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Extreme quantile regression in a proportional tail framework

The model of heteroscedastic extremes initially introduced by Einmahl et al. (JRSSB, 2016) describes the evolution of a non stationary sequence whose extremes evolve over time. We revisit this model and adapt it into a general extreme quantile regression framework. We provide estimates for the extreme value index and the integrated skedasis function and prove their joint asymptotic normality. Our results are quite similar to those developed for heteroscedastic extremes but with a different proof approach emphasizing coupling arguments. We also propose a pointwise estimator of the skedasis function and a Weissman estimator of conditional extreme quantiles and prove the asymptotic normality of both estimators.

Introduction and main results

Framework

One of the main goals of extreme value theory is to propose estimators of extreme quantiles: given an i.i.d. sample Y 1 , . . . , Y n with distribution F , one wants to estimate the quantile of order 1-α n defined as q(α n ) := F ← (1-α n ), with α n → 0 as n → ∞ and

F ← (u) := inf{x ∈ R : F (x) ≥ u}, u ∈ (0, 1)
denotes the quantile function. The extreme regime corresponds to the case when α n < 1/n in which case extrapolation beyond the sample maximum is needed. Considering an application in hydrology, these mathematical problems correspond to the following situation: given a record over n = 50 years of the level of a river, can we estimate the 100-year return level ? The answer to this question is provided by the univariate extreme value theory and we refer to the monographs by Coles [START_REF] Coles | An introduction to statistical modeling of extreme values[END_REF], Beirlant et al. [START_REF] Beirlant | Statistics of extremes[END_REF] or de Haan and Ferreira [START_REF] De Haan | Extreme value theory[END_REF] for a general background.

In many situations, auxiliary information is available and represented by a covariate X taking values in R d and, given x ∈ R d , one wants to estimate q(α n |x), the conditional (1 -α n )-quantile of Y with respect to some given values of the covariate X = x. This is an extreme quantile regression problem. Recent advances in extreme quantile regression include the works by Chernozhukov [START_REF] Chernozhukov | Extremal quantile regression[END_REF], El Methni et al. [START_REF] Methni | Estimation of extreme quantiles from heavy and light tailed distributions[END_REF] or Daouia et al. [START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF].

In this paper we develop the proportional tail framework for extreme quantile regression. It is an adaptation of the heteroscedastic extremes developed by Einmahl et al. [START_REF] Einmahl | Statistics of heteroscedastic extremes[END_REF], where the authors propose a model for the extremes of independent but non stationary observations whose distribution evolves over time, a model which can be viewed as a regression framework with time as covariate and deterministic design with uniformly distributed observation times 1/n, 2/n, . . . , 1. In our setting, the covariate X takes values in R d and is random with arbitrary distribution. The main assumption, directly adapted from Einmmahl et al. [START_REF] Einmahl | Statistics of heteroscedastic extremes[END_REF], is the so called proportional tail assumption formulated in Equation [START_REF] Alves | A note on second order conditions in extreme value theory: linking general and heavy tail conditions[END_REF] and stating that the conditional tail function of Y given X = x is asymptotically proportional to the unconditional tail. The proportionality factor is given by the so called skedasis function σ(x) that accounts for the dependency of the extremes of Y with respect to the covariate X. Furthermore, as it is standard in extreme value theory, the unconditional distribution of Y is assumed to be regularly varying. Together with the proportional tail assumption, this implies that all the conditional distributions are regularly varying with the same extreme value index. Hence the proportional tail framework appears suitable for modeling covariate dependent extremes where the extreme value index is constant but the scale parameter depends on the covariate X in a non parametric way related to the skedasis function σ(x). Note that this framework is also considered by Gardes [START_REF] Gardes | A general estimator for the extreme value index: applications to conditional and heteroscedastic extremes[END_REF] for the purpose of estimation of the extreme value index.

Our main results are presented in the following subsections. Section 1.2 considers the estimation of the extreme value index and integrated skedasis function in the proportional tail model and our results of asymptotic normality are similar to those in Einmahl et al. [START_REF] Dekkers | A moment estimator for the index of an extreme-value distribution[END_REF] but with a different proof emphasizing coupling arguments. Section 1.3 considers pointwise estimation of the skedasis function and conditional extreme quantile estimation with Weissman estimators and state their asymptotic normality. Section 2 develops some coupling arguments used in the proofs of the main theorems, proofs gathered in Section 3. Finally, an appendix states a technical lemma and its proof.

The proportional tail model

Let (X, Y ) be a generic random couple taking values in R d × R. Define the conditional cumulative distribution function of Y given X = x by

F x (y) := P(Y ≤ y|X = x), y ∈ R, x ∈ R d .
The main assumption of the proportional tail model is

lim y→∞ 1 -F x (y) 1 -F 0 (y) = σ(x) uniformly in x ∈ R d , (1) 
where F 0 is some baseline distribution function and where σ is the so-called skedasis function following the terminology introduced in [START_REF] Einmahl | Statistics of heteroscedastic extremes[END_REF]. By integration, the unconditional distribution F of Y satisfies

lim y→∞ 1 -F (y) 1 -F 0 (y) = R d σ(x)P X (dx).
We can hence suppose without loss of generality that F = F 0 and that σdP X = 1. We also make the assumption that F is of 1/γ-regular variation

1 -F (y) = y -1/γ (y), y ∈ R,
with slowly varying at infinity. Together with the proportional tail condition (1) with F = F 0 , this implies that F x is also of 1/γ-regular variation for each x ∈ R d . This is a strong consequence of the model assumptions. In this model, the extremes are driven by two parameters: the common extreme value index γ > 0 and the skedasis function σ(•). Following [START_REF] Einmahl | Statistics of heteroscedastic extremes[END_REF], we consider the usual ratio estimator (see, e.g., [16, p. 198]) for γ and we propose a non-parametric estimator of the integrated (or cumulative) skedasis function

C(x) := {u≤x} σ(u)P X (du), x ∈ R d ,
where u ≤ x stands for the componentwise comparison of vectors. Note that -putting aside the case where X is discrete -the function C is easier to estimate than σ, in the same way that a cumulative distribution function is easier to estimate than a density function. Estimation of C is useful to derive tests while estimation of σ will be considered later on for the purpose of extreme quantile estimation.

Let (X i , Y i ) 1≤i≤n be i.i.d copies of (X, Y ). The estimators are built with observations (X i , Y i ) for which Y i exceeds a high threshold y n . Note that, in this article, (y n ) n∈N can be deterministic or data driven. For the purpose of asymptotics, y n depends on the sample size n ≥ 1 in a way such that

y n → ∞ and N n → ∞ in probability, with N n := n i=1 1 {Y i >y n } the (possibly random) number of exceedances.
The extreme value index γ > 0 is estimated by the ratio estimator

γn := 1 N n n i=1 log Y i y n 1 {Y i >yn} .
The integrated skedasis function C can be estimated by the following empirical pseudo distribution function

C n (x) := 1 N n n i=1 1 {Y i >yn, X i ≤x} , x ∈ R d .
When Y is continuous and y n := Y n-kn:n is the (k n + 1)-th highest order statistic, then N n = k and γn coincides with the usual Hill estimator.

Our first result addresses the joint asymptotic normality of γn and C n , namely

v n C n (•) -C(•) γn -γ L -→W, (2) 
where W is a Gaussian Borel probability measure on L ∞ (R d ) × R, and v n → ∞ is a deterministic rate. To prove the asymptotic normality, the threshold y n must scale suitably with respect to the rates of convergence in the proportional tail and domain of attraction conditions. More precisely, we assume the existence of a positive function A converging to zero and such that, as y → ∞,

sup x∈R d Fx (y) σ(x) F (y) -1 =O A 1 F (y)
, and

sup z> 1 2 F (zy) z -1/γ F (y) -1 =O A 1 F (y) , (3) 
with F (y) := 1 -F (y) and Fx (y) := 1 -F x (y). Our main result can then be stated as follows. At the reading of the present article, the reader shall probably notice that the domain {z > 1/2} in (4) can be replaced by any domain {z > c} for some c ∈]0, 1[. Theorem 1.1. Assume that assumptions (3) and (4) hold and that y n /y n → 1 in probability for some deterministic sequence y n such that p n := F (y n ) satisfies

p n → 0, np n → ∞ and √ np n 1+ε A (1/p n ) → 0 for some ε > 0.
Then, the asymptotic normality (2) holds with

v n := √ np n and W L = B N ,
with B a C-Brownian bridge on R d and N a centered Gaussian random variable with variance γ 2 and independent of B.

By C-Brownian bridge, we here mean a centered Gaussian process on R d with covariance function cov(B(x), B(x

)) := R d 1 ]-∞,x] 1 ]-∞,x ] dC -C(x)C(x ).
Remark: Theorem 1.1 extends Theorem 2.1 of Einmhal et al. [START_REF] Einmahl | Statistics of heteroscedastic extremes[END_REF] in two directions: first, it states that their estimators and theoretical results have natural counterparts in the framework of proportional tails. We also could go past their univariate dependency i/n → σ(i/n) to a multivariate dependecy x → σ(x), x ∈ R d . Second, it shows that general data-driven thresholds can be used. Those extensions come at the price of a slightly more stringent condition upon the bias control. Indeed, their condition √ k n A(n/k n ) → 0 corresponds to our condition √ np n 1+ε A(1/p n ) → 0 with ε = 0. We believe that this loss is small in regard to the gain on the pratical side: the threshold y n in (γ n , Ĉn ) can be data-driven. Take for example y n := Y n-kn:n , which is equivalent in probability to

y n := F ← (1 -k n /n) is k n → ∞. As a consequence, Theorem 1.1 holds for this choice of y n if k n → ∞, k n n → 0, and k n 1+ε A n k n → 0.
An example where (3) and (4) hold:

The reader might wonder if a model imposing (3) and ( 4) is not too restrictive for modeling. First, note that condition (4) has been well studied as the second order condition holding uniformly over intervals (see, e.g., [8, p. 383, Section B.3], [START_REF] Alves | A note on second order conditions in extreme value theory: linking general and heavy tail conditions[END_REF], [START_REF] Drees | Approximations to the tail empirical distribution function with application to testing extreme value conditions[END_REF]). A generic example of regression model where (3) and (4) hold is as follows: take a c.d.f H fulfilling the second order heavy tail condition (4) on any domain {z > c}. Then assume that the laws of Y | X = x obey a location scale model in the sense that

F x (y) = H y -µ(x) ∆(x) ,
for some functions µ(•) and ∆(•) that are uniformly bounded on R d . Then, since 1 -∆(x)µ(x)/y → 1 uniformly in x as y → ∞, condition (4) entails

sup x∈R d F x (y) ∆(x) 1/γ H(y) -1 = O(A(1/H(y)), as y → ∞.
Integrating in x gives H(y) = θF (y) as y → ∞ for some θ > 0, which yields (3) with the choice of σ(•) := θ∆(•) 1/γ .

Extreme quantile regression

In this subsection, we restrict ourselves to the case where y n is deterministic i.e. y n = y n according to the notations of Theorem 1.1. We now address the estimation of extreme conditional quantiles in the proportional tail model, namely q(α n |x) := F ← x (1 -α n ), for some x ∈ R d that will be fixed once for all in this section, and for a sequence α n = O(1/n). To that aim, we shall borrow the heuristics behind the Weissman estimator [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF], for which we here write a short reminder. It is known that

F ∈ D(G γ ) is equivalent to lim t→∞ U (tz) U (t) = z γ , for each z > 0, with U (t) = F ← (1 -1/t), t > 1. Recall that p n = F (y n ). Since U is of γ-regular variation, the unconditional quantile q(α n ) := F ← (1 -α n ) is approximated by q(α n ) = U (1/p n ) U (1/α n ) U (1/p n ) ≈ y n p n α n γ ,
leading to the Weissman-type quantile estimator

q(α n ) := y n pn α n γn .
Where pn := 1 n n i=1 1 {Y i >yn} is the empirical counterpart of p n . Now going back to quantile regression in the proportional tail model, it is readily verified that assumption (1) implies

q(α n | x) ∼ q α n σ(x) as n → ∞.
This immediately leads to the plug-in estimator

q(α n |x) := q α n σn (x) = y n pn σn (x) α n γn
where σn (x) denotes a consistent estimator of σ(x).

In the following, we propose a kernel estimator of σ(x) and prove its asymptotic normality before deriving the asymptotic normality of the extreme conditional quantile estimator q(α n |x). The proportional tail assumption (1) implies

σ(x) = lim n→∞ F x (y n ) F (y n ) .
We propose the simplest kernel estimator with bandwidth

h n > 0 n i=1 1 {|x-X i |<hn} 1 {Y i >yn} n i=1 1 {|x-X i |<hn}
as an estimator of F x (y n ), while the denominator is estimated by pn . Combining the two estimators yields

σn (x) := n n i=1 1 {|x-X i |<hn} 1 {Y i >yn} n i=1 1 {|x-X i |<hn} n i=1 1 {Y i >yn} .
Our next result states the asymptotic normality of σn (x). The more general case of a random threshold is left for future works.

Theorem 1.2. Take the notations of Theorem 1.1, and let h n → 0 be deterministic and positive. Assume that

np n h d n → ∞, np n h d n A (1/p n ) → 0.
Assume that the law of X is continuous on a neighborhood of x. Also assume that σ is continuous and positive on a neighborhood of x ∈ R d , and that some version f of the density of X also shares those properties. Then, under assumption (3), we have

np n h d n σn (x) -σ(x) L -→ N 0, σ(x) f (x) .
The asymptotic normality of the extreme quantile estimate q(α n | x) is deduced from the asymptotic normality of γn and σn (x) stated respectively in Theorem 1.1 and 1.2. This is stated in our next theorem, which has to be seen as the counterpart of [START_REF] De Haan | Extreme value theory[END_REF]p.138,Theorem 4.3.8] for conditional extreme quantiles. Also see [START_REF] Novak | Extreme value methods with applications to finance[END_REF]p. 170,Theorem 9.8] for a similar result when log(

p n /α n ) → d ∈ R. Theorem 1.3. Under assumptions of Theorems 1.1 and 1.2, if h d n log(p n /α n ) → ∞ we have √ np n log(p n /α n ) log q(α n |x) q(α n |x) L -→ N 0, γ 2 .
The condition h d n log(p n /α n ) requires the bandwidth to be of larger order than 1/ log(p n /α n ) so that the error in the estimation of σ(x) is negligible. As a consequence of Theorem 1.3, the consistency

q(α n |x) q(α n |x) P → 1.
That condition seems to state a limit for the extrapolation: α n cannot be too small or one might lose consistency.

A coupling approach

We will first prove Theorem 1.1 when y n is deterministic (i.e y n ≡ y n ). In this case N n is binomial (n, p n ). Moreover N n /np n → 1 in probability since np n → ∞. A simple calculus shows that (1) entails, for each A Borel and t ≥ 1:

P Y y ≥ t, X ∈ A Y ≥ y -→ ∞ t A y -1/γ σ(x)dyP X (dx), as y → ∞, (5) 
defining a "limit model" for (X, Y /y), the law

Q := σ(x)P X ⊗ P areto(1/γ) with independent marginals. Fix n ≥ 1.
Using the heuristic of (5), we shall build an explicit coupling between (X, Y /y n ) and the limit model Q. Define the conditional tail quantile function as U x (t) := F ←

x (1 -1/t) and recall that the total variation distance between two Borel probability measures on R d is defined as

||P 1 -P 2 || := sup B Borel |P 1 (B) -P 2 (B)|.
This distance is closely related with the notion of optimal coupling detailed in [START_REF] Lindvall | Lectures on the coupling method[END_REF]. The following fundamental result is due to Dobrushin [START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF].

Lemma 2.1 [START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF]. For two probability measures P 1 and P 2 defined on the same measurable space, there exist two random variables (V 1 , V 2 ) on a probability set (Ω, A, P) such that

V 1 ∼ P 1 , V 2 ∼ P 2 and ||P 1 -P 2 || = P(V 1 = V 2 ).
This lemma will be a crucial tool of our coupling construction, which is described as follows.

Coupling construction: Fix n ≥ 1. Let (E i,n ) 1≤i≤n be i.i.d. Bernoulli random variables with P(E i,n = 1) = F (y n ) and (Z i ) 1≤i≤n i.i.d. with distri- bution Pareto(1) and independent from (E i,n ) 1≤i≤n . For each 1 ≤ i ≤ n construct ( Xi,n , Ỹi,n , X * i,n , Y * i,n ) as follows. If E i,n = 1, then Take Xi,n ∼ P X|Y >yn , X * i,n ∼ σ(x)P X (dx) on the same probabil- ity space, satisfying P( Xi,n = X * i,n ) = P X|Y >yn -σ(x)P X (dx) . Their existence is guaranteed by Lemma 2.1. Set Ỹi,n := U Xi,n ( Z i F Xi,n (yn) ), Y * i,n := y n Z γ i . If E i,n = 0, then Randomly generate ( Xi,n , Ỹi,n ) ∼ P (X,Y )|Y ≤yn . Randomly generate (X * i,n , Y * i,n /y n ) ∼ σ(x)P X (dx) ⊗ P areto(1/γ).
The following proposition states the properties of our coupling construction, which will play an essential role in our proof of Theorem 1.1.

Proposition 2.2. For each n ≥ 1, the coupling ( Xi,n , Ỹi,n , X * i,n , Y * i,n ) 1≤i≤n has the following properties:

1. ( Xi,n , Ỹi,n ) 1≤i≤n has the same law as (X i , Y i ) 1≤i≤n . 2. (X * i,n , Y * i,n /y n ) Q. 3. (X * i,n , Y * i,n ) 1≤i≤n and (E i,n ) 1≤i≤n are independent. Moreover, (Y * i,n ) 1≤i≤n are i.i.d, and independent from ( Xi,n , X * i,n ). 4. There exists M > 0 such that max 1≤i≤n, E i,n=1 Y * i,n Ỹi,n -1 ≤ M A (1/p n ) and (6) 
P X1,n = X * 1,n |E i,n = 1 ≤ M A (1/p n ) , (7) 
where A is given by assumptions (3) and (4).

Proof. To prove Point 1, it is sufficient to see that

L (( X1,n , Ỹ1,n )|E i,n = 1) = L ((X, Y )|Y > y n ). Since U x (z/(1 -F x (y n ))) ≤ y if and only if 1 -(1 -F x (y n ))/z ≤ F x (y) we have, for y ≥ y n : ∞ 1 1 {Ux(z/(1-Fx(yn)))≤y} dz z 2 = ∞ 1 1 {1-(1-Fx(yn))/z≤Fx(y)} dz z 2 = 1 Fx(yn) 1 {t≤Fx(y)} dt 1 -F x (y n ) = Fx(y) Fx(yn) dt 1 -F x (y n ) = F x (y) -F x (y n ) 1 -F x (y n ) ,
with the second equality given by the change of variable

t = 1-(1-F x (y n ))/z.
We can deduce from this computation that, for a Borel set B and y ≥ y n ,

P X1,n ∈ B, U X1,n Z 1 -F X1,n (y n ) ≤ y E 1,n = 1 = x∈B ∞ 1 1 {Ux(z/(1-Fx(yn)))≤y} dz z 2 dP X|Y >yn (x) = x∈B F x (y) -F x (y n ) 1 -F x (y n ) dP X|Y >yn (x) = x∈B P Y ≤ y|Y > y n , X = x dP X|Y >yn (x) =P X ∈ B, Y ≤ y|Y > y n .
This proves Point 1. Points 2 and 3 are immediate. Point 4 will be proved with the two following lemmas.

Lemma 2.3. Under conditions (3) and ( 4), we have

sup z≥1/2 sup x∈R p 1 z γ y U x z Fx (y) -1 = O A 1 F (y)
, as y → ∞.

Proof. According to assumptions (3) and ( 4), there exists a constant M such that Fx (y)

σ(x) F (y) -1 ≤ M A 1 F (y)
, uniformly in x ∈ R d , and

F (zy) z -1/γ F (y) -1 ≤ M A 1 F (y) , uniformly in z ≥ 1/2. ( 8 
)
From the definition of U x we have

U x ( Z Fx(y) ) = F ← x 1 -Fx(y) z = inf w ∈ R : F x (w) ≥ 1 -Fx(y) z = inf w ∈ R : z Fx(w) Fx(y) ≤ 1 .
Hence for any w -< w + one has:

z Fx (w + ) Fx (y) < 1 < z Fx (w -) Fx (y) ⇒ U x z Fx (y) ∈ w -, w + . ( 9 
)
Now write (y) := M A(1/ F (y)) and choose w ± := z γ y (1 ± 4γ (y)), so that one can write

z Fx(w -) Fx(y) = z σ(x) F (ω -)(1-(y)) σ(x) F (y)(1+ (y)) ≥ z 1-(y) 1+ (y) 1 F (y) F (z γ y(1 -4γ (y))) ≥ z 1-(y) 1+ (y) 1 F (y) F (y)(1 -(y)) (z γ (1 -4γ (y))) -1/γ , by (8) ≥ (1-(y)) 2 1+ (y) (1 -4γ (y)) -1/γ .
A similar computation gives

z Fx (w + ) Fx (y) ≤ (1 + (y)) 2 1 -(y) (1 + 4γ (y)) -1/γ .
As a consequence the condition before "⇒" in (9) holds if

4γ ≥ 1 (y) max 1 - (1 -(y)) 2 1 + (y) γ ; (1 + (y)) 2 1 -(y) γ -1 .
But a Taylor expansion of the right hand side shows that it is 3γ+o(1) as y → ∞. This concludes the proof of Lemma 2.3.

Applying Lemma 2.3 with z := Z i and y := y n gives

max i:E i,n =1 Y * i,n Ỹi,n -1 = O (A (1/p n )) .
Now by construction of ( X1,n , X * 1,n ) when E 1,n = 1, we see that ( 7) is a consequence of the following lemma.

Lemma 2.4. Under conditions (3) and (4), we have

||P X|Y >y -σ(x)P X (dx)|| = O A 1 F (y)
, as y → ∞.

Proof. For B ∈ R d , we have

|P (X ∈ B|Y > y) - B σ(x)P X (dx)| = B Fx (y)P X (dx) F (y) - B σ(x)P X (dx) ≤ B Fx (y) F (y) -σ(x) P X (dx) =O A 1 F (y) , by (3) 
.

This prooves [START_REF] Daouia | On kernel smoothing for extremal quantile regression[END_REF] and hence concludes the proof of Proposition 2.2.

Proofs

Proof of Theorem 1.1

Change of notation: Since, for each n the law of ( Xi,n , Ỹi,n ) i=1,...,n is P ⊗n X,Y , we shall confound them with (X i , Y i ) i=1,...,n to unburden notations.

Proof when y

n = y n is deterministic Fix 0 < ε < 1
2 and 0 < β < ε/(2γ). We consider the empirical process defined for every x ∈ R d and y ≥ 1/2 as

G n (x, y) := √ np n (F n (x, y) -F(x, y)), with F n (x, y) := 1 N n n i=1 1 {X i ≤x} 1 {Y i /yn>y} E i,n , and 
F(x, y) := C(x)V γ (y) = Q (] -∞, x]×]y, +∞[) ,
where V γ (y) := y -1/γ for y ≥ 1 and V γ (y) := 1 otherwise. Note that neither F nor any realisation of F n is a cumulative distribution function in the strict sense, since they are decreasing in y. Their roles should however be seen as the same as for c.d.f. Now denote by

L ∞,β (R d × [1/2, ∞[) the (closed) subspace of L ∞ (R d × [1/2, ∞[) of all f satisfying f ∞,β := sup x∈R d ,y≥1/2 |y β f (x, y)| < ∞, f (∞, y) := lim min{x 1 ,...,x d }→∞ f (x, y) exists for each y ≥ 1,
{y → f (∞, y)} is Càdlàg (see e.g. [START_REF] Billingsley | Convergence of probability measures[END_REF] p. 121).

Simple arguments show that

G n takes values in L ∞,β (R d × [1/2, ∞[).
First note that C n -C and γn -γ are images of G n by the following map ϕ.

ϕ : L ∞,β (R d × [1/2, ∞[) → L ∞ (R d ) × R f → {x → f (x, 1)}, ∞ 1 y -1 f (∞, y)dy .
, and remark that ϕ is continuous since β > 0. By the continuous mapping theorem, we hence see that Theorem 1.1 will be a consequence of

G n L → W in L ∞,β (R d × [1/2, ∞[), (10) 
where W is the centered Gaussian process with covariance function

cov W(x 1 , y 1 ), W(x 2 , y 2 ) = C(x 1 ∧x 2 )V γ (y 1 )∧V γ (y 2 )-C(x 1 )C(x 2 )V γ (y 1 )V γ (y 2 ),
and where x 1 ∧ x 2 is understood componentwise. The proof is divided into two steps. In step 1 we prove [START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF] for the counterpart of G n that is built on the Q sample (X * i,n , Y * i,n ) 1≤i≤n . Our proof relies on standard argument from empirical processes. In step 2 we use the coupling properties of Proposition (2.2) to deduce [START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF] for the original sample (X i , Y i ) 1≤i≤n .

Step 1: Define

F * n (x, y) := 1 N n n i=1 1 {X * i ≤x} 1 {Y * i,n /yn>y} E i,n x ∈ R d , y ≥ 1/2.
The following proposition is a Donsker theorem in weighted topology for

G * n := √ np n (F * n -F).
Proposition 3.1. If (3) and (4) hold, then

G * n L → W, in L ∞,β (R d × [1/4, ∞[).
Proof. Write δ x (A) = 1 if x ∈ A and 0 otherwise. Since (X * i,n , Y * i,n ) 1≤i≤n is independent of (E i,n ) 1≤i≤n , Lemma 4.1 entails the following equality in laws

n i=1 δ X * i,n , Y * i,n yn E i,n L = ν(n) i=1 δ X * i,n , Y * i,n yn , where ν(n) ∼ B(n, p n ) is independent of (X * i,n , Y * i,n ) 1≤i≤n . Since (X * i,n , Y * i,n /y n ) Q and since ν(n) P → ∞, ν(n)/np n P → 1 and ν(n) independent of (X * i,n , Y * i,n ) 1≤i≤n , we see that G n L → W will be a consequence of √ k 1 k k i=1 1 {U i ≤.,V i >.} -F(., .) L -→ k→∞ W in L ∞,β R d × [1/4, ∞[ ,
where the (U i , V i ) are i.i.d. with distribution Q. Now consider the following class of functions on

R d × [1/4, ∞[ F β := f x,y : (u, v) → y β 1 (-∞,x] (u)1 ]y,∞[ (v), x ∈ R d , y ≥ 1/4 .
Using the isometry:

L ∞,β (R d × [1/4, ∞[) → L ∞ (F β ) g → {Ψ : f x,y → g(x, y)},
it is enough to prove that the abstract empirical process indexed by F β converges weakly to the Q-Brownian bridge indexed by F β . In other words, we need to verify that F β is Q-Donsker. This property can be deduced from two remarks:

1. F β is a VC-subgraph class of function (see, e.g, Van der Vaart and Wellner [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF], p.141). To see this, note that

F β ⊂ f x,s,z : (u, v) → z1 (-∞,x] (u)1 ]y,∞[ (v), x ∈ R d , s ∈ [1/4, ∞[, z ∈ R
which is a VC-subgraph class: the subgraph of each of its members is an hypercube of R d+2 .

2. F β has a square integrable envelope F . This is proved by noting that for fixed

(u, v) ∈ R d × [1/4, ∞[. F 2 (u, v) = sup x∈R d , y≥1/4 y 2β 1 [0,x] (u)1 ]y,∞[ (v) = v 2β as a consequence F 2 is Q-integrable since β < (2γ) -1 .
This concludes the proof of Proposition 3.1.

Step 2: We show here that the two empirical processes G n and G * n must have the same weak limit, by proving the next proposition. Proposition 3.2. Under Assumptions ( 3) and ( 4), we have

sup x∈R d , y≥1/2 y β √ np n |F * n (x, y) -F n (x, y)| = o P (1).
Proof. Adding and subtracting

F n (x, y) := 1 N n n i=1 1 {X i ≤x} 1 {Y * i,n /yn>y} E i,n
in |F n (x, y) -F * n (x, y)|, the triangle inequality entails, almost surely

|F n (x, y) -F * n (x, y)| =|F n (x, y) -F n (x, y) + F n (x, y) -F * n (x, y)| ≤ 1 N n n i=1 |1 {X i ≤x} -1 {X * i,n ≤x} |1 Y * i,n yn >y E i,n + 1 N n n i=1 |1 { Y i yn >y} -1 Y * i,n yn >y |1 {X i ≤x} E i,n ≤ 1 N n n i=1 1 {X i =X * i,n } 1 Y * i,n yn >y E i,n + 1 N n n i=1 |1 { Y i yn >y} -1 Y * i,n yn >y |E i,n .
Let us first focus on the first term. Notice that 

sup x∈R d , y≥1/2 y β √ npn Nn n i=1 1 {X i =X * i,n } 1 Y * i,n yn >y E i,n = sup y≥1/2 y β √ npn Nn n i=1 1 {X i =X * i,n } 1 Y * i,n yn >y E i,n ≤ sup y≥1/2 y β √ npn Nn max i=1,...,n 1 Y * i,n yn >y E i,n n i=1 1 {X i =X * i,n } E i,
Y * i,n y n β E i,n = O P (ν(n) βγ ) = O P ((np n ) βγ ). (11) 
Moreover, writing

A n := A(1/p n ) one has E n i=1 1 {X i =X * i,n } E i,n = np n A n , which entails 1 np n A n n i=1 1 {X i =X * i,n } E i,n = O P (1). (12) 
As a consequence Let us now focus on the convergence

√ np n N n max i=1,...,n Y * i,n y n β E i,n n i=1 1 {X i =X * i,n } E i,n = np n N n max i=1,...,n Y * i,n y n β E i,n 1 np n A n n i=1 1 {X i =X * i,n } E i,n √ np n A n = O P (1)O P ((np n ) βγ )O P (1) √ np n A n , by ( 
sup x∈R d , y≥1/2 y β √ np n 1 N n n i=1 1 { Y i yn >y} -1 Y * i,n yn >y E i,n P → 0.
We deduce from Proposition 2.2 that, almost surely, writing n := M A n :

(1 -n ) Y i y n E i,n ≤ Y * i,n y n E i,n ≤ (1 + n ) Y i y n E i,n .
Which entails, almost surely, for all y ≥ 1:

E i,n 1 Y * i,n yn ≥(1+ n)y ≤ E i,n 1 { Y i yn ≥y} ≤ E i,n 1 Y * i,n yn ≥(1-n)y , implying 1 { Y i yn >y} -1 Y * i,n yn >y E i,n ≤ 1 Y * i,n yn >(1-n)y -1 Y * i,n yn >(1+ n)y E i,n .
This entails

sup x∈R d , y≥1/2 y β √ np n 1 Nn n i=1 1 { Y i yn >y} -1 Y * i,n yn >y E i,n ≤ sup x∈R d , y≥1/2 y β √ np n |F * n (∞, (1 -n )y) -F * n (∞, (1 + n )y)| .
Consequently we have, adding and substracting expectations:

sup x∈R d , y≥1/2 y β √ np n 1 N n n i=1 1 { Y i yn >y} -1 { Y * i,n yn >y} E i,n ≤ sup x∈R d , y≥1/2 y β G * n ((1 -n )y) -G * n ((1 + n )y) (13) 
+ √ np n sup y≥1/2 y β (V γ ((1 -n )y) -V γ ((1 + n )y)), (14) 
where we wrote G * n (y) := G * n (∞, y). We will first prove that (14) converges to 0. For, y ≥ 1 we can bound

y β (V γ ((1 -n )y) -V γ ((1 + n )y)) ≤y β |1 -((1 + n )y) -1/γ |1 {(1-n)y<1} + y β |((1 -n )y) -1/γ -((1 + n )y) -1/γ |1 {(1-n)y≥1} . (15) 
In the first term of the right hand side we can write, since (1n )y < 1,

y β |1 -((1 + A n )y) -1/γ |1 {(1-n)y<1} ≤ y β-1/γ |y 1/γ -(1 + A n ) -1/γ |1 {(1-n)y<1} ≤ y β-1/γ |(1 -n ) -1/γ -(1 + A n ) -1/γ |1 {(1-n)y<1} ≤ 4γ -1 n , since β -1/γ < 0.
The second term of ( 15) is bounded by similar arguments, from where:

√ np n sup x∈R d , y≥1/2 y β |V γ ((1 -n )y) -V γ ((1 + n )y)| ≤ 8γ -1 M √ np n A n ,
which converges in probability to 0 by assumptions of Theorem 1.1.

We will now prove that (13) converges to zero in probability. By Proposition 3.1, the continuous mapping theorem together with the Portmanteau theorem entail:

∀ε > 0, ∀ρ > 0, lim P sup y≥1/2,δ<ρ y β | G * n ((1 -δ)y) -G * n ((1 + δ)y)| ≥ ε ≤P sup y≥1/2,δ<ρ y β | W((1 -δ)y) -W((1 + δ)y)| ≥ ε ,
where W(y) := W(∞, y) is the centered Gaussian process with covariance function

cov( W(y 1 ), W(y 2 )) := V γ (y 1 ) ∧ V γ (y 2 ) -V γ (y 1 )V γ (y 2 ), (y 1 , y 2 ) ∈ [1/4, ∞[ 2 .
With Proposition 3.1 together with the continuous mapping theorem, we see that the proof of Proposition 3.2 will be concluded if we establish the following lemma.

Lemma 3.3. We have

sup y≥1/2,δ<ρ y β | W((1 -δ)y) -W((1 + δ)y)| P -→ ρ→0 0.
Proof. Let B 0 be the standard Brownian bridge with B 0 identically zero on [1, ∞[). W has the same law as {y → B 0 (y -1/γ )} (see [START_REF] Shorack | Empirical processes with applications to statistics[END_REF], p. 99), from where

sup y≥1/2,δ<ρ y β | W((1 -δ)y) -W((1 + δ)y)| L = sup y≥1/2,δ<ρ y β B 0 (((1 -δ)y) -1/γ ) -B 0 (((1 + δ)y) -1/γ ) ≤ sup 0≤y≤2,δ<ρ y -βγ B 0 ((1 -δ) -1/γ y) -B 0 ((1 + δ) -1/γ y) , almost surely.
Since βγ < 1/2 the process B 0 is a.s-βγ-Hölder continuous on [0, +∞[. Consequently, for an a.s finite random variable H one has with probability one:

sup 0≤y≤2,δ<ρ y -βγ |B 0 ((1 -δ) -1/γ y) -B 0 ((1 + δ) -1/γ y)| ≤ sup 0≤y≤2 y -βγ |(1 -ρ) -1/γ -(1 + ρ) -1/γ | βγ y βγ H = |2(1 -ρ) -1/γ -2(1 + ρ) -1/γ | βγ H = (4 ρ γ ) βγ H.
The preceding lemma concludes the proof of Proposition 3.2, which, combined with Proposition (3.1), proves [START_REF] Dobrushin | Prescribing a system of random variables by conditional distributions[END_REF]. This concludes the proof of Theorem 1.1 when y n ≡ y n .

3.1.2 Proof of Theorem 1.1 in the general case.

We now drop the assumption y n ≡ y n and we relax it to yn yn P → 1 to achieve the proof of Theorem 1.1 in its full generality. We shall use the results of §3.1.1. Define

∨ F n (x, y) := 1 n i=1 1 {Y i >yn} n i=1 1 {X i ≤x} 1 {Y i /yn>y} and ∨ G n (x, y) := √ np n ∨ F n (x, y) -F(x, y) . Now write u n := yn yn . From §3.1.1, we know that ∨ G n , u n L → (W, 1) in D×]0, +∞[, where D := L ∞,β (R d × [1/2, ∞[).
Moreover, as pointed out in Lemma 3.3, W almost surely belongs to

D 0 = ϕ ∈ L ∞,β (R d × [1/2, ∞[), sup x∈R d ,y,y >1/2 |ϕ(x, y) -ϕ(x, y )| |y -y | βγ < ∞ .
Consider the followings maps (g n ) n∈N and

g from D to L ∞,β (R d × [1, ∞[) g n : (ϕ, u) → √ np n F(., u.) + 1 √ npn ϕ(., u.) F(∞, u) + 1 √ npn ϕ(∞, u) -F(., .
) , and g : (ϕ, u) → u 1/γ ϕ(., u.) -ϕ(∞, u)F(., .) .

Notice that G n = g n ( ∨ G n , u n ) and g(W, 1) = W.
The achievement of the proof of Theorem 1.1 hence boils down to making use of the extended continuous mapping theorem (see, e.g Theorem 1.11.1 p. 67 in [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF]) which is applicable to the sequence (g n , G n ) provided that we establish the following lemma Lemma 3.4. For any sequence ϕ n of elements of D that converges to some ϕ ∈ D 0 , and for any sequence

u n → 1 one has g n (ϕ n , u n ) → g(ϕ, 1) in L ∞,β (R d × [1, ∞[). Here, convergence in L ∞,β (R d × [1, ∞[) is understood as with respect to || • ||, the restriction of • ∞,β to R d × [1, ∞[.
where H ϕ := sup{|y -y | -βγ |ϕ(x, y) -ϕ(x, y )|, x ∈ R d , y, y ≥ 1/2} is finite since ϕ ∈ D 0 . The first two terms converge to 0 since u n → 1 and ϕ n → ϕ in D. The third term converges to zero since H ϕ is finite. Second term

B 2,n := (u 1/γ n ϕ n (∞, u n ) -ϕ(∞, 1))F ≤ |u 1/γ n ϕ n (∞, u n ) -ϕ n (∞, u n )| + |ϕ n (∞, u n ) -ϕ(∞, 1)| F .
But F is finite since βγ < ε < 1/2, from where B 2,n → 0 by similar arguments as those used for B 1,n . Third term

B 3,n := u 1/γ n ϕ n (∞, u n ) n F ≤ |u 1/γ n ϕ n (∞, u n )| × | n | × F . Since F is finite, since |u 1/γ n ϕ n (∞, u n )| is a converging sequence, and since | n | → 0, we deduce that B 3,n → 0. Fourth term B 4,n := 1 + | n | (t n u 1/γ n ) 2 ϕ n (∞, u n )ϕ n (., u n .) ≤ 1 + | n | (t n u 1/γ n ) 2 ϕ n (∞, u n ) × ϕ n (., u n .) . Since ϕ n → ϕ in L ∞,β (R d × [1/2, ∞[
), the same arguments as for B 3,n entail the convergence to zero of B 4,n .

Proof of theorem 1.2

Let x ∈ R d , which will be kept fixed in all this section. To prove the asymptotic normality of σn (x) we first establish the asymptotic normality of the numerator and the denominator separately. Note that we don't need to study their joint asymptotic normality, because only the numerator will rule the asymptotic normality of σn (x), as its rate of convergence is the slowest.

Proposition 3.5. Assume that (p n ) n≥1 and (h n ) n≥1 both converge to 0 and satisfy np n h d n → 0. We have

1 np n h d n n i=1 1 {|X i -x|≤hn,Y i >yn} -P |X i -x| ≤ h n , Y i > y n σ(x)f (x) L → N (0, 1), (16) 
1

nh d n n i=1 1 {|X i -x|≤hn} -P |X i -x| ≤ h n f (x) L → N (0, 1), and (17) 
1 √ np n n i=1 1 {Y i >yn} -p n L → N (0, 1). (18) 
Proof. Note that (18) is the central limit theorem for binomial(n, p n ) sequences with p n → 0 and np n → ∞, while [START_REF] Shorack | Empirical processes with applications to statistics[END_REF] is the well known pointwise asymptotic normality of the Parzen-Rosenblatt density estimator. The proof of ( 16) is a straghtforward use of the Lindeberg-Levy Theorem (see, e.g [START_REF] Billingsley | Probability and measure[END_REF], Theorem 27.2 p. 359). First define

Z i,n := 1 {|X i -x|≤hn,Y i >y n } -P |X i -x| ≤ h n , Y i > y n np n h d n σ(x)f (x)
and remark that E (Z i,n ) = 0. Moreover we can write,

E 1 {|X i -x|≤hn,Y i >y n } = B(x,h) P(Y i > y n |X i = z)P X (dz) ≈ B(x,h) σ(z)p n P X (dz) (a) ≈ σ(x)f (x)p n h d n , (b) 
where (a) is a consequence of the uniformity in assumption (3), while equivalence (b) holds by our assumptions upon the regularity of both f and σ in Theorem 1.2. We conclude that sup{|nVar (Z i,n )-1|, i = 1, ..., n} → 0. Note that we can invoke the Lindeberg-Levy Theorem if for all ε > 0, we have

n i=1 {Z i,n >ε} Z 2 i,n P X (dx) → 0.
This convergence holds since the set {Z i,n > ε} can be rewritten

|1 {|X i -x|≤hn,Y i >y n } -P(|X i -x| ≤ h n , Y i > y n )| ≥ ε σ(x)f (x) np n h d n ,
which is empty when n is large enough, since np n h d n → ∞. This proves [START_REF] Novak | Extreme value methods with applications to finance[END_REF]. Now, writing

σn (x) = n n i=1 1 {Y i >yn} × n i=1 1 {|x-X i |<hn} 1 {Y i >yn} n i=1 1 {|x-X i |<hn} , we have σn (x) = 1 1 + 1 √ npn n i=1 Z i,n × P(|X-x|≤hn,Y >y n ) pnh d n + f (x)σ(x) npnh d n n i=1 Z i,n P(|X-x|≤hn) h d n + f (x) nh d n n i=1 Zi,n
, where

Zi,n :=

1 {|X i -x|≤hn} -P(|X i -x| ≤ h n ) f (x) nh d n , and 
Z i,n := 1 {Y i >y n } -p n √ np n . Now write σ hn (x) := P |X -x| ≤ h n , Y > y n p n h d n f (x)
.

Since f is continuous and bounded away from zero on a neighbourhood of x we have 

σn (x) = 1 1 + 1 √ npn n i=1 Z i,n σ hn (x)f (x)(1 + ε n,1 ) + f (x)σ(x) npnh d n n i=1 Z i,n f (x)(1 + ε n,2 ) + f (x)
(x) = 1 1 + 1 √ npn n i=1 Z i,n σ hn (x) + σ(x) np n h d n f (x) n i=1 Z i,n × 1 - 1 nh d n f (x) n i=1 Zi,n + o P 1 nh d n f (x)
.

By similar arguments, remarking that

(nh d n ) -1 = o (np n h d n ) -1
we have, by ( 16) and [START_REF] Shorack | Empirical processes with applications to statistics[END_REF]:

σn (x) = 1 1 + 1 √ npn n i=1 Z i,n σ hn (x) + σ(x) np n h d n f (x) n i=1 Z i,n + o P 1 np n h d n .
Moreover, with one more Taylor expansion of the denominator, we have, by [START_REF] Van Der Vaart | Weak convergence and empirical processes[END_REF],

σn (x) = σ hn (x) + σ(x) np n h d n f (x) n i=1 Z i,n + o P 1 np n h d n , which entails np n h d n (σ n (x) -σ hn (x)) = σ(x) f (x) n i=1 Z i,n + o P (1).
The asymptotic normality of

n i=1 Z i,n gives np n h d n (σ n (x) -σ hn (x)) L → N 0, σ(x) f (x) .
The proof is achieved by noticing that assumption (3) entails

np n h d n |σ hn (x) -σ(x)| = np n h d n P(|X -x| ≤ h n , Y > y n ) f (x)h d n P(Y > y n ) -σ(x) = np n h d n P(Y > y n |X ∈ B(x, h n )) P(Y > y n ) -σ(x) = O np n h d n A (1/p n ) → 0.

Proof of theorem 1.3

For sake of clarity, we first express conditions (3) and (4) in terms of the tail quantile function U : we have, uniformly in x,

U x (1/α n ) U (σ(x)/α n ) -1 = O(A n ) and U (1/α n ) xU (x -1/γ /α n ) -1 = O(A n ),
where A n := A(1/p n ). Start the proof by splitting the quantity of interest into four parts,

log q(α n |x) q(α n |x) = log y n q(α n |x) pn σn (x) α n γn = log y n q(α n |x) p n σn (x) α n γn pn p n γn = log y n q(α n |x) + γn log p n α n + γn log(σ n (x)) + γn log pn p n = log y n q(α n |x) p n α n γ + (γ n -γ) log p n α n
+ γn log(σ n (x)) + γn log pn p n .

Moreover we can see that log y n q(α n |x)

p n α n γ = log U (1/p n ) U x (1/α n ) p n α n γ = log U (1/p n ) U (1/α n ) p n α n γ + log U (1/α n ) U x (1/α n ) Then, we write √ np n log(p n /α n ) log q(α n |x) q(α n |x) = Q 1,n + Q 2,n + Q 3,n + Q 4,n , with Q 1,n := √ np n log(p n /α n ) log U (1/p n ) U (1/α n ) p n α n γ , Q 2,n := √ np n (γ n -γ), Q 3,n := √ np n log(p n /α n ) γn log(σ n (x)) + log U (1/α n ) U x (1/α n ) , Q 4,n := √ np n log(p n /α n ) γn log pn p n .
First, condition (4) entails 

Q 1,
→ N (0, γ 2 ). Now Q 3,n is studied remarking that log U (1/α n ) U x (1/α n ) = log U (σ(x)/α n ) U x (1/α n ) +log U (1/α n ) σ(x) -γ U (σ(x)/α n )
-γ log(σ(x)).

Together with (3) and ( 4), one has 

log U (1/α n ) U x (1/α n ) = O(A n ) -γ log(σ(x)).
δ Y i E i L = ν(n) i=1 δ Y i , (19) 
where the equality in law is understood as on the sigma algebra spanned by all Borel positive functions on (X, X ). Moreover if the (Y i ) are almost surely positive, then max i=1,...,n

Y i E i L = max i=1,...,ν(n) Y i . (20) 
Proof. Note that ( 19) is exactly Khinchin's equality (see [16, p. 307, (14.6)]).

We shall now prove (20). e ∈ {0, 1} n , and let g be real measurable and positive function. Since the variables (Y i ) 1≤i≤n are i.i. 

Y i | E=e ,

  [START_REF] Drees | Approximations to the tail empirical distribution function with application to testing extreme value conditions[END_REF] and[START_REF] Einmahl | Statistics of heteroscedastic extremes[END_REF] = o P (1), by assumption of Theorem 1.1, and since βγ < ε 2 .

,

  with |ε n,1 | ∨ |ε n,2 | → 0. Now a Taylor expansion of the denominator gives σn

Consequently Q 3

 3 ,n = √ np n log(p n /α n ) O(A n ) + √ np n log(p n /α n ) γn log(σ n (x)) -γ log(σ(x)) .Hence, the asymptotic behavior of Q 3,n is ruled by that of γn log(σ n (x))γ log(σ(x)), which we split into(γ n -γ) log(σ n (x)) + γ log(σ n (x)) -γ log(σ(x)). Now Theorem 1.1 entails that log(σ n (x)) log(p n /α n ) √ np n (γ n -γ) P → 0.Moreover Theorem 1.2 together with the delta-method show that√ np n log(p n /α n ) (γ log(σ n (x)) -γ log(σ(x))) = np n h d n h d n log(p n /α n ) (γ log(σ n (x)) -γ log(σ(x))) P → 0.Finally, using the notation introduced in the proof of Theorem 1.2, we have √ np n log(p n /α n ) n /α n ) n i=1 Z i,n + o P 1 log(p n /α n )

4 AppendixLemma 4 . 1 .

 441 For fixed n ≥ 1, let (Y i ) 1≤i≤n be a sequence of i.i.d. random variables taking values in (X, X ). Let be E = (E i ) 1≤i≤n a n-uple of independent Bernoulli random variables independent from Y i . Writeν(k) := k i=1 E i , k ≤ n.Then we have n i=1

( 1 -

 1 d and independent from E we have, for any given permutation σ of 1, n ,(Y 1 , ..., Y n ) L = (Y 1 , ..., Y n )| E=e L = (Y σ(1) , ..., Y σ(n) )| E=e by exchangeability. Now define σ by σ(k) e j ) if e i = 0 1 ≤ i ≤ n.Write s(e) := n i=1 s(e i ) for the total number of ones in (e 1 , ..., e n ). By construction, the indices i for which e i = 1 are mapped injectively to the set of first indices 1, s(e) , while those for which e i = 0 are injectively mapped into s(e) + 1, n . Since e has fixed and non random coordinates, we have (Y 1 e 1 , ..., Y n e n )| E=e L = (Y σ(1) e 1 , ..., Y σ(n) e n )| E=e . i=1,...,s(E)

  n . By independence between E i,n and Y * i,n /y n , Lemma 4.1 in the Appendix gives

			max i=1,...,n	Y * i,n y n	β	E i,n	L = max i=1,...,ν(n)	y n i,n Y *	β
	where Y * i,n /y n in the right hand side have a Pareto(1/γ) distribution, whence
		max i=1,...,n				
	Now notice that					
	sup y≥1/2	max i=1,...,n	y β 1 Y * i,n yn >y	E i,n = max i=1,...,n	sup y≥1/2	y β 1 [1,Y * i,n /yn] (y)E i,n
							= max i=1,...,n	Y * i,n yn	β	E i,n .

  Since α n = o(p n ), we see that log(p n /α n ) -1 → 0 together with √ np n A n → 0 entails that Q 1,n → 0.Second, we know by Theorem 1.1 that Q 2,n

	n ∼ ∼ =	√ np n log(p n /α n ) √ np n log(p p n U (1/p n ) U (1/α n ) γ p n -1 α n α n √ np n log(p L	γ	-1

n /α n ) U ((α n /p n ) αγ /α n ) U (1/α n ) n /α n ) O(A n ).

Proof. For fixed (x, y) ∈ R d × [1/2, ∞[ and n ≥ 1, we have, writing t n := (np n ) -1/2 : |g n (ϕ n , u n )(x, y) -g(ϕ, 1)(x, y)|

with n → 0 a sequence of real numbers not depending upon x and y, and with

This implies that

where the four terms B 1,n , ..., B 4,n are detailed below and will be proved to converge to zero as n → ∞. First term

n -1| ϕ n (., u n .) + ϕ n (., u n .) -ϕ(., u n .) + ϕ(., u n .) -ϕ(., .) Unconditioning upon E gives (20) .