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Abstract. Many techniques have been developed to infer Boolean reg-
ulations from a prior knowledge network and experimental data. Exist-
ing methods are able to reverse-engineer Boolean regulations for tran-
scriptional and signaling networks, but they fail to infer regulations that
control metabolic networks. This paper provides a formalisation of the
inference of regulations for metabolic networks as a satisfiability problem
with two levels of quantifiers, and introduces a method based on Answer
Set Programming to solve this problem on a small-scale example.
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1 Introduction

During the last twenty years, both the amount and the type of available data have
allowed scientists to consider intracellular processes as a whole. Boolean networks
have been refined to include non-deterministic dynamics in order to model the
response of regulatory interactions [14,2,5]. Similarly, the study of metabolism
at steady-state has lead to various constraint-based approaches [18,15], which
usually assume that internal metabolites are in a quasi-steady-state (QSS). The
classical approach to analyze metabolic networks at steady-state is flux balance
analysis (FBA) [18]. In this approach, a linear function, e.g. biomass produc-
tion is optimized with respect to stoichiometric and thermodynamic constraints,
resulting in a linear programming problem (LP).

However, both the Boolean approach for regulation and the QSS approxima-
tion for metabolism are often developed “in solo”, without considering that cellu-
lar biology is multi-layered in the sense that the metabolic layer interacts through
feed-forward and feedback loops with the regulatory layer [4,26,20,8]. Indeed,
cellular metabolism transforms nutrients into biomass constituents. Metabolic
reactions are catalysed by enzymes, which themselves are controlled by a cas-
cade of regulations involving other proteins, metabolites and abiotic factors,
such as temperature and pH. A biological system thus has several layers of con-
trol, which mutually depend on each other. It cannot be simply viewed as a
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purely hierarchical system because there are regulatory feed-forward and feed-
back mechanisms to inform each layer on the state of the other ones. In concrete
terms, some compounds produced by the metabolic layer have the capability
to block or induce signaling regulation cascades, which themselves can block
or induce transcription of genes leading to changes in the control of the initial
metabolic process.

To figure out how gene expression triggers specific phenotypes depending on
the environmental constraints [3], several constraint-based approaches for inte-
grating metabolic and regulatory networks have been developed that combine
Boolean dynamics for the regulatory layer with quasi-steady-state approxima-
tions of the metabolic layer (see [15] for an overview), one of them being FlexFlux
[17], which implements the rFBA framework [8].

A major limitation when using such frameworks to analyse regulated metabolic
models is that they require a precise description of the regulatory and signaling
layers in the form of Boolean rules. A noticeable exception is [23], where RBA is
used to deduce regulations according to perturbations of the environment. How-
ever, to induce regulations, they assume that no feedback from metabolism to
regulation occurs, which does not correspond to the functioning of most systems.
In practice, these rules are manually curated from the literature or experimental
data. This has been done for example in the case of E. coli [7] and a few other
organisms. But, the need for a manual curation of Boolean rules of regulated
metabolism is a strong limitation to the use of these frameworks.

Signaling and regulatory rules can be identified from transcriptomic or phos-
phoproteomics data by solving combinatorial or MILP problems in order to
optimize data-fitting and parsimony hypotheses [22,19,25,21,24]. In this direc-
tion, the caspoTS and the BoNesis approaches [21,19,25,6] were developed for
inferring Boolean rules to model the response of regulatory and signaling net-
works from multiple time-series data. The goal of this paper is to lay foundation
for the extension of these approaches to the inference of regulatory rules driving
metabolism. This is done by discretizing both the rFBA framework (especially
the QSS approximation) and the metabolic data used as input of the inference
procedure.

Notations The cardinality of a finite set X is denoted by |X|. Given a set D,
the concatenation of two vectors x ∈ Dk, y ∈ Dm is denoted by (x, y) resulting
in a vector of dimension k+m equals to (x1, · · · , xk, y1, · · · , ym). Given a vector
x ∈ Dn and a set of indices I ⊆ {1, · · · , n}, xI denotes the vector of dimension
|I| equals to (xi)i∈I . The Boolean domain is denoted by B = {0, 1}. Given two
Boolean vectors x, y ∈ Bn of dimension n, x � y ⇐⇒ ∀i ∈ {1, · · · , n}, xi ≤ yi.

2 Background: regulated metabolic networks

2.1 Coupling metabolic and regulatory networks

A Regulated metabolic network consists of two layers. The regulatory layer is
modelled by a Boolean network, which controls the nodes and fluxes of the
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metabolic layer, associated with linear equations. Feedbacks are ensured by com-
ponents of the metabolic networks which are themselves involved in the Boolean
functions associated with the regulatory layer.

A metabolic network is a set of biochemical reactions linked together by the
metabolites that they consume and produce.

Definition 1. A metabolic network is a tuple N = (Int,Ext,R, S) with a set of
internal metabolites Int, a set of external metabolites Ext (including an external
metabolite biomass ∈ Ext), a set R of irreversible reactions, and a stoichiometric
matrix S ∈ R(|Int|+|Ext|)×|R|.

Given flux bounds lr, ur ∈ R, 0 ≤ lr ≤ ur, for each r ∈ R, a metabolic steady
state is a flux vector v ∈ R|R| with SInt,R ·v = 0 and lr ≤ vr ≤ ur, for all r ∈ R.
Here SInt,R denotes the submatrix of S whose rows correspond to the internal
metabolites.

For the sake of simplicity, we assume that all reactions are irreversible. Re-
versible reactions may be split into a forward and backward reaction if necessary.
The external metabolite “biomass” does not have a true existence but it is only
used to mimic the production of all the precursors needed to the cellular growth.

Definition 2 (Input and output metabolites). For an external metabolite
m ∈ Ext, we denote by wm = wm(t) ∈ R≥0 the concentration of m at time t ≥ 0.

An external metabolite m ∈ Ext is called an input (resp. output) metabolite
if there exists a reaction r ∈ R with Smr < 0 (resp. Smr > 0). The set of all
input metabolites is denoted by Inp ⊆ Ext.

A regulatory network is a set of biological entities (e.g. genes, reactions,
metabolites) or even abiotic entities (e.g. temperature, pH) which are linked by
causal effects: the activity of some nodes can affect positively or negatively the
activity of other nodes. This activity can be represented by a Boolean network.

Definition 3. A Boolean network (BN) of dimension n is a function f : Bn →
Bn. For each i ∈ {1, . . . , n}, fi : Bn → B is the i-th component of this function
called the local function of i.

Its influence graph G(f) is a signed digraph (V,E) with V = {1, . . . , n} and
E ⊆ V ×{−,+}×V such that (i, s, j) ∈ E if and only if there exists x ∈ Bn with
xi = 0 such that s · fj(x) < s · fj(x1, · · · , xi−1, 1, xi+1, · · · , xn). In the following
we will slightly abuse notations by identifying G(f) with its set of edges, i.e.,
G(f) = E.

A BN f is locally monotone whenever for each influence (i, s, j) ∈ G(f),
there is no influence with opposite sign: (i,−s, j) /∈ G(f).

We consider here that the fluxes of a metabolic network can be controlled by
the activity of the input metabolites and additional regulatory proteins. More
precisely, the activity of some reactions can be blocked (forced to have a null flux)
whenever certain conditions on the activity of input metabolites and regulatory
proteins are met. Moreover, we consider that the activity of regulatory proteins is
mediated by the metabolic network only. The obtained model is then assumed to
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run on two time scales: the metabolic network is a fast system, which, depending
on the activity of input metabolites and regulatory proteins will converge to a
steady state for the fluxes of its reactions; the regulatory network is a slow
system, which gets updated once the metabolic network is in steady state.

Definition 4 (Regulated metabolic network). A regulated metabolic net-
work is a triplet (N ,P, f) composed of:

– a metabolic network N = (Int,Ext,R, S) with k input metabolites Inp =
{e1, · · · , ek} ⊆ Ext and m reactions R = {r1, · · · , rm};

– a set of d regulatory proteins P = {p1, . . . , pd}
– a BN f of dimension n = |Inp|+ |R|+ |P| where {1, . . . , n} = Inp ∪R ∪ P

such that G(f) is a bipartite graph between P and Inp ∪R.

In this work, the local functions for input metabolites in the BN f are never
used (although the local functions of reactions may depend on them), therefore
we define them arbitrarily to 0 (∀e ∈ Inp, fe(x) = 0).

The BN f models the regulation of the fluxes of the metabolic network N .
This regulation is always in one direction: either a flux is free whenever the
reaction has value 1 in the BN, or it is blocked (forced to null) whenever the
reaction has value 0 in the BN. Following this convention, a reaction r ∈ R is
never regulated whenever fr(x) = 1. As we will defined formally in the next
section, these regulation impact the steady states of the metabolic network.

Finally, given a real-valued vector s ∈ Rn≥0, we write β(s) ∈ Bn its binariza-
tion:

∀i ∈ {1, . . . , n}, β(s)i =

{
1 if si > 0

0 if si = 0
.

An example of a regulated metabolic network is shown in Fig. 1. This example
is based on the simplified core carbon metabolic network, modelling diauxic shift
of carbon, proposed in [8].

At the metabolic level (Fig. 1a), there are 4 external metabolites and m =
9 reactions. Internal metabolites are Int = {A, D, E, O2, ATP, NADH} and
external metabolites are Ext = {Carbon1, Carbon2, Oxygen, Biomass}. Among
them, the k = 3 input metabolites are Inp = {Carbon1, Carbon2, Oxygen}. The
set of irreversible reactions is R = {Tc1, Tc2, To2, Td, Te, Growth, Rres, R6,
R7}. The stoichiometric coefficients are shown in the Figure. By default, they
are set to 1, except for the reactions R6 and R7.

The regulatory level (Fig. 1c) of the regulated metabolism introduces d = 2
regulatory proteins: P = {RPcl, RPO2}. Thus, the Boolean network f is of di-
mension n = k+m+d = 14. It consists of 15 functions (see Fig. 1c) which map a
Boolean vector x = (xCarbon1, xCarbon2, xOxygen, xRPcl, xRPO2, xTc1, xTc2, xTo2,
xTd, xTe, xRres, xR6, xR7) ∈ Bn to a Boolean value in B. The functions associ-
ated with regulatory proteins in P involve only metabolite variables. Among the
nine functions associated with reactions, only two (Tc2, Rres) are non-constant:
they involve the two regulatory proteins. The influence graph of the network is
shown in Fig. 1b. Only the shown nodes have a non-constant function (RPcl,
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(a) Metabolic Network

(b) Influence graph G(f) of the regulatory
Boolean network f . Nodes without in-going
or out-going edges are not represented. Pos-
itive edges are drawn in green with a regular
tipping arrow, negative edges are drawn in
red with a bar arrow.

Regulatory proteins Input metabolites

Local function fRPO2(x) fRPcl(x) fCarbon1(x) fCarbon2(x) fOxygen(x)

Boolean rule ¬xOxygen xCarbon1 0 0 0

Reactions

Local function fTc1(x) fTc2(x) fTo2(x) fTd(x) fTe(x) fGrowth(x) fRres(x) fR6(x) fR7(x)

Boolean rule 1 ¬xRPcl 1 1 1 1 ¬xRPO2 1 1

(c) Boolean Network

Fig. 1: Example of regulated metabolic network with its metabolic network (a)
and its Boolean network (c). In (a), each node is a metabolite and each hyperedge
is a reaction. For instance, the hyperedge R7 linking {A; NADH} to {E} models
the reaction A + 3 NADH → 3 E. Integer values over hyperedges are stoichio-
metric coefficients, default value is 1. (c) shows the Boolean network regulating
the metabolic network (a) where x ∈ Bn and n = 14. All Boolean functions set
to 1 correspond to reactions which are not regulated by the Boolean network.
(b) shows the influence (or regulatory) graph of the Boolean network described
in (c), green and red edges are positive and negative edges, respectively. Square
nodes are regulatory proteins.
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RPO2, Tc2, Rres) or are used in the local function of another node (Carbon1,
Oxygen). The influence graph shows the multi-layered regulations of the net-
work: external input metabolites (Carbon1, Oxygen) regulate regulatory pro-
teins (RPcl, RPO2) which regulate reactions (Tc2, Rres).

2.2 Dynamic rFBA

Flux Balance Analysis (FBA) [18] returns an optimal metabolic steady state,
according to a given objective function over reaction fluxes. In the following we
assume the objective function is to maximize the flux of a reaction Growth. For
regulated metabolic networks, the rFBA framework [8] allows defining a discrete
time series of optimal steady states, where regulatory variables can force reaction
fluxes to be zero and input metabolite concentrations define upper bounds on
uptake fluxes.

Definition 5. Let (N ,P, f) be a regulated metabolic network with flux bounds
lr, ur ∈ R, 0 ≤ lr ≤ ur, for r ∈ R. A metabolic-regulatory steady state is a
triplet (v, w, x) ∈ R|R| × R|Ext| × B|Inp|+|R|+|P| such that

– SInt,R · v = 0,
– for each reaction r ∈ R, lr · xr ≤ vr ≤ ur · xr,
– for each input metabolite m ∈ Inp and each reaction r ∈ R with Smr < 0,
vr ≤ uptake bound(wm), where uptake bound(wm) denotes the maximum
flux through uptake reaction r, given the input metabolite concentration wm.

Two successive metabolic-regulatory steady states (vk, wk, xk) at time tk and
(vk+1, wk+1, xk+1) at time tk+1 are linked by the following relations:

1. The input metabolite concentrations wk+1 are obtained from the previous
concentrations wk by assuming constant uptake fluxes vk in the time period
[tk, tk+1].

2. Let the Boolean state x′ ∈ B|Inp|+|R|+|P| be defined by the binarized input
metabolites concentrations x′Inp = β(wk+1

Inp ) at tk+1, the binarized reaction

fluxes x′R = β(vk), and the Boolean values x′P = xkP of the regulatory
proteins at tk. Then,

xk+1 = f(x′)

3. (vk+1, wk+1, xk+1) is a metabolic-regulatory steady state maximizing the flux
through the Growth reaction, i.e., there is no metabolic-regulatory steady
state (v′, wk+1, xk+1) such that v′Growth > vk+1

Growth .

In this paper, we rely on the FlexFlux implementation of rFBA [17], which
assumes a fixed time step τ between successive metabolic-regulatory steady
states (tk+1 − tk = τ for any k). The Growth reaction is assumed to reflect the
growth the cell. FlexFlux computes the evolution of the total biomass of the

cell as biomassk+1 = biomassk·evkGrowth ·τ (from a given initial biomass0). The max-
imum uptake fluxes of input metabolitesm ∈ Inp are defined as uptake bound(wm) =
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External metabolites Regulatory proteins Reactions

Time wBiomass wCarbon1 wCarbon2 wOxygen xRPO2 xRPcl vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7

0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0
0.1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0
0.51 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0.52 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0
0.59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Table 1: Binarization of the metabolic steady states of simulation shown Fig. 2.
It contains the binarized values of the metabolic steady state computed by the r-
FBA simulation. A timepoint t appears in the table if and only if the binarization
of the simulated steady-state is different from the binarized metabolic steady
state of time t− 1.

wm/(biomass · τ). Finally, the update of the external metabolite concentrations
is computed as follows:

wk+1
m = wkm − Smrvkr /(vkGrowth · (biomassk − biomassk+1))

where r ∈ R is the uptake/export reaction for the external metabolite m (Smr <
0 or Smr > 0), which is assumed to be unique.

An example of a dynamic rFBA simulation using FlexFlux of the regulated
metabolic network introduced Fig. 1 is shown in Fig. 2. It uses a time step of
0.01 hour and is initialized with 100 mM of Oxygen, 20 mM of Carbon1 and
Carbon2. The simulation shown in Fig. 2a was composed of 70 metabolic steady
states. By applying the binariation β introduced in the previous section, these
70 metabolic steady states correspond to 5 different binarized metabolic steady
states. They are shown in Table. 1. These binarized metabolic steady states
capture the main features of the simulation.

More precisely, the simulation shows that until 0.5 hour only Carbon1 and
Oxygen are consumed to produce Biomass. This corresponds to a first time pe-
riod where the behavior of the system is monotonous: the binarized metabolic-
steady states are equal on this time range. The presence of Carbon1 activates
the regulatory protein RPcl inhibiting the reaction Tc2 according to the reg-
ulatory rules. At 0.5 hour, Carbon1 is depleted and the current Boolean state
x ∈ B15 is such that xCarbon1 = 0, xRPcl = 1, xTc2 = 0 (second qualitative be-
havior corresponding to equal binarization of metabolic steady-states). At 0.51,
as shown Fig. 2b, the Boolean state x is updated to x′ so that the Boolean
state of RPcl becomes x′RPcl = fRPcl(x) = xCarbon1 = 0. The Boolean state of
Tc2 remains unchanged because xRPcl = 1. No Biomass is produced at 0.51.
This corresponds to a third qualitative behavior of the system. At 0.52, the
Boolean state x′ is updated to x′′: all the node states remain unchanged except
for x′′Tc2 = fTc2(x′) = ¬x′RPcl = 1. This corresponds to a fourth qualitative
behavior of the system. The reaction Tc2 is not inhibited anymore, and the
Biomass is produced thanks to the inputs of Carbon2 and Oxygen (thanks to
Tc2, Growth and Rres until Carbon2 depletion at t = 0.59 (fifth qualitative
behavior of the system).



8 K. Thuillier et al.

(a) Simulation graph showing the evolution of the quantity of external metabolites
(Oxygen, Carbon1, Carbon2) and the production of Biomass.

External metabolites Regulatory proteins Reaction flows

Time wBiomass wCarbon1 wCarbon2 wOxygen xRPO2 xRPcl vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7

0.49 17.05 2.95 20.0 82.95 0 1 10.5 0.0 10.5 0.0 0.0 10.5 10.5 0.0 0.0
0.50 18.95 1.05 20.0 81.05 0 1 6.15 0.0 6.15 0.0 0.0 6.15 6.15 0.0 0.0
0.51 20.10 0.0 20.0 79.90 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.52 20.10 0.0 20.0 79.90 0 0 0.0 10.5 10.5 0.0 0.0 10.5 10.5 0.0 0.0
0.53 22.35 0.0 17.76 77.65 0 0 0.0 10.5 10.5 0.0 0.0 10.5 10.5 0.0 0.0

(b) Focus on times 0.49 to 0.53 hour of the simulation. These times correspond to a
set of regulatory updates allowing switching from Carbon1 to Carbon2 for Biomass
production.

Fig. 2: Dynamic rFBA simulation of the regulated metabolic network shown
Fig. 1. The simulation is made with FlexFlux and is initialized with 100mM
of Oxygen, 20 mM of Carbon1 and Carbon2. Time step is set to 0.01. Reaction
domains are ∀r ∈ {Tc1, Tc2}, (lr, ur) = (0, 10.5), ∀r ∈ {Td, Te}, (lr, ur) =
(0, 12.0), ∀r ∈ {R6, R7, Rres, Growth}, (lr, ur) = (0, 9999) and for Oxygen,
(lr, ur) = (0, 15.0).

3 Boolean abstraction of dynamic rFBA

In the previous example, we illustrated how the simulation of a regulated metabolic
network may generate time-periods for which the qualitative behavior of the
system is similar, meaning that the variation of all the metabolic variables is
monotonous and the Boolean values of the regulatory proteins are constant. In
this section, we introduce a discrete definition of steady-states which allows to
captures the monotonous behaviors observed in rFBA simulations. This allows to
introduce a discretized rFBA framework, which will be used in the next section
for the reverse-engineering framework.
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3.1 Boolean metabolic steady states

Given a metabolic network N = (Int,Ext,R, S), we derive a logical charac-
terization of the notion of steady state, considering that reactions are either
inactive or active, and metabolites either absent or present. This will result in a
set of Boolean metabolic steady states that form an over-approximation of the
continuous steady states.

We associate all reactions with propositional variables V = {vr}r∈R. For each
metabolite m ∈ Int]Ext, we introduce a variable zm

+ as a Boolean abstraction
of the production of m and a variable zm

− as a Boolean abstraction of the
consumption of m

∀m ∈ Int ] Ext, zm
+ def

=
∨
r∈R,
Smr>0

vr, zm
− def

=
∨
r∈R,
Smr<0

vr,

(where an empty disjunction is considered to be false.)

For each internal metabolite, we introduce a variable ẑm which is equal to 1
iff m is in a logical steady-state:

∀m ∈ Int, ẑm
def
= (zm

+ ⇔ zm
−).

For the external metabolites, we introduce propositional variables Vext = {zm}m∈Ext

indicating whether or not m is present in the environment. The formula

N̂Ext
def
=

∧
m∈Ext

(zm
− ⇒ zm)

then states that an external metabolite can only be consumed if it is present in
the environment.

Definition 6 (Boolean metabolic steady-state). A boolean metabolic steady-
state of a metabolic network N = (Int,Ext,R, S) is a Boolean vector ν̂ ∈
B|Ext|+|R| which is a satisfying assignment of the following logical steady-state
formula:

N̂ def
= N̂Ext ∧

∧
m∈Int

ẑm

We denote by MSSB(N ) ⊆ B|Ext|+|R| the set of all the Boolean metabolic steady
states of the metabolic network N .

Property 1. For each metabolic-regulatory steady state (v, w, x) of the regulated
metabolic network (N ,P, f), the binarized value of the concentration of input
metabolites and of the reaction fluxes β(w, v) is a Boolean metabolic steady
state, i.e., β(w, v) ∈ MSSB(N ).
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Remark that the converse property is not true: because the logical charac-
terization omit stoeichiometry, Boolean metabolic steady states may have no
real-valued counterpart.

Applied to the example, the internal metabolic constraints are the following:
zA

+ = vTc1 ∨ vTc2, zA
− = vR6 ∨ vR7 ∨ vGrowth

zD
+ = vR6, zD

− = vTd, zE
+ = vR7, zE

− = vTe
zO2

+ = vTo2, zO2
− = vRres

zATP
+ = vR6 ∨ vRres, zATP

− = vGrowth

zNADH
+ = vGrowth, zNADH

− = vR7 ∨ vRres

The logical steady-state constraints equivalent to N̂ = 1 are obtained by
gathering contraints on internal and external metabolites:

vTc1 ∨ vTc2 = vR6 ∨ vR7 ∨ vGrowth

vR6 = vTd vR7 = vTe vTo2 = vRres

vR6 ∨ vRres = vGrowth vR7 ∨ vRres = vGrowth

vTc1 ⇒ zCarbon1 vTc2 ⇒ zCarbon2 vTo2 ⇒ zOxygen

From these equations, we deduce that there are 38 Boolean metabolic steady-
states for the Example shown in Fig. 1. These Boolean metabolic steady-states
are detailed in Appendix A. Among them, we recover the five binarized regulated-
metabolic steady-states (Table 1) appearing in the r-FBA simulations of Fig.2.

3.2 Boolean dynamics

From the logical characterization of metabolic steady states, we define a Boolean
counterpart of dynamic rFBA (Sect. 2.2). A Boolean state of the regulated
metabolic network (N ,P, f) assigns a Boolean value to external metabolites, re-
actions, and regulatory proteins: it is a Boolean vector of dimension n = k+m+d.
Such a Boolean state x ∈ Bn should match with a Boolean metabolic steady
state: with M = Ext ∪ R referring to external metabolites and fluxes of reac-
tions, xM should verify the Boolean metabolic steady state constraints described
in the previous section (xM ∈ MSSB(N )). The general idea is then to capture the
possible successions of such Boolean states, subject to the regulations through
the regulatory proteins, specified by the Boolean network f .

A key ingredient of dynamic rFBA is the objective function to maximize, typ-
ically the fluxes of reactions producing biomass. However, at the Boolean level,
it is not possible to directly rank metabolic steady states along their biomass
production, as it will be either absent or present. Thus, a specific Boolean ob-
jective function has to be provided to score a Boolean metabolic steady state.
This takes the form of a function ô mapping Boolean metabolic steady states
to a natural numbers: ô : Bk+m → N. The Boolean dynamics will select among
Boolean metabolic steady states maximizing this supplied objective only.

When considering possible next states, it is crucial to account those where the
input metabolites change of value. Hereafter, we consider any possible change.

The Boolean dynamic rFBA is formalized as a nextB(N ,P,f,ô) function which
associates any Boolean state of the regulated metabolic network to a set of
admissible next states:
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Definition 7 (Boolean dynamic rFBA: nextB(N ,P,f,ô) : Bn → 2B
n

). For any

Boolean state x, y ∈ Bn, y ∈ nextB(N ,P,f,ô)(x) if and only if, with x′ ∈ Bn be such

that x′Inp = yInp and x′R∪P = xR∪P ,

1. the value of regulatory proteins are computed synchronously from x′ accord-
ing to f : yP = fP(x′),

2. y matches with a Boolean metabolic steady state: yM ∈ Z(x′), and
3. the matching Boolean metabolic steady state maximizes the supplied objective

function: ∀y′M ∈ Z(x′), ô(yM) ≥ ô(y′M),

where Z(x′) = {z ∈ MSSB(N ) | zInp = x′Inp, zR � fR(x′)} is the set of Boolean
metabolic steady states that match with the value of external metabolites and with
the regulations from x′.

4 Inference of regulations from rFBA time series

Given sequences of metabolic-regulatory steady states obtained by dynamic
rFBA from a ground-truth regulated metabolic network in different conditions,
our objective is to infer all the regulatory Boolean networks that can repro-
duce the behaviors. Besides the ground-truth model, the inference may suggest
alternative regulatory logic.

The domain of search for BNs, we denote by F, is delimited by an influence
graph G: any candidate f ∈ F should satisfy that G(f) ⊆ G, i.e., uses at most the
influences allowed in G. Moreover, we assume that f is locally monotone. Typi-
cally, G contains the putative influences from and to regulatory proteins. In our
case study, G is augmented from the ground-truth regulatory model f◦ by “for-
getting” the sign of influences (for each (i, s, j) ∈ G(f◦), {(i,+, j), (i,−, j)} ⊆ G),
and adding putative influences.

However, such an inference problem mixes both linear constraints for char-
acterizing the optimal steady states of the metabolic network with Boolean con-
straints for characterizing the value changes of regulatory proteins. We rely on
the Boolean abstraction of dynamic rFBA presented in the previous section to
express the inference problem.

4.1 Approximation as a Boolean satisfiability problem

We propose a relaxation of the inference problem by the means of the Boolean
dynamic rFBA interpretation given in Sect. 3.

The inputs of the relaxed inference problem are:

– a metabolic network N and a set of regulatory proteins P,
– sequences of metabolic-regulatory steady states, represented by sets of pairs

(st, st+1), with st = (vt, wt, xt) st+1 = (vt+1, wt+1, xt+1) following notations
from Def. 5: the observed changed of metabolic-regulatory steady states are
given as T ⊆ S× S with S = R|Inp|+|R| × B|RPs|,
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– a domain of putative regulatory BNs F of dimension n = |Inp|+ |R|+ |P|,
– a Boolean state objective score ô : Bn → N.

The relaxed inference problem consists then in identifying the f ∈ F such
that for each (s, s′) ∈ T ,

β(s′) ∈ nextB(N ,P,f,ô)(β(s))

Thanks to the formulation in the Boolean dynamic rFBA framework, the
inference problem boils down to a satisfiability problem in propositional Boolean
logic using two levels of quantifiers (2-QBF), expressed as follows.

Given (s, s′) ∈ T , with x′ ∈ Bn such that x′Inp = β(s′)Inp and x′R∪P =
β(s)R∪P ,

∃f ∈ F,∃y ∈ MSSB(N ), yInp = x′Inp, yP = fP(x′), yR � fR(x′),

∀z ∈ MSSB(N ), (zInp 6= x′Inp ∨ zP 6= fP(x′) ∨ zR 6� fR(x′) ∨ ô(z) ≤ ô(y))

The overall problem is then the conjunction over all pairs (s, s′) ∈ T .
Remark that with no Boolean optimization criteria (equivalently ô(z) = c),

the problem reduces to a SAT problem where the only constraints relate to the
local functions of the regulatory proteins:

∃f ∈ F,∃y ∈ MSSB(N ), yInp = x′Inp, yP = fP(x′)

Indeed, for each r ∈ R, have fr(x) = 1 always ensures that yR � fR(x′).

4.2 Implementation in Answer-Set Programming

Answer-Set Programming (ASP) [1,11] is a declarative framework allowing solv-
ing combinatorial satisfaction problems. It relies on the stable model semantics,
which enables expressing 2-QBF problems using disjunctive programming (ΣP

2 -
complete) [9].

An asp program is a logic program modelled with a set of logical rules. The
logical rules contain first order logic predicates. Each rule has the following form:

a0 ← l1, ..., ln

where a0 is a variable free atom and each {l}{1, n} is a literal which is either an
atom a or its negation not a. This rule states that when all the literals {l}{1, n}
are true then a0 is true too. If a0 is ⊥ (false), then the rule is an integrity
constraint :

← l1, ..., ln

Integrity constraints are satisfied only if the conjunction of all the right-hand
side literals is false. In other words, they are satisfied if and only if at least one
literal is {l}{1, n} is false. In contrast, a rule of the form a0 ← states that a0 is
true.
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Asp allows to define disjunctive logic program by adding disjunctive decla-
ration in rule left-hand side. To declare a disjunction, each left-hand side atom
of a rule must be separated by a semicolon (’;’).

a0; ...; am ← l1, ..., ln

Disjunction rules are subset-minimal. In other words, an answer set, containing a
set of disjunctive variables S, is a solution if and only if there is not any solution
answer set of which the set of disjunctive variables is a subset of S. For instance,
let’s consider the following example:

a←
b← a

a; b; c←

where a, b and c are atoms. There are two solution answer sets: {a, b} and
{a, b, c}. However, the atoms a, b and c are declared with a disjunction rule. As
the solution {a, b, c} is not subset minimal (it contains {a, b}), it is discarded.
The only subset minimal solution of this logic program is {a, b}.

Disjunction rules allow to model two quantification levels Boolean formulas
(2-QBF) with ASP, i.e. ∃x, ∀y, φ(x, y) where φ(x, y) is a quantifier-free proposi-
tional formula. The encoding relies on the so-called saturation technique [10,13].
Essentially, for a fixed x and y, the encoding ensures a maximal (saturated)
answser-set is returned if and only if φ(x, y). Thus, whenever there exists y such
that φ(x, y) does not hold (counter-example), a smaller answer-set is returned.
Following the subset-minimal stable semantics, the 2-QBF problem is satisifiable
if and only if only saturated answer-set are the smallest.

Our implementation of the Boolean dynamic rFBA inference problem is avail-
able at https://github.com/bioasp/boolean-caspo-flux. We rely on the
solver clingo [12], which enables an efficient enumeration of compatible BNs f .
Moreover, it gives the possibility to project the solution on each node of the BN,
i.e., enumerating only the local functions of a given node. This is particularly
handy to capture a large set of solutions: by enumerating the solutions node per
node, we can approximate the solution space by their cartesian product.

5 Case study

The approach was applied on an example inspired by the regulated metabolic
network shown Fig. 1. For this regulated metabolic network, six experiments
were designed in order to mimic the simulations introduced in [?]. Each ex-
periment is based on a different set A ⊆ E = {Carbon1, Carbon2, Oxygen}
of initially available input metabolites. The initialisation of each experiment is
detailed Table. 2. For instance, experiment 1 is initialised by assuming that all
input metabolites ({Carbon1, Carbon2, Oxygen}) are available. Experiment 2
assumes that {Carbon1, Carbon2} are present at initialization but Oxygen is
not.

https://github.com/bioasp/boolean-caspo-flux


14 K. Thuillier et al.

The search space of regulated metabolic networks on which the inference
problem was applied consisted in all regulated metabolic networks which have
the same metabolic networks and regulated proteins as the example of Fig. 1
and which Boolean rules had the same the influence graph as the the example
of Fig. 1. This corresponds to a search space of 1,944,320 BNs.

For each experiment, we used the rFBA implementation FlexFlux with an
initial biomass value of 0.1, a time step of 0.01 to simulate the system behavior.
Each of the 6 simulations is composed of 200 metabolic steady states. For a given
experiment initialised with the external metabolite values (zCarbon1, zCarbon2, zOxygen),
regulatory proteins were initialised such that xRPcl = zCarbon1 and xRPO2 =
¬zOxygen. The initial values of regulatory proteins for each experiment are shown
Table. 2. Each simulation S = {(v, w, x)0, ..., (v, w, x)200} contained 201 contin-
uous metabolic-regulatory steady states (1 for the initialisation and 200 for the
simulation). Simulation graphs of the 6 experiments are shown Fig. 3 in ap-
pendix.

The six simulations were processed to be used by the model-inference algo-
rithm. They were binarized: SB = {(vt, zt) = β((vt, wt)) | ∀vt ∈ S}. Then, these
binarized metabolic-regulatory steady states were filtered to remove redundant
time step. Thus, only the binarized metabolic-regulatory steady states different
from the previous time step were conserved. In other words, for each binarized
simulation SB = {(v0, z0), ..., (, v200, z200)}, ∀t ∈ [0; 200], t = 0 ∨ vt 6= vt−1

are conserved. Table. 1 shows the binarized metabolic-regulatory steady states
representing the simulation of the first experiment. From the 201 initial con-
tinuous metabolic steady states, we conserved 5 binarized metabolic-regulatory
steady states corresponding to the time steps {0, 1, 51, 52, 59}. The set of all
the remaining time steps for each binarized simulation is shown in appendix
Table. 5.

To solve the inference problem, one must supply an objective function ô.
Given Inp = {Carbon1, Carbon2, Oxygen} the set of external input metabo-
lites, the objective function was defined as ∀x ∈ MSSB(N ), ô(x) =

∑
e∈Inp xe.

This function was motivated by the fact the maximization of the biomass pro-
duction often corresponds to the maximisation of inputs according to the QSS

Input Metabolite Regulatory Protein

Experiment zCarbon1 zCarbon2 zOxygen xRPcl xRPO2

1 1 1 1 1 0
2 1 1 0 1 1
3 0 1 0 0 1
4 1 0 0 1 1
5 1 0 1 1 0
6 0 1 1 0 0

Table 2: Initialisation states of the six rFBA simulations used to create the
dataset used as input of application of the reverse-engeneering method to a
case-study.
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fRPO2(x) fRPcl(x) fTc1(x) fTc2(x) fRres(x) Subset minimal Ground truth

Model 1 ¬xOxygen xCarbon1 1 ¬xRPcl 1 X
Model 2 ¬xOxygen xCarbon1 1 ¬xRPcl ¬xRPO2 X
Model 3 ¬xOxygen xCarbon1 xRPcl ¬xRPcl 1

Model 4 ¬xOxygen xCarbon1 xRPcl ¬xRPcl ¬xRPO2

Table 3: Inferred models having subset minimal local functions. Not shown
local functions (fCarbon1(x), fCarbon2(x), fOxygen(x), fTo2(x), fTd(x), fTe(x),
fGrowth(x), fR6(x), fR7(x)) are set to 1.

constraints. Therefore, if an available external input metabolite is not used in
the observed Boolean metabolic network, then it must be explained by at least
one regulation. This objective function allows to capture more refined behaviors
at the discrete level than a usual biomass optimization function which may be
too rough when we consider discretized values.

Applying the satisfaction constraints describe previously allows inferring 40
models. All these models share have 3 fixed local functions (fRPO2(x), fRPcl(x),
fTc2(x)), 9 local functions set to 1 (fCarbon1(x), fCarbon2(x), fOxygen(x), fTo2(x),
fTd(x), fTe(x), fGrowth(x), fR6(x), fR7(x)) and 2 functions which can be both
set to 1 or fixed. The 4 smallest inferred models are described in Table. 3. Each
local functions fi of these 4 models are contained in the local function fi of the
36 others models. Notice that the ground truth, i.e. the model used to generate
the input data, is correctly inferred (model 2).

Adding the subset minimal constraint infers the model 1. The two unfixed
functions (fRres(x), fTc1(x)) are set to 1 due to the subset minimal constraint.
The inferred model is thus fRPO2(x) = ¬xOxygen, fRPcl(x) = xCarbon1, fTc2(x) =
¬xRPcl and all the others local functions are set to 1. Notice that only fRres(x)
differs between the inferred subset minimal model and the ground truth model.

In order to check whether the regulated metabolism model inferred by our
approach (model 1 in Table. 3) could be considered as an alternative to the
case-study described in Fig. 1, we performed a r-FBA simulation of the inferred
regulated metabolism model (i.e. without the regulation on the reaction Rres)
according to the six experimental conditions described in Table 2. We observed
that these quantitative time-series simulations were strictly identical to the sim-
ulations of the toy example used to generate the dataset as shown Fig. ??. This
suggests that the regulation on Rres is not necessary to explain the dataset.
The proposed model allows to fully infer all the needed regulations and can be
considered as the simplest regulated metabolic model matching with the ex-
perimental conditions of Table 2. Covert himself recognized in his article that,
unlike others regulations, Rres “regulation is not necessary for the solution” [8].
The regulation is biologically present only to ensure that unnecessary enzymes
decay. However, since enzymes concentrations are not represented explicitly in
r-FBA methology, the dataset does not reflect this biologic behavior, making it
impossible to infer properly the regulation. Taking into account enzymes, with
methods such as r-deFBA [16], should allow to prevent this issue. Nevertheless,
the inference approach will also need to be adapted to work with these kind of
advance metabolic modeling approaches.
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6 Discussion

We propose here a framework to infer Boolean rules describing the regulation
of a metabolic network. The mathematical formulation of the dynamic rFBA in
the form of successions of steady states of the regulated metabolic network has
allowed us to develop an algorithm to infer Boolean rules from time series in
multiple conditions. A proof of concept was performed on the simulation of the
diauxic shift on a small scale model.

Our method relies on a Boolean abstraction of the dynamic rFBA framework.
This enables a formulation of the inference problem as a pure Boolean satisfia-
bility problem using 2 levels of quantifiers, which can be efficiently solved using
logic programming, such as Answer-Set Programming. One important parame-
ter of the abstraction is the Boolean objective function which aims at identifying
Boolean metabolic steady states which match with the optimal real-valued ones.
This function is currently specified manually, from expertise on the network. Fu-
ture work may explore how to derive it automatically. An alternative direction is
to solve directly the inference problem mixing linear programming and Boolean
constraints.

Several perspectives are available after this first approach. First, here all
regulations are considered as synchronous, what is obviously not the case in
vivo where regulations are activated in a stochastic way. Second, the activation
and degradation times of the regulatory and enzymatic proteins are not taken
into account. Moreover, the regulations are considered here as binary but we
already know that the metabolism proceeds by finer regulations than what we
propose here, for instance as captured by the regulatory dynamic enzyme-cost
FBA [16].
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A Binarized metabolic steady state

External metabolites Reactions
zCarbon1 zCarbon2 zOxygen vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7 Experimentation

1 0 0 0 0 0 0 0 0 0 0 0 0 2, 3, 4
2 0 0 1 0 0 0 0 0 0 0 0 0 1, 5, 6
3 0 1 0 0 0 0 0 0 0 0 0 0 2, 3
4 0 1 0 0 1 0 1 1 1 0 1 1 2, 3
5 0 1 1 0 0 0 0 0 0 0 0 0 1, 6
6 0 1 1 0 1 1 0 0 1 1 0 0 1, 6
7 0 1 1 0 1 1 0 1 1 1 0 1
8 0 1 1 0 1 1 1 0 1 1 1 0
9 0 1 1 0 1 0 1 1 1 0 1 1
10 0 1 1 0 1 1 1 1 1 1 1 1
11 1 0 0 0 0 0 0 0 0 0 0 0 4
12 1 0 0 1 0 0 1 1 1 0 1 1 4
13 1 0 1 0 0 0 0 0 0 0 0 0 5
14 1 0 1 1 0 1 0 0 1 1 0 0 5
15 1 0 1 1 0 1 0 1 1 1 0 1
16 1 0 1 1 0 1 1 0 1 1 1 0
17 1 0 1 1 0 0 1 1 1 0 1 1
18 1 0 1 1 0 1 1 1 1 1 1 1
19 1 1 0 0 0 0 0 0 0 0 0 0 2
20 1 1 0 0 1 0 1 1 1 0 1 1
21 1 1 0 1 0 0 1 1 1 0 1 1 2
22 1 1 0 1 1 0 1 1 1 0 1 1
23 1 1 1 0 0 0 0 0 0 0 0 0 1
24 1 1 1 0 1 1 0 0 1 1 0 0
25 1 1 1 1 0 1 0 0 1 1 0 0 1
26 1 1 1 1 1 1 0 0 1 1 0 0
27 1 1 1 0 1 1 0 1 1 1 0 1
28 1 1 1 1 0 1 0 1 1 1 0 1
29 1 1 1 1 1 1 0 1 1 1 0 1
30 1 1 1 0 1 1 1 0 1 1 1 0
31 1 1 1 1 0 1 1 0 1 1 1 0
32 1 1 1 1 1 1 1 0 1 1 1 0
33 1 1 1 0 1 0 1 1 1 0 1 1
34 1 1 1 1 0 0 1 1 1 0 1 1
35 1 1 1 1 1 0 1 1 1 0 1 1
36 1 1 1 0 1 1 1 1 1 1 1 1
37 1 1 1 1 0 1 1 1 1 1 1 1
38 1 1 1 1 1 1 1 1 1 1 1 1

Table 4: All the Boolean metabolic steady states admissible for the metabolic
network N show Fig. 1a. The external metabolite Biomass is not shown since
its value can be both 0 and 1 for each Boolean metabolic steady state. The
experimentation column indicates the numbers of the experiments where the
Boolean metabolic steady states occurs.
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B Experiments and simulations

(a) Simulation of experiment 1.

(b) Simulation of experiment 2.

(c) Simulation of experiment 3.
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(d) Simulation of experiment 4.

(e) Simulation of experiment 5.

(f) Simulation of experiment 6.

Fig. 3: Simulation made with FlexFlux of the regulated metabolic network
shown Fig. 1 for each experiment (Table. 2). Time step is set to 0.01. Re-
action domains are ∀r ∈ {Tc1, Tc2}, (lr, ur) = (0, 10.5), ∀r ∈ {Td, Te},
(lr, ur) = (0, 12.0), ∀r ∈ {R6, R7, Rres, Growth}, (lr, ur) = (0, 9999) and for
Oxygen, (lr, ur) = (0, 15.0).
The same simulation graphs are obtained using the local function fRres =
¬xRPO2 and fRres = 1.
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External metabolites Regulatory proteins Reactions

Experiment Time zBiomass zCarbon1 zCarbon2 zOxygen xRPO2 xRPcl vTc1 vTc2 vTo2 vTd vTe vGrowth vRres vR6 vR7

1

0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0
51 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
52 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0
59 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

2

0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 1 1 1 0 0 1 1 1 0 1 1
83 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
84 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1
97 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

3
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1
83 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

4
0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1
83 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

5
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0
51 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

6
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0
51 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Table 5: All the different binarized metabolic steady states of each experiment.
They are the input data used to solve the inference problem.


	Learning Boolean controls in regulated metabolic networks: a case-study

