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Introduction

? sec-intr ?

The aim of the present work is to give a positive answer by considering the following system in (0, 1) × (0, ∞): [START_REF] Aouadi | Analyticity of solutions to thermoviscoelastic diffusion mixtures problem in higher dimension[END_REF] 3 γs + 4 3 βs t = 0, cθ t + dP t -κθ xx -γ 1 (3s -ψ) xt = 0, dθ t + rP t -P xx -γ 2 (3s -ψ) xt = 0, (1.1) m1 together with the initial conditions w(x, 0) = w 0 (x), ψ(x, 0) = ψ 0 (x), s(x, 0) = s 0 (x), θ(x, 0) = θ 0 (x), x ∈ (0, 1), P (x, 0) = P 0 (x), w t (x, 0) = w 1 (x), ψ t (x, 0) = ψ 1 (x), s t (x, 0) = s 1 (x), x ∈ (0, 1).

           ρ 1 w tt + G(ψ -w x ) x = 0, I ρ (3s -ψ) tt -D(3s -ψ) xx -G(ψ -w x ) -γ 1 θ x -γ 2 P x = 0, I ρ s tt -Ds xx + G(ψ -w x ) +
(1.2) m2

We consider the following two kinds of boundary conditions:

Boundary I : w x (0, t) = ψ(0, t) = s(0, t) = θ(0, t) = P (0, t) = 0, t > 0, w(1, t) = ψ x (1, t) = s x (1, t) = θ(1, t) = P (1, t) = 0, t > 0.

(1.3) m4 and Boundary II : w(0, t) = ψ(0, t) = s(0, t) = θ(0, t) = P (0, t) = 0, t > 0, w(1, t) = ψ(1, t) = s(1, t) = θ(1, t) = P (1, t) = 0, t > 0.

(1.4) m3

The physical positive constants γ 1 , γ 2 , r, c and d satisfying δ := cr -d 2 > 0.

(1.5) cdr

The assumption of the equal wave speeds

ρ 1 G = I ρ D . (1.6 

) ews

The remaining of this paper is as follows.

2 Well-posedness ? sec-well ?

To prove the well-posedness of problem (1.1)- (1.4) or (1.1)-(1.2) and (1.3), as in [8, 12], we denote ξ = 3s -ψ, then system (1.1) can be rewritten as the following system

          
ρ 1 w tt + G(3s -ξ -w x ) x = 0, I ρ ξ tt -Dξ xx -G(3s -ξ -w x ) -γ 1 θ x -γ 2 P x = 0, I ρ s tt -Ds xx + G(3s -ξ -w x ) + [START_REF] Aouadi | Analyticity of solutions to thermoviscoelastic diffusion mixtures problem in higher dimension[END_REF] 3 γs + 4 3 βs t = 0, cθ t + dP t -κθ xx -γ 1 ξ xt = 0, dθ t + rP t -P xx -γ 2 ξ xt = 0, (2.1) m1-1 with the initial conditions w(x, 0) = w 0 (x), ξ(x, 0) = ξ 0 (x), s(x, 0) = s 0 (x), θ(x, 0) = θ 0 (x), x ∈ (0, 1), P (x, 0) = P 0 (x), w t (x, 0) = w 1 (x), ξ t (x, 0) = ξ 1 (x), s t (x, 0) = s 1 (x), x ∈ (0, 1).

(2.2) ?m2-1?

Then the boundary conditions are Boundary I : w x (0, t) = ξ(0, t) = s(0, t) = θ(0, t) = P (0, t) = 0, t > 0, w(1, t) = ξ x (1, t) = s x (1, t) = θ(1, t) = P (1, t) = 0, t > 0.

(2.3) m4-1 and Boundary II : w(0, t) = ξ(0, t) = s(0, t) = θ(0, t) = P (0, t) = 0, t > 0, w(1, t) = ξ(1, t) = s(1, t) = θ(1, t) = P (1, t) = 0, t > 0.

(2.4) m3-1

Define the vector function U (t) = (w, u, ξ, v, s, z, θ, P ) T with u = w t , v = ξ t and z = s t , then system (2.1) can be rewritten as a Cauchy system d dt U (t) = A i U (t), i = 1, 2, U (0) = U 0 = (w 0 , w 1 , ξ 0 , ξ 1 , s 0 , s 1 , θ 0 , P 0 ) T , (2.5) ?2-5?

and the operator A i (i = 1, 2) is defined by

A i U =                     u - G ρ (3s -ξ -w x ) x v D I ρ ξ xx + G I ρ (3s -ξ -w x ) + γ 1 I ρ ) θ x + γ 2 I ρ P x z D I ρ s xx - G I ρ (3s -ξ -w x ) - 4γ 3I ρ s - 4β 3I ρ z κr δ θ xx - hd δ P xx + γ 1 r -γ 2 d δ v x c δ P xx - κd δ θ xx + γ 2 c -γ 1 d δ v x                    
.

Define the spaces

H 1 a (0, 1) = {y ∈ H 1 (0, 1) : y(0) = 0}, H 1 b (0, 1) = {y ∈ H 1 (0, 1) : y(1) = 0},
and the phase spaces H 1 and H 2 with respect to boundary I and boundary II by

H 1 = H 1 b (0, 1) × L 2 (0, 1) × [H 1 a (0, 1) × L 2 (0, 1)] 2 × [L 2 (0, 1)] 2 ,
and

H 2 = [H 1 0 (0, 1) × L 2 (0, 1)] 3 × [L 2 (0, 1)] 2
, with the inner product, for U (t) = (w, u, ξ, v, s, z, θ, P ), Ũ (t) = ( w, ũ, ξ, ṽ, s, z, θ, P )

∈ H i (i = 1, 2), U, Ũ H i = 1 0 ρuũ + G(3s -ξ -w x )(3s -ξ -wx )dx + I ρ vṽ + Dξ x ξx +3I ρ z z + 3Ds x sx + 4γss + cθ θ + d θP + dθ P + rP P dx.
The domain of the operator A i (i = 1, 2) are defined by

D(A 1 ) = {U ∈ H 1 : w ∈ H 2 (0, 1) ∩ H 1 b (0, 1), ξ, s ∈ H 2 (0, 1) ∩ H 1 a (0, 1), u ∈ H 1 b (0, 1) v, z ∈ H 1 a (0, 1), θ, P ∈ H 1 0 (0, 1), w x (0) = ξ x (1) = s x (1) = 0}, and 
D(A 2 ) = {U ∈ H 2 : w, ξ, s ∈ H 2 (0, 1) ∩ H 1 0 (0, 1), u, v, z ∈ H 1 0 (0, 1)}.
The well-posedness theorem is stated in the following theorem.

well-posed ? Theorem 2.1.

For U 0 ∈ H 1 (resp. U 0 ∈ H 2 ), then problem (1.1)-(1.3) (resp. (1.1)-(1.2)
and (1.4)) admits an unique weak solution

U (t) ∈ C([0, ∞), H 1 ) (resp. U (t) ∈ C([0, ∞), H 2 )).
In addition, if

U 0 ∈ D(A 1 ) (resp. U 0 ∈ D(A 2 )), then U (t) ∈ C([0, ∞), D(A 1 )) ∩ C 1 ([0, ∞), H 1 ) (resp. U (t) ∈ C([0, ∞), D(A 2 )) ∩ C 1 ([0, ∞), H 2 ).
Proof. For U (t) = (w, u, ξ, v, s, z, θ, P ) ∈ D(A i ) (i = 1, 2), we have

A i U (t), U (t) H i = 1 0 ρu - G ρ (3s -ξ -w x ) x dx + 1 0 G(3s -ξ -w x )(3z -u -u x )dx + 1 0 I ρ v D I ρ ξ xx + G I ρ (3s -ξ -w x ) + γ 1 I ρ θ x + γ 2 I ρ P x dx +D 1 0 ξ x v x dx + 3I ρ 1 0 z D I ρ s xx - G I ρ (3s -ξ -w x ) - 4γ 3I ρ s - 4β 3I ρ z dx +3D 1 0 s x z x dx + 4γ 1 0 szdx + c 1 0 θ κr δ θ xx - d δ P xx + γ 1 r -γ 2 d δ v x dx +r 1 0 P c δ P xx - κd δ θ xx + γ 2 c -γ 1 d δ v x dx +d 1 0 P κr δ θ xx - d δ P xx + γ 1 r -γ 2 d δ v x dx +d 1 0 θ c δ P xx - κd δ θ xx + γ 2 c -γ 1 d δ v x dx.
By integration by parts and using the boundary conditions, we get

A i U (t), U (t) H i = -κ 1 0 θ 2 x dx - 1 0 P 2 x dx ≤ 0, (2.6) ?2-6?
which gives us the operator

A i (i = 1, 2) is dissipative. Given F = (f 1 , ..., f 8 ) ∈ H i , we look for a solution U ∈ D(A i ) of (Id -A i )U = F. (2.7) 2-7
We rewrite problem (2.7) as

                       w -u = f 1 , ρu + G(3s -ξ -w x ) = ρf 2 , ξ -v = f 3 , I ρ v -Dξ xx -G(3s -ξ -w x ) -γ 1 θ x -γ 2 P x = I ρ f 4 , s -z = f 5 , (4β + 3I ρ )z -3Ds xx + 3G(3s -ξ -w x ) + 4γs = 3I ρ f 6 , δθ -κrθ xx + dP xx -(γ 1 r -γ 2 d)v x = δf 7 , δP -cP xx + κdθ xx -(γ 2 c -γ 1 d)v x = δf 8 .
(2.8) 

           ρw + G(3s -ξ -w x ) x = ρ(f 1 + f 2 ), I ρ ξ -Dξ xx -G(3s -ξ -w x ) -γ 1 θ x -γ 2 P x = I ρ (f 3 + f 4 ), (4β + 3I ρ )s -3Ds xx + 3G(3s -ξ -w x ) + 4γs = 3I ρ f 6 + (4β + 3I ρ )f 5 , δθ -κrθ xx + dP xx -(γ 1 r -γ 2 d)ξ x = δf 7 -(γ 1 r -γ 2 d)f 3x , δP -cP xx + κdθ xx -(γ 2 c -γ 1 d)ξ x = δf 8 -(γ 2 c -γ 1 d)f 3x .
(2.9) 2-9

Multiplying (2.9) 1 by ω, (2.9) 2 by ξ, (2.9) 3 by s, (2.9) 4 by c δ θ, (2.9) 5 by r δ P , (2.9) 4 by d δ P and (2.9) 5 by d δ θ, and integrating their sum over (0, 1), we can obtain the following variational formulation B((w, ξ, s, θ, P ), ( w, ξ, , s, θ, P )) = L( w, ξ, s, θ, P ),

(2.10) 2-10

where the bilinear form P θdx, and the linear form L :

B : [H 1 b (0, 1) × H 1 a (0, 1) × H 1 a (0, 1) × L 2 (0, 1) × L 2 (0, 1)] 2 → R or B : [H 1 0 (0, 1) × H 1 0 (0, 1) × H 1 0 (0, 1) × L 2 (0, 1) × L 2 (0, 1)] 2 → R is defined by B((w, ξ, s, θ, P ), ( w, ξ, , s, θ, P )) = ρ 1 0 w wdx + G 1 0 (3s -ξ -w x )(3s -ξ -wx )dx + I ρ 1 0 ξ ξdx +D 1 0 ξ x ξx dx + (4β + 3I ρ + 4γ) 1 0 ssdx + 3D 1 0 s x sx dx
H 1 b (0, 1) × H 1 a (0, 1) × H 1 a (0, 1) × L 2 (0, 1) × L 2 (0, 1) → R or L : H 1 0 (0, 1) × H 1 0 (0, 1) × H 1 0 (0, 1) × L 2 (0, 1) × L 2 (0, 1) → R is defined by L( w, ξ, s, θ, P ) = ρ 1 0 (f 1 + f 2 ) wdx + I ρ 1 0 (f 3 + f 4 ) ξdx + (4β + 3I ρ ) 1 0 f 5 sdx +3I ρ 1 0 f 6 sdx + c 1 0 f 7 θdx -γ 1 1 0 f 3x θdx + r 1 0 f 8 P dx -γ 2 1 0 f 3x P dx + d 1 0 f 7 P dx + d 1 0 f 8 θdx.
It is obvious that B and L are bounded. On the other hand, there exists a constant C > 0 such that B((w, ξ, s, θ, P ), (w, ξ, s, θ, P )) ≥ C (w, ξ, s, θ, P ) 2

H i , i = 1, 2,
which shows B is coercive on H i × H i , i = 1, 2. By using the Lax-Milgram theorem, we infer that (2.10) has a unique solution w ∈ H 1 b (0, 1), ξ, s ∈ H 1 a (0, 1), θ, P ∈ L 2 (0, 1), or w, ξ, s ∈ H 1 0 (0, 1), θ, P ∈ L 2 (0, 1).

To obtain more regularity, we take ( ξ, s, θ, P ) = (0, 0, 0, 0) ∈ H 1 a (0, 1) × H 1 a (0, 1) × L 2 (0, 1) × L 2 (0, 1) to obtain from (2.10)

ρ 1 0 w wdx -G 1 0 (3s -ξ -w x ) x wdx = ρ 1 0 (f 1 + f 2 ) wdx, ∀ w ∈ H 1 b (0, 1), (2.11) r1
which implies

Gw xx = -ρw + G(3s -ξ) x + ρ(f 1 + f 2 ) ∈ L 2 (0, 1).
Then we have w ∈ H 2 (0, 1).

On the other hand, for any ϕ ∈ C 1 [0, 1] with ϕ(1) = 0, (2.11) also holds true. Then we get

ρ 1 0 wϕdx -G 1 0 (3s -ξ -w x ) x ϕdx -ρ 1 0 (f 1 + f 2 )ϕdx ∀ ϕ ∈ C 1 [0, 1].
Using integration by parts, we have

Gw x (1)ϕ(1) -Gw x (0)ϕ(0) + ρ 1 0 wϕdx -G 1 0 (3s -ξ) xx ϕdx -ρ 1 0 (f 1 + f 2 )ϕdx = 0, thus -Gw x (0)ϕ(0) = 0, ∀ ϕ ∈ C 1 [0, 1].
Noting that ϕ is arbitrary, we can obtain w x (0) = 0, then

w ∈ H 2 (0, 1) ∩ H 1 b (0, 1).
As the same arguments, we can get

ξ, s ∈ H 2 (0, 1) ∩ H 1 a (0, 1), θ, P ∈ H 2 (0, 1) ∩ H 1 0 (0, 1), ξ x (1) = s x (1) = 0.
Consequently, (w, ξ, s, θ, P ) ∈ D(A 1 ) and A 1 is maximal. Similarly we can get (w, ξ, s, θ, P ) ∈ D(A 2 ) and A 2 is maximal. Therefore the conclusion of the proof follows from the Lumer-Philips theorem, see [10].

Exponential decay

? sc-exp ?

The energy of system (1.1) is defined by

E(t) = 1 2 L 0 ρw 2 t + G(ψ -w x ) 2 + I ρ (3s t -ψ t ) 2 + D(3s x -ψ x ) 2 +3I ρ s 2 t + 3Ds 2 x + 4γs 2 + cθ 2 + 2dθP + rP 2 dx.
Noting (1.5), we have for θ, P = 0,

cθ 2 + 2dθP + rP 2 > 0,
then we get that the energy E(t) is positive.

It is easy to get for the two boundary conditions that

d dt E(t) = -κ 1 0 θ 2 x dx - 1 0 P 2 x dx -4β 1 0 s 2 t dx. ( 3 

.1) energy

The stability result is stated in the following theorem.

thm-3-1 Theorem 3.1. Let (ϕ, ψ, θ, P ) be a regular solution of problem

(1.1)-(1.3) or (1.1)-(1.
2) and (1.4). Let (1.6) holds. Then there exist constants a 1 > 0 and a 2 > 0, independent of initial data, such that

E(t) ≤ a 1 E(0)e -a 2 t , t > 0. (3.2) ?3-1?
To prove Theorem 3.1, we will divide into the following two subsections for the two boundary conditions.

Proof of Theorem for boundary I sec-d1

To prove Theorem 3.1 for boundary I, we need the following lemmas.

? lem-3-1 ? Lemma 3.2. Define the functional F 1 (t) by F 1 (t) = I ρ 1 0 (3s t -ψ t )ϕdx, where -γ 1 ϕ x = cθ + dP, ϕ(0) = ϕ(1) = 0.
The functional F 1 (t) satisfies that there exist constants c 1 > 0 and c 2 > 0 such that for any

ε 1 > 0 and ε 2 > 0, d dt F 1 (t) ≤ - I ρ 2 1 0 (3s t -ψ t ) 2 dx + ε 1 1 0 (ψ -w x ) 2 dx + ε 2 1 0 (3s x -ψ x ) 2 dx +c 1 1 0 θ 2 x dx + c 2 1 0 P 2 x dx. (3.1) 3-5
Proof. Differentiating F 1 (t) with respect to t and using (1.1) 2 , we get

d dt F 1 (t) = 1 0 [D(3s xx -ψ xx ) + D(ψ -w x ) + γ 1 θ x + γ 2 P x ]ϕdx + I ρ 1 0 (3s t -ψ t )ϕ t dx = G 1 0 (ψ -w x )ϕdx -D 1 0 (3s x -ψ x )ϕ x dx + 1 0 (γ 1 θ x + γ 2 P x )ϕdx +ρ 2 1 0 (3s t -ψ t )ϕ t dx. (3.2) 3-6
By the Cauchy-Schwartz and the Poincaré inequalities, we get that for any

ε 1 > 0 G 1 0 (ψ -w x )ϕdx ≤ ε 1 1 0 (ψ -w x ) 2 dx + G 2 4ε 1 L 0 ϕ 2 x dx ≤ ε 1 1 0 (ψ -w x ) 2 dx + G 2 4ε 1 L 0 c γ 1 θ + d γ 1 P 2 dx ≤ ε 1 1 0 (ψ -w x ) 2 dx + G 2 c 2 2ε 1 γ 2 1 1 0 θ 2 x dx + G 2 d 2 2ε 1 γ 2 1 1 0 P 2 x dx, (3.3) 3-7
and for any ε 2 > 0,

-D 1 0 (3s x -ψ x )ϕ x dx ≤ ε 2 1 0 (3s x -ψ x ) 2 dx + D 2 c 2 2ε 2 γ 2 1 1 0 θ 2 x dx + D 2 d 2 2ε 2 γ 2 1 1 0 P 2 x dx, (3.4) ?3-8?
and

1 0 (γ 1 θ x + γ 2 P x )ϕdx ≤ 1 2 1 0 (γ 1 θ x + γ 2 P x ) 2 dx + 1 2 1 0 ϕ 2 dx ≤ γ 2 1 + c 2 γ 2 1 1 0 θ 2 x dx + γ 2 2 + d 2 γ 2 1 1 0 P 2 x dx. (3.5) ?3-9?
We infer from (1.1) 1 and Young's inequality that 

I ρ L 0 (3s t -ψ t )ϕ t dx = - I ρ γ 1 1 0 (3s t -ψ t )∂ -1 x κθ xx + γ 1 (3s xt -ψ xt ) dx = -I ρ 1 0 (3s t -ψ t ) 2 dx - I ρ κ γ 1 1 0 (3s t -ψ t )θ x dx ≤ - ρ 2 2 1 0 (3s t -ψ t ) 2 dx + I ρ κ 2 2γ 2 1 1 0 θ 2 x dx. ( 3 
c 1 = I ρ κ 2 2γ 2 1 + G 2 c 2 2ε 1 γ 2 1 + D 2 c 2 2ε 2 γ 2 1 + γ 2 1 + c 2 γ 2 1 , and 
c 2 = G 2 d 2 2ε 1 γ 2 1 + D 2 d 2 2ε 2 γ 2 1 + γ 2 2 + d 2 γ 2 1 . ? lem-3-2 ? Lemma 3.3. The functional F 2 (t) defined by F 2 (t) = I ρ 1 0 (3s t -ψ t )(3s -ψ)dx,
satisfies for any t > 0,

d dt F 2 (t) ≤ - D 2 1 0 (3s x -ψ x ) 2 dx + I ρ 1 0 (3s t -ψ t ) 2 dx + G 2 D 1 0 (ψ -w x ) 2 dx + 2γ 2 1 D 1 0 θ 2 x dx + 2γ 2 D 1 0 P 2 x dx. (3.7) 3-2
Proof. By using (1.1) 2 , we get that

d dt F 2 (t) = I ρ 1 0 (3s t -ψ t ) 2 dx + G 1 0 (ψ -w x )(3s -ψ)dx -D 1 0 (3s x -ψ x ) 2 dx + 1 0 (γ 1 θ x + γ 2 P x )(3s -ψ)dx.
(3.8) Making use of Young's inequality and Poincaré's inequality, we obtain

G 1 0 (ψ -w x )(3s -ψ)dx ≤ D 4 1 0 (3s -ψ) 2 dx + G 2 D 1 0 (ψ -w x ) 2 dx ≤ D 4 1 0 (3s x -ψ x ) 2 dx + G 2 D 1 0 (ψ -w x ) 2 dx, (3.9) 3-4 and 1 0 (γ 1 θ x + γ 2 P x )(3s -ψ)dx ≤ D 4 1 0 (3s x -ψ x ) 2 dx + 2γ 2 1 D 1 0 θ 2 x dx + 2γ 2 2 D 1 0 P 2 x dx,
which together with (3.8)-(3.9), implies (3.7).

lem-3-21 Lemma 3.4. Define the functional F 3 (t) by

F 3 (t) = -I ρ 1 0 (3s t -ψ t )(ψ -w x )dx + ρD G 1 0 (3s x -ψ x )w t dx.
Assume that the condition (1.6) holds, then the functional F 3 (t) satisfies for any t > 0,

d dt F 3 (t) ≤ - G 2 1 0 (ψ -w x ) 2 dx + 2I ρ 1 0 (3s t -ψ t ) 2 dx + 9I ρ 4 1 0 s 2 t dx + γ 2 1 G L 0 θ 2 x dx + γ 2 2 G L 0 P 2 x dx. (3.10) a1
Proof. Taking the derivative of F 3 (t) and using the first and the second equations of (1.1), we have

d dt F 3 (t) = 1 0 [-G(ψ -w x ) -D(3s xx -ψ xx ) -γ 1 θ x -γ 2 P x ](ψ -w x )dx -I ρ 1 0 (3s t -ψ t )(ψ t -w xt )dx + ρD G 1 0 (3s xt -ψ xt )w t dx + ρD G 1 0 (3s x -ψ x )[-G(ψ -w x ) x ]dx = -G 1 0 (ψ -w x ) 2 dx - 1 0 (γ 1 θ x + γ 2 P x )(ψ -w x )dx -I ρ 1 0 (3s t -ψ t )ψ t dx + ρD G -I ρ 1 0 (3s xt -ψ xt )w t dx. (3.11) a2
Young's inequality gives us

- 1 0 (γ 1 θ x + γ 2 P x )(ψ -w x )dx ≤ G 2 1 0 (ψ -w x ) 2 dx + 1 2G 1 0 (γ 1 θ x + γ 2 P x ) 2 dx ≤ G 2 1 0 (ψ -w x ) 2 dx + γ 2 1 G 1 0 θ 2 x dx + γ 2 2 G 1 0 P 2 x dx, (3.12 
) a3

and

-I ρ 1 0 (3s t -ψ t )ψ t dx = I ρ 1 0 (3s t -ψ t ) 2 dx -3I ρ 1 0 (3s t -ψ t )s t dx ≤ 2I ρ 1 0 (3s t -ψ t ) 2 dx + 9I ρ 4 1 0 s 2 t dx. (3.13) a4
Replacing (3.12)-(3.13) into (3.11) and noting the condition (1.6), we can get (3.10).

? lem-3-22 ? Lemma 3.5. Define the functional F 4 (t) by

F 4 (t) = -ρ 1 0 ww t dx -ρ 1 0 w t 1 x ψ(y)dydx.
Then the functional F 4 (t) satisfies for any t > 0,

d dt F 4 (t) ≤ - ρ 2 1 0 w 2 t dx + G 1 0 (ψ -w x ) 2 dx + ρ 1 0 (3s t -ψ t ) 2 dx + 9ρ 1 0 s 2 t dx. (3.14) a5
Proof. It follows from (1.1) 1 that

d dt F 4 (t) = -ρ 1 0 w 2 t dx + G 1 0 (ψ -w x )wdx +G 1 0 (ψ -w x ) 1 x ψ(y)dydx -ρ 1 0 w t 1 x ψ t (y)dydx = -ρ 1 0 w 2 t dx + G 1 0 (ψ -w x ) 2 dx + ρ 1 0 w t 1 x (3s t -ψ t )(y)dydx -3ρ 1 0 w t 1 x s t (y)dydx,
which, noting the following estimates

ρ 1 0 w t 1 x (3s t -ψ t )(y)dydx ≤ ρ 4 1 0 w 2 t dx + ρ 1 0 (3s t -ψ t ) 2 dx, and 
-3ρ 1 0 w t 1 x s t (y)dydx ≤ ρ 4 1 0 w 2 t dx + 9ρ 1 0 s 2 t dx,

implies (3.14).

? lem-3-23 ? Lemma 3.6. Define the functional F 5 (t) by

F 5 (t) = 3I ρ 1 0 s t sdx + 2β 1 0 s 2 dx -3ρ 1 0 w t 1 x s(y)dydx.
Then the functional F 5 (t) satisfies for any t > 0,

d dt F 5 (t) ≤ -3D 1 0 s 2 x dx -4γ 1 0 s 2 dx + 3ρ 2 1 0 w 2 t dx + 3 I ρ + 1 2 ρ 1 0 s 2 t dx. (3.15) b1
Proof. We take the derivative of F 5 (t) and use the third equation of (1.1) to get

d dt F 5 (t) = 3I ρ 1 0 s 2 t dx -3D 1 0 s 2 x dx -4γ 1 0 s 2 dx -3ρ 1 0 w t 1 x s t (y)dydx,
which, along with the estimate -3ρ

1 0 w t 1 x s t (y)dydx ≤ 3ρ 2 1 0 w 2 t dx + 3ρ 2 1 0 s 2 t dx,
gives us (3.15).

In the following, we define the functional L(t) by

L(t) = N E(t) + N 1 F 1 (t) + N 2 F 2 (t) + N 3 F 3 (t) + N 4 F 4 (t) + F 5 (t),
where the positive constants N and N i (i = 1, 2, 3, 4) will be determined later. ? lem-3-24 ? Lemma 3.7. There exist two positive constants ν 1 and ν 2 such that

ν 1 E(t) ≤ L(t) ≤ ν 2 E(t).
(3.16) 3-26

Proof. By using Young's inequality, we obtain that there exists a constant N 0 > 0 such that

|L(t) -N E(t)| ≤ N 0 E(t).
Then we can take N > 0 large (if needed) such that N -N 0 > 0 to get (3.16) with ν 1 = N -N 0 and ν 2 = N + N 0 .

Proof of Theorem 3.1 for Boundary I. By using (3.1), (3.7), (3.1), (3.10) and (3.14), and taking

ε 1 = GN 3 4N 1 , ε 2 = 1 N 1 ,
we shall see below,

d dt L(t) ≤ -κN -c 1 N 1 - 2γ 2 1 D N 2 - γ 2 1 G N 3 1 0 θ 2 x dx - D 2 N 2 -1 1 0 (3s x -ψ x ) 2 dx -N -c 2 N 1 - 2γ 2 2 D N 2 - γ 2 2 G N 3 L 0 P 2 x dx - ρ 2 N 4 - 3 2 ρ 1 0 w 2 t dx -4βN - 9I ρ 4 N 3 -9ρN 4 -3 I ρ + 1 2 ρ 1 0 s 2 t dx -3D 1 0 s 2 x dx - I ρ 2 N 1 -I ρ N 2 -2I ρ N 3 -ρN 4 1 0 (3s t -ψ t ) 2 dx -4γ 1 0 s 2 dx - G 4 N 3 - G 2 D N 2 -GN 4 1 0 (ψ -w x ) 2 dx.
We first take N 4 > 0 such that

ρ 2 N 4 - 3 2 ρ > 0.
For fixed N 4 , we take N 2 > 0 such that

D 2 N 2 -1 > 0.
For fixed N 4 and N 2 , we choose N 3 > 0 large enough such that

G 4 N 3 - G 2 D N 2 -GN 4 > 0.
And then we take N 1 > 0 such that

I ρ 2 N 1 -I ρ N 2 -2I ρ N 3 -ρN 4 > 0.
At last, we choose N so large that

κN -c 1 N 1 - 2γ 2 1 D N 2 - γ 2 1 G N 3 > 0, N -c 2 N 1 - 2γ 2 2 D N 2 - γ 2 2 G N 3 > 0, and 4βN - 9I ρ 4 N 3 -9ρN 4 -3 I ρ + 1 2 ρ > 0.
Therefore there exists a positive constant ν 0 such that d dt L(t) ≤ -ν 0 E(t).

(3.17) a6

By (3.17) and (3.16), we see that

E(t) ≤ ν 2 ν 1 E(0)e - ν 0 ν 2 t .
This ends the proof.

Exponential decay for Boundary II

? sec-d2 ?

In this section, we establish exponential decay of system (1.1) with boundary II. It is easy to verify that the functional F 1 (t) still satisfies the estimates (3.7) for boundary II. To overcome the difficulty caused by the boundary, we first establish the following lemmas. ? lem-3-3 ? Lemma 3.8. Define the functional H 1 (t) by

H 1 (t) = -ρ 1 0 ww t dx.
Then the functional H 1 (t) satisfies for any ε 3 > 0,

d dt H 1 (t) ≤ -ρ 1 0 w 2 t dx + 2ε 3 1 0 (3s x -ψ x ) 2 dx + 18ε 3 1 0 s 2 x dx + G + G 2 4ε 3 1 0 (ψ -w x ) 2 dx. (3.18) 3-11
Proof. Differentiating the functional H 1 (t) with respect to t and using the first equation of (1.1), we get

d dt H 1 (t) = -ρ 1 0 w 2 t dx + G 1 0 (ψ -w x ) 2 dx -G 1 0 (ψ -w x )ψdx. (3.19) 3-12
It follows from Young's inequality and Poincaré's inequality that for any

ε 3 > 0, -G 1 0 (ψ -w x )ψdx ≤ ε 3 1 0 1 0 ψ 2 x dx + G 2 4ε 3 1 0 (ψ -w x ) 2 dx. (3.20) 3-13
On the other hand,

1 0 ψ 2 x dx = 1 0 (3s x -ψ x -3s x ) 2 dx ≤ 2 1 0 (3s x -ψ x ) 2 dx + 18 1 0 s 2 x dx,
which, together with (3.19) and (3.20), yields (3.18).

? lem-3-31 ? Lemma 3.9. Define the functional H 2 (t) by

H 2 (t) = ρ 1 0 w t f dx + I ρ 1 0 (3s t -ψ t )(3s -ψ)dx, where -f xx = 3s x -ψ x , f (0) = f (1) = 0.
Then the functional H 2 (t) satisfies for any ε 4 > 0,

d dt H 2 (t) ≤ - D 2 1 0 (3s x -ψ x ) 2 dx + ε 4 1 0 w 2 t dx + I ρ + ρ 2 4ε 4 1 0 (3s t -ψ t ) 2 dx + γ 2 1 D 1 0 θ 2 x dx + γ 2 2 D 1 0 P 2 x dx. (3.21) b2
Proof. It is easy to get that

d dt H 2 (t) = G 1 0 (ψ -w x )f x dx + ρ 1 0 w t f t dx + I ρ 1 0 (3s t -ψ t ) 2 dx -D 1 0 (3s x -ψ x ) 2 dx +G 1 0 (ψ -w x )(3s -ψ)dx + 1 0 (γ 1 θ x + γ 2 P x )(3s -ψ)dx = ρ 1 0 w t f t dx + I ρ 1 0 (3s t -ψ t ) 2 dx -D 1 0 (3s x -ψ x ) 2 dx + 1 0 (γ 1 θ x + γ 2 P x )(3s -ψ)dx. (3.22) b3
We can infer that (3.21) holds from (3.22) and the following estimates:

1 0 (γ 1 θ x + γ 2 P x )(3s -ψ)dx ≤ D 2 1 0 (3s x -ψ x ) 2 dx + γ 2 1 D 1 0 θ 2 x dx + γ 2 2 D 1 ) P 2 x dx, and 
ρ 1 0 w t f t dx ≤ ε 4 1 0 w 2 t dx + ρ 2 4ε 4 1 0 (3s t -ψ t ) 2 dx, ∀ ε 4 > 0,
where we used the fact

1 0 f 2 t dx ≤ 1 0 f 2 xt dx ≤ 1 0 (3s t -ψ t ) 2 dx.
The proof is done.

In the following lemma, we still define the functional F 3 (t) as in Lemma 3.4, section 3.1, but since the boundary conditions are changed, we have the following new estimate.

? lem-3-4 ? Lemma 3.10. Assume the condition (1.6) holds, then the functional F 3 (t) satisfies for any ε 5 > 0 and ε 6 > 0,

d dt F 3 (t) ≤ - G 2 -6ε 5 - D 4ε 5 ε 6 1 0 (ψ -w x ) 2 dx + 126ε 5 1 0 s 2 x dx + 2ρ G ε 5 1 0 w 2 t dx + 2ρ + I ρ D 2ε 5 1 0 (3s t -ψ t ) 2 dx + 9I ρ 4 1 0 s 2 t dx + 14ε 5 + D 4ε 5 3D + G 2 ε 6 1 0 (3s x -ψ x ) 2 dx + γ 2 1 G + γ 2 1 2ε 5 1 0 θ 2 x dx + γ 2 2 G + γ 2 2 2ε 5 L 0 P 2 x dx - ε 5 G d dt 1 0 ρg(x)w t w x dx - D 4ε 5 d dt 1 0 I ρ g(x)(3s t -ψ t )(3s -ψ x )dx, (3.23) 3-15 where g(x) = 2 -4x, x ∈ [0, 1].
Proof. Using the same arguments as in (3.11) and noting the boundary conditions (1.3), we have

d dt F 3 (t) = -G 1 0 (ψ -w x ) 2 dx + D(3s x -ψ x )w x | x=1 x=0 - 1 0 (γ 1 θ x + γ 2 P x )(ψ -w x )dx -I ρ 1 0 (3s t -ψ t )ψ t dx + ρD G -I ρ 1 0 (3s xt -ψ xt )w t dx.
Noting (3.12) and (3.13), we get

d dt F 3 (t) ≤ - G 2 1 0 (ψ -w x ) 2 dx + D(3ψ x -ψ x )w x | x=1 x=0 + γ 2 1 G L 0 θ 2 x dx + γ 2 2 G L 0 P 2 x dx + ρD G -I ρ L 0 (3s xt -ψ xt )w t dx + 2I ρ 1 0 (3s t -ψ t ) 2 dx + 9I ρ 4 1 0 s 2 t dx.
(3.24) 3-16

Now we estimate the term D(3ψ x -ψ x )w x | x=1 x=0 . Making use of Young's inequality, we obtain that for any ε 5 > 0,

D(3ψ x -ψ x )w x | x=1 x=0 ≤ ε 5 [w 2 x (1) + w 2 x (0)] + D 2 4ε 5 [(3ψ x -ψ x ) 2 (1) + (3s x -ψ x ) 2 (0)]. (3.25) 3-18
It follows from (1.1) 2 that d dt

1 0 I ρ g(x)(3s t -ψ t )(3s x -ψ x )dx = 1 0 g(x)[D(3s xx -ψ xx ) + G(ψ -w x ) + γ 1 θ x + γ 2 P x ](3s x -ψ x )dx +I ρ 1 0 g(x)(3s t -ψ t )(3s xt -ψ xt )dx = D 2 g(x)(3s x -ψ x ) 2 | x=1 x=0 - D 2 L 0 g (x)(3s x -ψ 2 x )dx + G 1 0 g(x)(ψ -w x )(3s x -ψ x )dx + 1 0 g(x)(γ 1 θ x + γ 2 P x )(3s x -ψ x )dx - I ρ 2 1 0 g (x)(3s t -ψ t ) 2 dx, which, noting that g(0) = 2, g(1) = -2, g (x) = -4, yields d dt 1 0 I ρ g(x)(3s t -ψ t )(3s x -ψ x )dx = -D[(3s x -ψ x ) 2 (1) + (3s x -ψ x ) 2 (0)] + 2D 1 0 (3s x -ψ x ) 2 dx +G 1 0 g(x)(ψ -w x )(3s x -ψ x )dx + 1 0 g(x)(γ 1 θ x + γ 2 P x )(3s x -ψ x )dx +2I ρ L 0 (3s t -ψ t ) 2 dx. (3.26) 3-19
From Young's inequality, we obtain for any ε 6 > 0,

G 1 0 g(x)(ψ -w x )(3s x -ψ x )dx ≤ ε 6 1 0 (ψ -w x ) 2 dx + G 2 ε 6 1 0 (3s x -ψ x ) 2 dx, (3.27) 3-20 and 1 0 g(x)(γ 1 θ x + γ 2 P x )(3s x -ψ x )dx ≤ D 1 0 (3s x -ψ x ) 2 dx + 2γ 2 1 D 1 0 θ 2 x dx + 2γ 2 2 D L 0 P 2 x dx.
(3.28) 3-21

Replacing (3.27) and (3.28) in (3.26), we see that

D[(3ψ x -ψ x ) 2 (1) + (3s x -ψ x ) 2 (0)] ≤ - d dt 1 0 I ρ g(x)(3s t -ψ t )(3s x -ψ x )dx + ε 6 1 0 (ψ -w x ) 2 dx + 3D + G 2 ε 6 1 0 (3s x -ψ x ) 2 dx + 2γ 2 1 D 1 0 θ 2 x dx + 2γ 2 2 D 1 0 P 2 x dx + 2I ρ 1 0 (3s t -ψ t ) 2 dx.
(3.29) [START_REF] Aouadi | Well-posedness and exponential stability in binary mixtures theory for thermoviscoelastic diffusion materials[END_REF][START_REF] Aouadi | Analyticity of solutions to thermoviscoelastic diffusion mixtures problem in higher dimension[END_REF][START_REF] Aouadi | Stability aspects in strain gradient theory of thermoelasticity with mass diffusion[END_REF][START_REF] Aouadi | A dynamic contact problem for a thermoelastic diffusion beam with the rotational inertia[END_REF][START_REF] Aouadi | Boundary Stabilization of a Thermoelastic Diffusion System of Type II[END_REF][8][START_REF] Madureira | Global existence and numerical simulations for a thermoelastic diffusion problem in moving boundary[END_REF][10][START_REF] Ramos | A new stabilization scenario for Timoshenko systems with thermo-diffusion effects in second spectrum perspective[END_REF][START_REF] Wang | Exponential stabilization of lami-nated beams with structural damping and boundary feedback controls[END_REF][13][14][15][16][17][18][19][20][21][22] On the other hand,

d dt 1 0 ρg(x)w t w x dx = G 1 0 g(x)w xx w x dx -G 1 0 g(x)ψ x w x dx + ρ 1 0 g(x)w x w xt dx = -G[w 2 x (1) + w 2 x (0)] + 2G 1 0 w 2 x dx -G 1 0 g(x)ψ x w x dx + 2ρ 1 0 w 2 t dx,
which, noting the following estimate,

-G 1 0 g(x)ψ x w x dx ≤ G 1 0 w 2 x dx + G 1 0 ψ 2 x dx,
gives us

d dt 1 0 ρg(x)w t w x dx ≤ -G[w 2 x (1) + w 2 x (0)] + 3G 1 0 w 2 x dx + G 1 0 ψ 2 x dx + 2ρ 1 0 w 2 t dx. (3.30) 3-23
Note that

1 0 ψ 2 x dx ≤ 2 1 0 (3s x -ψ x ) 2 dx + 18 1 0 s 2 x dx, and 
1 0 w 2 x dx = 1 0 (ψ -w x -ψ) 2 dx ≤ 2 1 0 (ψ -w x ) 2 dx + 2 1 0 (3s x -ψ x -3s x ) 2 dx ≤ 2 1 0 (ψ -w x ) 2 dx + 4 1 0 (3s x -ψ x ) 2 dx + 36 1 0 s 2 x dx.
Then we infer from (3.30) that

[w 2 x (1) + w 2 x (0)] ≤ - 1 G d dt 1 0 ρg(x)w t w x dx + 6 1 0 (ψ -w x ) 2 dx +14 1 0 (3s x -ψ x ) 2 dx + 126 1 0 s 2 x dx + 2ρ G 1 0 w 2 t dx. (3.31) 3-24
Combining (3.29) and (3.31) with (3.25), we have for any ε 5 > 0 and ε 6 > 0,

D(3ψ x -ψ x )w x | x=1 x=0 ≤ 6ε 5 + D 4ε 5 ε 6 1 0 (ψ -w x ) 2 dx + 126ε 5 1 0 s 2 x dx + 2ρ G ε 5 1 0 w 2 t dx + I ρ D 2ε 5 1 0 (3s t -ψ t ) 2 dx + 14ε 5 + D 4ε 5 3D + G 2 ε 6 1 0 (3s x -ψ x ) 2 dx + γ 2 1 2ε 5 1 0 θ 2 x dx + γ 2 2 2ε 5 L 0 P 2 x dx - ε 5 G d dt 1 0 ρg(x)w t w x dx - D 4ε 5 d dt 1 0 I ρ g(x)(3s t -ψ t )(3s x -ψ x )dx. (3.32) 3-25
Inserting (3.32) into (3.24) and using the condition (1.6), then (3.23) follows.

? lem-3-b3 ? Lemma 3.11. Define the functional H 3 (t) by

H 3 (t) = 3I ρ 1 0 ss t dx + 2β 1 0 s 2 dx.
Then the functional H 3 (t) satisfies for any ε 4 > 0,

d dt H 3 (t) ≤ -3D 1 0 s 2 x dx -3γ 1 0 s 2 dx + 3I ρ 1 0 s 2 t dx + 9G 2 4γ 1 0 (ψ -w x ) 2 dx. (3.33) b4
Proof. Clearly,

d dt H 3 (t) = 3I ρ 1 0 s 2 t dx -3G 1 0 (ψ -w x )sdx -3D 1 0 s 2 x dx -4γ 1 0 s 2 dx.
Then by using Young's inequality, we can get (3.33).

In the following, we define the functional L(t) by

L(t) = M E(t) + M 1 F 1 (t) + M 2 H 1 (t) + M 3 H 2 (t) + M 4 F 3 (t) + M 5 H 3 (t) + ε 5 G M 4 1 0 ρg(x)w t w x dx + D 4ε 5 M 4 1 0 I ρ g(x)(3s t -ψ t )(3s x -ψ x )dx,
where the positive constants M and M i (i = 1, 2, 3, 4, 5) will be determined later. The same arguments as (3.16), we can get that there exist two positive constants ν1 and ν2 such that ν1 E(t) ≤ L(t) ≤ ν2 E(t). 

ε 1 = ε 2 = 1 M 1 , ε 3 = 1 M 2 , ε 4 = 1 M 3 , ε 5 = 1 M 4 , ε 6 = 1 M 2 4 ,
we have

d dt L(t) ≤ -κM -c 1 M 1 - γ 2
which, along with (3.34), gives us

E(t) ≤ ν2 ν1 E(0)e -ν0 ν2
t .

Polynomial Stability

The polynomial stabilisation is summarized in the following theorem.

? th4-1 ? Theorem 4.1. There exists a positive constant C > 0 such that

S(t)W 0 H ≤ C t 1/16 W 0 D(A) , (4.1) ?4e1? 
for all W 0 ∈ D(A).

Proof. We must establish the following two conditions:

iR ⊂ ρ(A), (4.2) 4e2 
and lim

λ-→∞ 1 λ 16 (iλI -A) -1 < +∞. (4.3) 4e3
Let us start by proving (4.2). Indeed, D(A) has a compact embedding into H, then A j -1

(j = 1, 2) is compact in H j . Hence, to prove (4.2) it is sufficient to check that A has no pure imaginary eigenvalue. Then, suppose that there exists λ ∈ R * such that iλ is an eigenvalue and U = (w, u, ξ, v, s, z, θ, P ) be the normalized eigenfunction, i.e.

AU = iλU. (4.4) 4e4
Therefore, we have u(x) = iλw(x), x ∈ (0, 1), (4.5) ?4e5? v(x) = iλξ(x),

x ∈ (0, 1), (4.6) 4e6 z(x) = iλs(x),

x ∈ (0, 1), (4.7) 4e7

λ 2 w + G ρ (3s -ξ -w x ) x = 0, x ∈ (0, 1) (4.8) ?4e8? λ 2 ξ + D I ρ ξ xx + G I ρ (3s -ξ -w x ) + γ 1 I ρ θ x + γ 2 I ρ P x = 0,
x ∈ (0, 1) (4.9) ?4e9? Therefore, θ x = P x = z = 0 in (0, 1). So, since θ(0) = P (0) = 0 by (2.3) and (2.4) we get θ = P = 0 on (0, 1). Next, due to (4.7), we get s = 0 on (0, 1). On the other hand, (4.11) implies that v x = 0 on (0, 1). So, v = 0 on (0, 1) because v(0) = 0 in the two cases of boundary conditions. Then from (4.6) follows that ξ = 0 on (0, 1). Hence, (4.10) gives w x = 0 on (0, 1). So, w = 0 on (0, 1) because the v(0) = 0 in the two cases of boundary conditions. Consequently, U = 0 which is a contradiction since U = 0. Thereby, (4.2) is proved.

λ 2 s + D I ρ s xx - G I ρ (3s -ξ -w x ) - 4γ 3I ρ s - 4β 3I ρ z = 0, x ∈ (0,
Next, to apply the theorem ??, it will be sufficient to show only the expression (4.3), because the first member is proved in the previous section, that is we must prove that lim λ-→∞ Let us argue by contradiction. Then, we suppose that the condition (??) is false. There exists a real sequence (λ n ) and a sequence Then, thanks to (4.16), we have

1 λ 16 (iλI -A j ) -1 L (H j ) < +∞, j = 1, 2. ( 4 
W n = (ϕ n , ψ n , ω n , u n , v n , z n , θ n 1 , P n 1 , θ n 2 , P n 2 ) ∈ D(A j ) such that |λ n | -→ +∞ and W n H j = 1 j = 1, 2, ( 4 
λ 16 n iλ n ϕ n -u n = f 1 n -→ 0 in H 1 0 (0, L), (4.17) 3e3 λ 16 n iλ n ψ n -v n = f 2 n -→ 0 in H 1 0 (0, L) pour j = 1 H 1 * (0, L) pour j = 2 , (4.18) 3e4 λ 16 n iλ n ω n -z n = f 3 n -→ 0 in H 1 0 (0, L) pour j = 1 H 1 * (0, L) pour j = 2 . ( 4 

.19) 3e5

We also have the following convergence in L 2 (0, L): 

   λ 16 n iλ n u n - k ρ 1 (ϕ n xx + ψ n x + lω n x ) - lEh ρ 1 (ω n x -lϕ n ) + lγ 21 θ 2 + lγ 22 P 2 = f 4 n -→ 0, (4.20) 3e6 λ 16 n iλ n v n - b ρ 2 ψ n xx + k ρ 2 (ϕ n x + ψ n + lω n ) + γ 11 ρ 2 θ n 1x + γ 12 ρ 2 P n 1x = f 5 n -→ 0, (4.21) 3e7 λ 16 n iλ n z n - k 0 ρ 1 (ω n xx -lϕ n x ) + lk ρ 1 (ϕ n x + ψ n + lω n ) + γ 21 ρ 1 θ n 2x + γ 22 ρ 1 P n 2x = f 6 n -→ 0, (4.22) ?3e8? λ 16 n iλ n θ n 1 -σ -1 g 11 m 1 θ n 1xx + g 12 h 1 P n 1xx + l 1 v n x = f 7 n -→ 0, (4.23) ?3e9? λ 16 n iλ n P n 1 -σ -1 g 12 m 1 θ 1xx + g 22 h 1 P 1xx + l 2 v n x = f 8 n -→ 0, (4.24) ?3e10? λ 16 n iλ n θ n 2 -σ -1 g 33 m 2 θ 2xx + g 34 h 2 P 2xx + l 3 (z n x -lu n ) = f 9 n -→ 0, ( 4 
iλ n -A j ) W n , W n H j = -Re A j U n , U n H j = m 1 λ 8 n θ n 1x 2 + h 1 λ 8 n P n 1x 2 + m 2 λ 8 n θ n 2x 2 + h 2 λ 8 n P n 2x 2 j = 1, 2. ( 4 
i λ 4 n θ n 1 , ψ n x + σ -1 g 11 m 1 λ 3 n θ n 1x , ψ n xx λ n -σ -1 g 11 m 1 λ 3 n θ n 1x (x)ψ n x (x) L 0 + σ -1 g 12 h 1 λ 3 n P n 1x , ψ n xx λ n -σ -1 g 12 h 1 λ 3 n P n 1x (x)ψ n x (x) L 0 + il 1 λ 2 n ψ n x 2 -→ 0.
(4.29) ?3e15?

Using (??), the first term in (??) converges to zero since ψ n x is bounded by (??). On the other hand, dividing (??) by λ 17 n , we conclude that

ψ n xx λ n
is bounded because all the other terms in the resulting equation are bounded due to (??). Analogously, the fourth term tends to zero due to (??). The boundary terms vanish in the case when j = 2. However, in the case when j = 1, using the Gagliardo-Nirenberg inequality, for x = 0, L we have

λ 3 n θ n 1x (x)ψ n x (x) ≤ K λ 8 n θ n 1x 1 2 θ n 1xx λ n 1 2 P n 1x 1 2 P n 1xx λ n 1 2
for some K > 0. Dividing (??) and (??) by λ 17 n , we obtain the boundedness of θ n 1xx λ n and P n 1xx λ n . So, (4.20) implies that 1 λ n θ n 1x (x)ψ n x (x) converges to zero for x = 0, L. Repeating same arguments leads to 1 λ n P n 1x (x)ψ n x (x) also converges to zero for x = 0, L. Consequently, in the two cases (j = 1 or j = 2), the expression (??) implies that λ 2 n ψ n x -→ 0 in L 2 (0, L). (4.30) 3e16

Repeating the same procedures by eliminating z n in (??) by (4.20), we obtain To finish the proof it remains to show that u n , v n , z n -→ 0 in L 2 (0, L). (4.34) 3e20

λ 2 n (ω n x -lϕ n ) -→ 0 in L 2 (
Indeed, dividing (4.18) by λ 16 n , then using (4.30) and the Poincaré inequality, we get v n -→ 0 in L 2 (0, L).

Similarly, the dividing ( . Then taking the inner product of the resulting equation with in L 2 (0, L), integrating by parts, and using the fact that u n ∈ H 1 0 (0, L), we obtain (??). Thus, continuing with the same procedures in the first section, we get u n -→ 0 in L 2 (0, L).

Consequently, (4.34) is obtained. Finally, (4.30), (4.31), (4.33), and (4.34) lead to W n H j -→ 0 j = 1, 2 which contradicts (4.15). So, the proof is competed.

+γ 1 1 0θ ξx dx -γ 1 1 0ξ x θdx + γ 2 1 0P ξx dx -γ 2 1 0ξ x P dx +c 1 0θ θdx + κ 1 0θ x θx dx + r 1 0P P dx + 1 0P x Px dx + d 1 0θ P dx + d 1 0

 1111111111 

  .6) 3-10 Inserting (3.3)-(3.6) into (3.2), we can have (3.1) with

( 3 .

 3 34) a-26 Proof of Theorem 3.1 for boundary II. Combining (3.1), (3.1), (3.18), (3.21), (3.23) and (3.33) and taking

  .27) 3e13

	Therefore, due to (4.16) et (4.27), we have	
	λ 8 n θ n 1x , λ 8 n θ n 2x , λ 8 n P n 1x , λ 8 n P n 2x -→ 0, in L 2 (0, L).	(4.28) 3e14
	Now, eliminating v n in (??) by (??), taking the inner product of the resulting equation with
	ψ n x	
	λ 13	

n in L 2 (0, L), and then integrating by parts, we obtain

  0, L). (4.31) 3e17 21 Next, repeating the same arguments in the step 3. in the previous section by multiplyingThe first term converges to zero by (4.30). The second term can be written as -→ 0. Consequently, the boundary terms in (4.32) converge to zero for the case j = 2. Next, Thus, the fifth and sixth terms in (4.32) converge to zero. In addition the last two terms in (4.32) converges to zero due to (4.28).

	(4.21) by	ϕ n x n λ 16	, we get					
	Re -λ 2 n ψ n , ϕ n x +	b ρ 2	ϕ n xx , ψ n x -	b ρ 2	ϕ n x ψ n x	L 0 +	k ρ 2	x ϕ n	2
											(4.32) 3e18
			+	k ρ 2	ϕ n x , ψ n +	lk ρ 2	ϕ n x , ω n +	γ 11 ρ 2		θ n 1x , ϕ n x +	γ 12 ρ 2	P n 1x , ϕ n x	-→ 0.
							ϕ n xx , ψ n x =	ϕ n xx λ n	, λ n ψ n x -→ 0
	due to (4.30). On the other hand, (4.30) implies (??). Thus, eliminating v n in (4.21) by
	(4.18) and multiplying the resulting equation by (L -x) the same arguments in step 2. in the previous session, we get ψ n x , we obtain (??) and so repeating λ 16 n
	ψ n x (0), ψ n x (L) Multiplying (4.17) and (4.18) by 1 λ 17
	Therefore, (4.32) implies that				
								ϕ n x	2 -→ 0..	(4.33) 3e19

n

, we get ϕ n , ω n -→ 0.

  4.19) by λ 16 n and the expression (4.19) give z n -→ 0 in L 2 (0, L).

	Now, let us multiply (4.20) by	u n λ 17 n
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From above we infer that there exists a constant ν0 > 0 such that