaptation of the heteroscedastic extremes de-
veloped by Einmahl et al. [12], where the authors propose a model for the
extremes of independent but non stationary observations whose distribution
evolves over time, a model which can be viewed as a regression framework
with time as covariate and deterministic design with uniformly distributed
observation times 1/n, 2/n, . . . , 1. In our setting, the covariate X takes val-
ues in Rd and is random with arbitrary distribution. The main assumption,
directly adapted from Einmmahl et al. [12], is the so called proportional
tail assumption formulated in Equation (1) and stating that the conditional
tail function of Y given X = x is asymptotically proportional to the uncon-
ditional tail. The proportionality factor is given by the so called skedasis
function σ(x) that accounts for the dependency of the extremes of Y with
respect to the covariate X. Furthermore, as it is standard in extreme value
theory, the unconditional distribution of Y is assumed to be regularly vary-
ing. Together with the proportional tail assumption, this implies that all the
conditional distributions are regularly varying with the same extreme value
index. Hence the proportional tail framework appears suitable for modeling
covariate dependent extremes where the extreme value index is constant but
the scale parameter depends on the covariate X in a non parametric way
related to the skedasis function σ(x). Note that this framework is also con-
sidered by Gardes [14] for the purpose of estimation of the extreme value
index.

Our main results are presented in the following subsections. Section 1.2
considers the estimation of the extreme value index and integrated skedasis
function in the proportional tail model and our results of asymptotic nor-
mality are similar to those in Einmahl et al. [9] but with a different proof
emphasizing coupling arguments. Section 1.3 considers pointwise estimation
of the skedasis function and conditional extreme quantile estimation with
Weissman estimators and state their asymptotic normality. Section 2 devel-
ops some coupling arguments used in the proofs of the main theorems, proofs
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gathered in Section 3. Finally, an appendix states a technical lemma and its
proof.

1.2 The proportional tail model

Let (X, Y ) be a generic random couple taking values in Rd × R. Define the
conditional cumulative distribution function of Y given X = x by

Fx(y) := P(Y ≤ y|X = x), y ∈ R, x ∈ Rd.

The main assumption of the proportional tail model is

lim
y→∞

1− Fx(y)

1− F 0(y)
= σ(x) uniformly in x ∈ Rd, (1)

where F 0 is some baseline distribution function and where σ is the so-called
skedasis function following the terminology introduced in [12]. By integra-
tion, the unconditional distribution F of Y satisfies

lim
y→∞

1− F (y)

1− F 0(y)
=

∫
Rd
σ(x)PX(dx).

We can hence suppose without loss of generality that F = F 0 and that∫
σdPX = 1.

We also make the assumption that F is of 1/γ-regular variation

1− F (y) = y−1/γ`(y), y ∈ R,

with ` slowly varying at infinity. Together with the proportional tail condition
(1) with F = F 0, this implies that Fx is also of 1/γ-regular variation for each
x ∈ Rd. This is a strong consequence of the model assumptions. In this
model, the extremes are driven by two parameters: the common extreme
value index γ > 0 and the skedasis function σ(·). Following [12], we consider
the usual ratio estimator (see, e.g., [16, p. 198]) for γ and we propose a
non-parametric estimator of the integrated (or cumulative) skedasis function

C(x) :=

∫
{u≤x}

σ(u)PX(du), x ∈ Rd,

where u ≤ x stands for the componentwise comparison of vectors. Note that
- putting aside the case where X is discrete - the function C is easier to
estimate than σ, in the same way that a cumulative distribution function
is easier to estimate than a density function. Estimation of C is useful to

3



derive tests while estimation of σ will be considered later on for the purpose
of extreme quantile estimation.

Let (Xi, Yi)1≤i≤n be i.i.d copies of (X, Y ). The estimators are built with
observations (Xi, Yi) for which Yi exceeds a high threshold yn. Note that, in
this article, (yn)n∈N can be deterministic or data driven. For the purpose of
asymptotics, yn depends on the sample size n ≥ 1 in a way such that

yn →∞ and Nn →∞ in probability,

with Nn :=
∑n

i=1 1{Yi>yn} the (possibly random) number of exceedances.
The extreme value index γ > 0 is estimated by the ratio estimator

γ̂n :=
1

Nn

n∑
i=1

log

(
Yi
yn

)
1{Yi>yn}.

The integrated skedasis function C can be estimated by the following empir-
ical pseudo distribution function

Ĉn(x) :=
1

Nn

n∑
i=1

1{Yi>yn, Xi≤x}, x ∈ Rd.

When Y is continuous and yn := Yn−kn:n is the (kn + 1)-th highest order
statistic, then Nn = k and γ̂n coincides with the usual Hill estimator.

Our first result addresses the joint asymptotic normality of γ̂n and Ĉn,
namely

vn

(
Ĉn(·)− C(·)
γ̂n − γ

)
L−→W, (2)

where W is a Gaussian Borel probability measure on L∞(Rd) × R, and
vn → ∞ is a deterministic rate. To prove the asymptotic normality, the
threshold yn must scale suitably with respect to the rates of convergence in
the proportional tail and domain of attraction conditions. More precisely,
we assume the existence of a positive function A converging to zero and such
that, as y →∞,

sup
x∈Rd

∣∣∣∣ F̄x(y)

σ(x)F̄ (y)
− 1

∣∣∣∣ =O

(
A

(
1

F̄ (y)

))
, and (3)

sup
z> 1

2

∣∣∣∣ F̄ (zy)

z−1/γF̄ (y)
− 1

∣∣∣∣ =O

(
A

(
1

F̄ (y)

))
, (4)

with F̄ (y) := 1 − F (y) and F̄x(y) := 1 − Fx(y). Our main result can then
be stated as follows. At the reading of the present article, the reader shall
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probably notice that the domain {z > 1/2} in (4) can be replaced by any
domain {z > c} for some c ∈]0, 1[.

Theorem 1.1. Assume that assumptions (3) and (4) hold and that yn/yn →
1 in probability for some deterministic sequence yn such that pn := F̄ (yn)
satisfies

pn → 0, npn →∞ and
√
npn

1+εA (1/pn)→ 0 for some ε > 0.

Then, the asymptotic normality (2) holds with

vn :=
√
npn and W L

=

(
B
N

)
,

with B a C-Brownian bridge on Rd and N a centered Gaussian random
variable with variance γ2 and independent of B.

By C-Brownian bridge, we here mean a centered Gaussian process on Rd

with covariance function

cov(B(x), B(x′)) :=

∫
Rd
1]−∞,x]1]−∞,x′]dC − C(x)C(x′).

Remark: Theorem 1.1 extends Theorem 2.1 of Einmhal et al. [12] in two
directions: first, it states that their estimators and theoretical results have
natural counterparts in the framework of proportional tails. We also could go
past their univariate dependency i/n→ σ(i/n) to a multivariate dependecy
x → σ(x), x ∈ Rd. Second, it shows that general data-driven thresholds
can be used. Those extensions come at the price of a slightly more stringent
condition upon the bias control. Indeed, their condition

√
knA(n/kn) → 0

corresponds to our condition √npn1+εA(1/pn) → 0 with ε = 0. We be-
lieve that this loss is small in regard to the gain on the pratical side: the
threshold yn in (γ̂n, Ĉn) can be data-driven. Take for example yn := Yn−kn:n,
which is equivalent in probability to yn := F← (1− kn/n) is kn → ∞. As a
consequence, Theorem 1.1 holds for this choice of yn if

kn →∞,
kn
n
→ 0, and

√
kn

1+ε
A

(
n

kn

)
→ 0.

An example where (3) and (4) hold:
The reader might wonder if a model imposing (3) and (4) is not too restrictive
for modeling. First, note that condition (4) has been well studied as the
second order condition holding uniformly over intervals (see, e.g., [8, p. 383,
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Section B.3],[1],[11]). A generic example of regression model where (3) and
(4) hold is as follows: take a c.d.f H fulfilling the second order heavy tail
condition (4) on any domain {z > c}. Then assume that the laws of Y | X =
x obey a location scale model in the sense that

Fx(y) = H
(y − µ(x)

∆(x)

)
,

for some functions µ(·) and ∆(·) that are uniformly bounded on Rd. Then,
since 1−∆(x)µ(x)/y → 1 uniformly in x as y →∞, condition (4) entails

sup
x∈Rd

∣∣∣ F x(y)

∆(x)1/γH(y)
− 1
∣∣∣ = O(A(1/H(y)), as y →∞.

Integrating in x gives H(y) = θF (y) as y →∞ for some θ > 0, which yields
(3) with the choice of σ(·) := θ∆(·)1/γ.

1.3 Extreme quantile regression

In this subsection, we restrict ourselves to the case where yn is deterministic
i.e. yn = yn according to the notations of Theorem 1.1. We now address the
estimation of extreme conditional quantiles in the proportional tail model,
namely

q(αn|x) := F←x (1− αn),

for some x ∈ Rd that will be fixed once for all in this section, and for a
sequence αn = O(1/n). To that aim, we shall borrow the heuristics behind
the Weissman estimator [19], for which we here write a short reminder. It is
known that F ∈ D(Gγ) is equivalent to

lim
t→∞

U(tz)

U(t)
= zγ, for each z > 0,

with U(t) = F←(1 − 1/t), t > 1. Recall that pn = F̄ (yn). Since U is
of γ-regular variation, the unconditional quantile q(αn) := F←(1 − αn) is
approximated by

q(αn) = U(1/pn)
U(1/αn)

U(1/pn)
≈ yn

(
pn
αn

)γ
,

leading to the Weissman-type quantile estimator

q̂(αn) := yn

(
p̂n
αn

)γ̂n
.
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Where p̂n := 1
n

∑n
i=1 1{Yi>yn} is the empirical counterpart of pn.

Now going back to quantile regression in the proportional tail model, it
is readily verified that assumption (1) implies

q(αn | x) ∼ q

(
αn
σ(x)

)
as n→∞.

This immediately leads to the plug-in estimator

q̂(αn|x) := q̂

(
αn
σ̂n(x)

)
= yn

(
p̂nσ̂n(x)

αn

)γ̂n
where σ̂n(x) denotes a consistent estimator of σ(x).

In the following, we propose a kernel estimator of σ(x) and prove its
asymptotic normality before deriving the asymptotic normality of the ex-
treme conditional quantile estimator q̂(αn|x). The proportional tail assump-
tion (1) implies

σ(x) = lim
n→∞

F x(yn)

F (yn)
.

We propose the simplest kernel estimator with bandwidth hn > 0∑n
i=1 1{|x−Xi|<hn}1{Yi>yn}∑n

i=1 1{|x−Xi|<hn}

as an estimator of F x(yn), while the denominator is estimated by p̂n. Com-
bining the two estimators yields

σ̂n(x) := n

∑n
i=1 1{|x−Xi|<hn}1{Yi>yn}∑n

i=1 1{|x−Xi|<hn}
∑n

i=1 1{Yi>yn}
.

Our next result states the asymptotic normality of σ̂n(x). The more
general case of a random threshold is left for future works.

Theorem 1.2. Take the notations of Theorem 1.1, and let hn → 0 be deter-
ministic and positive. Assume that

npnh
d
n →∞,

√
npnhdnA (1/pn)→ 0.

Assume that the law of X is continuous on a neighborhood of x. Also assume
that σ is continuous and positive on a neighborhood of x ∈ Rd, and that
some version f of the density of X also shares those properties. Then, under
assumption (3), we have√

npnhdn

(
σ̂n(x)− σ(x)

)
L−→ N

(
0,
σ(x)

f(x)

)
.
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The asymptotic normality of the extreme quantile estimate q̂(αn | x) is
deduced from the asymptotic normality of γ̂n and σ̂n(x) stated respectively
in Theorem 1.1 and 1.2. This is stated in our next theorem, which has
to be seen as the counterpart of [8, p.138, Theorem 4.3.8] for conditional
extreme quantiles. Also see [16, p. 170, Theorem 9.8] for a similar result
when log(pn/αn)→ d ∈ R.
Theorem 1.3. Under assumptions of Theorems 1.1 and 1.2, if

√
hdn log(pn/αn)→

∞ we have √
npn

log(pn/αn)
log
( q̂(αn|x)

q(αn|x)

)
L−→ N

(
0, γ2

)
.

The condition
√
hdn log(pn/αn) requires the bandwidth to be of larger or-

der than 1/ log(pn/αn) so that the error in the estimation of σ(x) is negligible.
As a consequence of Theorem 1.3, the consistency

q̂(αn|x)

q(αn|x)

P→ 1.

That condition seems to state a limit for the extrapolation: αn cannot be
too small or one might lose consistency.

2 A coupling approach
We will first prove Theorem 1.1 when yn is deterministic (i.e yn ≡ yn). In
this case Nn is binomial (n, pn). Moreover Nn/npn → 1 in probability since
npn →∞.
A simple calculus shows that (1) entails, for each A Borel and t ≥ 1:

P
(
Y

y
≥ t,X ∈ A

∣∣∣∣Y ≥ y

)
−→

∫ ∞
t

∫
A

y−1/γσ(x)dyPX(dx), as y→∞,

(5)
defining a "limit model" for (X, Y/y), the law

Q := σ(x)PX ⊗ Pareto(1/γ)

with independent marginals. Fix n ≥ 1. Using the heuristic of (5), we shall
build an explicit coupling between (X, Y/yn) and the limit model Q. Define
the conditional tail quantile function as Ux(t) := F←x (1−1/t) and recall that
the total variation distance between two Borel probability measures on Rd is
defined as

||P1 − P2|| := sup
B Borel

|P1(B)− P2(B)|.

This distance is closely related with the notion of optimal coupling de-
tailed in [15]. The following fundamental result is due to Dobrushin [10].
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Lemma 2.1 (Dobrushin, 1970). For two probability measures P1 and P2 de-
fined on the same measurable space, there exist two random variables (V1, V2)
on a probability set (Ω,A,P) such that

V1 ∼ P1, V2 ∼ P2 and ||P1 − P2|| = P(V1 6= V2).

This lemma will be a crucial tool of our coupling construction, which is
described as follows.

Coupling construction: Fix n ≥ 1. Let (Ei,n)1≤i≤n be i.i.d. Bernoulli
random variables with P(Ei,n = 1) = F̄ (yn) and (Zi)1≤i≤n i.i.d. with distri-
bution Pareto(1) and independent from (Ei,n)1≤i≤n.
For each 1 ≤ i ≤ n construct (X̃i,n, Ỹi,n, X

∗
i,n, Y

∗
i,n) as follows.

I If Ei,n = 1, then

. Take X̃i,n ∼ PX|Y >yn , X∗i,n ∼ σ(x)PX(dx) on the same probabil-
ity space, satisfying P(X̃i,n 6= X∗i,n) = ‖PX|Y >yn − σ(x)PX(dx)‖.
Their existence is guaranteed by Lemma 2.1.

. Set Ỹi,n := UX̃i,n( Zi
F̄X̃i,n

(yn)
), Y ∗i,n := ynZ

γ
i .

I If Ei,n = 0, then

. Randomly generate (X̃i,n, Ỹi,n) ∼ P(X,Y )|Y≤yn .

. Randomly generate (X∗i,n, Y
∗
i,n/yn) ∼ σ(x)PX(dx)⊗ Pareto(1/γ).

The following proposition states the properties of our coupling construction,
which will play an essential role in our proof of Theorem 1.1.

Proposition 2.2. For each n ≥ 1, the coupling (X̃i,n, Ỹi,n, X
∗
i,n, Y

∗
i,n)1≤i≤n

has the following properties:

1. (X̃i,n, Ỹi,n)1≤i≤n has the same law as (Xi, Yi)1≤i≤n.

2. (X∗i,n, Y
∗
i,n/yn) Q.

3. (X∗i,n, Y
∗
i,n)1≤i≤n and (Ei,n)1≤i≤n are independent. Moreover, (Y ∗i,n)1≤i≤n

are i.i.d, and independent from (X̃i,n, X
∗
i,n).

4. There exists M > 0 such that

max
1≤i≤n,
Ei,n=1

∣∣∣∣∣Y ∗i,nỸi,n
− 1

∣∣∣∣∣ ≤MA (1/pn) and (6)

P
(
X̃1,n 6= X∗1,n|Ei,n = 1

)
≤MA (1/pn) , (7)

where A is given by assumptions (3) and (4).
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Proof. To prove Point 1, it is sufficient to see that

L ((X̃1,n, Ỹ1,n)|Ei,n = 1) = L ((X, Y )|Y > yn).

Since Ux(z/(1 − Fx(yn))) ≤ y if and only if 1 − (1 − Fx(yn))/z ≤ Fx(y) we
have, for y ≥ yn: ∫ ∞

1

1{Ux(z/(1−Fx(yn)))≤y}
dz

z2

=

∫ ∞
1

1{1−(1−Fx(yn))/z≤Fx(y)}
dz

z2

=

∫ 1

Fx(yn)

1{t≤Fx(y)}
dt

1− Fx(yn)

=

∫ Fx(y)

Fx(yn)

dt

1− Fx(yn)
=
Fx(y)− Fx(yn)

1− Fx(yn)
,

with the second equality given by the change of variable t = 1−(1−Fx(yn))/z.
We can deduce from this computation that, for a Borel set B and y ≥ yn,

P

(
X̃1,n ∈ B,UX̃1,n

(
Z

1− FX̃1,n
(yn)

)
≤ y

∣∣∣∣∣E1,n = 1

)

=

∫
x∈B

∫ ∞
1

1{Ux(z/(1−Fx(yn)))≤y}
dz

z2
dPX|Y >yn(x)

=

∫
x∈B

Fx(y)− Fx(yn)

1− Fx(yn)
dPX|Y >yn(x)

=

∫
x∈B

P
(
Y ≤ y|Y > yn, X = x

)
dPX|Y >yn(x)

=P
(
X ∈ B, Y ≤ y|Y > yn

)
.

This proves Point 1. Points 2 and 3 are immediate.
Point 4 will be proved with the two following lemmas.

Lemma 2.3. Under conditions (3) and (4), we have

sup
z≥1/2

sup
x∈Rp

∣∣∣∣ 1

zγy
Ux

(
z

F̄x(y)

)
− 1

∣∣∣∣ = O

(
A

(
1

F̄ (y)

))
, as y →∞.

Proof. According to assumptions (3) and (4), there exists a constantM such
that ∣∣∣∣ F̄x(y)

σ(x)F̄ (y)
− 1

∣∣∣∣ ≤MA

(
1

F̄ (y)

)
, uniformly in x ∈ Rd, and
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∣∣∣∣ F̄ (zy)

z−1/γF̄ (y)
− 1

∣∣∣∣ ≤MA

(
1

F̄ (y)

)
, uniformly in z ≥ 1/2. (8)

From the definition of Ux we have

Ux(
Z

F̄x(y)
) = F←x

(
1− F̄x(y)

z

)
= inf

{
w ∈ R : Fx(w) ≥ 1− F̄x(y)

z

}
= inf

{
w ∈ R : z F̄x(w)

F̄x(y)
≤ 1
}
.

Hence for any w− < w+ one has:

z
F̄x(w

+)

F̄x(y)
< 1 < z

F̄x(w
−)

F̄x(y)
⇒ Ux

(
z

F̄x(y)

)
∈
[
w−, w+

]
. (9)

Now write ε(y) := MA(1/F̄ (y)) and choose w± := zγy (1± 4γε(y)), so that
one can write

z F̄x(w−)

F̄x(y)
= z σ(x)F̄ (ω−)(1−ε(y))

σ(x)F̄ (y)(1+ε(y))

≥ z 1−ε(y)
1+ε(y)

1
F̄ (y)

F̄ (zγy(1− 4γε(y)))

≥ z 1−ε(y)
1+ε(y)

1
F̄ (y)

F̄ (y)(1− ε(y)) (zγ(1− 4γε(y)))−1/γ , by (8)

≥ (1−ε(y))2

1+ε(y)
(1− 4γε(y))−1/γ .

A similar computation gives

z
F̄x(w

+)

F̄x(y)
≤ (1 + ε(y))2

1− ε(y)
(1 + 4γε(y))−1/γ .

As a consequence the condition before "⇒" in (9) holds if

4γ ≥ 1

ε(y)
max

{
1−

(
(1− ε(y))2

1 + ε(y)

)γ
;

(
(1 + ε(y))2

1− ε(y)

)γ
− 1

}
.

But a Taylor expansion of the right hand side shows that it is 3γ+o(1) as y →
∞. This concludes the proof of Lemma 2.3.

Applying Lemma 2.3 with z := Zi and y := yn gives

max
i:Ei,n=1

∣∣∣∣∣Y ∗i,nỸi,n
− 1

∣∣∣∣∣ = O (A (1/pn)) .

Now by construction of (X̃1,n, X
∗
1,n) when E1,n = 1, we see that (7) is a

consequence of the following lemma.
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Lemma 2.4. Under conditions (3) and (4), we have

||PX|Y >y − σ(x)PX(dx)|| = O

(
A

(
1

F̄ (y)

))
, as y →∞.

Proof. For B ∈ Rd, we have

|P (X ∈ B|Y > y)−
∫
B

σ(x)PX(dx)|

=

∣∣∣∣
∫
B
F̄x(y)PX(dx)

F̄ (y)
−
∫
B

σ(x)PX(dx)

∣∣∣∣
≤
∫
B

∣∣∣∣ F̄x(y)

F̄ (y)
− σ(x)

∣∣∣∣PX(dx)

=O

(
A

(
1

F̄ (y)

))
, by (3).

This prooves (7) and hence concludes the proof of Proposition 2.2.

3 Proofs

3.1 Proof of Theorem 1.1

Change of notation: Since, for each n the law of (X̃i,n, Ỹi,n)i=1,...,n is P⊗nX,Y ,
we shall confound them with (Xi, Yi)i=1,...,n to unburden notations.

3.1.1 Proof when yn = yn is deterministic

Fix 0 < ε < 1
2
and 0 < β < ε/(2γ). We consider the empirical process

defined for every x ∈ Rd and y ≥ 1/2 as

Gn(x, y) :=
√
npn(Fn(x, y)− F(x, y)), with

Fn(x, y) :=
1

Nn

n∑
i=1

1{Xi≤x}1{Yi/yn>y}Ei,n, and

F(x, y) := C(x)Vγ(y) = Q (]−∞, x]×]y,+∞[) ,

where Vγ(y) := y−1/γ for y ≥ 1 and Vγ(y) := 1 otherwise.
Note that neither F nor any realisation of Fn is a cumulative distribution
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function in the strict sense, since they are decreasing in y. Their roles should
however be seen as the same as for c.d.f. Now denote by L∞,β(Rd× [1/2,∞[)
the (closed) subspace of L∞(Rd × [1/2,∞[) of all f satisfying

‖f‖∞,β := sup
x∈Rd,y≥1/2

|yβf(x, y)| <∞,

f(∞, y) := lim
min{x1,...,xd}→∞

f(x, y) exists for each y ≥ 1,

{y 7→ f(∞, y)} is Càdlàg (see e.g. [4] p. 121).

Simple arguments show that Gn takes values in L∞,β(Rd × [1/2,∞[).
First note that Ĉn−C and γ̂n− γ are images of Gn by the following map ϕ.

ϕ : L∞,β(Rd × [1/2,∞[) → L∞(Rd)× R
f 7→

(
{x 7→ f(x, 1)},

∫∞
1
y−1f(∞, y)dy

)
.
,

and remark that ϕ is continuous since β > 0. By the continuous mapping
theorem, we hence see that Theorem 1.1 will be a consequence of

Gn
L→W in L∞,β(Rd × [1/2,∞[), (10)

where W is the centered Gaussian process with covariance function

cov
(
W(x1, y1),W(x2, y2)

)
= C(x1∧x2)Vγ(y1)∧Vγ(y2)−C(x1)C(x2)Vγ(y1)Vγ(y2),

and where x1 ∧ x2 is understood componentwise.
The proof is divided into two steps. In step 1 we prove (10) for the counter-
part of Gn that is built on the Q sample (X∗i,n, Y

∗
i,n)1≤i≤n. Our proof relies

on standard argument from empirical processes. In step 2 we use the cou-
pling properties of Proposition (2.2) to deduce (10) for the original sample
(Xi, Yi)1≤i≤n.
Step 1: Define

F∗n(x, y) :=
1

Nn

n∑
i=1

1{X∗i ≤x}1{Y ∗i,n/yn>y}Ei,n x ∈ Rd, y ≥ 1/2.

The following proposition is a Donsker theorem in weighted topology for
G∗n :=

√
npn(F∗n − F).

Proposition 3.1. If (3) and (4) hold, then

G∗n
L→W, in L∞,β(Rd × [1/4,∞[).

13



Proof. Write δx(A) = 1 if x ∈ A and 0 otherwise.
Since (X∗i,n, Y

∗
i,n)1≤i≤n is independent of (Ei,n)1≤i≤n, Lemma 4.1 entails the

following equality in laws

n∑
i=1

δ(
X∗i,n,

Y ∗
i,n
yn

)Ei,n L
=

ν(n)∑
i=1

δ(
X∗i,n,

Y ∗
i,n
yn

),
where ν(n) ∼ B(n, pn) is independent of (X∗i,n, Y

∗
i,n)1≤i≤n.

Since (X∗i,n, Y
∗
i,n/yn)  Q and since ν(n)

P→ ∞, ν(n)/npn
P→ 1 and ν(n)

independent of (X∗i,n, Y
∗
i,n)1≤i≤n, we see that Gn

L→W will be a consequence
of

√
k

(
1

k

k∑
i=1

1{Ui≤.,Vi>.} − F(., .)

)
L−→k→∞ W in L∞,β

(
Rd × [1/4,∞[

)
,

where the (Ui, Vi) are i.i.d. with distribution Q. Now consider the following
class of functions on Rd × [1/4,∞[

Fβ :=
{
fx,y : (u, v) 7→ yβ1(−∞,x](u)1]y,∞[(v), x ∈ Rd, y ≥ 1/4

}
.

Using the isometry:

L∞,β(Rd × [1/4,∞[) → L∞(Fβ)
g 7→ {Ψ : fx,y 7→ g(x, y)},

it is enough to prove that the abstract empirical process indexed by Fβ
converges weakly to the Q- Brownian bridge indexed by Fβ. In other words,
we need to verify that Fβ is Q-Donsker. This property can be deduced from
two remarks:

1. Fβ is a VC-subgraph class of function (see, e.g, Van der Vaart and
Wellner [18], p.141). To see this, note that

Fβ ⊂
{
fx,s,z : (u, v) 7→ z1(−∞,x](u)1]y,∞[(v), x ∈ Rd, s ∈ [1/4,∞[, z ∈ R

}
which is a VC-subgraph class: the subgraph of each of its members is
an hypercube of Rd+2.

2. Fβ has a square integrable envelope F . This is proved by noting that
for fixed (u, v) ∈ Rd × [1/4,∞[.

F 2(u, v) = sup
x∈Rd, y≥1/4

y2β1[0,x](u)1]y,∞[(v) = v2β

as a consequence F 2 is Q-integrable since β < (2γ)−1.

14



This concludes the proof of Proposition 3.1.

Step 2: We show here that the two empirical processes Gn and G∗n must
have the same weak limit, by proving the next proposition.

Proposition 3.2. Under Assumptions (3) and (4), we have

sup
x∈Rd, y≥1/2

yβ
√
npn|F∗n(x, y)− Fn(x, y)| = oP(1).

Proof. Adding and subtracting

F]n(x, y) :=
1

Nn

n∑
i=1

1{Xi≤x}1{Y ∗i,n/yn>y}Ei,n

in |Fn(x, y)− F∗n(x, y)|, the triangle inequality entails, almost surely

|Fn(x, y)− F∗n(x, y)|
=|Fn(x, y)− F]n(x, y) + F]n(x, y)− F∗n(x, y)|

≤ 1

Nn

n∑
i=1

|1{Xi≤x} − 1{X∗i,n≤x}|1
{
Y ∗
i,n
yn

>y

}Ei,n
+

1

Nn

n∑
i=1

|1{ Yiyn>y}
− 1{

Y ∗
i,n
yn

>y

}|1{Xi≤x}Ei,n
≤ 1

Nn

n∑
i=1

1{Xi 6=X∗i,n}1
{
Y ∗
i,n
yn

>y

}Ei,n +
1

Nn

n∑
i=1

|1{ Yiyn>y}
− 1{

Y ∗
i,n
yn

>y

}|Ei,n.

Let us first focus on the first term. Notice that

sup
x∈Rd, y≥1/2

yβ
√
npn

Nn

n∑
i=1

1{Xi 6=X∗i,n}1
{
Y ∗
i,n
yn

>y

}Ei,n
= sup

y≥1/2

yβ
√
npn

Nn

n∑
i=1

1{Xi 6=X∗i,n}1
{
Y ∗
i,n
yn

>y

}Ei,n
≤ sup

y≥1/2

yβ
√
npn

Nn

(
max
i=1,...,n

1{
Y ∗
i,n
yn

>y

}Ei,n
)

n∑
i=1

1{Xi 6=X∗i,n}Ei,n.

Now notice that

sup
y≥1/2

max
i=1,...,n

yβ1{
Y ∗
i,n
yn

>y

}Ei,n = max
i=1,...,n

sup
y≥1/2

yβ1[1,Y ∗i,n/yn](y)Ei,n

= max
i=1,...,n

(
Y ∗i,n
yn

)β
Ei,n.
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By independence between Ei,n and Y ∗i,n/yn, Lemma 4.1 in the Appendix gives

max
i=1,...,n

(
Y ∗i,n
yn

)β
Ei,n

L
= max

i=1,...,ν(n)

(
Y ∗i,n
yn

)β
where Y ∗i,n/yn in the right hand side have a Pareto(1/γ) distribution, whence

max
i=1,...,n

(
Y ∗i,n
yn

)β
Ei,n = OP(ν(n)βγ) = OP((npn)βγ). (11)

Moreover, writing An := A(1/pn) one has

E

(
n∑
i=1

1{Xi 6=X∗i,n}Ei,n

)
= npnAn,

which entails
1

npnAn

n∑
i=1

1{Xi 6=X∗i,n}Ei,n = OP(1). (12)

As a consequence

√
npn

Nn

max
i=1,...,n

(
Y ∗i,n
yn

)β
Ei,n

(
n∑
i=1

1{Xi 6=X∗i,n}Ei,n

)

=
npn
Nn

max
i=1,...,n

(
Y ∗i,n
yn

)β
Ei,n

(
1

npnAn

n∑
i=1

1{Xi 6=X∗i,n}Ei,n

)
√
npnAn

= OP(1)OP((npn)βγ)OP(1)
√
npnAn, by (11) and (12)

= oP(1), by assumption of Theorem 1.1, and since βγ <
ε

2
.

Let us now focus on the convergence

sup
x∈Rd, y≥1/2

yβ
√
npn

1

Nn

n∑
i=1

∣∣∣∣∣1{ Yiyn>y} − 1{
Y ∗
i,n
yn

>y

}
∣∣∣∣∣Ei,n P→ 0.

We deduce from Proposition 2.2 that, almost surely, writing εn := MAn:

(1− εn)
Yi
yn
Ei,n ≤

Y ∗i,n
yn

Ei,n ≤ (1 + εn)
Yi
yn
Ei,n.

Which entails, almost surely, for all y ≥ 1:

Ei,n1{
Y ∗
i,n
yn
≥(1+εn)y

} ≤ Ei,n1{ Yiyn≥y}
≤ Ei,n1{

Y ∗
i,n
yn
≥(1−εn)y

},
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implying∣∣∣∣∣1{ Yiyn>y} − 1{
Y ∗
i,n
yn

>y

}
∣∣∣∣∣Ei,n ≤

∣∣∣∣∣1{
Y ∗
i,n
yn

>(1−εn)y

} − 1{
Y ∗
i,n
yn

>(1+εn)y

}
∣∣∣∣∣Ei,n.

This entails

sup
x∈Rd, y≥1/2

yβ
√
npn

1
Nn

n∑
i=1

∣∣∣∣∣1{ Yiyn>y} − 1{
Y ∗
i,n
yn

>y

}
∣∣∣∣∣Ei,n

≤ sup
x∈Rd, y≥1/2

yβ
√
npn |F∗n(∞, (1− εn)y)− F∗n(∞, (1 + εn)y)| .

Consequently we have, adding and substracting expectations:

sup
x∈Rd, y≥1/2

yβ
√
npn

1

Nn

n∑
i=1

∣∣∣∣1{ Yi
yn
>y} − 1

{
Y ∗
i,n
yn

>y}

∣∣∣∣Ei,n
≤ sup
x∈Rd, y≥1/2

yβ
∣∣∣G̃∗n((1− εn)y)− G̃∗n((1 + εn)y)

∣∣∣ (13)

+
√
npn sup

y≥1/2

yβ(Vγ((1− εn)y)− Vγ((1 + εn)y)), (14)

where we wrote G̃∗n(y) := G∗n(∞, y).
We will first prove that (14) converges to 0. For, y ≥ 1 we can bound

yβ(Vγ((1− εn)y)− Vγ((1 + εn)y))

≤yβ|1− ((1 + εn)y)−1/γ|1{(1−εn)y<1}

+ yβ|((1− εn)y)−1/γ − ((1 + εn)y)−1/γ|1{(1−εn)y≥1}. (15)

In the first term of the right hand side we can write, since (1− εn)y < 1,

yβ|1− ((1 + An)y)−1/γ|1{(1−εn)y<1}

≤ yβ−1/γ|y1/γ − (1 + An)−1/γ|1{(1−εn)y<1}

≤ yβ−1/γ|(1− εn)−1/γ − (1 + An)−1/γ|1{(1−εn)y<1}

≤ 4γ−1εn, since β − 1/γ < 0.

The second term of (15) is bounded by similar arguments, from where:
√
npn sup

x∈Rd, y≥1/2

yβ|Vγ((1− εn)y)− Vγ((1 + εn)y)|

≤ 8γ−1M
√
npnAn,
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which converges in probability to 0 by assumptions of Theorem 1.1.
We will now prove that (13) converges to zero in probability. By Proposition
3.1, the continuous mapping theorem together with the Portmanteau theorem
entail:

∀ε > 0,∀ρ > 0, lim P

(
sup

y≥1/2,δ<ρ

yβ|G̃∗n((1− δ)y)− G̃∗n((1 + δ)y)| ≥ ε

)

≤P

(
sup

y≥1/2,δ<ρ

yβ|W̃((1− δ)y)− W̃((1 + δ)y)| ≥ ε

)
,

where W̃(y) := W(∞, y) is the centered Gaussian process with covariance
function

cov(W̃(y1),W̃(y2)) := Vγ(y1) ∧ Vγ(y2)− Vγ(y1)Vγ(y2), (y1, y2) ∈ [1/4,∞[2.

With Proposition 3.1 together with the continuous mapping theorem, we
see that the proof of Proposition 3.2 will be concluded if we establish the
following lemma.

Lemma 3.3. We have

sup
y≥1/2,δ<ρ

yβ|W̃((1− δ)y)− W̃((1 + δ)y)| P−→
ρ→0

0.

Proof. Let B0 be the standard Brownian bridge with B0 identically zero on
[1,∞[). W̃ has the same law as {y 7→ B0(y−1/γ)} (see [17], p. 99), from
where

sup
y≥1/2,δ<ρ

yβ|W̃((1− δ)y)− W̃((1 + δ)y)|
L
= sup

y≥1/2,δ<ρ

yβ
∣∣B0(((1− δ)y)−1/γ)− B0(((1 + δ)y)−1/γ)

∣∣
≤ sup

0≤y≤2,δ<ρ
y−βγ

∣∣B0((1− δ)−1/γy)− B0((1 + δ)−1/γy)
∣∣ , almost surely.

Since βγ < 1/2 the process B0 is a.s-βγ-Hölder continuous on [0,+∞[. Con-
sequently, for an a.s finite random variable H one has with probability one:

sup
0≤y≤2,δ<ρ

y−βγ|B0((1− δ)−1/γy)− B0((1 + δ)−1/γy)|

≤ sup
0≤y≤2

y−βγ|(1− ρ)−1/γ − (1 + ρ)−1/γ|βγyβγH

= |2(1− ρ)−1/γ − 2(1 + ρ)−1/γ|βγH
= (4 ρ

γ
)βγH.
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The preceding lemma concludes the proof of Proposition 3.2, which, com-
bined with Proposition (3.1), proves (10). This concludes the proof of The-
orem 1.1 when yn ≡ yn.

3.1.2 Proof of Theorem 1.1 in the general case.

We now drop the assumption yn ≡ yn and we relax it to yn
yn

P→ 1 to achieve
the proof of Theorem 1.1 in its full generality. We shall use the results of
§3.1.1. Define

∨
Fn(x, y) :=

1
n∑
i=1

1{Yi>yn}

n∑
i=1

1{Xi≤x}1{Yi/yn>y} and

∨
Gn(x, y) :=

√
npn

(
∨
Fn(x, y)− F(x, y)

)
.

Now write un := yn
yn
. From §3.1.1, we know that(

∨
Gn, un

)
L→ (W, 1) in D×]0,+∞[, where D := L∞,β(Rd × [1/2,∞[).

Moreover, as pointed out in Lemma 3.3, W almost surely belongs to

D0 =

{
ϕ ∈ L∞,β(Rd × [1/2,∞[), sup

x∈Rd,y,y′>1/2

|ϕ(x, y)− ϕ(x, y′)|
|y − y′|βγ

<∞

}
.

Consider the followings maps (gn)n∈N and g from D to L∞,β(Rd× [1,∞[)

gn : (ϕ, u) 7→ √npn

(
F(., u.) + 1√

npn
ϕ(., u.)

F(∞, u) + 1√
npn

ϕ(∞, u)
− F(., .)

)
, and

g : (ϕ, u) 7→ u1/γ
(
ϕ(., u.)− ϕ(∞, u)F(., .)

)
.

Notice that Gn = gn(
∨
Gn, un) and g(W, 1) = W. The achievement of the

proof of Theorem 1.1 hence boils down to making use of the extended con-
tinuous mapping theorem (see, e.g Theorem 1.11.1 p. 67 in [18]) which is
applicable to the sequence (gn,Gn) provided that we establish the following
lemma

Lemma 3.4. For any sequence ϕn of elements of D that converges to some
ϕ ∈ D0, and for any sequence un → 1 one has gn(ϕn, un) → g(ϕ, 1) in
L∞,β(Rd × [1,∞[). Here, convergence in L∞,β(Rd × [1,∞[) is understood as
with respect to || · ||, the restriction of ‖ · ‖∞,β to Rd × [1,∞[.
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Proof. For fixed (x, y) ∈ Rd × [1/2,∞[ and n ≥ 1, we have, writing tn :=
(npn)−1/2:

|gn(ϕn, un)(x, y)− g(ϕ, 1)(x, y)|

=

∣∣∣∣ 1

tn

(
F(x, uny) + tnϕn(x, uny)

F(∞, un) + tnϕn(∞, un)
− F(x, y)

)
−
(
ϕ(x, y)− ϕ(∞, 1)F(x, y)

)∣∣∣∣ .
Now elementary algebra using F(x, yun)/F(∞, un) = F(x, y) shows that

F(x, uny) + tnϕn(x, uny)

F(∞, un) + tnϕn(∞, un)
− F(x, y)

= F(x, y)

(
1 + tn

ϕn(x,uny)
F(x,uny)

1 + tn
ϕn(∞,un)
F(∞,un)

− 1

)

= F(x, y)

((
1 + tn

ϕn(x, uny)

F(x, uny)

)(
1− tnu1/γ

n ϕn(∞, un)(1 + εn)
)

(1 + θn(x, y))− 1

)
= F(x, y)

(
tn

(
ϕn(x, uny)

F(x, uny)
− u1/γ

n ϕn(∞, un)

)
+Rn(x, y)

)
,

with εn → 0 a sequence of real numbers not depending upon x and y, and
with

Rn(x, y) := tnu
1/γ
n ϕn(∞, un)εn + (tnu

1/γ
n )2ϕn(∞, un)

ϕn(x, uny)

F(x, y)
(1 + εn).

This implies that

‖gn(ϕn, un)− g(ϕ, 1)‖ ≤ B1,n +B2,n +B3,n +B4,n,

where the four terms B1,n, ..., B4,n are detailed below and will be proved to
converge to zero as n→∞.
First term

B1,n :=‖u1/γ
n ϕn(., un.)− ϕ(., .)‖

≤‖u1/γ
n ϕn(., un.)− ϕn(., un.) + ‖ϕn(., un.)− ϕ(., .)‖

=|u1/γ
n − 1|‖ϕn(., un.)‖+ ‖ϕn(., un.)− ϕ(., .)‖

≤|u1/γ
n − 1|‖ϕn(., un.)‖+ ‖ϕn(., un.)− ϕ(., un.)‖

+ ‖ϕ(., un.)− ϕ(., .)‖
≤|u1/γ

n − 1|‖ϕn(., un.)‖+ u−βn ||ϕn(x, y)− ϕ(x, y)||∞,β
+Hϕ|un − u|βγ,
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where Hϕ := sup{|y − y′|−βγ|ϕ(x, y)− ϕ(x, y′)|, x ∈ Rd, y, y′ ≥ 1/2} is finite
since ϕ ∈ D0. The first two terms converge to 0 since un → 1 and ϕn → ϕ
in D. The third term converges to zero since Hϕ is finite.
Second term

B2,n :=‖(u1/γ
n ϕn(∞, un)− ϕ(∞, 1))F‖

≤
(
|u1/γ
n ϕn(∞, un)− ϕn(∞, un)|+ |ϕn(∞, un)− ϕ(∞, 1)|

)
‖F‖.

But ‖F‖ is finite since βγ < ε < 1/2, from where B2,n → 0 by similar
arguments as those used for B1,n.
Third term

B3,n :=‖u1/γ
n ϕn(∞, un)εnF‖ ≤ |u1/γ

n ϕn(∞, un)| × |εn| × ‖F‖.

Since ‖F‖ is finite, since |u1/γ
n ϕn(∞, un)| is a converging sequence, and since

|εn| → 0, we deduce that B3,n → 0.
Fourth term

B4,n :=
(
1 + |εn|

)∥∥∥(tnu
1/γ
n )2ϕn(∞, un)ϕn(., un.)

∥∥∥
≤
(
1 + |εn|

)∣∣∣(tnu1/γ
n )2ϕn(∞, un)

∣∣∣× ‖ϕn(., un.)‖.

Since ϕn → ϕ in L∞,β(Rd × [1/2,∞[), the same arguments as for B3,n entail
the convergence to zero of B4,n.

3.2 Proof of theorem 1.2

Let x ∈ Rd, which will be kept fixed in all this section. To prove the asymp-
totic normality of σ̂n(x) we first establish the asymptotic normality of the
numerator and the denominator separately. Note that we don’t need to study
their joint asymptotic normality, because only the numerator will rule the
asymptotic normality of σ̂n(x), as its rate of convergence is the slowest.

Proposition 3.5. Assume that (pn)n≥1 and (hn)n≥1 both converge to 0 and
satisfy npnhdn → 0. We have

1√
npnhdn

n∑
i=1

1{|Xi−x|≤hn,Yi>yn} − P
(
|Xi − x| ≤ hn, Yi > yn

)√
σ(x)f(x)

L→ N (0, 1),

(16)

1√
nhdn

n∑
i=1

1{|Xi−x|≤hn} − P
(
|Xi − x| ≤ hn

)√
f(x)

L→ N (0, 1), and (17)
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1
√
npn

n∑
i=1

(
1{Yi>yn} − pn

) L→ N (0, 1). (18)

Proof. Note that (18) is the central limit theorem for binomial(n, pn) se-
quences with pn → 0 and npn → ∞, while (17) is the well known pointwise
asymptotic normality of the Parzen-Rosenblatt density estimator. The proof
of (16) is a straghtforward use of the Lindeberg-Levy Theorem (see, e.g [3],
Theorem 27.2 p. 359). First define

Zi,n :=
1{|Xi−x|≤hn,Yi>yn} − P

(
|Xi − x| ≤ hn, Yi > yn

)√
npnhdn

√
σ(x)f(x)

and remark that E (Zi,n) = 0. Moreover we can write,

E
(
1{|Xi−x|≤hn,Yi>yn}

)
=

∫
B(x,h)

P(Yi > yn|Xi = z)PX(dz)

≈
∫
B(x,h)

σ(z)pnPX(dz) (a)

≈ σ(x)f(x)pnh
d
n, (b)

where (a) is a consequence of the uniformity in assumption (3), while equiv-
alence (b) holds by our assumptions upon the regularity of both f and σ in
Theorem 1.2. We conclude that sup{|nVar (Zi,n)−1|, i = 1, ..., n} → 0. Note
that we can invoke the Lindeberg-Levy Theorem if for all ε > 0, we have

n∑
i=1

∫
{Zi,n>ε}

Z2
i,nPX(dx)→ 0.

This convergence holds since the set {Zi,n > ε} can be rewritten{
|1{|Xi−x|≤hn,Yi>yn} − P(|Xi − x| ≤ hn, Yi > yn)| ≥ ε

√
σ(x)f(x)

√
npnhdn

}
,

which is empty when n is large enough, since npnhdn → ∞. This proves
(16).

Now, writing

σ̂n(x) =
n∑n

i=1 1{Yi>yn}
×
∑n

i=1 1{|x−Xi|<hn}1{Yi>yn}∑n
i=1 1{|x−Xi|<hn}

,

22



we have

σ̂n(x) =
1

1 + 1√
npn

n∑
i=1

Z]
i,n

×

P(|X−x|≤hn,Y >yn)
pnhdn

+
√

f(x)σ(x)
npnhdn

n∑
i=1

Zi,n

P(|X−x|≤hn)
hdn

+
√

f(x)
nhdn

n∑
i=1

Z̃i,n

, where

Z̃i,n :=
1{|Xi−x|≤hn} − P(|Xi − x| ≤ hn)√

f(x)
√
nhdn

, and

Z]
i,n :=

1{Yi>yn} − pn√
npn

.

Now write

σhn(x) :=
P
(
|X − x| ≤ hn, Y > yn

)
pnhdnf(x)

.

Since f is continuous and bounded away from zero on a neighbourhood of x
we have

σ̂n(x) =
1

1 + 1√
npn

n∑
i=1

Z]
i,n

σhn(x)f(x)(1 + εn,1) +
√

f(x)σ(x)
npnhdn

n∑
i=1

Zi,n

f(x)(1 + εn,2) +
√

f(x)
nhdn

n∑
i=1

Z̃i,n

,

with |εn,1| ∨ |εn,2| → 0. Now a Taylor expansion of the denominator gives

σ̂n(x) =
1

1 + 1√
npn

n∑
i=1

Z]
i,n

(
σhn(x) +

√
σ(x)

npnhdnf(x)

n∑
i=1

Zi,n

)

×

(
1−

√
1

nhdnf(x)

n∑
i=1

Z̃i,n + oP

(√
1

nhdnf(x)

))
.

By similar arguments, remarking that (nhdn)−1 = o
(

(npnh
d
n)−1

)
we have, by

(16) and (17):

σ̂n(x) =
1

1 + 1√
npn

n∑
i=1

Z]
i,n

(
σhn(x) +

√
σ(x)

npnhdnf(x)

n∑
i=1

Zi,n + oP

(
1√
npnhdn

))
.

Moreover, with one more Taylor expansion of the denominator, we have, by
(18),

σ̂n(x) = σhn(x) +

√
σ(x)

npnhdnf(x)

n∑
i=1

Zi,n + oP

(
1√
npnhdn

)
,
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which entails

√
npnhdn(σ̂n(x)− σhn(x)) =

√
σ(x)

f(x)

n∑
i=1

Zi,n + oP(1).

The asymptotic normality of
n∑
i=1

Zi,n gives

√
npnhdn(σ̂n(x)− σhn(x))

L→ N
(

0,
σ(x)

f(x)

)
.

The proof is achieved by noticing that assumption (3) entails√
npnhdn|σhn(x)− σ(x)| =

√
npnhdn

∣∣∣∣P(|X − x| ≤ hn, Y > yn)

f(x)hdnP(Y > yn)
− σ(x)

∣∣∣∣
=
√
npnhdn

∣∣∣∣P(Y > yn|X ∈ B(x, hn))

P(Y > yn)
− σ(x)

∣∣∣∣
= O

(√
npnhdnA (1/pn)

)
→ 0.

3.3 Proof of theorem 1.3

For sake of clarity, we first express conditions (3) and (4) in terms of the tail
quantile function U : we have, uniformly in x,∣∣∣∣ Ux(1/αn)

U(σ(x)/αn)
− 1

∣∣∣∣ = O(An) and
∣∣∣∣ U(1/αn)

xU(x−1/γ/αn)
− 1

∣∣∣∣ = O(An),

where An := A(1/pn). Start the proof by splitting the quantity of interest
into four parts,

log

(
q̂(αn|x)

q(αn|x)

)
= log

(
yn

q(αn|x)

(
p̂nσ̂n(x)

αn

)γ̂n)

= log

(
yn

q(αn|x)

(
pnσ̂n(x)

αn

)γ̂n ( p̂n
pn

)γ̂n)

= log

(
yn

q(αn|x)

)
+ γ̂n log

(
pn
αn

)
+ γ̂n log(σ̂n(x)) + γ̂n log

(
p̂n
pn

)
= log

(
yn

q(αn|x)

(
pn
αn

)γ)
+ (γ̂n − γ) log

(
pn
αn

)
+ γ̂n log(σ̂n(x)) + γ̂n log

(
p̂n
pn

)
.
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Moreover we can see that

log

(
yn

q(αn|x)

(
pn
αn

)γ)
= log

(
U(1/pn)

Ux(1/αn)

(
pn
αn

)γ)
= log

(
U(1/pn)

U(1/αn)

(
pn
αn

)γ)
+ log

(
U(1/αn)

Ux(1/αn)

)
Then, we write

√
npn

log(pn/αn)
log

(
q̂(αn|x)

q(αn|x)

)
= Q1,n +Q2,n +Q3,n +Q4,n, with

Q1,n :=

√
npn

log(pn/αn)
log

(
U(1/pn)

U(1/αn)

(
pn
αn

)γ)
,

Q2,n :=
√
npn(γ̂n − γ),

Q3,n :=

√
npn

log(pn/αn)

(
γ̂n log(σ̂n(x)) + log

(
U(1/αn)

Ux(1/αn)

))
,

Q4,n :=

√
npn

log(pn/αn)
γ̂n log

(
p̂n
pn

)
.

First, condition (4) entails

Q1,n ∼
√
npn

log(pn/αn)

(
U(1/pn)

U(1/αn)

(
pn
αn

)γ
− 1

)
∼
√
npn

log(pn/αn)

(
U((αn/pn)αγ/αn)

U(1/αn)

(
pn
αn

)γ
− 1

)
=

√
npn

log(pn/αn)
O(An).

Since αn = o(pn), we see that log(pn/αn)−1 → 0 together with √npnAn → 0
entails that Q1,n → 0.
Second, we know by Theorem 1.1 that Q2,n

L→ N (0, γ2).
Now Q3,n is studied remarking that

log

(
U(1/αn)

Ux(1/αn)

)
= log

(
U(σ(x)/αn)

Ux(1/αn)

)
+log

(
U(1/αn)

σ(x)−γU(σ(x)/αn)

)
−γ log(σ(x)).

Together with (3) and (4), one has

log

(
U(1/αn)

Ux(1/αn)

)
= O(An)− γ log(σ(x)).
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Consequently

Q3,n =

√
npn

log(pn/αn)
O(An) +

√
npn

log(pn/αn)

(
γ̂n log(σ̂n(x))− γ log(σ(x))

)
.

Hence, the asymptotic behavior of Q3,n is ruled by that of γ̂n log(σ̂n(x)) −
γ log(σ(x)), which we split into

(γ̂n − γ) log(σ̂n(x)) + γ log(σ̂n(x))− γ log(σ(x)).

Now Theorem 1.1 entails that

log(σ̂n(x))

log(pn/αn)

√
npn(γ̂n − γ)

P→ 0.

Moreover Theorem 1.2 together with the delta-method show that
√
npn

log(pn/αn)
(γ log(σ̂n(x))− γ log(σ(x)))

=

√
npnhdn√

hdn log(pn/αn)
(γ log(σ̂n(x))− γ log(σ(x)))

P→ 0.

Finally, using the notation introduced in the proof of Theorem 1.2, we have

√
npn

log(pn/αn)
log

(
p̂n
pn

)
=

√
npn

log(pn/αn)
log

(
1 +

1
√
npn

n∑
i=1

Z]
i,n

)

∼ 1

log(pn/αn)

n∑
i=1

Z]
i,n + oP

(
1

log(pn/αn)

)
P→ 0,

which proves that Q4,n
P→ 0 since γ̂n

P→ γ.

4 Appendix
Lemma 4.1. For fixed n ≥ 1, let (Yi)1≤i≤n be a sequence of i.i.d. random
variables taking values in (X,X ). Let be E = (Ei)1≤i≤n a n-uple of indepen-
dent Bernoulli random variables independent from Yi. Write

ν(k) :=
k∑
i=1

Ei, k ≤ n.
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Then we have
n∑
i=1

δYiEi
L
=

ν(n)∑
i=1

δYi , (19)

where the equality in law is understood as on the sigma algebra spanned by
all Borel positive functions on (X,X ). Moreover if the (Yi) are almost surely
positive, then

max
i=1,...,n

YiEi
L
= max

i=1,...,ν(n)
Yi. (20)

Proof. Note that (19) is exactly Khinchin’s equality (see [16, p. 307, (14.6)]).
We shall now prove (20). e ∈ {0, 1}n, and let g be real measurable and
positive function. Since the variables (Yi)1≤i≤n are i.i.d and independent
from E we have, for any given permutation σ of J1, nK,

(Y1, ..., Yn)
L
= (Y1, ..., Yn)|E=e

L
= (Yσ(1), ..., Yσ(n))|E=e

by exchangeability. Now define σ by

σ(k) :=


i∑

j=1

ej if ei = 1

n−
i∑

j=1

(1− ej) if ei = 0
1 ≤ i ≤ n.

Write s(e) :=
n∑
i=1

s(ei) for the total number of ones in (e1, ..., en). By con-

struction, the indices i for which ei = 1 are mapped injectively to the set
of first indices J1, s(e)K, while those for which ei = 0 are injectively mapped
into Js(e) + 1, nK. Since e has fixed and non random coordinates, we have

(Y1e1, ..., Ynen)|E=e
L
= (Yσ(1)e1, ..., Yσ(n)en)|E=e.

Hence
max
i=1,...,n

Yiei |E=e
L
= max

i=1,...,n
Yiei

L
= max

i=1,...,n
Yσ(i)eσ(i)

L
= max

i=1,...,s(e)
Yσ(i) (a)

L
= max

i=1,...,s(e)
Yi (b)

L
= max

i=1,...,s(e)
Yi |E=e

L
= max

i=1,...,s(E)
Yi |E=e ,
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where (a) holds because eσ(i) = 0 for i > s(e) by construction and the Yi
are a.s. positive, while (b) is obtained by noticing that Fe(Yσ(1), ..., Yσ(n))

L
=

Fe(Y1, ..., Yn) with
Fe : (y1, ..., yn) 7→ max

i=1,...,s(e)
yi.

Unconditioning upon E gives (20) �.
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