Ahmed Bensalma 
email: bensalma.ahmed@gmail.com
  
Fractional Dickey-Fuller test with or without prehistorical influence (Revised version)

Keywords: ARFIMA, fractional integration, Dickey-Fuller test, Fractional Dickey-Fuller test, type I and type II fractional Brownian motion

Recently the generalization of the standard Dickey-Fuller test to the fractional case has been proposed. This test, called fractional Dickey-Fuller (FDF) test, is built on the basis of a composite null hypothesis. The FDF test can be applied to a sample generated from a type I or a type II fractional process. Depending on whether the test is applied to a sample generated from a type I or type II process, it is referred to as a test with or without prehistoric influence, respectively. The primary goal of this research is to investigate the effect of a pre-sample on the finite sample null distribution. The second objective is to highlight the theoretical justifications for the choice of the null composite hypothesis. All the theoretical results are illustrated with simulated and real data sets. Furthermore, to facilitate the reproducibility of our simulation data and figures, we provide all the necessary supplementary material consisting of EViews programs.

INTRODUCTION AND MOTIVATION

Consider the process y t defined by Here, Γ(z) denotes the gamma function. The class of the processes (1.1) for d integer is known as the class of integrated processes of order d, (y t I(d)). y t is also said to have d unit roots. The class of processes (1.1) for d fractional, (i.e. d ∈ R) is known as the class of fractionally integrated processes of order d, (y t F I(d)). As the gamma function is also defined for all real numbers, the above definition of the binomial coefficient can be extended to all real numbers d,

Γ(z) =          ∫ ∞ 0 s z-1 e -z ds, if z > 0, ∞ if z = 0, z -1 Γ(z + 1), if z < 0.
Formally, we can define (1 -L) d for any real number d by

(1 -L) d = ∞ ∑ j=0   d j   (-1) j L j . ( 1.3) 
For all positive integers, only first (d + 1) terms are non-zero and we obtain the original definition of the dth difference operator (1-L) d . For non-integers values of d, the summation (1.3) is over an infinite number of indices. The existence of unit roots in macroeconomic time series has been the subject of much theoretical and applied research since the influential work of Nelson and Plosser (1982). Since the introduction of the F I(d) processes by [START_REF] Granger | An introduction to long memory time series models and fractional differencing[END_REF] and [START_REF] Hosking | Fractional differencing[END_REF], theoretical and applied research to determine whether the parameter d is fractional in macroeconomic time series has been as extensive as that of the existence of unit roots. Although the class of I(d) processes is a special case of the class of F I(d) processes, each class has its own statistical inference tools. For a review of statistical inference tools specific to F I(d) processes, see [START_REF] Baillie | Long Memory Process and Fractional Integration in Econometrics[END_REF]. Furthermore, the I(d) processes are non-stationary for d ≥ 1, while the F I(d) processes are non-stationary for d ≥ 0.5. To the best of our knowledge, very little work has been done to generalize the well-known unit roots tests to the fractional case. Among the non-stationary tests designed for the I(d) processes, the Dickey-Fuller test (1979) and Said and Dickey (1984) are the most widely used in the literature. The latter is more commonly referred to as "the augmented Dickey-Fuller test" (ADF test in short). The ADF test is designed to test the hypothesis

H 0 : d = 1, (1.4) 
and, more generally, the null hypothesis H 0 : d = m 0 , (multiple unit roots null hypothesis) (1.5) with m 0 ∈ N * (see [START_REF] Pantula | Testing for unit root in time series data[END_REF] page 260). For a given series {y t } n t=1 from ARIM A(p, d, q), with d ∈ N, the hypotheses (1.4) and (1.5) are based upon testing the statistical significance of the coefficient ρ in the following regression model,

∆ m 0 y t = ρ∆ m 0 -1 y t-1 + k ∑ j=1 λ j ∆ m 0 y t-j + ε t , ( 1.6) 
where ∆ = (1 -L) and {ε t } n t=1 are the residuals. This testing procedure is called DF test when k = 0 (i.e. λ j = 0 for j = 1, • • • , k) and ADF test when k ̸ = 0. Under the null hypothesis (1.4) and (1.5), for suitably chosen k, the asymptotic distributions of the usual statistics are,

         ADF n (k) = n ρ 1- ∑ λ j =⇒ 0.5[W 2 (1)-1] ∫ 1 0 W 2 (r)dr , ADF t (k) = t ρ =⇒ 0.5[W 2 (1)-1] ( ∫ 1 0 W 2 (r)dr) 0.5 , (1.7) 
where W (•) is the standard Brownian motion and =⇒ denotes weak convergence. The limit distributions (1.7) and the finite sample distributions of ADF n (k) and ADF t (k) are known as the Dickey-Fuller distributions. It should be noted that ∆ m 0 -1 y t-1 I(1 + d -m 0 ) and then under the null (1.5) we have ∆ m 0 -1 y t-1 I(1). In recent years, there has been some interest in generalizing the Dickey-Fuller test to the fractional case. Such generalization should make it possible to test the null

H 0 : d = 0.5, (1.8) 
or more generally

H 0 : d = d 0 , d 0 ∈ [-0.5, +∞[ , ( 1.9) 
The first such extension was made by Dolado, Gonzalo and Mayoral (2002) (DGM henceforth). DGM (2002) propose to test the following hypotheses,

H 0 : d = d 0 against H 0 : d = d 1 , with d 0 < d 1 , (1.10)
by means of the t-statistic of the coefficient of ∆ d 1 y t-1 in the regression model

∆ d 0 y t = ρ∆ d 1 y t-1 + k ∑ j=1 λ j ∆ d 0 y t-j + ε t . (1.11)
Bensalma (2018) show that DGM test is useless in practice and cannot be considered as an appropriate extension of the augmented Dickey-Fuller test. The misconception is in the regression model (1.11) which depends on the null and alternative hypotheses (i.e. d 0 and d 1 ). We recall that for the test hypotheses such as formulated in (1.10), the t-statistic must only depend on the null hypothesis (i.e. d = d 0 ). This misconception has resulted in making the limit distribution of the t-statistic depends on the fractional Brownian motion. For example, DGM (2002) show that, when d 0 = 1 and 0 < d 1 < 1 and k = 0 in the model (1.11), the asymptotic distribution of the t ρ is given by

           t ρ (d 1 ) =⇒ ∫ W -d 1 (r)dW (r) ( ∫ W 2 -d 1 (r)dr) 0.5 , if 0 < d 1 < 0.5,
and

t ρ (d 1 ) =⇒ N (0, 1), if 0.5 ≤ d 1 < 1.
These asymptotic distributions are different from those ( [START_REF] Pantula | Testing for unit root in time series data[END_REF] given above.

That is, it suffices to replace m 0 ∈ N by d 0 ∈ [-0.5, +∞[ in the model (1.6) and then the limit distributions of n ρ 1-∑ λ j and t ρ will be deduced exclusively under the null hypothesis and have the limit (1.7). They have the limit (1.7) because ∆ This paper is organized as follows. In section 2, preliminary concepts about the definition of the type I and type II fractional processes and their related asymptotic theory are given.

In section 3, we provide, the asymptotic null and alternative distributions of the F DF test with or without prehistorical influence. Section 4 examines, via simulations, the finite sample behavior of the F DF test based on type II fractional processes. We compare also, via simulation, the type I fractional process based F DF test and the type II fractional process based F DF test. The proofs of the main results presented in section 3 are left to the Appendix.

PRELIMINARY CONCEPTS

We consider two types of the stationary/nonstationary and invertible fractional ARFIMA(0,d,0) processes, with d ∈ ]-0.5, +∞[.

The type I fractional I(d) process y t is defined by

y t = (1 -L) -d u t , t ∈ Z, (2.1) 
where u t are independent and identically distributed (i.i.d) random variables. The fractional integration operator (1 -L) -d is defined by its Maclaurin series (by its binomial expansion, if d is an integer):

(

1 -L) -d = ∞ ∑ j=0 Γ(d + j) Γ(d)Γ(j + 1) L j .
The type II I(d) fractional process is defined as

y * t = (1 -L) -d u * t , t = 1, 2, • • • , n, (2.2) 
with initial conditions y * t = 0, if t < 1 and where

u * t =    u t if t ≥ 1, 0 otherwise. (2.3)
The literature of time series econometrics for long memory processes has adopted two distinct processes, (2.4) and (2.5), as a basis for asymptotic analysis. Given that d = m+δ, for m ≥ 0 and δ ∈ ]-0.5, 0.5[, and defining the partial sums, 

Y n (r) = ∑ [nr] i=1 y t √ V ar ( ∑ [nr] i=1 y t ) , (2.4) Y * n (r) = ∑ [nr] i=1 y * t √ V ar ( ∑ [nr] i=1 y * t ) . ( 2 
y t = k+t-1 ∑ j=0 Γ(d + j) Γ(j + 1)Γ(d) u t-j , (2.6) 
where 2 separately from the case d > 1 2 (see Tanaka, 1999 for more details). Because of this we restrict ourselves to present the asymptotic theory of ARF IM A processes on the domain d = m + δ with m ∈ N and δ ∈ ]-0.5, 0.5[ for the type I fractional processes. For the type II we present the asymptotic theory for d > 0.5. This does not restrict generality and allows the use of homogeneous normalization constants throughout this article.

{u 1-k , u 2-k , • • • , u n } is

ASYMPTOTIC BASED ON TYPE I FRACTIONAL PROCESSES

Liu (1998) has derived a functional limit theorem for nonstationary ARF IM A(0, d, 0) processes defined by (2.1). First, Liu (1998) state the functional limit theorem for lower order integration (i.e. m = 0, δ ∈ ]-0.5, 0.5[). The lower order convergence results are given in Theorem 1 below.

Theorem 1: If y t I(δ), δ ∈ ]-0.5, 0.5[, u t satisfy the assumption that E |u t | α < ∞ for α ≥ max { 4, -8δ 1+2δ } and σ 2 n = V ar ( ∑ n t=1 y t ) then 1. σ 2 n n 1+2δ σ 2 u A(δ) -→ 1 if δ ∈ ]-0.5, 0.5[ 2. For r ∈ (0, 1), [ σ -1 n ∑ [nr] t=1 y t =⇒ 1 √ A(δ) B δ (r) ] ⇐⇒ [ n -0.5-δ ∑ [nr] t=1 y t =⇒ σ u B δ (r) ] , if δ ∈ ]-0.5, 0.5[
where B δ (r) is the type I fractional Brownian motion defined by stochastic integral

B δ (r) = 1 Γ(1 + δ) {∫ r 0 (r -x) δ dB(x) + ∫ 0 -∞ [ (r -x) δ -(-x) δ ] dB(x) } ,
and

A(δ) = 1 Γ 2 (1 + δ) { 1 1 + 2δ + ∫ ∞ 0 [ (1 + τ ) δ -τ δ ] dτ } = Γ(1 -2δ) (1 + 2δ)Γ(1 + δ)Γ(1 -δ) . B(r) is standard Brownian motion.
On the basis of lower-order convergence results of 

u t satisfy the assumption that E |u t | α < ∞ for α ≥ max { 4, -8δ 1+2δ }
. Then, for r ∈ (0, 1) we have 1.

1

n -0.5+(δ+m) y [nr] =⇒ σ u B δ,m (r),
2.

1 n 0.5+(δ+m) ∑ [nr] t=1 y t =⇒ σ u B δ,m+1 (r) = σ u ∫ r 0 B δ,m (x)dx, 3. 1 n 2(δ+m) ∑ [nr] t=1 y 2 t =⇒ σ 2 u ∫ r 0 [B δ,m (x)] 2 dx.
where

B δ,m (r) =    B δ,1 (r) = B δ (r), if m = 1, ∫ r 0 ∫ r m-1 0 • • • ∫ r 2 0 B δ (r 1 )dr 1 dr 2 • • • dr m-1 , if m ≥ 2.
If δ = 0 and m ≥ 1 the convergence results of Theorem 2 agree with those of [START_REF] Chan | Limiting distributions of least squares estimates of unstable autoregressive processes[END_REF]. Given that

B 0,1 (r) = 1 Γ(1+δ) { ∫ r 0 (r -x) δ dB(x) + ∫ 0 -∞ [ (r -x) δ -(-x) δ ] dB(x) } = ∫ r 0 dB(x) = B(r), and B 0,m (r) = ∫ r 0 ∫ r m-1 0 • • • ∫ r 2 0 B(r 1 )dr 1 dr 2 • • • dr m-1 = 1 Γ(m) ∫ r 0 (r -s) m-1 dB(s)
therefore the following Corollary is a direct consequence of Theorem 2.

Corollary 1: Let y t satisfy (2.1) with δ = 0 and m ≥ 1. Under the assumption that u t is a class of i.i.d Gaussian processes we have

1. n 0.5-m y [nr] =⇒ σ u B 0,m (r) ( ≡ σu Γ(m) ∫ r 0 (r -s) m-1 dB(s)
) .

2. n -0.5-m ∑ [nr] t=1 y t =⇒ σ u B 0,m+1 (r) = σ u ∫ r 0 B 0,m (s)ds ( ≡ σu Γ(m+1) ∫ r 0 (r -s) m dB(s)
) .

n

-2m ∑ [nr] t=1 y 2 t =⇒ σ 2 u ∫ r 0 [B 0,m (s)] 2 ds.

ASYMPTOTIC BASED ON TYPE II FRACTIONAL PROCESSES

Investigation of asymptotic behavior of partial sums (2.5) when d > 0.5 was considered by [START_REF] Akonom | A functional central limit theorem for fractional processes[END_REF], Gourieroux, Maurel and Manfort (1987), [START_REF] Silveira | Contributions to strong approximations in time series with applications in nonparametric statistics and functional central limit theorems[END_REF],

Qiying Wang (2001) and [START_REF] Wang | Asymptotics for general nonstationary fractionally integrated processes without prehistoric influence[END_REF]. Investigation including the case d = 0.5 was considered by [START_REF] Tanaka | The nonstationary fractional unit root[END_REF]. (2.3), satisfy the assumption that

Theorem 3: If y * t = (1 -L) -d u * t , d > 0.5, u * t defined by
E |u t | r < ∞ for r ≥ max { 2, 2 2d+1 } and given that σ * 2 n = V ar [ (1 -L) -d u * n ] then 1. σ * 2 n n 2d-1 σ 2 u A * (d) -→ 1, if d > 1 2 . 2. If d > 0.5, for r ∈ (0, 1), [ (σ * n ) -1 y * [nr] =⇒ 1 √ A * (d) W d (r)
] ⇐⇒

[ n 0.5-d y * [nr] =⇒ σ u W d (r) ] ,
where

W d (r) = 1 Γ(d) ∫ r 0 (r -s) d-1 dW (s), A * (d) = 1 Γ 2 (d)(2d-1) and W (r) = B(r)is standard Brownian motion. Theorem 4: If y * t = (1 -L) -d u * t , d > 0.5, u * t defined by (2.
3), satisfy the assumption that

E |u t | r < ∞ for r ≥ max { 2, 2 2d+1 } and (σ * n ) 2 = V ar ( ∑ [nr] t=1 y * t ) then 1. (σ * n ) 2 n 2d+1 σ 2 u A * (d + 1) -→ 1. 2. n -0.5-d ∑ [nr] t=1 y * t =⇒ σ u W d+1 (r), r ∈ (0, 1). 3. n -2d ∑ [nr] t=1 (y * t ) 2 =⇒ σ 2 u ∫ r 0 W 2 d (s)ds, r ∈ (0, 1).
where A * (d) and W d (r) are defined as in Theorem 3. [START_REF] Tanaka | The nonstationary fractional unit root[END_REF] page 554), then Corollary 1 can also be deduced from Theorem 3 and 4. In the other words, the definitions of type I and type II fractional Brownian motion coincide when d is an integer.

Remark 2: By noting that, W 0 (r) = ∫ r 0 dW (s) = W (r) = B(r) = B 0,1 (r) and that for the integer values of d = m, we have W m (r) = B 0,m (r) = 1 Γ(m) ∫ r 0 (r -s) m-1 dB(s) (see
The above fractional functional limit theorems are widely applied to study the behavior of the limit distributions of the usual test statistics, (i.e. DF n and DF t ), when the null is 

H 0 : d = 1

APPLICATION TO THE FRACTIONAL DICKEY FULLER TEST

THE ASYMPTOTIC NULL AND ALTERNATIVE DISTRIBUTIONS

In this section, we apply the main results presented in section 2 to more general composite null hypothesis, namely,

H 0 : d = d 0 , with d 0 ∈ [-0.5, +∞[ . (3.1)
To test the null hypothesis (3.1) we use the following standard autoregression model

∆ d 0 y t = ρ∆ d 0 -1 y t-1 + ε t . (3.2)
In order to extend the studies of the behavior of asymptotic distributions of the DF n and DF t test statistics deduced from the more general model (3.2), we must derive functional limit theorems for the transformed processes

∆ d 0 y t ∼ F I(d -d 0 ) and ∆ d 0 -1 y t ∼ F I(1 + d -d 0 ).
It is straightforward to deduce, from the above asymptotic theory, the corresponding asymptotic theory of ∆ d 0 y t and ∆ d 0 -1 y t (see Lemma 1 and Lemma 2 in Appendix). The asymptotic null and alternative distributions of DF n and DF t statistics when the data generating process is (2.2) or (2.1) are given by theorem 5 and Theorem 6, respectively. 

1. DF n → -∞ and DF t → -∞ if d < d 0 . 2. DF n =⇒ 0.5[W 2 (1)-1] ∫ 1 0 W 2 (r)dr and DF t =⇒ 0.5[W 2 (1)-1]
(

∫ 1 0 W 2 (r)dr) 0.5 if d = d 0 . 3. DF n =⇒ 1 2 W 2 d-d 0 +1 (1) ∫ 1 0 W 2 d-d 0 +1 (r)dr and DF t =⇒ +∞ if d > d 0 .
where W (•) is a standard Brownian motion and W d (•) defined as in Theorem 3.

Proof : see appendix. 

1. DF n → -∞ and DF t → -∞ if d < d 0 . 2. DF n =⇒ 0.5[B 2 0,1 (1)-1] ∫ 1 0 B 2 0,1 (r)dr and DF t =⇒ 0.5[B 2 0,1 (1)-1] 
(

∫ 1 0 B 2 0,1 (r)dr) 0.5 if d = d 0 . 3. DF n =⇒ 1 2 B 2 δ,m+1 (1) ∫ 1 0 B 2 δ,m+1 (r)dr and DF t =⇒ +∞ if d > d 0 .
where B 0,1 (•) is a standard Brownian motion and B δ,m (•) defined as in Theorem 2.

Proof : see appendix.

COMMENTS ON THE LIMIT DISTRIBUTIONS

Before delving into the results of Theorems 5 and 6, it is necessary to review Pantula's findings [START_REF] Pantula | Testing for unit root in time series data[END_REF]). Although this work is quite old, it contains the simple idea that allows the Dickey-Fuller test to be generalized to the fractional case. This reminder will be weighed against the outcomes of Theorems 5 and 6. [START_REF] Pantula | Testing for unit root in time series data[END_REF] shows that under the multiple unit roots null hypothesis (1.5) and based on the regression model (1.6), the t ρ statistic have the following asymptotic distribution : [START_REF] Pantula | Testing for unit root in time series data[END_REF] derives the following property (P 1 ) from this remarkable arrangement of limit distributions (see [START_REF] Pantula | Testing for unit root in time series data[END_REF], page 263).

t ρ -→ -∞ if d < m 0 , t ρ =⇒ 0.5(W 2 (1)-1) ( ∫ 1 0 W 2 (r)dr) 0.5 if d = m 0 and t ρ -→ +∞ if d > m 0 , here m 0 ∈ N * .
lim n→∞ P [Rejecting H 0 ]          ≤ α, if d > m 0 , = α, if d = m 0 , = 1, if d < m 0 . (P 1 )
The property (P 1 ) means that α = Sup

d≥m 0 P [Rejecting H 0 ] = P [Rejecting H 0 /d = m 0 ] . (P ′ 1 )
The property (P ′ 1 ) allows us to consider the use of a composite null hypothesis (i.e. H 0 : d > m 0 ) instead of a simple hypothesis (1.5). It is should be noted that ∆ m 0 -1 y t

I(1 + d -m 0 )
and then we have

(1 + d -m 0 )          > 1, if d > m 0 , = 1, if d = m 0 , < 1, if d < m 0 .
From Theorems 5 and 6, it follows that

lim n→∞ P [Rejecting H 0 ]          ≤ α, d > d 0 , = α, d = d 0 , = 1, d < d 0 , (P 2 )
because the asymptotic distribution of the DF n = n ρ and DF t = t ρ have the same remarkable arrangement of the limit distribution of the t-statistic investigated by [START_REF] Pantula | Testing for unit root in time series data[END_REF].

Consequently, we can consider the use of a composite null hypothesis H 0 : d ≥ d 0 since to control the type I error (α) we have α = Sup

d≥d 0 P [Rejecting H 0 ] = P [Rejecting H 0 /d = d 0 ] . (P ′ 2 )
It is should be, also, noted that ∆ d 0 -1 y t F I(1 + d -d 0 ) and then we have

(1 + d -d 0 )          > 1, if d > d 0 , = 1, if d = d 0 , < 1, if d < d 0 .
Moreover, if we use upward or downward testing sequence for a set of values

d 1 0 < d 2 0 < • • • < d l 0
, it is possible to determine an overlap domain of the parameter d (see empirical application section).

Theorem 5 and 6 show that the DF test statistics (i.e. DF n or DF t ) have the same asymptotic Dickey-Fuller distributions, whatever the data generating fractional process is type I process or type II. These asymptotic results mean, intuitively, that one does not have to worry about the impact of a pre-sample when the sample size is very large. But what if the sample size is small or moderate? The answer to this question will be done by Monte-Carlo simulation as follows:

We suppose that {y t , t = 1, • • • , n} is generated from the following formula,

   y t = ∑ k+t-1 j=1 Γ(d+j) Γ(d)Γ(j+1) u t-j , t = 1, • • • , n,
where u t is white noise process.

We base our analysis on three types of process 1. Unit root process : y t = ∑ t-1 j=1 u t-j , (d = 1) .

Fractional type II process :

∑ t-1 j=1 Γ(d+j)
Γ(d)Γ(j+1) u t-j , (d = 0.5) .

Fractional type I process :

∑ k+t-1 j=1 Γ(d+j) Γ(d)Γ(j+1) u t-j , (k ̸ = 0, d = 0.5).
We compare the finite sample distributions of the DF test statistics when the null hypothesis is either (a), (b) or (c) • For the case (b) and (c), with d = 0.5, we showed, by simulation, that the DF statistics have not the same finite sample distribution. This latter comparison may lead one to believe that one cannot use the critical tabulated values of finite-sample Dickey-Fuller distributions when the data generation process is the Type I fractional process. By a simple statistical argument, which is often used in test theory, (see subsection 4.2), we show that it is possible to use the tabulated values of the Dickey-Fuller distributions even when the data generating process is that fractional processes of type I.

H 0 : d = 1, (a)    H 0 : d = 0.5,

MONTE-CARLO EVIDENCES

The simulations we carried out are divided into two parts. In the first part, we evaluate the fractional Dickey-Fuller test within the general framework of the fractional processes of type II, defined by (2.2). The main objective is to check the accuracy of the theoretical results established in section 3, for small or medium sample sizes. In addition, these simulations show that the approximate limit distributions of the test statistic (DF n or DF t ) for the same, low or moderate, sample size when d = 1 is comparable to d = 0.5. That is, in the general context of fractional type II processes, we can use the critical values of the standard Dickey-Fuller distribution. In the second section, we look at whether we can utilize the usual Dickey-Fuller distribution while doing the type I fractional process based test or not. For this purpose, under the null H 0 : d = 0.5, we compare the type I fractional process based test with varied pre-sample sizes to the type II fractional process based test.

THE TYPE II FRACTIONAL PROCESS BASED TEST

In the following we examine the analytical findings, (i.e. the property (P 2 )), numerically when d and d 0 are fractional. For integration order d ∈ {0.2; 0.4; 0.6; 0.8; 1; 1.2}, from the data generating process (2.2), we simulate a sample of 50 observations. For each value of d we perform the test hypothesis (H 0 : d ≥ d 0 ) via the autoregression model (3.2) for d 0 ∈ {0.2; 0.4; 0.6; 0.8; 1; 1.2}. The simulation is based on 10000 Monte-Carlo replications.

The results are reported in the form of a matrix in the table 1. The main diagonal of the this, we use the Monte Carlo approach by following these steps:

1. Generate two sequences of an i.i.d standard normal distribution:

{u i,t , t = 1, • • • , n, i = 1, 2} 2. generate the sequence y t = ∑ t-1 j=1 Γ(0.5+j) Γ(0.5)Γ(j+1) u 1,t-j, t = 1, • • • , n, with y 0 = 0 3. Compute the fractional difference of y t : z t = (1 -L) 0.5-1 y t .
4. Estimate the model ∆z t = ρz t-1 + ε t .

5. The estimated DF (0.5) n

= n ρ and DF (0.5) t = t ρ .

6. Generate a sequence

x t = x t-1 + u 2,t t = 1, • • • , n, with x 0 = 0.
7. Estimate the model ∆x t = ρx t-1 + ε t

The estimated DF

(1) n = n ρ and DF 

n and represent them in the same graph (see the Figure 1). 

Estimate the kernel density of DF

THE TYPE I FRACTIONAL PROCESS BASED TEST

The F DF test, described in subsection 4.1, can be considered as "fractional Dickey-Fuller test without pre-historical influence". In the following, we address the issues of the case where the formula (2.6) is used, with k ̸ = 0. Can we in this case use the usual tabulated values? To respond to this question, we proceed as the following.

1. For a series {u 1-k , u 2-k , • • • , u 50 } generated from a Gaussian i.i.d(0, 1) process, 4 samples from ARF IM A(0, 0.5, 0) processes were generated by using the formula (2.6) for k ∈ {0, 50, 100, 150}, namely,

y t = k+t-1 ∑ j=1 Γ(d + j) Γ(d)Γ(j + 1)
u t-j , with k ∈ {0, 50, 100, 150}

2. For each sample we estimate the model

(1 -L) 0.5 y t = ρ(1 -L) 0.5-1 y t-1 + ε t , t = 1, • • • , 50
3. From the step 2 DF n = 50 ρ and DF t = t ρ are calculated.

To estimate the densities of DF n and DF t 10000 replication realization of step 1 to 3 are made. The estimated densities for k = 0, 50, 100 and 150 are represented in the same graph.

The kernel density estimate of DF n and DF t are presented in Figures 3 and4 respectively. Under the null hypothesis H 0 : d = 0.5 our simulations show that when k varies the distribution of the test statistic DF n and DF t also varies (see Figure 3 and4). Therefore, we given in table 2. 

] = P [ DF (0) t < cv(α) |d = d 0 ]
Therefore, assuming that the real data generating process is indeed a fractional process, whether it is type 1 or type 2 and in view of our ignorance we can apply the well-known principle of statistical test theory described above. This principle leads us to the possibility of using the tabulated values of the Dickey-Fuller distributions. A simulation program with Eviews on which these results are based can be found in supplementary material 3.

EMPIRICAL APPLICATION

In this section, we considered the well-known series for annual minima of the Nile, as studied by Hurst (1951) and reproduced in [START_REF] Beran | Statistics for long-memory processes[END_REF]. The sample size of this series is 633 annual observations (622 -1284 AD) and the Figure 3 is the time plot of it. We denote this series by {y t , t = 1, • • • , 633}. . We use upward testing sequence for a set of values d i 0 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} .

For a particular value d i 0 from this latest set, we test the hypothesis

H 0i : d ≥ d i 0
by using the t ρ i = DF t calculated via the estimation of the following autoregression model

(1 -L) d i 0 y t = (1 -L) d i 0 -1 y t-1 + ε t .
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The Table 4 summarizes the sequential upward testing procedure of the standard F DF test on the (1 -L) d i 0 -1 y t-1 series. The table 4 shows that we can apply a downward testing sequence, in this case we take the largest value, (the maximum value of d i 0 , i.e. d ≥ 1), under consideration as the first maintained hypothesis and then decrease the order of differenced each time the current null is rejected. The table 4 shows, also, that an upward testing sequence can be applied. In this case we take the smallest value of d i 0 , (i.e. d ≥ 0) under consideration as the first maintained hypothesis and then increase the order of differenced each time the current alternative is accepted. An Eviews program to perform the sequential fractional Dickey-Fuller test to the Nile series can be found in supplementary material 1. The ADF and P P tests are different, mainly, in the way of dealing with correlations in the regression residuals (3.2). This is why it is important to approach the generalization of them in the same paper in order to compare their performances in terms of level and power. We can then consider their use in the context of fractional cointegration.

The literature on unit root tests is vast. The DF test has been extended in the unit root literature accounting for, exogenous and endogenous structural breaks, heteroscedastic error terms, cointegration etc. Among all these ramifications, it is crucial to determine which ones, like the F DF test, generalize so well to the fractional case (i.e. using the same theoretical framework and the same statistical tables). In the literature, there is both old and new work done in the context of fractional integration that can be used to make such generalizations. As a result, they may be simple to implement in statistical and econometric software. Furthermore, this will enable practitioners to access unique statistical inference techniques that may be employed within the context of the I(d) or F I(d) processes. By denoting ∆ -1+d 0 y * t = x * t , the OLS estimator of ρ its t-ratio for the auxiliary regression model (3.2), are given by the usual squares expressions ) 2 term, it follows from Lemma 1, item (1, c) we have

ρ n = ∑ n t=1 (
n -2-2(d-d 0 ) n ∑ t=1 ( x * t-1 ) 2 ⇒ σ 2 u ∫ 1 0 W 2 d-d 0 +1 (r)dr, if -0.5 < d -d 0 < 0, (A1) n -2 n ∑ t=1 ( x * t-1 ) 2 ⇒ σ 2 u ∫ 1 0 W 2 (r)dr, if d -d 0 = 0, (A2) n -2-2(d-d 0 ) n ∑ t=1 ( x * t-1 ) 2 ⇒ σ 2 u ∫ 1 0 W 2 d-d 0 +1 (r)dr, if 0 < d -d 0 < 1 2 , ( A3 
) 

n -2-2(d-d 0 ) n ∑ t=1 (x t-1 ) 2 ⇒ σ 2 u ∫ 1 0 W 2 d-d 0 +1 (r)dr, if d -d 0 = m + δ > 1 2 . ( A4 

( 1 -

 1 L) d y t = u t , (1.1)where u t is stationary short memory ARM A process, L is backshift operator. If d is a positive integer then (1 -L) d can be written as(1 -L) d = + 1)Γ(d -j + 1).

. 5 )

 5 it is well known that for d = δ, Y n (r) =⇒ B δ (r) and for d > 0.5, Y * n (r) =⇒ W d (r), where =⇒ denotes the weak convergence in the space of measures on D [0, 1], B δ (r) is the type I fractional Brownian motion and W d (r) is the type II fractional Brownian motion (Marinucci and Robinson (1999), Davidson and Hashimzade (2009)). A general procedure for generating a type I fractional I(d) series of length (n) is to apply, for t = 1, 2, • • • , n and some fixed (k) large enough, the formula

  a random sequence of suitable type. On the other hand, choosing k = 0 in formula (2.6) we generate a type II fractional I(d) series of length (n), (Davidson and Hashimzade (2009)). The asymptotic theory based on type I fractional Brownian motion needs to treat the case d = m + δ with m ∈ N and δ ∈ ]-0.5, 0.5[ separately from the case d = m + 1 2 , with m ∈ N (see Liu, 2003 for more details). Whereas, the asymptotic theory based on type II fractional Brownian motion requires treating the case d = 1

Theorem 1 , 5 . 2 :

 152 [START_REF] Liu | Asymptotics of nonstationary fractional integrated series[END_REF] establishes the convergence result when d > 0.5 by applying the continuous mapping Theorem. The following Theorem 2 gives the convergence results when d > 0.Theorem (Liu (1998) Let y t satisfy (2.1) with d = m + δ, δ ∈ ]-0.5, 0.5[ m ≥ 1 and

  and the true value of d ∈ R, (see[START_REF] Gourieroux | Regression and nonstationarity[END_REF],[START_REF] Sowell | The fractional unit root distribution[END_REF],[START_REF] Tanaka | The nonstationary fractional unit root[END_REF],[START_REF] Wang | Asymptotic for general fractionally integrated processes with applications to unit root tests[END_REF]). The authors of all these work achievements at the same conclusion: : the domains of limit probability density function according to weather d < 1, d = 1 and d > 1, are R -, R and R + respectively. This remarkable property can be exploited to test the composite null H 0 : d ≥ 1 rather than the simple one[START_REF] Bensalma | A consistent test for unit root against fractional alternative[END_REF]).

Theorem 5 :

 5 Let {y * t } be generated according to the data generating process (2.2) with d ∈ (-0.5, +∞). If regression model (3.2) is fitted to a sample of size n then, as n → ∞, for d -d 0 = m + δ, with m ≥ 0 and δ ∈ (-0.5; 0.5) we have

Theorem 6 :

 6 Let {y t } be generated according to data generating process (2.1) with d ∈ (-0.5, +∞). If regression model (3.2) is fitted to a sample of size n then, as n → ∞, for d -d 0 = m + δ, with m ≥ 0 and δ ∈ (-0.5; 0.5) we have

  d = 0.5, y t is Fractional type I process. (c) • For the case (a) and (b), we showed, by simulation, that the DF statistics have the same finite sample distribution.

  The results of Tables 1 demonstrate what the theoretical results in (P 2 ) predict. In addition, it should be noted that we used the same critical values (cv α ) taken from the Dickey-Fuller tables, regardless of the values of d and d 0 . It should also be noted that at each time, when d = d 0 , we find that the estimated probability of rejection of H 0 is very similar to the nominal value α. We want to check, in what follows, if the distributions in finite samples, under the null hypothesis H 0 : d = 1 and under the null hypothesis H 0 : d = 0.5, are the same. To do

= t ρ . 9 .

 9 Repeat the steps 1 to 8 to 10000 times 10. Estimate the kernel density of DF (0.5) n and DF

  in the same graph (see the Figure 2). The figures 1 and 2 show that we can use the finite simple Dickey-Fuller distributions when the data generating process is a fractional type II process. All the above results show that the class of the type II F I(d) processes is a natural extension of the class of I(d) processes. A simulation program with Eviews on which these results are based can be found in supplementary material 2.

Figure 1 : 5 Figure 2 :

 152 Figure 1: Kernel density estimate of DF n under H 0 : d = 1 and under H 0 : d = 0.5

Figure 3 :

 3 Figure 3: Kernel density estimate of n for different values of k

Figure 4 :

 4 Figure 4: Kernel density estimate of DF t for different values of k

Figure 5 :

 5 Figure 5: Nile series

2 .Proof of Lemma 1 :

 21 For m > 1 and -0.5 < δ < 0.5,(a) n 0.5-(d-d 0 ) ∆x * [nr] =⇒ σ u W d-d 0 +1 (r). (b) n -0.5-(d-d 0 ) ∑ [nr] j=1 ∆x * j =⇒ σ u W d-d 0 (r). (c) n -2(d-d 0 ) ∑ [nr]The proof is straighforward from Theorem 4. It suffice to apply the Theorem 4 to the processesx * t = (1 -L) d 0 -1 y * t and ∆x * t = (1 -L) d 0 y * t .

table 1

 1 show that P [Rejecting H 0 ] ≃ α for d = d 0 . All the entries below the main diagonal in table 1 show that P [Rejecting H 0 ] < α for d > d 0 . Finally, all the entries above the main diagonal in table 1 show that P [Rejecting H 0 ] ≃ 1 for d < d 0 and |d -d 0 | large (more generally, P [Rejecting H 0 ] > α, for d < d 0 ). The critical values used to perform the F DF test are those of the Dickey-Fuller distribution.

Table 1 :

 1 Percentage of rejection of the null H 0 : d ≥ d 0 (P [DF t < cv α ]) when the DGP is (2.2)

			d 0	0.2	0.4	0.6	0.8	1	1.2
	d	cv α	α						
		-2.57	1%	1.15	10.3	49.95	95.17	99.99	100
	0.2	-1.95	5%	5.14	27.26	75.38	99.45	100	100
		-1.61	10%	10.08	40.39	85.73	99.87	100	100
		-2.57	1%	0.06	1.14	10.72	50.06	95.7	99.98
	0.4	-1.95	5%	0.69	5.16	27.06	75.08	99.52	100
		-1.61	10%	1.58	10.36	40.60	86.71	99.87	100
		-2.57	1%	0.01	0.08	1.21	10.83	49.37	95.24
	0.6	-1.95	5%	0.07	0.61	4.97	26.71	75.41	99.41
		-1.61	10%	0.20	1.70	10.02	39.77	86.39	99.96
		-2.57	1%	0	0	0.02	1.18		
	0.8	-1.95	5%	0	0.01	0.57	4.92		
		-1.61	10%	0.02	0.15	1.57	10.17		

Table 2 :

 2 Percentage of rejection of the null H 0 : d = 0.5

	(	P	[ DF n < cv(α) ]) (k)	for k = 0; 50; 100; 150 and n = 50
				cv(1%) cv(5%) cv(10%)
				-12.9	-7.7	-5.5
			k	
			0	0.89	5.15	10.22
			50	0.62	3.62	7.26
			100	0.59	3.20	6.70
			150	0.58	3.23	6.70

Table 3 :

 3 Percentage of rejection of the null H 0 : d = 0.5

	(	P	[ DF t (k)	]) < cv(α)	for k = 0; 50; 100; 150 and n = 50
											cv(1%) cv(5%) cv(10%)
											-2.62 -1.95	-1.61
								k				
								0		0.9	5.04	10.29
								50		0.62	3.72	7.63
							100		0.61	3.20	6.97
							150		0.62	3.26	6.97
	and table 3 show that										
	Sup		P	[	DF	(k) t	< cv(α) |d = 0.5	]	= P	[	DF	t (0)	< cv(α) |d = 0.5	]
	k∈{0,50,100,150}											    	0.9%	for α = 1%
														=	   	5.04% for α = 5% 10.29% for α = 10%
	If we combine the results of section 3.2 (i.e. Property (P ′ 2 )) and section 4.2, then under the
	null hypothesis H 0 : d ≥ d 0 we have,		
	Sup k∈N, d≥d 0	P	[ DF (k) n < cv(α) ]	= P	[ DF (0) n < cv(α) |d = d 0	]
	and	Sup	P	[ DF t (k)	< cv(α)	
	k∈N, d≥d 0									

Table 4 :

 4 Sequential F DF test applied to Nile series FDF test on t ρ i = DF t Dickey-Fuller Reject or Accept It is about the comparison of the fractional Dickey-Fuller test, in which pre-sample shocks are either included in lag structure or suppressed. This comparison is important because type I and type II fractional Brownian motions are limit distributions associated with the fractional integration processes, in which pre-sample shocks are either included in lag structure or suppressed. There can be significant variations between the distributions of these processes and of functionals derived from them. In the simple framework of ARF IM A(0, d, 0), we show that the fractional data generation process is either type I or type II, in both cases we can use the usual tabulated values of the finite sample of Dickey-Fuller distributions. There are several unit root tests, including augmented Dickey-Fuller (ADF ) test, Phillips-Perron (P P ) test, Kwiatkowski, Phillips, Schmidt and Shin (KP SS ) test, etc. Further research is currently being undertaken towards generalizing them to fractional case. In particular, the F DF test is limited value for real world applications where one almost always has to allow under the null d = d 0 , for correlations among ε t in the regression model (3.2). Therefore, the F DF test is inappropriate. To solve this problem, in the context of I(d) processes, there exists two popular generalization of the DF test, namely, the ADF test and P P test.

	d i 0				
				cv(5%)	H 0i : d ≥ d i 0
	0	∆ -1 y t	-0.1986	-1.94	accept
	0.1	∆ -0.9 y t	-0.2746	-1.94	accept
	0.2	∆ -0.8 y t	-0.4201	-1.94	accept
	0.3	∆ -0.7 y t	-0.7148	-1.94	accept
	0.4	∆ -0.6 y t	-1.2174	-1.94	accept
	0.5	∆ -0.5 y t	-2.0029	-1.94	reject
	0.6	∆ -0.4 y t	-3.2481	-1.94	reject
	0.7	∆ -0.3 y t	-4.9185	-1.94	reject
	0.8	∆ -0.2 y t	-7.1955	-1.94	reject
	0.9	∆ -0.1 y t	-10.0671	-1.94	reject
	1	y t	-13.3303	-1.94	reject
	Conclusion		0.4 ≤ d < 0.5	
	CONCLUDING REMARKS			
	As we have seen in this article, the generalization of the Dickey-Fuller test to the fractional
	case does not require the replacement of classical regression models by new regression models,
	such as those of the DGM test (2002) and the LV test (2007). The usual framework (model

(1.6)) is valid for the fractional case, it suffices simply to replace m 0 ∈ N by d 0 ∈ R in

(1.6)

. In this paper, we provide a new element concerning this generalization.

APPENDIX: PROOF OF THEOREM 5 AND THEOREM 6 Proof of Theorem 5

The following lemma is useful for the proof of the theorem 5.

LEMMA 1: Let consider x * t = (1 -L) d 0 -1 y * t , d 0 ∈ R * , where y * t satisfy (2.2) with d -d 0 = m+δ, m ∈ N and δ ∈ ]-0.5, 0.5[. u * t defined by (2.3), satisfy the assumption that

} . Then, for 0 ≤ r ≤ 1, x * t has the following asymptotic properties, 1. For m > 0 and -0.5 < δ < 0.5),

For the first term,it follows from Lemma1, item (1, a)

For the second term, we have:

Given that ∆x * t is stationary fractionally integrated of order δ ∈ ]-0.5, 0.5[ and the ergodic theorem (note that here d -d 0 = δ), and by noting that

Therefore, when -0.5 < d -d 0 < 0, by using (A5) and (A9), we have

When d -d 0 = 0, by using (A6) and (A10), we have

When 0 < (d -d 0 = δ) < 0.5, by using (A7) and (A11), we have

When m ≥ 1 and d -d 0 = m + δ > 0.5, by using (A8) and A( 12)

Hence, using (A1, A13), (A2, A14), (A3, A15), (A4, A16) respectively and the continuous mapping theorem, we obtain that

Now consider the t-statistic, first notice that

.

Hence, When -0.5 < d -d 0 < 0, by using A1, A9, A13 and A17, it follows

When d -d 0 = 0, by using A2, A10, A14 and A18, it follows

When 0 < d -d 0 < 0.5, by using A3, A11, A15 and A19, it follows

When m ≥ 1 and d -d 0 = m + δ > 0.5, by using A4, A12, A16 and A20, it follows

Finally, by using respectively (A1, A13, A21), (A2, A14, A22), (A3, A15, A23), (A4, A16, A24)

we obtain for the t-statistic

)

and

Proof of Theorem 6

The following lemma is useful for the proof of the theorem 6

. Then, for 0 ≤ r ≤ 1, x t has the following asymptotic properties, 1. For m > 0 and -0.5 < δ < 0.5), 

Proof of Lemma 2:

The proof is straighforward from Theorem 2. It suffice to apply the Theorem 2 to the processes x t = (1 -L) d 0 -1 y t and ∆x t = (1 -L) d 0 y t .

The proof of Theorem 6 is similar to that of Theorem 5.