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Davit Varron, Université de Bourgogne-Franche-Comté, UMR CNRS 6623

October 20, 2018

Abstract:
We prove an extended continuous mapping theorem for outer almost sure weak
convergence in a metric space, a notion that is used in bootstrap empirical
processes theory. Then we make use of those results to establish the consistency
of several bootstrap procedures in empirical likelihood theory for functional
parameters.

1 Introduction and main results

1.1 Introduction

The asymptotic theory of bootstrap empirical processes has been the subject of
important investigations. The archetype of result in this theory is a Donsker
type theorem for bootstrap empirical measures, which holds conditionally to the
original sampling sequence, a theory started by Giné and Zinn [9] - see also [8].
Such results are in the vein of the conditional multiplier Donsker theorem - see
[11] - and describe an ”outer almost sure weak convergence of the bootstrap em-
pirical process” - a mathematical notion that has to be handled with particular
care, as pointed out by Giné [8]. The classical notion of weak convergence in a
metric space (see, e.g., [4, 13, 14]) is a central probabilistic tool for statistical
purposes. Such a type of convergence benefits from crucial stability properties,
the most general and useful one being the continuous mapping theorem: if a
sequence of random elements (Zn) converges weakly (in a metric space (D, dD))
to a Borel separable probability measure - represented by a random variable
Z - and if g is continuous from on (D, dD) to a metric space (E, dE), then
g(Zn) converges weakly to g(Z) in (E, dE). This theorem was then extended by
Prokhorov to a more general case, establishing the weak convergence of gn(Zn)
with the sequence of maps (gn) converging to g in a somewhat minimal sense
- see [13]. Gill et al. [7, p. 125] finally extended this result to the frame-
work of weak convergence of random elements in a metric space, in the sense
of Hoffman-Jőrgensen (see [10]). That notion of weak convergence of random
elements is more general than that of weak convergence of probabilities (when
(D, dD) is not separable). Indeed it is possible to consider sequences Zn that
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fail to be Borel measurable for each n ≥ 1. Instead, sequences are only required
to be assymptotically Borel measurable. This subtelty turns out to be crucial
for general empirical processes, as this type of lack of measurability often occurs
- as first pointed out by Chibisov [5].
In this article, we prove a similar refined continuous mapping theorem for the no-
tion of ”outer almost sure weak convergence” which ocurs in bootstrap Donsker
limit theorems. To the best of our knowledge, this problem was never treated
in the literature. Our main motivation for proving such a result is to apply it
to a general framework of statistical applications: bootstraping the limit law of
some self normalised processes that arise in empirical likelihood theory for the
estimation of trajectories- see §2. Such a result is of course far from being sur-
prising and completely complies to the intuition of any statistician. Its proof is
however more involved than first expected, due to some important nonmeasur-
ability issues. The best way to explain this is to recall the rigourous definition
of ”outer almost sure weak convergence” that is used in bootstrap empirical
processes theory. This is the aim of the forthcoming subsection.

1.2 The probabilistic framework

Weak convergence of random elements in a metric space can itself be metrized
by the bounded Lipschitz distance. However it is not guaranteed that this
distance between the bootstrap empirical process and its Gaussian counterpart
is measurable with respect to the observed (i.e. non bootstrap) sample. For this
reason, the notion of outer probability/ outer expectation will be used. Here is
the most concise reminder of the notion of inner/outer expectation that will be
adapted to our purposes - for further details see, e.g. [15, Chapter 1.2]. Given
a probability space (Ω,A,P) and given a bounded map H from Ω to R we shall
define

E∗
(
H
)

:= E
(
H∗
)
,

where H∗ denotes (any version of) the measurable cover function of H, namely
any measurable function H∗ which satisfies H∗ ≥ H everywhere on Ω, and
which satisfies the following property: for any map H′ from Ω to R that is Borel
measurable with respect to A, if H ≤ H′ everywhere, then one has H′ ≥ H∗
P-almost everywhere. In order to maintain some meaningful precision in our
notations, we shall frequently write E∗Ω(H) = E

(
H∗Ω
)

instead of E∗/H∗ to keep

track of the dependency upon (Ω,A,P). Similarly, one can define E∗
(
H
)

:=
−E∗(−H). We shall also write P∗(A) for E∗(1A). In the particular case of a
product probability space

(Ω,A,P) =

( L∏
`=1

Ω`,

L⊗
`=1

A`,
L⊗
`=1

P`
)
, (1)

we shall also use the notion of partial outer expectation: for fixed ` ∈ J1, LK and
for any ω−` = (ω1, . . . , ω`−1, ω`+1, . . . , ωL) one can define the partial map

H(`)
ω−`

: ω` → H
(
ω1, . . . , ω`−1, ω`, ω`+1, . . . , ωL

)
,
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on Ω`. We shall then denote by
(
Hω−`

)∗
Ω`

the measurable cover function of

H(`)
ω−`(·`) (implicitly on the probability space (Ω`,A`,P`)), and we will write

E∗Ω`(H) : ω−` → E
((
Hω−`

)∗
Ω`

)
,

where the last expectation is implicitly done on the probability space (Ω`,A`,P`).
Note that, when L = 1, our first notation E∗Ω1

does not clash with our definition
of partial outer expectations: simply consider both H∗Ω1

and E∗Ω1
(H) as func-

tions with no argument - which can be seen as constants.
From now on we shall consider (Ω,A,P) as in (1), with L = 2. In order to stay
focused on the possible applications in bootstrap theory, it may be convenient to
the reader to keep in mind the following: the probability space

(
Ω1,A1,P1

)
shall

be implicitly understood as that of the random sample, while
(
Ω2,A2,P2

)
must

be considered as that of the ”resampling” mechanisms generating the bootstrap
empirical measure. Denote by BL1(D) the set of all reals valued functions L on
D such that

sup
(z,z′)∈D2, dD(z,z′)>0

| L(z)− L(z′) |
dD(z, z′)

+ sup
z∈D
| L(z) |≤ 1.

We shall also freely use the notation BL1 for any metric space. Our baseline
assumption is as follows: we consider a sequence of maps Zn from Ω1 × Ω2 to
D satisfying(

sup
L∈BL1(D)

∣∣∣E∗Ω2

(
L(Zn)

)
− E

(
L(Z)

)∣∣∣)∗
Ω1

→ 0, P1 − a.s., (2)

for a generic dD-Borel measurable random variable Z admitting a separable
support D0 ⊂ D. The use of a minimal measurable cover in (2) can be inter-
preted in other words: the maps of bounded Lipschitz distances of interest are
converging to zero P1 − a.s.∗ (see [15, p. 52] for more details). This notion
of a.s.∗ (or outer almost sure) convergence is of crucial importance: it is well
known that, for sequences of nonmeasurable maps, the notion of almost every-
where (or even everywhere) convergence to zero is of no use - see [15, p. 52-53].
The so far most parcimonious set of assumptions upon (gn) for a continuous
mapping theorem to hold can be found in [4, p. 34] or [15, p. 67]. We shall here
adapt this set of assumptions to naturally fit into (2). Let D0 ⊂ D be a Borel
and separable set such that µ(D0) = 1. Let Dn be a sequence of Borel subsets
of D, let (gn) be a sequence of maps respectively from Ω1 ×Dn to E and let g
be Borel from D to E. Our assumption upon (gn) is as follows.

(Hg) For P1- almost all ω1 ∈ Ω1, the following property holds: for any z ∈ D0

and for any sequence zn ∈ Dn converging to z, we have gn(ω1, zn)→ g(z).

Here ”P1- almost all” has to be understood as: for all ω1 ∈ A, where P∗1(AC) = 0.
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1.3 A general continuous mapping theorem

Assuming that
Zn(Ω) ⊂ Dn for each n ∈ N∗, (3)

a satisfying formulation of a continuous mapping theorem must be(
sup

L∈BL1(E)

∣∣∣E∗Ω2

(
L
(
gn(·1,Zn(·1, ·2)

))
− E

(
L
(
g(Z)

))∣∣∣)∗
Ω1

→ 0, P1 − a.s. (4)

If the involved maps on Ω1 were measurable - hence P1- a.s. equal to their
measurable covers - then (4) would be equivalent to a pointwise convergence to
zero of those maps, except on the complement of a set Ω̃1 fulfilling P1(Ω̃1) = 1.
It would then be an immediate consequence of (2) by fixing ω1 ∈ Ω̃1 ⊂ A1 and
invoking the usual continuous mapping theorem for the sequence Zn(ω1, ·2). But
the measurability in (4) typically fails to hold, especially in empirical processes
theory, and hence those simple arguments cannot be invoked. The approach that
we take in this paper is to use arguments that are similar to that of Egorov’s
theorem : a.s.∗ convergence is equivalent to almost uniform convergence - see
[15, p. 53]. This approach succeeds, but at the price the following measurability
assumption: we shall suppose that all the maps

ω1 → sup
y∈Dn, dD(y,z)<δ

dE
(
gn(ω1, y), g(z)

)
, z ∈ D0, n ∈ N, δ > 0, (5)

are Borel measurable from
(
Ω1,A1

)
to R. This condition is far from being

automatically satisfied. We will however show that it is the case in several
statistical applications - see §2.

Theorem 1 Assume that (2), (3), (Hg) and (5) hold. Then (4) holds.

A straightforward consequence of Theorem 1 is the following continuous map-
ping theorem for ”weak convergence in probability” which - despite of being
weaker - is expected to have a wider range of statistical applications, yet still
benefiting from a clear practical interpretation. It can be proved by a subse-
quence argument and holds under a less stringent version of (Hg), namely:

(Hg)′ For fixed δ > 0 we have, as n→∞:

P∗1
({

ω1 ∈ Ω1, ∃z ∈ D0,∀τ > 0, supy∈Dn, dD(z′,z)<τ dE
(
gn(ω1, y), g(z)

)
> δ
})
→ 0.

Corollary 1 Assume that(
sup

L∈BL1(D)

∣∣∣E∗Ω2

(
L
(
Zn(·1, ·2)

))
− E

(
L
(
Z
))∣∣∣)∗

Ω1

→ 0, in P1-probability.

Then, under the assumptions (Hg)′ and (5) we have(
sup

L∈BL1(E)

∣∣∣E∗Ω2

(
L
(
gn(·1,Zn(·1, ·2))

))
−E
(
L
(
g(Z)

))∣∣∣)∗
Ω1

→ 0, in P1-probability.
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1.4 Application to the bootstrap multisample empirical
process

We will now show the implications of Theorem 1 - and more specifically Corol-
lary 1 - to the theory of bootstrap empirical processes. We also seize the oppor-
tunity to formulate some unsurprising extensions of the classical theory to the
multisample empirical process. From now on we shall be focusing on the general
problem of inference through the use of one or more (k ≥ 1) i.i.d. samples drawn
from k respective populations. The k samples may have different sizes n1, . . . , nk
and are assumed to be mutually independent. To make the link with the prob-
abilistic framework of §1.2, we shall consider a finite collection of probability
spaces

(
Xj ,Xj , P0,j

)
, j ∈ J1, kK, and we shall denote by P 0 = (P0,1, . . . , P0,k)

the corresponding k-tuple of probability laws. We then take (Ω1,A1,P1) as the
canonical probability space formalizing our model, namely:

Ω1 :=

k∏
j=1

Ω1,j , A1 :=

k⊗
j=1

A1,j , P1 :=

k⊗
j=1

P1,j , where

Ω1,j := XN∗
j , A1,j := X⊗N

∗

j and P1,j := P⊗N
∗

0,j .

Now the probability space (Ω1,A2,P2) generating the bootstrap mechanism is
canonically defined as:

Ω2 :=

k∏
j=1

Ω2,j , A2 :=

k⊗
j=1

A2,j , P2 :=

k⊗
j=1

Qj , where

Ω2,j :=

∞∏
nj=1

J1, njKnj , A2,j = P(Ω2,j), Qj :=

∞⊗
nj=1

Multnj ,

and where Multnj stands for the multinomial distribution with nj experiments,

each of one having a vector probabilities (n−1
j , . . . , n−1

j ) . Now let us write any
element of Ω1 as

ω1 =
(
ω

(1)
1 , . . . , ω

(k)
1

)
, with each ω

(j)
1 = (ωi,j)i≥1 ∈ Ω1,j ,

and let us write any element of Ω2 as

ω2 =
(
ω

(1)
2 , . . . , ω

(k)
2

)
with each ω

(j)
2 = (r(j)

nj )nj≥1, and r(j)
nj = (r

(j)
1,nj

, . . . , r(j)
nj ,nj ) ∈ J1, njKnj .

With these notations we then define Xi,j(ω1, ω2) := ωi,j - for each j ∈ J1, kK
and i ∈ N∗ - so that each sequence (Xi,j)i≥1 is P0,j i.i.d. We then define the
random weights of Efron’s bootstrap procedure - see [6] - as follows:

W
(j)
i,nj

(ω1, ω2) := r
(j)
i,nj

.

For any k-tuple of non null integers n := (n1, . . . , nk) define the multivari-
ate empirical measure and its bootstrap counterpart as the following maps on
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Ω1 × Ω2:

Pn(ω1, ω2) :=
( 1

nj

nj∑
i=1

δXi,j (ω1, ω2)
)
j≤k

=:
(
Pn1,1(ω

(1)
1 , ω

(1)
2 ), . . . , Pnk,k(ω

(k)
1 , ω

(k)
2 )
)
,

P̂n(ω1, ω2) :=
( 1

nj

nj∑
i=1

W
(j)
i,nj

(ω1, ω2) δXi,j(ω1,ω2)

)
j≤k

=:
(
P̂n1,1(ω

(1)
1 , ω

(1)
2 ), . . . , P̂nk,k(ω

(k)
1 , ω

(k)
2 )
)
,

where ”δx” stands for the Dirac point mass at x. Note that each Pnj ,j (resp.

P̂nj ,j) depends on (ω1, ω2) through ω
(j)
1 (resp. (ω

(j)
1 , ω

(j)
2 )) only. We shall now

consider, for each j ∈ J1, kK a class of real valued functions Fj that is P0,j

Donsker, namely: there exists a tight, centered, Fj-indexed Gaussian process
Gj such that

Gnj ,j :=
√
nj

(
Pnj ,j − P0,j

)
→L Gj , as nj →∞,

in the Banach space
(
`∞(Fj), || · ||Fj

)
of all real bounded functions on Fj

endowed with the sup norm. We shall also generically use the symbol ‖φ‖A for
the sup norm of a real valued map φ over an index set A. The limit process Gj
induces a Borel probability law on the subspace C

(
Fj , || · ||P0,j ,2

)
of functions

on Fj that are continuous with respect to || · ||P0,j ,2 - here we use the general
notation || · ||Q,r for the Lr(Q) norm on a probability space. In order to
unburden the notations, we shall simply write

Dj :=
(
`∞(Fj), || · ||Fj

)
, D0,j :=

(
C
(
Fj , || · ||P0,j

)
, || · ||Fj

)
, and

D := D1 × . . .× Dk, D0 := D0,1 × . . .× D0,k,

for their natural cartesian product as Banach spaces. By independence we have(
Gn1,1, . . . ,Gnk,k

)
→L

(
G1, . . . ,Gk

)
, as n→∞, (6)

where the family (G1, . . . ,Gk) is mutually independent, and where ”n → ∞”
stands for ”min{n1, . . . , nk} → ∞”. At the price of a small technicality, the
following result holds as a consequence of the bootstrap central limit theorem
in probability, writing

Ĝnj ,j(ω) :=
√
nj

(
P̂nj ,j(ω

(j)
1 , ω

(j)
2 )− Pnj ,j(ω

(j)
1 , ω

(j)
2 )
)
, ω ∈ Ω.

Theorem 2 We have, as n→∞(
sup

L∈BL1(D)

∣∣∣EΩ2

(
L
(
Ĝn1,1, . . . , Ĝnk,k

))
− E

(
L
(
G1, . . . ,Gk

))∣∣∣)∗
Ω1

→ 0,

in P1-probability, where E stands for the expectation on any probability space on
which

(
G1, . . . ,Gk

)
is mutually independent.
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Note that EΩ2 is not an outer partial expectation but rather a true partial ex-
pectation.

Remark: The same arguments hold for the general case of the exchangeable
bootstrap, when the laws Multnj are replaced by exchangeable laws on [0,+∞[nj

- see [12]. A version of Theorem 2 holds under the assumption that each Fj
is P 0,j-Donsker and that the triangular arrays (W

(j)
nj ,i

)nj≥1,i∈J1,njK satisfy the
conditions of Theorem 2.2 in [12]. We omit to explicitly state it for concision
only: otherwise we would have to recall in details the mathematical framework
of the exchangeable bootstrap Donsker theorem.

It is known that Donsker theorems have applications in statistics through the
functional delta-method, when the statistic is a function of the empirical mea-
sure that is Hadamard differentiable tangentially to a suitable subspace. For
the multisample version (6), the theoretical framework of the functional delta
method can be formulated as follows: we assume that the multisample statis-
tic has expression Φ(Pn), where Φ takes values in a Banach space

(
D, || · ||

)
and is defined on a subset D̃ ⊂ D containing P 0 and all the possible values
of Pn, n ∈ Nk. That map Φ is assumed to be Hadamard differentiable at
P 0 := (P0,1, . . . , P0,k) tangentially to D0, namely:

(HΦ) There exist continuous linear maps dΦ
(j)
P 0

from Dj to D such that,

for each ψ = (ψ1, . . . , ψk) ∈
k∏
j=1

D0,j and for each sequence

P (n) = P 0 + εnQn ∈ D̃ fulfilling εn → 0 and Qn → ψ in D we have

limn→∞ ε−1
n {Φ(P (n))− Φ(P 0)} =

k∑
j=1

dΦ
(j)
P 0

(ψj).

The notion of Hadamard differentiability tangentially to a suitable (more reg-
ular) subspace is often more useful - since less stringent - than the notion of
Hadamard differentiability alone (i.e. when D0 = D) and is known to open a
wider spectrum of applications. In a series of recent works, Beutner and Zähle
[2, 3, 1] showed that a more refined notion of quasi Hadamard differentiability
also widens the scope of statistical applications. In our next result, we shall use
the notation αn = (α1,n, . . . , αk,n) := N−1n where N := n1 + . . .+ nk.

Theorem 3 Assume that each Fj is P0,j-Donsker and that (HΦ) holds. Then,
when n→∞ together with

αn → α = (α1, . . . , αk) ∈ (0, 1]k, (7)

we have
√
N
(

Φ(Pn)− Φ(P 0)
)
→L

k∑
j=1

α
−1/2
j dΦ

(j)
P 0

(
Gj
)
. (8)

With small efforts, it is possible to prove the following bootstrap version of
Theorem 3.
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Theorem 4 Under the assumptions of Theorem 3 we have

sup
L∈BL1(D)

∣∣∣EΩ2

(
L
(√

N
(

Φ(P̂n)−Φ(P n)
)))
−E
(
L
( k∑
j=1

α
−1/2
j dΦP 0

(
Gj
)))∣∣∣∗

Ω1

→ 0,

in P1-probability.

Remark: From now on we shall only focus on bootstrap results that hold in
(outer) probability, and not (outer) almost surely. Our choice is motivated as
follows: it is well known that the delta method for the bootstrap almost surely
requires that Φ satisfies a stronger form of Hadamard differentiablity - see e.g.
[15, Assertion (3.9.12), p. 379]. This stronger form is less frequently met in
practice - for example this is not the case for the inverse map on distribution
functions. On the other hand, bootstrap results in probability are more than
sufficient for statistical purposes.
An interesting addition that Theorem 1 brings to Theorem 3 is the possibility
to prove bootstrap convergences in probability when

√
N
(
Φ(P̂n) − Φ(Pn)

)
is

replaced by ĝ
(√
N
(
Φ(P̂n)−Φ(Pn)

))
, where ĝ is an ”estimated map” - typically

a renormalization by an estimation of the variance function of the limit process
- that is defined through the non bootstrap observations only. Such a setup
naturally arises in empirical likelihood methods for the estimation of a func-
tion/trajectory - see below. We can formalise this framework by a net (gn)n∈Nk
of maps from Ω1 ×D to a Banach space E. A direct application of Corollary 1
in conjunction with Theorem 4 is the following.

Corollary 2 Let (n(n))n∈N∗ be a Nk valued sequence. Write N(n) :=
k∑
j=1

nj(n),

and assume that

min{n1(n), . . . , nk(n)} → ∞, and N(n)−1
(
n1(n), . . . , nk(n)

)
→ (α1, . . . , αk) ∈ (0, 1]k.

(9)
Now assume that (gn) = (gn(n))n∈N∗ satisfies (Hg)′ and (5). Then we have, as
n→∞

sup
L∈BL1(E)

∣∣∣EΩ2

(
L
(
gn(n)

(√
N(n)

(
φ(P̂n(n))− φ(Pn(n))

))))

− E
(
L
(
g
( k∑
j=1

α
−1/2
j dΦ

(j)
P 0

(
Gj
))))∣∣∣∗

Ω1

→ 0, in P1 − probability.

In the following section, we exhibit statistical applications where the net (gn)
meets the requirements (Hg)′ and (5).
Note : in Corollary 2 we drop the formalism ”n→∞ and (7)” to an indexation
by n coupled with (9). This change is purely formal and is intended only towards
a coherence with the notations of Theorem 1.
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2 Statistical applications: empirical likelihood
for a functional parameter in explicit plug-in
estimation

In [16], Varron proved the consistency of a general empirical likelihood method
for a functional parameter (θ0(t))t∈T which can be expressed as Φ(P 0), where
the explicitly known map Φ takes its values in the Banach space D := `∞(T)

p

of all Rp valued and bounded functions on T, endowed with the multivariate
sup norm

‖φ‖T,p := sup
t∈T
‖φ(t)‖p, φ ∈ `∞(T)

p
, with ‖u‖2p := u>u, u ∈ Rp,

where ”u>” stands for the transposition of u (unless otherwise specified, each
element u ∈ Rp will be represented by a column vector). This framework
encompasses several applications, in particular for survival analysis - see [16,
Section 2]. Let us write Ip for the p− p identity matrix and GLp for the group
of all invertible real p−p matrices. Varron proved (see [16, Theorem 1]) that one
can build asymptotic confidence tubes, for which the calibration is determined
by the law of a T-indexed, R+-valued stochastic processW that takes its values
in [0,+∞). Unfortunately whereas the formal expression of W is known, its
dependency upon P 0 makes it practically non implementable. Hence, a critical
question to make thoses confidence tubes fully implementable in practice is to
estimate this limit law by a bootstrap procedure.
In this section we will place ourselves in the set of assumptions of [16, Theorem
1]. We will then propose a bootstrap procedure and use Corollary 1 to establish
its consistency.
A careful look at the arguments of the proof of [16, Theorem 1] shows that W
is the weak limit, as n→∞ together with (7), of the T-indexed processes

Wn : t→
√
N
(
Φ(P n)− Φ(P 0)

)
(t)>Mn(t)

√
N
(
Φ(P n)− Φ(P 0)

)
(t), where

Mn(t) := Sn(t)−11GLp(Sn(t)) + Ip1GLCp
(Sn(t)), and

Sn(t) :=
1

N

k∑
j=1

α−1
j,n

nj∑
i=1

m̂i,j(t)m̂i,j(t)
>,

m̂i,j(t) := dΦ
(j)
Pn

(
δXi,j − Pnj ,j

)
(t), t ∈ T,

under the assumption that the differentiability of Φ can be extended to the
values of Pn in a weaker (Gâteaux) sense, and with an additional continuity
property at P 0 - see assumptions (HT2) and (HT3) in [16]. The weak con-
vergence of Wn to W can be seen as a combination of Theorem 3 with the
consistency of Sn(·) is the sense that

‖Sn − V ‖T,p2 → 0, in outer probability, where V (t) :=

k∑
j=1

α−2
j Vj(t),

9



Vj(t) := V ar(m1,j(t)), mi,j(t) :=
[
dΦ

(j)
P 0

(δXi,j − P0,j)
]
, t ∈ T,

and under the assumption that inf{det(V (t)), t ∈ T} > 0. As one can then see,
W can be expressed as

W =
{
t→ W̃(t)>V −1(t)W̃(t)

}
, where

W̃ :=

k∑
j=1

α
−1/2
j dΦP 0

(Gj).

Hence a possible bootstrap method to estimate the law of W could be to use
Mn(·) as an estimator of V (·)−1, then to bootstrap

√
N
(
Φ(Pn)−Φ(P 0)

)
, and

finally combine them to use the bootstrap law (conditionnally to the original
data) of

WBoot
n :=

{
t→
√
N
(
Φ
(
P̂n
)
− Φ

(
Pn
))

(t)
>
Mn(t)

√
N
(
Φ
(
P̂n
)
− Φ

(
Pn
))

(t)
}
,

as an estimation of the law of W. We prove the consistency of this bootstrap
procedure through Corollary 1 by proceeding as follows: we first fix α ∈ (0, 1]k

and we take an arbitrary sequence (n(n))n≥1 such that N(n)−1n(n) → α as
n→∞. We then investigate the validity of (Hg)′ and (5) for the net gn := gn(n),
where

gn : Ω1 ×D → E

(ω1,φ) →
{
t→ φ(t)>Mn(t)(ω1)φ(t)

}
.

Note that, for fixed t and n, the map Mn(t) is in fact defined on Ω1 × Ω2.
We allow ourselves to use the notation Mn(t)(ω1) since Mn(t) is constant with
respect to ω2.
It is clear that (Hg)′ is guaranteed for the choice of limit function

g : φ→
{
t→ φ(t)>V −1(t)φ(t)

}
,

whenever the following consistency holds(
‖Mn(n) − V −1‖T,p2

)∗
Ω1

→ 0, in P1-probability,

which is true under the assumptions of [16, Theorem 1] - see p. 114 -155 of the
just cited article. Let us finally focus on the measurability assumption (5) and
discuss on its possible validity. As we will show - see Proposition 1 below - the
minimal measurability requirement that

dΦ
(j)
Pn

(δXi,j − Pnj ,j)(t) is Borel measurable for each t ∈ T, n ∈ N∗k

is already useful when the possible values of Vn and Φ(P n) − Φ(P 0) are tra-
jectories that all benefit from a common separability property. Let T0 ⊂ T be

10



countable. A bounded map φ from T to Rp is said to be T0 separable if, for each
t ∈ T there exists a sequence (tm) of elements of T0 such that φ(tm)→ φ(t) as
m → ∞. We shall denote by `T0,p the (closed) subspace of `∞(T)p consisting
of all such maps.

Proposition 1 Assume that V ∈ `T0,p2 and that each dΦ
(j)
Pn

(δXi,j−Pnj ,j) takes
its values in `T0,p. Assume that Φ takes its values in `T0,p. Then the maps gn(n)

satisfy (5) for the choices of D = Dn := `T0,p and E := `T0,1. As a consequence
if, in addition, all the assumptions of [16, Theorem 1] are fulfilled, then we have
as n→∞ :(

sup
L∈BL1(`T0,1

)

∣∣∣EΩ2

(
L
(
WBoot
n(n)

))
− E

(
L
(
W
))∣∣∣)∗

Ω1

→ 0, in P1-probability.

A typical situation is when T ⊂ R is an interval, T0 = T ∩Q and the observed
trajectories are almost surely right-continuous. This is for example the case
of all the examples treated in [16, Section 2]. Hence, a consequence of Propo-
sition 1 is that each of those examples of statistical applications can benefit
from a consistent bootstrap approximation of W. Consequently, simultaneous
confidence regions can be fully implemented in practice.

3 Proofs

3.1 Proof of theorem 1

3.1.1 Some preliminary properties

Let us first deduce some regularity properties of Z from assumption (2). Because
P1(∅) = 0, there must exist at least one ω1 ∈ Ω1 such that

sup
L∈BL1(D)

∣∣∣E∗Ω2

(
L(Zn(ω1, ·2))

)
− E

(
L(Z)

)∣∣∣→ 0, as n→∞. (10)

As a consequence, Z is the limit (in the sense of weak convergence) of at least
one sequence of random elements on

(
Ω2,A2

)
that respectively take their values

in Dn. We can then use the same arguments as those of the beginning of the
proof of [15, Theorem 1.11.1, p. 67] to state that, without loss of generality, one
can assume that D0 has the following properties:

For any z ∈ D0, there exists a sequence zn ∈ Dn such that zn → z. (11)

The restriction g|D0
is dD − continuous. (12)

Let us first point out that (2) can be formulated as(
ρ(Xn, X)

)∗
Ω1
→ 0, P1 − a.s., where (13)

Xn : Ω1 7→ `∞
(
BL1(D)

)
11



ω1 →
{
L→ E∗Ω2

(
L
(
Zn(ω1, ·2)

))}
,

X : Ω1 7→ `∞
(
BL1(D)

)
ω1 →

{
L→ E

(
L
(
Z
))}

,

and where ρ is the distance induced by the sup norm || · ||BL1(D). As a conse-
quence, Egorov’s theorem applies (see, e.g. [15, Lemma 1.9.2, p. 53]): for each
ε > 0 there exists a set Ω1,ε ∈ A1 such that

P1(Ω1,ε) ≥ 1− ε, and

sup
ω1∈Ω1,ε

sup
L∈BL1(D)

∣∣∣E∗Ω2
,
(
L
(
Zn(ω1, ·2)

))
− E

(
L(Z)

)∣∣∣→ 0. (14)

From now on we shall fix ε > 0 and we shall show the existence of Ω′1,ε ∈ A1

such that P
(
Ω′1,ε

)
≥ 1− 2ε and

sup
ω1∈Ω′1,ε

sup
L∈BL1(E)

∣∣∣E∗Ω2

(
L
(
gn
(
ω1,Zn(ω1, ·2)

)))
− E

(
L
(
g(Z)

))∣∣∣→ 0, (15)

which would prove (4) since ε > 0 is arbitrary (and by a use of the converse part
of Egorov’s theorem). Let us now choose Ω1,ε ∈ A1 such that (14) holds. The
latter assertion can be seen as a uniform weak convergence of a Ω1,ε-indexed
family of random elements on

(
Ω2,A2,P2

)
. That uniformity is straightforwardly

carried over some usual basic properties of weak convergence, as we will show
in our two first lemmas. From now on ∂B will denote the topological frontier
of a set B ⊂ D.

Lemma 1 For any closed set F of
(
D, dD

)
we have:

lim
n→∞

sup
ω1∈Ω1,ε

P∗Ω2

(
Zn(ω1, ·2) ∈ F

)
≤ P

(
Z ∈ F

)
. (16)

As a consequence, for any B ⊂ D fulfilling P
(
Z ∈ ∂B

)
= 0 we have

lim
n→∞

sup
ω1∈Ω1,ε

∣∣∣P∗Ω2

(
Zn(ω1, ·2) ∈ B

)
− P

(
Z ∈ B

)∣∣∣ = 0. (17)

Proof : Fix δ > 0 and approximate 1F from above by a bounded Lipschitz
function Lδ fulfilling E

(
Lδ(Z)

)
≤ E

(
1F (Z)

)
+ δ, which is possible since Z

induces a Borel measure on D. Then use (14) to obtain

lim
n→∞

sup
ω1∈Ω1,ε

E∗Ω2

(
1F
(
Zn(ω1, ·2)

))
≤ lim
n→∞

sup
ω1∈Ω1,ε

E∗Ω2

(
Lδ
(
Zn(ω1, ·2)

))
≤E
(
Lδ
(
Z
))

12



≤E
(
1F
(
Z
))

+ δ.

This concludes the proof, since δ is arbitrary. �

We shall generically denote by B(z, δ) the open ball with center z and radius
δ in the metric space

(
D, dD

)
or
(
E, dE

)
- depending on the context. We shall

also use the generic notation

Kδ :=
⋃
z∈K

B(z, δ).

Lemma 2 For any ε1 > 0 there exists a compact set Kε1 ⊂ D0 such that

∀δ1 > 0, lim
n→∞

sup
ω1∈Ω1,ε

P∗Ω2

(
Zn(ω1, ·2) /∈ Kδ1

ε1

)
< ε1, (18)

P
(
Z /∈ Kε1

)
< ε1. (19)

Proof : Fix ε1 > 0. Since Z induces a tight probability measure on D0, one can
find Kε1 such that (19) holds. Now, for fixed δ1, apply Lemma 1 to the closed
set F = D \Kδ1

ε1 . �

3.1.2 Construction of Ω′1,ε

From now on, we shall consider a family (Kε1)ε1>0 of compacts as exhibited
in Lemma 2. Our next lemma is the crucial step of the proof of Theorem
1: by using arguments inspired from Egorov’s theorem, we construct the set
Ω′1,ε on which the sequence (gn) satisfies a crucial ”uniform local convergence”
property. That property will be our main tool to establish (15). Note that we
cannot directly use Egorov’s theorem since it seems impossible to epxress (Hg)
by a convergence in a semimetric space.

Lemma 3 There exists Ω′1,ε ∈ A1 such that Ω′1,ε ⊂ Ω1,ε, P1(Ω′1,ε) ≥ 1− 2ε and
such that

∀δ > 0,∀ε1 > 0,∃τ > 0, ∃n0, ∀n ≥ n0,

∀z ∈ Kε1 ,∀y ∈ B(z, τ) ∩Dn, sup
ω1∈Ω′1,ε

dE
(
gn(y), g(z)

)
< δ. (20)

Proof : Let D̃0 be a dense and countable subset of D0. We first notice that
(Hg) has the following consequence :

P
( ⋂
k1∈N∗

⋂
k2∈N∗

⋃
k∈N∗

⋃
n0∈N∗

Ak1,k2,k,n0

)
= 1, where (21)

Ak1,k2,k,n0
:=
{
ω1 ∈ Ω1, ∀n ≥ n0,∀z ∈ Kk−1

k−1
2
∩ D̃0,

13



∀y ∈ B
(
z, k−1

)
∩Dn, dE

(
gn(ω1, y), g(z)

)
< k−1

1

}
.

Indeed, if (21) did not hold, then there would exist ω1 ∈ Ω1, k1 ∈ N∗, k2 ∈ N∗

as well as two sequences znk ∈ Kk−1

k−1
2

∩ D̃0 and ynk ∈ Dnk such that

dD(ynk , znk) ≤ k−1, but dE
(
gnk(ω1, ynk), g(znk)

)
≥ k−1

1 , for all k ≥ 1. (22)

Because Kk−1
2

is compact, one would be able to extract a subsequence (zn′k) of

(znk) converging to some z ∈ Kk−1
2
⊂ D0. In addition, since the corresponding

subsequence (yn′k) would in turn converge to z, assumption (Hg) would imply
that gn′k(ω1, yn′k)→ g(z). But the continuity of g|D0

also entails that g(zn′k)→
g(z), which would contradict (22). Hence (21) holds. Also notice that (5)
ensures that each Ak1,k2,k,n0

belongs to A1. Now fix (k1, k2) ∈ N∗2. By (21)
one has

0 = P1

( ⋂
k∈N∗

⋂
n0∈N∗

ACk1,k2,k,n0

)
.

Moreover we have Ak1,k2,k,n0
⊃ Ak1,k2,k′,n0

for k ≤ k′3 and for each n0 ≥ 1. As
a consequence the sequence of elements of A1( ⋂

n0∈N∗
ACk1,k2,k,n0

)
k∈N∗

is decreasing (in the sense of inclusion). Hence one can choose k(k1, k2) such
that

P1

( ⋂
n0∈N∗

ACk1,k2,k(k1,k2),n0

)
≤ ε2−k1−k2−1. (23)

Now ACk1,k2,k(k1,k2),n0
is also decreasing in n0. Hence (23) implies the existence

of n0(k1, k2) satisfying.

P1

(
ACk1,k2,k(k1,k2),n0(k1,k2)

)
≤ ε2−k1−k2 .

Hence, by the union bound one has

P1

( ⋃
k1,k2∈N∗

ACk1,k2,k(k1,k2),n0(k1,k2)

)
≤

∑
k1,k2∈N∗

ε2−k1−k2 = ε.

Recalling that P1

(
Ω1,ε

)
≥ 1− ε we readily conclude that

P1

(
ΩC1,ε ∪

⋃
k1,k2∈N∗

ACk1,k2,k(k1,k2),n0(k1,k2)

)
≤ 2ε.

We then choose Ω′1,ε as the complement of the latter, namely

Ω′1,ε := Ω1,ε ∩
⋂

k1,k2∈N∗
Ak1,k2,k(k1,k2),n0(k1,k2) ⊂

⋂
k1,k2∈N∗

Ak1,k2,k(k1,k2),n0(k1,k2).
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This inclusion is then read as

∀ω1 ∈ Ω′1,ε, ∀k1 ≥ 1, ∀k2 ≥ 1,∀n ≥ n0(k1, k2), ∀z ∈ Kk(k1,k2)−1

k−1
2

∩ D̃0,

∀y ∈ B(z,k(k1, k2)−1), dE
(
gn(y), g(z)

)
< k−1

1 , or equivalently (24)

∀k1 ≥ 1, ∀k2 ≥ 1,∀n ≥ n0(k1, k2), ∀z ∈ Kk(k1,k2)−1

k−1
2

∩ D̃0, ∀y ∈ B(z,k(k1, k2)−1)

∀ω1 ∈ Ω′1,ε, dE
(
gn(y), g(z)

)
< k−1

1 ,

by moving the first term in the chain of ”∀” to the last position in that chain.
As a consequence we have

∀δ > 0,∀ε1 > 0,∃τ > 0, ∃n0, ∀n ≥ n0,

∀z ∈ Kτ
ε1 ∩ D̃0,∀y ∈ B(z, τ) ∩Dn, sup

ω1∈Ω′1,ε

dE(gn(y), g(z)) < δ. (25)

The proof is concluded as follows: take δ > 0 and ε1 > 0 and choose τ > 0 and
n0 as in (25). Now fix n ≥ n0, z ∈ Kε1 and y ∈ B(z, τ/2) ∩Dn. Next, choose
(by (11)) a sequence (zm) in D̃0 converging to z. Then, for all m large enough
one has dD(y, zm) < τ together with zm ∈ Kτ

ε1 ∩ D̃0, which are combined to
obtain, by (25) :

sup
ω1∈Ω′1,ε

dE
(
gn(ω1, y), g(zm)

)
< δ.

But, since (zm) → z and g|D0
is continuous, one has dE

(
g(zm), g(z)

)
→ 0. By

the triangle inequality together with m→∞ we conclude that

sup
ω1∈Ω′1,ε

dE
(
gn(ω1, y), g(z)

)
< δ.

This proves that (20) holds. �

3.1.3 Proof of (15)

We shall now prove that Ω′1,ε fulfills the requirerements of (15), which would
conclude the proof of Theorem 1.

Lemma 4 For any ε2 > 0, the dE-compact set K̃ε2 := g(Kε2) satisfies

∀δ2 > 0, lim
n→∞

sup
ω1∈Ω1,ε

P∗Ω2

(
gn
(
ω1,Zn(ω1, ·2)

)
/∈ K̃δ2

ε2

)
< ε2. (26)

Proof : Fix ε2 > 0 and take Kε2 as the corresponding member of the family
(Kε1)ε1>0. Now fix δ2 > 0. Using Lemma 3 (with the formal replacement of δ
by δ2) we can choose τ > 0 and n0 ≥ 1 such that, for all n ≥ n0 we have

∀z ∈ Kε2 , ∀y ∈ B(z, τ) ∩Dn, sup
ω1∈Ω′1,ε

dE
(
gn(ω1, y), g(z)

)
< δ2.
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This entails the implication ”y ∈ Kτ
ε2 ∩ Dn ⇒ gn(ω1, y) ∈ g(Kε2)δ2” for each

n ≥ n0 and ω1 ∈ Ω′1,ε. As a consequence, recalling (3) we have

sup
ω1∈Ω′1,ε

P∗Ω2

(
gn
(
ω1,Zn(ω1, ·2)

)
/∈ g(Kε2)δ2

)
≤ sup
ω1∈Ω′1,ε

P∗Ω2

(
Zn(ω1, ·2) /∈ Kτ

ε2

)
.

By Lemma 2, the right hand side of the preceding inequality is strictly less than
ε2 for all large enough n. Moreover, since Kε2 ⊂ D0 and g|D0

is continuous, the

set K̃ε2 := g(Kε2) is compact for the metric dE , which concludes the proof. �

Lemma 5 For each ε3 > 0 and for each compact K̃ ⊂ E, there exists δ3 > 0
and {L1, . . . , LM} ⊂ BL1(E) such that

sup
L∈BL1(E)

min
m=1,...,M

‖L− Lm‖K̃δ3 < ε3. (27)

Proof : Fix ε3 > 0 and a compact K̃ ⊂ E. Since the family of functions BL1(E)
is uniformly bounded and uniformly dE-equicontinuous on the compact set K̃,
it is therefore totally bounded for the seminorm || · ||K̃ . Let L1, . . . , LM be the
centers of || · ||K̃ balls with radius ε3/2 for which the union covers BL1(E).
Now choose δ3 := ε3/3. For any L ∈ BL1(E) there exists Lm, m ∈ J1,MK such
that

sup
e∈K̃
| L(e)− Lm(e) |< ε3/3.

Now since both L and Lm are 1-Lipschitz, we then have, by the triangle in-
equality

sup
e∈K̃δ3

| L(e)− Lm(e) |< ε3/3 + ε3/3 + ε3/3,

which concludes the proof. �.

Lemma 6 Let L ∈ BL1(E) and let K ⊂ D0 be a member of the family
(Kε1)ε1>0. For each ε4 > 0 there exists δ4 > 0 and a real valued bounded
Lipschitz map L′ on D for which we have:

lim
n→∞

sup
ω1∈Ω′1,ε

∣∣∣E∗Ω2

(
L
(
gn
(
ω1,Zn(ω1, ·2)

)
1Kδ4

(
Zn(ω1, ·2)

)))
− E∗Ω2

(
L′
(
Zn(ω1, ·2)

)
1Kδ4

(
Zn(ω1, ·2)

))∣∣∣ < 2ε4, (28)∣∣∣E(L(g(Z)
)
1Kδ4

(
Z
))
− E

(
L′
(
Z
)
1Kδ4

(
Z
))∣∣∣ < 2ε4. (29)

Proof : Fix L ∈ BL1(E) and let K be a member of (Kε1)ε1>0. By (20) we
know that there exists δ4 > 0 and n0 ≥ 1 such that, for each z ∈ K:

n ≥ n0, y ∈ B(z, 3δ4) ∩Dn ⇒ sup
ω1∈Ω′1,ε

dE
(
gn(ω1, y), g(z)

)
≤ ε4. (30)
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Since K is totally bounded there exists {z1, . . . , zk} ⊂ K such that

Kδ4 ⊂
k⋃
i=1

B(zi, 2δ4), and

∀n ≥ n0, ∀i ∈ J1, kK,∀y ∈ B(zi, 3δ4) ∩Dn, sup
ω1∈Ω′1,ε

dE
(
gn(ω1, y), g(zi)

)
≤ ε4.

(31)

Note that (31) implies:

∀n ≥ n0, ∀i ∈ J1, kK,∀y ∈ B(zi, 3δ4) ∩Dn, sup
ω1∈Ω′1,ε

| L
(
gn(ω1, y)

)
− L

(
g(zi)

)
|≤ ε4,

(32)

since L ∈ BL1(E). Using (11) and taking limits in n we also obtain

∀i ∈ J1, kK,∀y ∈ B(zi, 3δ4) ∩D0, sup
ω1∈Ω′1,ε

| L
(
g(y)

)
− L

(
g(zi)

)
|≤ ε4. (33)

We will now show that there exists δ ∈ [2δ4, 3δ4[ such that

∀i ∈ J1, kK, P
(
Z ∈ ∂B(zi, δ) ∩Kδ4

)
= 0. (34)

To prove this, let us first notice that, for fixed i ∈ J1, kK, the family(
P
(
Z ∈ ∂B(zi, δ) ∩Kδ4

))
δ∈[2δ4,3δ4[

is summable (since P is a finite measure). As a consequence, for fixed i, the set{
δ ∈ [2δ4, 3δ4[,P

(
Z ∈ ∂B(zi, δ) ∩Kδ4

)
> 0
}

is countable. By union, this is in turn the case for the set{
δ ∈ [2δ4, 3δ4[,∃i ∈ J1, kK, P

(
Z ∈ ∂B(zi, δ) ∩Kδ4

)
> 0
}
.

Hence the complement of this set in [2δ4, 3δ4[ is nonempty. This proves the
existence of δ ∈ [2δ4, 3δ4[ fulfilling (34).
Let us now define the following partition of Kδ4 :

Bi := B(zi, δ) ∩Kδ4 \
( i−1⋃
j=1

B(zj , δ)
)
, i ∈ J1, kK.

Since each Bi is the difference between two open sets, and since Z induces a reg-
ular probability measure on

(
D, dD

)
, there exist Lipschitz functions L′1, . . . , L

′
k

such that
max
i∈J1,kK

E
(
| L′i(Z)− 1Bi(Z) |

)
<
ε4
k
. (35)
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By (32) and since Bi ⊂ B(zi, δ) ⊂ B(zi, 3δ4) for each i ∈ J1, kK, we have, for all
n ≥ n0:

sup
ω1∈Ω′1,ε

∣∣∣∣∣∣ k∑
i=1

L
(
g(zi)

)
1Bi − L

(
gn(ω1, ·)

)
1Bi

∣∣∣∣∣∣
D
< ε4.

Likewise, using (33) we have∣∣∣∣∣∣ k∑
i=1

L
(
g(zi)

)
1Bi − L

(
g(·)
)
1Bi

∣∣∣∣∣∣
D0

< ε4. (36)

But by (35) we also have

E
(∣∣∣ k∑

i=1

L
(
g(zi)

)
1Bi(Z)− L

(
g(zi)

)
L′i(Z)

∣∣∣) ≤ max
i∈J1,kK

| L
(
g(zi)

)
|
k∑
i=1

ε4
k

≤ε4. (37)

Now since P
(
Z ∈ ∂Bi

)
= 0 (by (34)) and by Lemma 1 we have

lim
n→∞

sup
ω1∈Ω′1,ε

∣∣∣E∗Ω2

( k∑
i=1

L
(
g(zi)

)
1Bi
(
Zn(ω1, ·2)

))
−E
( k∑
i=1

L
(
g(zi)

)
1Bi(Z)

)∣∣∣ = 0.

(38)
Moreover by (14) we have

lim
n→∞

sup
ω1∈Ω′1,ε

∣∣∣E∗Ω2

( k∑
i=1

L
(
g(zi)

)
L′i
(
Zn(ω1, ·2)

))
− E

( k∑
i=1

L
(
g(zi)

)
L′i(Z)

)∣∣∣ = 0.

(39)

The proof is concluded as follows: set L′ :=
k∑
i=1

L(g(zi))L
′
i. Combining (36) and

(37) we obtain (29) recalling that {Bi, i ∈ J1, kK} is a partition of Kδ4 . Finally,
a combination of (35), (37), (38) and (39) proves (28).�

We now have all the tools to establish (15). First fix ε > 0, and choose
K̃ε = g(Kε) as in Lemma 4. Next, apply Lemma 5 with the choice of ε3 := ε.
This exhibits δ3 > 0 and a finite sequence L1, . . . , LM fulfilling (27). Then, for
each fixed m ∈ J1,MK, apply Lemma 6 to L := Lm, Kε and ε4 := ε in order to
exhibit δ4,m > 0 fulfilling (28) and (29). Combine those assertions with (14) to
obtain, for the choice of δ4 := min{δ3, δ4,1, . . . , δ4,M}.

lim
n→∞

sup
ω1∈Ω′1,ε

max
L∈{L1,...,LM}

∣∣∣E∗Ω2

(
L
(
gn
(
ω1,Zn(ω1, ·2)

))
1
K
δ4
ε

(
Zn(ω1, ·2)

))
− E

(
L
(
g(Z)

)
1
K
δ4
ε

(
Z
))∣∣∣ < 4ε.

This, combined with (27) entails

lim
n→∞

sup
ω1∈Ω′1,ε

sup
L∈BL1(E)

∣∣∣E∗Ω2

(
L
(
gn
(
ω1,Zn(ω1, ·2)

))
1
K
δ4
ε

(
Zn(ω1, ·2)

))
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− E
(
L
(
g(Z)

)
1
K
δ4
ε

(
Z
))∣∣∣ < 5ε. (40)

Finally, recall that Kε fulfills the conditions of Lemma 2 for ε1 := ε. We hence
make use of this lemma with δ1 := δ4 to obtain

lim
n→∞

sup
ω1∈Ω′1,ε

sup
L∈BL1(E)

∣∣∣E∗Ω2

(
L
(
gn
(
ω1,Zn(ω1, ·2)

))
1
D\Kδ4

ε

(
Zn(ω1, ·2)

))∣∣∣ ≤ ε,
sup

L∈BL1(E)

∣∣∣E(L(g(Z)
)
1
D\Kδ4

ε

(
Z
))∣∣∣ ≤ ε. (41)

Combine those two assertions with (40) to obtain

lim
n→∞

sup
ω1∈Ω′1,ε

sup
L∈BL1(E)

∣∣∣E∗Ω2

(
L
(
gn
(
ω1,Zn(ω1, ·2)

)))
− E

(
L
(
g(Z)

))∣∣∣ < 7ε.

This proves (15) and hence completes the proof of Theorem 1. �

3.2 Proof of Corollary 1

Fix an arbitrary subsequence (nk). It is sufficient to show that there exists a
further subsequence (n′k) of (nk) for which(

sup
L∈BL1(E)

∣∣∣E∗Ω2

(
L
(
gn′k(·1,Zn′k(·1, ·2)

))
− E

(
L
(
g(Z)

))∣∣∣)∗
Ω1

→ 0, (42)

in P1-probability as k →∞. By assumption there exists a subsequence (n′k) of
(nk) satisfying, for all k ≥ 1 :

P1

((
sup

L∈BL1(D)

∣∣∣E∗Ω2

(
L
(
Zn′k(·1, ·2)

))
− E

(
L(Z)

)∣∣∣)∗
Ω1

≥ 2−k

)
≤ 2−k.

Now, by (Hg)′ we can suppose without loss of generality that (n′k) also fulfills

P∗1
({

ω1 ∈ Ω1, ∃z ∈ D0,∀τ > 0, sup
y∈Dn′

k
, dD(z′,z)<τ

dE
(
gn′k(ω1, y), g(z)

)
> 2−k

})
≤ 2−k,

for all k ≥ 1. Apply the Borel Cantelli Lemma for outer probabilities to conclude
that (Zn′k) and (gn′k) satisfy all the assumptions of Theorem 1, which proves the
stronger almost sure version of (42) along (n′k) and hence concludes the proof.�

3.3 Proof of Theorem 2

We will prove Theorem 2 for the case k = 2. The general case is then obtained

by an elementary recursion. Fix ω1 = (ω
(1)
1 , ω

(2)
1 ) ∈ Ω1. We have

sup
L∈BL1(D)

∣∣∣EΩ2

(
L
(
Ĝn1,1(ω1, ·2), Ĝn2,2(ω1, ·2)

))
− E

(
L
(
G1,G2

))∣∣∣
19



= sup
L∈BL1(D)

∣∣∣ ∫ L
(
Ĝn1,1(ω1, ω2), Ĝn2,2(ω1, ω2)

)
dP2(ω2)− E

(
L
(
G1,G2

))∣∣∣
(43)

= sup
L∈BL1(D)

∣∣∣ ∫ L
(
Ĝn1,1(ω

(1)
1 , ω

(1)
2 ), Ĝn2,2(ω

(2)
1 , ω

(2)
2 )
)
dQ1(ω

(1)
2 )dQ2(ω

(2)
2 )− E

(
L
(
G1,G2

))∣∣∣
= sup
L∈BL1(D)

∣∣∣ ∫ (∫ L
(
Ĝn1,1(ω

(1)
1 , ω

(1)
2 ), Ĝn2,2(ω

(2)
1 , ω

(2)
2 )
)
dQ1(ω

(1)
2 )

)
dQ2(ω

(2)
2 )− E

(
L
(
G1,G2

))∣∣∣
≤ sup
L∈BL1(D)

∣∣∣ ∫ (∫ L
(
Ĝn1,1(ω

(1)
1 , ω

(1)
2 ), Ĝn2,2(ω

(2)
1 , ω

(2)
2 )
)
dQ1(ω

(1)
2 )

)
dQ2(ω

(2)
2 )

−
∫

E
(
L
(
G1, Ĝn2,2(ω

(2)
1 , ω

(2)
2 )
))
dQ2(ω

(2)
2 )
∣∣∣

+ sup
L∈BL1(D)

∣∣∣ ∫ E
(
L
(
G1, Ĝn2,2(ω

(2)
1 , ω

(2)
2 )
))
dQ2(ω

(2)
2 )− E

(
L
(
G1,G2

))∣∣∣
=:∆n,1(ω1) + ∆n,2(ω1),

where in (43) we employ the abuse of notations Ĝn1,1(ω
(1)
1 , ω

(1)
2 ) instead of

Ĝn1,1(ω1, ω2) by recalling that the involved map is constant in ω
(2)
1 , ω

(2)
2 (the

same argument holds for Ĝn2,2(ω
(2)
1 , ω

(2)
2 ). Recalling that, if L ∈ BL1(D), then

the partial map x → L(x, y) belongs to BL1(D1) for each y ∈ D2, the triangle
inequality yields

∆n,1(ω1)

≤ sup
L∈BL1(D),

ω
(2)
2 ∈Ω2,2

∣∣∣ ∫ L
(
Ĝn1,1(ω

(1)
1 , ω

(1)
2 ), Ĝn2,2(ω

(2)
1 , ω

(2)
2 )
)
dQ1(ω

(1)
2 )− E

(
L
(
G1, Ĝn2,2(ω

(2)
1 , ω

(2)
2 )
))∣∣∣

≤ sup
L̃∈BL1(D1)

∣∣∣ ∫ L̃
(
Ĝn1,1(ω

(1)
1 , ω

(1)
2 )
)
dQ1(ω

(1)
2 )− E

(
L̃
(
G1

))∣∣∣
=:∆̃n,1(ω

(1)
1 ).

This upper bound defines a function on Ω1,1 only (since its expression does

not depend upon ω
(2)
1 ). As a consequence, since the coordinate map π1 :

(ω
(1)
1 , ω

(2)
1 ) → ω

(1)
1 on Ω1 is perfect - see e.g. [15, p. 10] - we have, for all

(ω
(1)
1 , ω

(2)
1 ) ∈ Ω1,1 × Ω1,2(

∆n,1

)∗
Ω1

(ω
(2)
1 , ω

(1)
1 ) ≤

(
∆̃n,1 ◦ π1

)∗
Ω1

(ω
(2)
1 , ω

(1)
1 ) =

(
∆̃n,1

)∗
Ω1,1

(ω
(1)
1 ). (44)

Now since F1 is P0,1-Donsker, the bootstrap Donsker theorem applies - see e.g.

[15, p. 347, Theorem 3.6.1] - namely:
(
∆̃n,1

)∗
Ω1,1
→ 0 in P1,1-probability, which

in turn implies that (∆n,1)∗Ω1
→ 0 in P1-probability by (44). The proof will

then be concluded if we prove that the same convergence holds for (∆n,2)∗Ω1
.

To prove this, notice that L ∈ BL1(D) then the partial integration map y →
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∫
x
L(x, y)dν(x) belongs to BL1(D2), for any Borel probability measure ν. This

entails

∆n,2(ω1) ≤ sup
L̃∈BL1(D2)

∣∣∣ ∫ L̃
(
Ĝn2,2(ω

(2)
1 , ω

(2)
2 )
)
dQ2(ω

(2)
2 )− E

(
L̃
(
G2

))∣∣∣
=:∆̃n,2(ω

(1)
1 ).

Now apply the bootstrap Donsker Theorem to the sequence ∆̃n,2 of maps on

Ω1,2 : since F2 is P0,2 Donsker, we have (∆̃n,2)∗Ω1,2
→ 0 in P1,2 probability.

Using a similar comparison argument as (44) we obtain that (∆n,2)∗Ω1
→ 0 in

P1-probability. This concludes the proof. �

3.4 Proof of Theorem 3

Fix α = (α1, . . . , αk) ∈ (0, 1]k, write Gn for (Gn1,1, . . . ,Gnk,k), write Ĝn for

(Ĝn1,1, . . . , Ĝnk,k) and write G for (G1, . . . ,Gk). The proof follows the same
line as in [15, p. 380]. We can first assume without loss of generality that the
map dΦP 0 is defined and continuous on the whole space D, and hence so are
the maps dΦαP 0

and dΦαnP 0
, where, for any β = (β1, . . . , βk) ∈ (0, 1]k we write

dΦβP 0
:= (ψ1, . . . , ψk)→

k∑
j=1

β
−1/2
j dΦ

(j)
P 0

(ψj).

For any L in BL1(D), the map L◦dΦαP 0
belongs to BL|||dΦαP0

|||(D), where ||| · |||
stands for the operator norm. The same statement holds for αn instead of α.
Hence by Theorem 2 and by (7) we have(

sup
L∈BL1(D)

∣∣∣EΩ2

(
L
(
dΦαnP 0

(
Ĝn

)))
− E

(
L
(
dΦαP 0

(
G
)))∣∣∣)∗

Ω1

→ 0, (45)

in P1-probability. On the other hand one has, for any ε > 0 and n, everywhere
on Ω1 :

sup
L∈BL1(D)

∣∣∣EΩ2

(
L
(√

N
(
Φ(P̂n)− Φ(Pn)

)))
− EΩ2

(
L
(
dΦαnP 0

(
Ĝn

)))∣∣∣
≤ε+ 2PΩ2

(∣∣∣∣∣∣√N(Φ(P̂n)− Φ(Pn)
)
− dΦαnP 0

(
Ĝn

)∣∣∣∣∣∣ > ε

)
. (46)

We already know that
Gn →L G.

In addition, by mutual independence in j ∈ J1, kK and by using [15, Corollary
2.9.4, p. 180] we also have

Ĝn →L G + G′,
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where G′ is an independent copy of G. As a consequence, both sequences√
N(Pn − P 0) and

√
N(P̂n − P 0) are weakly convergent as n → ∞ together

with (7). One can hence apply [15, Theorem 3.9.4, p. 374] - using e.g. an
arbitrary sequence (n(n)) as we did in §2 - to obtain(∣∣∣∣∣∣√N(Φ

(
Pn
)
− Φ

(
P 0

))
− dΦP 0

(√
N(Pn − P 0)

)∣∣∣∣∣∣)∗ → 0, in P-probability,(∣∣∣∣∣∣√N(Φ
(
P̂n
)
− Φ

(
P 0

))
− dΦP 0

(√
N(P̂n − P 0)

)∣∣∣∣∣∣)∗ → 0, in P-probability.

Substracting these convergences entails(∣∣∣∣∣∣√N(Φ
(
P̂n
)
− Φ

(
Pn
))
− dΦP 0

(√
N
(
P̂n − Pn

))∣∣∣∣∣∣)∗ → 0, in P-probability,

which implies, by Fubini’s Theorem for outer expectations (see [15, Lemma
1.2.6, p. 11])

E∗Ω1

(
PΩ2

(∣∣∣∣∣∣√N(Φ(P̂n)− Φ(Pn)
)
− dΦαnP 0

(
Ĝn

)∣∣∣∣∣∣ > ε
))
→ 0,

for any given ε > 0. This combined with (46) proves that(
sup

L∈BL1(D)

∣∣∣EΩ2

(
L
(√

N
(
Φ(P̂n)−Φ(Pn)

)))
−EΩ2

(
L
(
dΦαnP 0

(
Ĝn

)))∣∣∣)∗
Ω1

→ 0,

in P1-probability. This concludes the proof by using (45) together with the
triangle inequality for outer expectations.�

3.5 Proof of Proposition 1

Take z = φ ∈ `T0,1, n ∈ N∗, δ > 0. Then we have the following equalities
as maps on Ω1, (47) being a consequence of the fact that the all the involved
T-indexed trajectories are elements of `T0,1

sup
y∈Dn, dD(y,z)<δ

dE
(
gn(n)(·1, y), g(z)

)
≡ sup
φ̃, ‖φ̃−φ‖T<δ

sup
t∈T

∣∣∣φ̃(t)>Mn(n)(t)φ̃(t)− φ(t)>V (t)−1φ(t)
∣∣∣,

≡ sup
φ̃, ‖φ̃−φ‖T<δ

sup
t∈T0

∣∣∣φ̃(t)>Mn(n)(t)φ̃(t)− φ(t)>V (t)−1φ(t)
∣∣∣ (47)

≡ sup
t∈T0

sup
φ̃, ‖φ̃−φ‖T<δ

∣∣∣φ̃(t)>Mn(n)(t)φ̃(t)− φ(t)>V (t)−1φ(t)
∣∣∣

≡ sup
t∈T0

sup
u∈At,δ

∣∣∣u>Mn(n)(t)u− φ(t)>V (t)−1φ(t)
∣∣∣,
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where, for each t ∈ T0 we wrote At,δ :=
{
u ∈ Rp, ‖u − φ(t)‖p < δ

}
. Since T0

is countable it will be sufficient to prove - for fixed t ∈ T0 - the measurability
of the second supremum in the preceding display. To see this, take t ∈ T0

and first note that inf{det
(
Vn(t)

)
, t ∈ T} = inf{det

(
Vn(t)

)
, t ∈ T0} - and

is hence Borel measurable - because Vn takes its values in `T0,p2 and since the
determinant is continuous function. Since S−1

n(n)(t) is itself Borel measurable, we

first conclude that Mn(n)(t) is measurable. Finally the pointwise supremum of

all the continuous functions M → u>Mu for u ∈ At,δ is Borel, which concludes
the proof. �
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