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Abstract In a Hilbertian framework, for the minimization of a general convex differentiable func-
tion f , we introduce new inertial dynamics and algorithms that generate trajectories and iterates
that converge fastly towards the minimizer of f with minimum norm. Our study is based on the
non-autonomous version of the Polyak heavy ball method, which, at time t, is associated with the
strongly convex function obtained by adding to f a Tikhonov regularization term with vanishing
coefficient ε(t). In this dynamic, the damping coefficient is proportional to the square root of the
Tikhonov regularization parameter ε(t). By adjusting the speed of convergence of ε(t) towards zero,
we will obtain both rapid convergence towards the infimal value of f , and the strong convergence of
the trajectories towards the element of minimum norm of the set of minimizers of f . In particular,
we obtain an improved version of the dynamic of Su-Boyd-Candès for the accelerated gradient
method of Nesterov. This study naturally leads to corresponding first-order algorithms obtained
by temporal discretization. In the case of a proper lower semicontinuous and convex function f , we
study the proximal algorithms in detail, and show that they benefit from similar properties.

Keywords Accelerated gradient methods; convex optimization; damped inertial dynamics;
minimum norm solution; Nesterov accelerated gradient method; Tikhonov approximation.
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1 Introduction

Throughout the paper, H is a real Hilbert space which is endowed with the scalar product 〈·, ·〉,
with ‖x‖2 = 〈x, x〉 for x ∈ H. We consider the convex minimization problem

min {f(x) : x ∈ H} , (1)

where f : H → R is a convex continuously differentiable function whose solution set S = argmin f is
nonempty. We aim at finding by rapid methods the element of minimum norm of S. As an original
aspect of our approach, we start from the Polyak heavy ball with friction dynamic for strongly
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convex functions, and then adapt it to treat the case of general convex functions. Recall that a
function f : H → R is said to be µ-strongly convex for some µ > 0 if f − µ

2 ‖ · ‖
2 is convex. In this

setting, we have the exponential convergence result:

Theorem 1 Suppose that f : H → R is a function of class C1 which is µ-strongly convex for some

µ > 0. Let x(·) : [t0,+∞[→ H be a solution trajectory of

ẍ(t) + 2
√
µẋ(t) +∇f(x(t)) = 0. (2)

Then, the following property holds: f(x(t))−minH f = O
(
e−
√
µt
)

as t→ +∞.

Let us see how to take advantage of this fast convergence result, and how to adapt it to the case of
a general convex differentiable function f : H → R. The main idea is linked to Tikhonov’s method
of regularization. It consists in considering the corresponding non-autonomous dynamic which at
time t is governed by the gradient of the strongly convex function ft : H → R

ft(x) := f(x) +
ε(t)

2
‖x‖2.

Then replacing f by ft in (2), and noticing that ft is ε(t)-strongly convex, we obtain the dynamic

(TRIGS) ẍ(t) + δ
√
ε(t)ẋ(t) +∇f(x(t)) + ε(t)x(t) = 0,

with δ = 2. (TRIGS) stands shortly for Tikhonov regularization of inertial gradient systems. In
order not to asymptotically modify the equilibria, we suppose that ε(t) → 0 as t → +∞. This
condition implies that (TRIGS) falls within the framework of the inertial gradient systems with
asymptotically vanishing damping. The importance of this class of inertial dynamics has been
highlighted by several recent studies [3], [5], [8], [10], [18], [28], [38], which make the link with the
accelerated gradient method of Nesterov [35,36].

1.1 Historical facts and related results

In relation to optimization algorithms, a rich literature has been devoted to the coupling of dynamic
gradient systems with Tikhonov regularization.

1.1.1 First-order gradient dynamics

For first-order gradient systems and subdifferential inclusions, the asymptotic hierarchical mini-
mization property which results from the introduction of a vanishing viscosity term in the dynamic
(in our context the Tikhonov approximation [39,40]) has been highlighted in a series of papers [2],
[4], [12], [14], [20], [30], [33]. In parallel way, there is a vast literature on convex descent algorithms
involving Tikhonov and more general penalty, regularization terms. The historical evolution can be
traced back to Fiacco and McCormick [31], and the interpretation of interior point methods with
the help of a vanishing logarithmic barrier. Some more specific references for the coupling of Prox
and Tikhonov can be found in Cominetti [29]. The time discretization of the first-order gradient
systems and subdifferential inclusions involving multiscale (in time) features provides a natural link
between the continuous and discrete dynamics. The resulting algorithms combine proximal based
methods (for example forward-backward algorithms), with the viscosity of penalization methods,
see [15], [16], [22], [25,26], [33].
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1.1.2 Second order gradient dynamics

First studies concerning the coupling of damped inertial dynamics with Tikhonov approximation
concerned the heavy ball with friction system of Polyak [37], where the damping coefficient γ > 0
is fixed. In [13] Attouch-Czarnecki considered the system

ẍ(t) + γẋ(t) +∇f(x(t)) + ε(t)x(t) = 0. (3)

In the slow parametrization case
∫+∞
0

ε(t)dt = +∞, they proved that any solution x(·) of (3)
converges strongly to the minimum norm element of argmin f , see also [34]. A parallel study has
been developed for PDE’s, see [1] for damped hyperbolic equations with non-isolated equilibria,
and [2] for semilinear PDE’s. The system (3) is a special case of the general dynamic model

ẍ(t) + γẋ(t) +∇f(x(t)) + ε(t)∇g(x(t)) = 0 (4)

which involves two functions f and g intervening with different time scale. When ε(·) tends to
zero moderately slowly, it was shown in [17] that the trajectories of (4) converge asymptotically
to equilibria that are solutions of the following hierarchical problem: they minimize the function
g on the set of minimizers of f . When H = H1 ×H2 is a product space, defining for x = (x1, x2),
f(x1, x2) := f1(x1) + f2(x2) and g(x1, x2) := ‖A1x1 − A2x2‖2, where the Ai, i ∈ {1, 2} are linear
operators, (4) provides (weakly) coupled inertial systems. The continuous and discrete-time versions
of these systems have a natural connection to the best response dynamics for potential games [14],
domain decomposition for PDE’s [7], optimal transport [6], coupled wave equations [32].
In the quest for a faster convergence, the following system

(AVD)α,ε ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) + ε(t)x(t) = 0, (5)

has been studied by Attouch-Chbani-Riahi [11]. It is a Tikhonov regularization of the dynamic

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0, (6)

which was introduced by Su, Boyd and Candès in [38]. When α = 3, (AVD)α can be viewed as a
continuous version of the accelerated gradient method of Nesterov. It has been the subject of many
recent studies which have given an in-depth understanding of the Nesterov acceleration method,
see [3], [8], [10], [38]. The results obtained in [11] concerning (5) will serve as a basis for comparison.

1.2 Model results

To illustrate our results, let us consider the case ε(t) = c
tr where r is positive parameter satisfying

0 < r ≤ 2. The case r = 2 is of particular interest, it is related to the continuous version of
the accelerated gradient method of Nesterov, with optimal convergence rate for general convex
differentiable function f .

1.2.1 Case r = 2

Let us consider the (TRIGS) dynamic

ẍ(t) +
α

t
ẋ(t) +∇f (x(t)) +

c

t2
x(t) = 0, (7)

where the parameter α ≥ 3 plays a crucial role. As a consequence of Theorems 8 and 9 we have
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Theorem 2 Let x : [t0,+∞[→ H be a solution of (7). We then have the following results:

i) If α = 3, then f (x(t))−min
H

f = O

(
ln t

t2

)
as t→ +∞.

ii) If α > 3, then f (x(t)) − min
H

f = O

(
1

t2

)
as t → +∞. Further, the trajectory x is bounded,

‖ẋ(t)‖ = O

(
1

t

)
as t→ +∞, and there is strong convergence to the minimum norm solution:

lim inf
t→+∞

‖x(t)− x∗‖ = 0.

1.2.2 Case r < 2

As a consequence of Theorems 7 and 11, we have:

Theorem 3 Take ε(t) = 1/tr, 2
3 < r < 2. Let x : [t0,+∞[→ H be a global solution trajectory of

ẍ(t) +
δ

t
r
2

ẋ(t) +∇f (x(t)) +
1

tr
x(t) = 0.

Then, we have fast convergence the values, and strong convergence to the minimum norm solution:

f(x(t))−min
H

f = O
(

1

t
3r
2
−1

)
and lim inf

t→+∞
‖x(t)− x∗‖ = 0.

These results are completed by showing that, if there exists T ≥ t0, such that the trajectory
{x(t) : t ≥ T} stays either in the open ball B(0, ‖x∗‖) or in its complement, then x(t) converges
strongly to x∗ as t→ +∞. Corresponding results for the associated proximal algorithms, obtained
by temporal discretization, are obtained in Section 5.

A remarkable property of the above results is that the rate of convergence of values is comparable
to the Nesterov accelerated gradient method. In addition, we have a strong convergence property
to the minimum norm solution, with comparable numerical complexity. These results represent an
important advance compared to previous works by producing new dynamics for which we have both
rapid convergence of values and strong convergence towards the solution of minimum norm. Let us
stress the fact that in our approach the fast convergence of the values and the strong convergence
towards the solution of minimum norm are obtained for the same dynamic, whereas in the previous
works [11], [13], they are obtained for different dynamics obtained for different settings of the
parameters. It is clear that the results extend naturally to obtaining strong convergence towards
the solution closest to a desired state xd. It suffices to replace in Tikhonov’s approximation ‖x‖2
by ‖x− xd‖2. This is important for inverse problems.

1.3 Contents

In section 2, we show existence and uniqueness of a global solution for the Cauchy problem associ-
ated with (TRIGS). Then, based on Lyapunov analysis, we obtain convergence rates of the values
which are valid for a general ε(·). Section 3 is devoted to an in-depth analysis in the critical case
ε(t) = c/t2. Section 4 is devoted to the study of the strong convergence property of the trajectories
towards the minimum norm solution, in the case of a general ε(·). Then in Section 5 we obtain
similar results for the associated proximal algorithms, obtained by temporal discretization.
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2 Convergence analysis for general ε(t)

We are going to analyze via Lyapunov analysis the convergence properties as t → +∞ of the
solution trajectories of the inertial dynamic (TRIGS) that we recall below

ẍ(t) + δ
√
ε(t)ẋ(t) +∇f(x(t)) + ε(t)x(t) = 0. (8)

Throughout the paper, we assume that t0 is the origin of time, δ is a positive parameter, and

(H1) f : H → R is convex and differentiable, ∇f is Lipschitz continuous on bounded sets.

(H2) S := argminf 6= ∅. We denote by x∗ the element of minimum norm of S.

(H3) ε : [t0,+∞[→ R+ is a nonincreasing function, of class C1, such that limt→∞ ε(t) = 0.

2.1 Existence and uniqueness for the Cauchy problem

Let us first show that the Cauchy problem for (TRIGS) is well posed.

Theorem 4 Given (x0, v0) ∈ H×H, there exists a unique global classical solution x : [t0,+∞[→ H of

the Cauchy problem ẍ(t) + δ
√
ε(t)ẋ(t) +∇f (x(t)) + ε(t)x(t) = 0

x(t0) = x0, ẋ(t0) = v0.
(9)

Proof The proof relies on the combination of the Cauchy-Lipschitz theorem with energy estimates.
First consider the Hamiltonian formulation of (9) as the first order system

ẋ(t)− y(t) = 0

ẏ(t) + δ
√
ε(t)y(t) +∇f (x(t)) + ε(t)x(t) = 0

x(t0) = x0, y(t0) = v0.

(10)

According to the hypothesis (H1), (H2), (H3), and by applying the Cauchy-Lipschitz theorem in the
locally Lipschitz case, we obtain the existence and uniqueness of a local solution. Then, in order to
pass from a local solution to a global solution, we rely on the energy estimate obtained by taking
the scalar product of (TRIGS) with ẋ(t). It gives

d

dt

(1

2
‖ẋ(t)‖2 + f(x(t)) +

1

2
ε(t)‖x(t)‖2)

)
+ δ
√
ε(t)‖ẋ(t)‖2 − 1

2
ε̇(t)‖x(t)‖2 = 0.

From (H3), ε(·) is non-increasing. Therefore, the energy function t 7→W (t) is decreasing where

W (t) :=
1

2
‖ẋ(t)‖2 + f(x(t)) +

1

2
ε(t)‖x(t)‖2.

The end of the proof follows a standard argument. Take a maximal solution defined on an interval
[t0, T [. If T is infinite, the proof is over. Otherwise, if T is finite, according to the above energy
estimate, we have that ‖ẋ(t)‖ remains bounded, just like ‖x(t)‖ and ‖ẍ(t)‖ (use (TRIGS)). There-
fore, the limit of x(t) and ẋ(t) exists when t→ T . Applying the local existence result at T with the
initial conditions thus obtained gives a contradiction to the maximality of the solution.
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2.2 General case

The control of the decay of ε(t) to zero as t→ +∞ will play a key role in the Lyapunov analysis of
(TRIGS). Precisely, we will use the following condition.

Definition 1 Given δ > 0, we say that t 7→ ε(t) satisfies the controlled decay property (CD)K , if it
is a nonincreasing function which satisfies: there exists t1 ≥ t0 such that for all t ≥ t1,(

1√
ε(t)

)′
≤ min(2K − δ, δ −K),

where K is a parameter such that δ
2 < K < δ for 0 < δ ≤ 2, and δ+

√
δ2−4
2 < K < δ for δ > 2 .

Theorem 5 Let x : [t0,+∞[→ H be a solution trajectory of (TRIGS). Let δ be a positive parameter.

Suppose that ε(·) satisfies the condition (CD)K for some K > 0. Then, we have the following rate of

convergence of values: for all t ≥ t1

f(x(t))−min
H

f ≤ K‖x∗‖2

2

1

M(t)

∫ t

t1

ε
3
2 (s)M(s)ds+

C

M(t)
, (11)

where

M(t) = exp

(∫ t

t1

µ(s)ds

)
, µ(t) = − ε̇(t)

2ε(t)
+ (δ −K)

√
ε(t)

and

C =
(
f(x(t1))− f(x∗)

)
+
ε(t1)

2
‖x(t1)‖2 +

1

2
‖K
√
ε(t1)(x(t1)− x∗) + ẋ(t1)‖2.

Proof Lyapunov analysis. Set f∗ := f(x∗) = minH f . The energy function E : [t0,+∞[→ R+,

E(t) :=
(
f(x(t))− f∗

)
+
ε(t)

2
‖x(t)‖2 +

1

2
‖c(t)(x(t)− x∗) + ẋ(t)‖2, (12)

will be the basis for our Lyapunov analysis. The function c : [t0,+∞[→ R will be defined later,
appropriately. Let us differentiate E(·). By using the derivation chain rule, we get

Ė(t) = 〈∇f(x(t)), ẋ(t)〉+ ε̇(t)

2
‖x(t)‖2 + ε(t)〈ẋ(t), x(t)〉 (13)

+ 〈c′(t)(x(t)− x∗) + c(t)ẋ(t) + ẍ(t), c(t)(x(t)− x∗) + ẋ(t)〉.

According to the constitutive equation (8), we have

ẍ(t) = −ε(t)x(t)− δ
√
ε(t)ẋ(t)−∇f(x(t)). (14)

Therefore,

〈c′(t)(x(t)− x∗) + c(t)ẋ(t) + ẍ(t), c(t)(x(t)− x∗) + ẋ(t)〉 (15)

= 〈c′(t)(x(t)− x∗) + (c(t)− δ
√
ε(t))ẋ(t)− (ε(t)x(t) +∇f(x(t))), c(t)(x(t)− x∗) + ẋ(t)〉

= c′(t)c(t)‖x(t)− x∗‖2 + (c′(t) + c2(t)− δc(t)
√
ε(t))〈ẋ(t), x(t)− x∗〉+ (c(t)− δ

√
ε(t))‖ẋ(t)‖2

−ε(t)〈x(t), ẋ(t)〉 − 〈∇f(x(t)), ẋ(t)〉 − c(t)〈ε(t)x(t) +∇f(x(t)), x(t)− x∗〉.

By combining (13) with (15), we get

Ė(t) =
ε̇(t)

2
‖x(t)‖2 + c′(t)c(t)‖x(t)− x∗‖2 + (c′(t) + c2(t)− δc(t)

√
ε(t))〈ẋ(t), x(t)− x∗〉 (16)

+ (c(t)− δ
√
ε(t))‖ẋ(t)‖2 − c(t)〈ε(t)x(t) +∇f(x(t)), x(t)− x∗〉.
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Consider the function

ft : H −→ R, ft(x) = f(x) +
ε(t)

2
‖x‖2.

According to the strong convexity property of ft, we have

ft(y)− ft(x) ≥ 〈∇ft(x), y − x〉+ ε(t)

2
‖x− y‖2, for all x, y ∈ H.

Take y = x∗ and x = x(t) in the above inequality. We get

f(x∗) +
ε(t)

2
‖x∗‖2 − f(x(t))− ε(t)

2
‖x(t)‖2 ≥

− 〈∇f(x(t)) + ε(t)(x(t), x(t)− x∗〉+ ε(t)

2
‖x(t)− x∗‖2.

Consequently,

−〈∇f(x(t)) + ε(t)x(t), x(t)− x∗〉 ≤ −(f(x(t))− f(x∗))

+
ε(t)

2
‖x∗‖2 − ε(t)

2
‖x(t)‖2 − ε(t)

2
‖x(t)− x∗‖2. (17)

By multiplying (17) with c(t) and injecting in (16) we get

Ė(t) ≤− c(t)(f(x(t))− f∗) +

(
ε̇(t)

2
− c(t) ε(t)

2

)
‖x(t)‖2 (18)

+

(
c′(t)c(t)− c(t) ε(t)

2

)
‖x(t)− x∗‖2 + (c(t)− δ

√
ε(t))‖ẋ(t)‖2

+ (c′(t) + c2(t)− δc(t)
√
ε(t))〈ẋ(t), x(t)− x∗〉+ c(t)

ε(t)

2
‖x∗‖2.

On the other hand, for a positive function µ(t) we have

µ(t)E(t) =µ(t)
(
f(x(t))− f∗

)
+ µ(t)

ε(t)

2
‖x(t)‖2 +

1

2
µ(t)c2(t)‖x(t)− x∗‖2 +

1

2
µ(t)‖ẋ(t)‖2 (19)

+ µ(t)c(t)〈ẋ(t), x(t)− x∗〉.

By adding (18) and (19) we get

Ė(t) + µ(t)E(t) ≤(µ(t)− c(t))(f(x(t))− f∗) +

(
ε̇(t)

2
− c(t) ε(t)

2
+ µ(t)

ε(t)

2

)
‖x(t)‖2 (20)

+

(
c′(t)c(t)− c(t) ε(t)

2
+

1

2
µ(t)c2(t)

)
‖x(t)− x∗‖2

+

(
c(t)− δ

√
ε(t) +

1

2
µ(t)

)
‖ẋ(t)‖2

+
(
c′(t) + c2(t)− δc(t)

√
ε(t) + µ(t)c(t)

)
〈ẋ(t), x(t)− x∗〉+ c(t)

ε(t)

2
‖x∗‖2.

Since we have no control on the sign of 〈ẋ(t), x(t)−x∗〉, we take the coefficient in front of this term
equal to zero, that is

c′(t) + c2(t)− δc(t)
√
ε(t) + µ(t)c(t) = 0. (21)

Take c(t) = K
√
ε(t). Indeed, it is here that the choice of c, and of the corresponding parameter K,

come into play. The relation (21) can be equivalently written

µ(t) = − ε̇(t)

2ε(t)
+ (δ −K)

√
ε(t).
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According to this choice for µ(t) and c(t), the inequality (20) becomes

Ė(t) + µ(t)E(t) ≤ 1

2ε(t)

(
−ε̇(t) + 2(δ − 2K)ε(t)

3
2

)
(f(x(t))− f∗) (22)

+
1

4

(
ε̇(t) + 2 (δ − 2K) ε(t)

3
2

)
‖x(t)‖2

+
K

4

(
Kε̇(t) + 2ε(t)

3
2 (−K2 + δK − 1)

)
‖x(t)− x∗‖2

+
1

4ε(t)

(
−ε̇(t) + 2(K − δ)ε(t)

3
2

)
‖ẋ(t)‖2 +

K‖x∗‖2

2
ε

3
2 (t).

Let us show that the condition (CD)K provide the nonpositive sign for the coefficients in front of
the terms of the right side of (22). Recall that, according to the hypotheses (CD)K , for all t ≥ t1
we have the properties a) and b):

a)

(
1√
ε(t)

)′
≤M1(K) = min(2K − δ, δ −K) =

{
2K − δ if K ≤ 2

3δ

δ −K, if 2
3δ ≤ K,

b)

(
1√
ε(t)

)′
≥ 0.

Without ambiguity we write briefly M1 for M1(K). Note that b) just expresses that ε(·) is non
increasing. According to the hypotheses (CD)K , we claim that for all t ≥ t1

i)

(
1√
ε(t)

)′
≤ 2K − δ

ii)

(
1√
ε(t)

)′
≥ δK−K2−1

K

iii)

(
1√
ε(t)

)′
≤ δ −K.

(23)

Let us justify these inequalities (23).

i) is a consequence of

(
1√
ε(t)

)′
≤M1 and M1 ≤ 2K − δ.

ii) is a consequence of

(
1√
ε(t)

)′
≥ 0 and δK − K2 − 1 ≤ 0. Precisely, when δ ≤ 2 we have

δK −K2 − 1 ≤ 2K −K2 − 1 ≤ 0. When δ > 2, we have δK −K2 − 1 ≤ 0 because K ≥ δ+
√
δ2−4
2 .

iii) is a consequence of

(
1√
ε(t)

)′
≤M1 and M1 ≤ δ −K.

The inequalities (23) can be equivalently written as follows: for all t ≥ t1
i) − ε̇(t) + 2(δ − 2K)ε(t)

3
2 ≤ 0

ii) Kε̇(t) + 2(δK −K2 − 1)ε(t)
3
2 ≤ 0

iii) − ε̇(t) + 2(K − δ)ε(t)
3
2 ≤ 0.

(24)

The inequalities (24) give that the coefficients entering the right side of (22) are nonpositive:

• i) gives that the coefficient of f(x(t))− f∗ is nonpositive.

• Since ε̇(t) ≤ 0 we have ε̇(t) + 2(δ − 2K)ε(t)
3
2 ≤ −ε̇(t) + 2(δ − 2K)ε(t)

3
2 . Therefore, by i) we have

that the coefficient of ‖x(t)‖2 in (22) is nonpositive.
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• ii) gives that the coefficient of ‖x(t)− x∗‖2 is nonpositive.
• iii) gives that the coefficient of ‖ẋ(t)‖2 is nonpositive .

Let us return to (22). Using (24) and the above results, we obtain

Ė(t) + µ(t)E(t) ≤ K‖x∗‖2

2
ε

3
2 (t), for all t ≥ t1. (25)

By multiplying (25) with M(t) = exp

(∫ t

t1

µ(s)ds

)
we obtain

d

dt
(M(t)E(t)) ≤ K‖x∗‖2

2
ε

3
2 (t)M(t). (26)

By integrating (26) on [t1, t] we get

E(t) ≤ K‖x∗‖2

2

∫ t
t1
ε

3
2 (s)M(s)ds

M(t)
+

M(t1)E(t1)

M(t)
. (27)

By definition of E(t) we deduce that

f(x(t))−min
H

f ≤ K‖x∗‖2

2

∫ t
t1
ε

3
2 (s)M(s)ds

M(t)
+
E(t1)

M(t)
, (28)

for all t ≥ t1, and this gives the convergence rate of the values.

Remark 1 By integrating the relation 0 ≤
(

1√
ε(t)

)′
≤M1 on an interval [t1, t], we get

1√
ε(t1)

≤ 1√
ε(t)
≤M1t+

1√
ε(t1)

−M1t1.

Therefore, denoting C1 = 1√
ε(t1)

−M1t1, and C2 = ε(t1) we have

1

(M1t+ C1)2
≤ ε(t) ≤ C2. (29)

This shows that the Lyapunov analysis developed previously only provides information in the case
where ε(t) is greater than or equal to C/t2. Since the damping coefficient γ(t) = δ

√
ε(t), this

means that γ(t) must be greater than or equal to C/t. This is in accordance with the theory of
inertial gradient systems with time-dependent viscosity coefficient, which states that the asymptotic
optimization property is valid provided that the integral on [t0,+∞[ of γ(t) is infinite, see [8].

As a consequence of Theorem 5 we have the following result.

Corollary 1 Under the hypothesis of Theorem 5 we have

lim
t→+∞

M(t) = +∞. (30)

Suppose moreover that ε
3
2 (·) ∈ L1(t0,+∞). Then

lim
t→+∞

f(x(t)) = min
H

f. (31)
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Proof By definition of µ(t), since ε(·) is nonincreasing and δ ≥ K, we have that µ(t) is nonnegative
for all t ≥ t1. Therefore, t 7→ M(t) is a nondecreasing function. Let us write equivalently µ(t) =
d
dt ln 1√

ε(t)
+ (δ −K)

√
ε(t), and integrate on [t1, t]. We obtain

M(t) = exp

(∫ t

t1

µ(s)ds

)
=

C√
ε(t)

exp

(∫ t

t1

(δ −K)
√
ε(s)ds

)
.

Since δ −K ≥ 0, we deduce that M(t) ≥ C√
ε(t)

. Since limt→∞ ε(t) = 0, we get

lim
t→+∞

M(t) = +∞.

Moreover, if we suppose that ε
3
2 (·) ∈ L1(t0,+∞), then by [11, Lemma A.3] we obtain

lim
t→+∞

∫ t
t1
ε

3
2 (s)M(s)ds

M(t)
= 0.

Combining these properties with the convergence rate (11) of Theorem 5, we obtain (31).

2.3 Particular cases

Since ε(t)→ 0 as t→ +∞, (TRIGS) falls within the setting of the inertial dynamics with an asymp-
totic vanishing damping coefficient γ(t). Here, γ(t) = δ

√
ε(t). We know with Cabot-Engler-Gaddat

[27] that for such systems, the optimization property is satisfied asymptotically if
∫+∞
t0

γ(t)dt = +∞
(i.e. γ(t) does no tend too rapidly towards zero). By taking ε(t) = c

tp , it is easy to verify that the

condition (CD)K is satisfied if p ≤ 2, that is
√
ε(t) = c

tp , with p ≤ 1, which is in accordance with the
above property. Let us particularize Theorem 5 to situations where the integrals can be computed
(at least estimated).

2.3.1 ε(t) of order 1/t2

Take

ε(t) =
1

(Mt+ C)2
, M < M1(K), C ≤ C1.

Then,

(
1√
ε(t)

)′
≤M1(K) for all t ≥ t0 and the condition (CD)K is satisfied. Moreover,

µ(t) =
M + δ −K
Mt+ C

, M(t) =

(
Mt+ C

Mt0 + C

)M+δ−K
M

.

Therefore, (11) becomes

E(t) ≤ K‖x∗‖2

2

∫ t

t0

(Ms+ C)
−2M+δ−K

M ds

(Mt+ C)
M+δ−K

M

+
(Mt0 + C)

M+δ−K
M E(t0)

(Mt+ C)
M+δ−K

M

. (32)

Consequently, we have

E(t) ≤ K‖x∗‖2

2(−M + δ −K)

1

(Mt+ C)2
+
− K‖x∗‖2

2(−M+δ−K) (Mt0 + C)
−M+δ−K

M + (Mt0 + C)
M+δ−K

M E(t0)

(Mt+ C)
M+δ−K

M

.
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By assumption we have M < M1 ≤ δ −K. Therefore M+δ−K
M > 2 and −M + δ −K > 0. It follows

that when Mt+ C ≥ 1

E(t) ≤ C′

(Mt+ C)2
, with C′ =

K‖x∗‖2

2(−M + δ −K)
+ (Mt0 + C)

M+δ−K
M E(t0).

Observe that δ
√
ε(t) =

δ
M

t+ C
M

=
α

t+ β
, where we set α = δ

M and β = C
M . Since M < M1 ≤ 1

3δ we

get α ∈ ]3,+∞[. Indeed, we can get any α > 3. Note also that by translating the time scale the
result in the general case β ≥ 0 results from its obtaining for a particular case β = 0. According to
the fact that we can take for δ any positive number, we obtain

Theorem 6 Take α ∈ ]3,+∞[ , c > 0. Let x : [t0,+∞[→ H be a solution trajectory of

ẍ(t) +
α

t
ẋ(t) +∇f (x(t)) +

c

t2
x(t) = 0.

Then, the following convergence rate of the values is satisfied: as t→ +∞

f(x(t))−min
H

f = O

(
1

t2

)
.

Remark 2 It is an natural question to compare our dynamic (c > 0) with the Su-Boyd-Candès
dynamic [38] (c = 0), which was introduced as a continuous version of the Nesterov accelerated
gradient method. We obtain the optimal convergence rate of values with an additional Tikhonov
regularization term, which is a remarkable property. In fact, in the next sections we will prove that
the Tikhonov term induces strong convergence of the trajectory to the minimum norm solution.

2.3.2 ε(t) of order 1/tr, 2
3 < r < 2

Take ε(t) = 1/tr, r < 2. Then

µ(t) = −1

2

ε̇(t)

ε(t)
+ (δ −K)

√
ε(t)

=
r

2t
+
δ −K
t
r
2

.

Therefore

M(t) = exp

∫ t

t0

(
r

2s
+
δ −K
s
r
2

)
ds = Ct

r
2 exp

(
2(δ −K)

2− r t1−
r
2

)
.

Set

m(t) := t
r
2 exp

(
2(δ −K)

2− r t1−
r
2

)
.

According to (28) we have that for some C1 > 0

f(x(t))−min
H

f ≤ C1

m(t)

∫ t

t0

m(s)

s
3r
2

ds+
C1

m(t)
. (33)

Note that according to r < 2, m(t) is an increasing function which has an exponential growth as
t→ +∞. Accordingly, by the mean value theorem we have the following majorization.

1

m(t)

∫ t

t0

m(s)

s
3r
2

ds ≤ m(t)

m(t)

∫ t

t0

1

s
3r
2

ds = O
(

1

t
3r
2
−1

)
. (34)

Let us summarize these results in the following statement.
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Theorem 7 Take ε(t) = 1/tr, 2
3 < r < 2, δ > 0. Let x : [t0,+∞[→ H be a global trajectory of

ẍ(t) +
δ

t
r
2

ẋ(t) +∇f (x(t)) +
1

tr
x(t) = 0.

Then, the following convergence rate of the values is satisfied: as t→ +∞

f(x(t))−min
H

f = O
(

1

t
3r
2
−1

)
.

Remark 3 When r → 2 the exponent 3r
2 − 1 tends to 2. So there is a continuous transition in the

convergence rate. As in Remark 2 the additional Tikhonov regularization term is expected to have
a regularization effect (even better than in the case r = 2). In addition, the above analysis makes
appear another critical value, namely r = 2

3 .

3 In-depth analysis in the critical case ε(t) = c/t2

Let us refine our analysis in the case where the Tikhonov regularization coefficient and the damping
coefficient are respectively of order 1/t2 and 1/t. Our analysis will now take into account the
coefficients α and c in front of these terms. So the Cauchy problem for (TRIGS) is written{

ẍ(t) + α
t ẋ(t) +∇f (x(t)) + c

t2 x(t) = 0

x(t0) = x0, ẋ(t0) = v0,
(35)

where t0 > 0, c > 0, (x0, v0) ∈ H × H, and α ≥ 3. The starting time t0 is taken strictly greater
than zero to take into account the fact that the functions c

t2 and α
t have singularities at 0. This is

not a limitation of the generality of the proposed approach, since we will focus on the asymptotic
behaviour of the generated trajectories.

3.1 Convergence rate of the values

Theorem 8 Let t0 > 0 and, for some initial data x0, v0 ∈ H, let x : [t0,+∞[→ H be the unique global

solution of (35). Then, the following results hold.

i) If α = 3, then f (x(t))−min
H

f = O

(
ln t

t2

)
as t→ +∞.

ii) If α > 3, then f (x(t))−min
H

f = O

(
1

t2

)
as t→ +∞. Further, the trajectory x is bounded and

‖ẋ(t)‖ = O

(
1

t

)
as t→ +∞.

Proof The analysis is parallel to that of Theorem 5. Set f∗ := f(x∗) = minH f . Let b : [t0,+∞[→ R,
b(t) = K

t where K > 0 will be defined later. Let us introduce E : [t0,+∞[→ R,

E(t) :=
(
f(x(t))− f∗

)
+

c

2t2
‖x(t)‖2 +

1

2
‖b(t)(x(t)− x∗) + ẋ(t)‖2, (36)

that will serve as a Lypaunov function. Then,

Ė(t) = 〈∇f(x(t)), ẋ(t)〉 − c

t3
‖x(t)‖2 +

c

t2
〈ẋ(t), x(t)〉 (37)

+ 〈b′(t)(x(t)− x∗) + b(t)ẋ(t) + ẍ(t), b(t)(x(t)− x∗) + ẋ(t)〉.



Inertial optimization algorithms with vanishing Tikhonov regularization 13

According to the dynamic system (35), we have

ẍ(t) = − c

t2
x(t)− α

t
ẋ(t)−∇f(x(t)). (38)

Therefore,

〈b′(t)(x(t)− x∗) + b(t)ẋ(t) + ẍ(t), b(t)(x(t)− x∗) + ẋ(t)〉 = (39)〈
−K
t2

(x(t)− x∗) +
K − α
t

ẋ(t)−
(
c

t2
x(t) +∇f(x(t))

)
,
K

t
(x(t)− x∗) + ẋ(t)

〉
=

− K2

t3
‖x(t)− x∗‖2 +

K2 − αK −K
t2

〈ẋ(t), x(t)− x∗〉+ K − α
t
‖ẋ(t)‖2

− c

t2
〈x(t), ẋ(t)〉 − 〈∇f(x(t)), ẋ(t)〉 − K

t

〈
c

t2
x(t) +∇f(x(t)), x(t)− x∗

〉
.

Combining (37) and (39), we get

Ė(t) =− c

t3
‖x(t)‖2 − K2

t3
‖x(t)− x∗‖2 +

K2 − αK −K
t2

〈ẋ(t), x(t)− x∗〉+ K − α
t
‖ẋ(t)‖2 (40)

− K

t

〈
c

t2
x(t) +∇f(x(t)), x(t)− x∗

〉
.

Consider the strongly convex function

ft : H −→ R, ft(x) = f(x) +
c

2t2
‖x‖2.

From the gradient inequality we have

ft(y)− ft(x) ≥ 〈∇ft(x), y − x〉+ c

2t2
‖x− y‖2, for all x, y ∈ H.

Take y = x∗ and x = x(t) in the above inequality. We obtain

f∗ +
c

2t2
‖x∗‖2 − f(x(t))− c

2t2
‖x(t)‖2 ≥

−
〈
∇f(x(t)) +

c

t2
x(t), x(t)− x∗

〉
+

c

2t2
‖x(t)− x∗‖2.

Consequently,

−
〈
c

t2
x(t) +∇f(x(t)), x(t)− x∗

〉
≤− (f(x(t))− f∗)− c

2t2
‖x(t)‖2 − c

2t2
‖x(t)− x∗‖2 (41)

+
c

2t2
‖x∗‖2.

By multiplying (41) with K
t , and injecting in (40), we obtain

Ė(t) ≤− K

t
(f(x(t))− f∗)−

(
c

t3
+
Kc

2t3

)
‖x(t)‖2 −

(
K2

t3
+
Kc

2t3

)
‖x(t)− x∗‖2 (42)

+
K2 − αK −K

t2
〈ẋ(t), x(t)− x∗〉+ K − α

t
‖ẋ(t)‖2 +

cK

2t3
‖x∗‖2.

On the other hand, by multiplying the function E(t) by µ(t) = α−K+1
t , we obtain

µ(t)E(t) =
α−K + 1

t

(
f(x(t))− f∗

)
+

(α−K + 1)c

2t3
‖x(t)‖2 +

(α−K + 1)K2

2t3
‖x(t)− x∗‖2 (43)

+
α−K + 1

2t
‖ẋ(t)‖2 +

(α−K + 1)K

t2
〈ẋ(t), x(t)− x∗〉.
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By adding (42) and (43), we get

Ė(t) + µ(t)E(t) ≤α− 2K + 1

t
(f(x(t))− f∗) +

(α− 2K − 1)c

2t3
‖x(t)‖2 (44)

+
(α−K − 1)K2 −Kc

2t3
‖x(t)− x∗‖2 +

K − α+ 1

2t
‖ẋ(t)‖2 +

cK

2t3
‖x∗‖2.

The case α > 3. Take α+1
2 < K < α−1. Since α > 3, such K exists. This implies that α−2K+1 < 0,

hence α − 2K − 1 < 0, and K − α + 1 < 0. In addition, since c > 0 there exists K ∈
]
α+1
2 , α− 1

[
such that

(α−K − 1)K2 −Kc ≤ 0. (45)

Indeed, (45) can be deduced from the fact that the continuous function ϕ(K) = (α −K − 1)K is
decreasing on the interval

[
α+1
2 , α− 1

]
and ϕ (α− 1) = 0. Therefore, for every c > 0 there exists

K ∈
]
α+1
2 , α− 1

[
such that c ≥ ϕ(K). So take K ∈

]
α+1
2 , α− 1

[
such that (45) holds. Then, by

collecting the previous results, (44) yields

Ė(t) + µ(t)E(t) ≤ cK

2t3
‖x∗‖2. (46)

Taking into account that µ(t) = α−K+1
t , by multiplying (46) with tα−K+1 we get

d

dt

(
tα−K+1E(t)

)
≤ cK

2
‖x∗‖2tα−K−2. (47)

By integrating (47) on [t0, t], we get

E(t) ≤ cK‖x∗‖2

2(α−K − 1)

1

t2
− cK‖x∗‖2

2(α−K − 1)

tα−K−1
0

tα−K+1
+
tα−K+1
0 E(t0)

tα−K+1
. (48)

Since α−K + 1 > 2, we obtain

E(t) = O

(
1

t2

)
as t→ +∞. (49)

By definition of E(t) we immediately deduce that

f(x(t))−min
H

f = O

(
1

t2

)
as t→ +∞, (50)

and further, that the trajectory x(·) is bounded and

‖ẋ(t)‖ = O

(
1

t

)
as t→ +∞.

The case α = 3. Take K = 2. With the previous notations, we have now µ(t) = 2
t and (44) gives

Ė(t) +
2

t
E(t) ≤− c

t3
‖x(t)‖2 − c

t3
‖x(t)− x∗‖2 +

c

t3
‖x∗‖2 ≤ c

t3
‖x∗‖2. (51)

After multiplication of (51) by t2 we get

d

dt
(t2E(t)) ≤ c

t
‖x∗‖2. (52)

By integrating (52) on [t0, t] we get

E(t) ≤ c‖x∗‖2 ln t

t2
− c‖x∗‖2 ln t0

t2
+
t20E(t0)

t2
. (53)
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Consequently, we have

E(t) = O

(
ln t

t2

)
as t→ +∞. (54)

By definition of E(t) we immediately deduce that

f(x(t))−min f = O

(
ln t

t2

)
as t→ +∞. (55)

which gives the claim.

3.2 Strong convergence

Theorem 9 Let t0 > 0 and, for some starting points x0, v0 ∈ H, let x : [t0,+∞[→ H be the unique

global solution of (35). Let x∗ be the element of minimal norm of S = argmin f , that is x∗ = projS0.

Then, for all α > 3 we have that

lim inf
t→+∞

‖x(t)− x∗‖ = 0.

Further, if there exists T ≥ t0, such that the trajectory {x(t) : t ≥ T} stays either in the open ball

B(0, ‖x∗‖) or in its complement, then x(t) converges strongly to x∗ as t→ +∞.

Proof The proof combines energetic and geometric arguments, as it was initiated in [13]. We suc-
cessively consider the three following configurations of the trajectory.

I. Assume that there exists T ≥ t0 such that ‖x(t)‖ ≥ ‖x∗‖ for all t ≥ T. Let us denote
ft(x) := f(x) + c

2t2 ‖x‖
2 and let xt := argmin ft(x). Let us recall some classical properties of the

Tikhonov approximation:

∀t > 0 ‖xt‖ ≤ ‖x∗‖, and lim
t→+∞

‖xt − x∗‖ = 0. (56)

Using the gradient inequality for the strongly convex function ft, we have

ft(x(t))− ft(xt) ≥
c

2t2
‖x(t)− xt‖2.

On the other hand

ft(xt)− ft(x∗) = f(xt)− f∗ +
c

2t2
(‖xt‖2 − ‖x∗‖2) ≥ c

2t2
(‖xt‖2 − ‖x∗‖2).

By adding the last two inequalities we get

ft(x(t))− ft(x∗) ≥
c

2t2
(‖x(t)− xt‖2 + ‖xt‖2 − ‖x∗‖2), (57)

Therefore, according to (56), to obtain the strong convergence of the trajectory x(t) to x∗, it is
enough to show that ft(x(t))− ft(x∗) = o

(
1
t2

)
, as t→ +∞.

For K > 0, consider now the energy functional

E(t) = ft(x(t))− ft(x∗) +
1

2

∥∥∥∥Kt (x(t)− x∗) + ẋ(t)

∥∥∥∥2 (58)

= (f(x(t))− f(x∗)) +
c

2t2
(‖x(t)‖2 − ‖x∗‖2) +

1

2

∥∥∥∥Kt (x(t)− x∗) + ẋ(t)

∥∥∥∥2 .
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Then,

Ė(t) =〈∇ft(x(t)), ẋ(t)〉 − c

2t3
(‖x(t)‖2 − ‖x∗‖2) (59)

+

〈
−K
t2

(x(t)− x∗) +
K

t
ẋ(t) + ẍ(t),

K

t
(x(t)− x∗) + ẋ(t)

〉
.

Let us examine the different terms of (59). According to the constitutive equation (35) we have〈
−K
t2

(x(t)− x∗) +
K

t
ẋ(t) + ẍ(t),

K

t
(x(t)− x∗) + ẋ(t)

〉
= (60)〈

−K
t2

(x(t)− x∗) +
K − α
t

ẋ(t)−
(
c

t2
x(t) +∇f(x(t))

)
,
K

t
(x(t)− x∗) + ẋ(t)

〉
=

− K2

t3
‖x(t)− x∗‖2 +

K2 − αK −K
t2

〈ẋ(t), x(t)− x∗〉+ K − α
t
‖ẋ(t)‖2

− c

t2
〈x(t), ẋ(t)〉 − 〈∇f(x(t)), ẋ(t)〉 − K

t

〈
c

t2
x(t) +∇f(x(t)), x(t)− x∗

〉
.

Further, from (41) we get

−K
t

〈
c

t2
x(t) +∇f(x(t)), x(t)− x∗

〉
≤ −K

t
(f(x(t))− f∗)− cK

2t3
‖x(t)‖2 − cK

2t3
‖x(t)− x∗‖2 +

cK

2t3
‖x∗‖2

= −K
t

(ft(x(t))− ft(x∗))−
cK

2t3
‖x(t)− x∗‖2. (61)

Injecting (60) and (61) in (59) we get

Ė(t) ≤ −K
t

(ft(x(t))− ft(x∗))−
c

t3
(‖x(t)‖2 − ‖x∗‖2)− 2K2 + cK

2t3
‖x(t)− x∗‖2

+
K2 − αK −K

t2
〈ẋ(t), x(t)− x∗〉+ K − α

t
‖ẋ(t)‖2. (62)

Consider now the function µ(t) = α+1−K
t . Then,

µ(t)E(t) =
α+ 1−K

t
(ft(x(t))− ft(x∗)) +

K2(α+ 1−K)

2t3
‖x(t)− x∗‖2 (63)

+
K(α+ 1−K)

t2
〈ẋ(t), x(t)− x∗〉+ α+ 1−K

2t
‖ẋ(t)‖2.

Consequently, (62) and (63) yield

Ė(t) + µ(t)E(t) ≤ α+ 1− 2K

t
(ft(x(t))− ft(x∗))−

c

t3
(‖x(t)‖2 − ‖x∗‖2)

+
K2(α− 1−K)− cK

2t3
‖x(t)− x∗‖2 +

K − α+ 1

2t
‖ẋ(t)‖2

=
α+ 1− 2K

t
(f(x(t))− f(x∗)) + (α− 1− 2K)

c

2t3
(‖x(t)‖2 − ‖x∗‖2)

+
K2(α− 1−K)− cK

2t3
‖x(t)− x∗‖2 +

K − α+ 1

2t
‖ẋ(t)‖2. (64)

Assume that α+1
2 < K < α− 1. Since α > 3 such K exists. As in the proof of Theorem 8 we deduce

that α− 2K + 1 < 0, K − α+ 1 < 0 and since c > 0 there exists K ∈
(
α+1
2 , α− 1

)
such that

(α−K − 1)K2 −Kc ≤ 0. (65)
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So take K ∈
(
α+1
2 , α− 1

)
such that (65) holds. Then, (64) leads to

Ė(t) +
α+ 1−K

t
E(t) ≤ (α− 1− 2K)

c

2t3
(‖x(t)‖2 − ‖x∗‖2). (66)

Let us integrate the differential inequality (66). After multiplication by tα+1−K we get

d

dt
tα+1−KE(t) ≤ c

2
(α− 1− 2K)tα−2−K(‖x(t)‖2 − ‖x∗‖2)

and integrating the latter on [T, t], t > T we obtain

E(t) ≤ c

2
(α− 1− 2K)

∫ t
T
sα−2−K(‖x(s)‖2 − ‖x∗‖2)ds

tα+1−K +
Tα+1−KE(T )

tα+1−K . (67)

In one hand, from the definition of E(t) we have

ft(x(t))− ft(x∗) ≤ E(t).

Therefore,

ft(x(t))− ft(x∗) ≤
c

2
(α− 1− 2K)

∫ t
T
sα−2−K(‖x(s)‖2 − ‖x∗‖2)ds

tα+1−K +
Tα+1−KE(T )

tα+1−K .

On the other hand (57) gives

ft(x(t))− ft(x∗) ≥
c

2t2
(‖x(t)− xt‖2 + ‖xt‖2 − ‖x∗‖2).

Consequently,

(α− 1− 2K)

∫ t
T
sα−2−K(‖x(s)‖2 − ‖x∗‖2)ds

tα−1−K +
2Tα+1−KE(T )

ctα−1−K ≥ ‖x(t)− xt‖2 + ‖xt‖2 −‖x∗‖2. (68)

By assumption ‖x(t)‖ ≥ ‖x∗‖ for all t ≥ T and α− 1− 2K < 0. Hence, for all t > T , (68) leads to

2Tα+1−KE(T )

ctα−1−K ≥ ‖x(t)− xt‖2 + ‖xt‖2 − ‖x∗‖2. (69)

Now, by taking the limit t −→ +∞ and using that xt → x∗, t→ +∞ we get

lim
t→+∞

‖x(t)− xt‖ ≤ 0

and hence
lim

t→+∞
x(t) = x∗.

II. Assume now that there exists T ≥ t0 such that ‖x(t)‖ < ‖x∗‖ for all t ≥ T. According to
Theorem 8, we have that

lim
t→+∞

f(x(t)) = min
H

f.

Let x̄ ∈ H be a weak sequential cluster point of the trajectory x, which exists since, by Theorem 8,
the trajectory is bounded. So, there exists a sequence (tn)n∈N ⊆ [T,+∞) such that tn → +∞ and
x (tn) converges weakly to x̄ as n→ +∞. Since f is weakly lower semicontinuous, we deduce that

f(x̄) ≤ lim inf
n→+∞

f (x (tn)) = min
H

f ,

hence x̄ ∈ argmin f. Now, since the norm is weakly lower semicontinuous, and since ‖x(t)‖ < ‖x∗‖
for all t ≥ T , we have

‖x̄‖ ≤ lim infn→+∞ ‖x (tn)‖ ≤ ‖x∗‖ .
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Combining x̄ ∈ argmin f with the definition of x∗, this implies that x̄ = x∗. This shows that the
trajectory x(·) converges weakly to x∗. So∥∥x∗∥∥ ≤ lim inf

t→+∞
‖x(t)‖ ≤ lim sup

t→+∞
‖x(t)‖ ≤

∥∥x∗∥∥ ,
hence we have

lim
t→+∞

‖x(t)‖ =
∥∥x∗∥∥ .

Combining this property with x(t) ⇀ x∗ as t→ +∞, we obtain the strong convergence, that is

lim
t→+∞

x(t) = x∗.

III. We suppose that for every T ≥ t0 there exists t ≥ T such that ‖x∗‖ > ‖x(t)‖ and also
there exists s ≥ T such that ‖x∗‖ ≤ ‖x(s)‖. From the continuity of x, we deduce that there exists
a sequence (tn)n∈N ⊆ [t0,+∞) such that tn → +∞ as n→ +∞ and, for all n ∈ N we have

‖x (tn)‖ =
∥∥x∗∥∥ .

Consider x̄ ∈ H a weak sequential cluster point of (x (tn))n∈N. We deduce as in case II that
x̄ = x∗. Hence, x∗ is the only weak sequential cluster point of x(tn) and consequently the sequence
x(tn) converges weakly to x∗. Obviously ‖x (tn)‖ → ‖x∗‖ as n → +∞. So, it follows that x(tn) →
x∗, n→ +∞, that is ‖x (tn)− x∗‖ → 0 as n→ +∞. This leads to lim inft→+∞ ‖x(t)− x∗‖ = 0.

4 Strong convergence-General case

We are going to analyze via Lyapunov analysis the strong convergence properties as t → +∞ of
the solution trajectories of the inertial dynamic (TRIGS) that we recall below

ẍ(t) + δ
√
ε(t)ẋ(t) +∇f(x(t)) + ε(t)x(t) = 0.

Theorem 10 Let consider the dynamic system (TRIGS) where we assume that ε(·) satisfies the condi-

tion (CD)K for some K > 0,
∫+∞
t0

ε
3
2 (t)dt < +∞ and limt→+∞

1

√
ε(t) exp

∫ t

t0

(δ −K)
√
ε(s)ds

 = 0.

Then, for any global solution trajectory x : [t0,+∞[→ H of (TRIGS),

lim inf
t→+∞

‖x(t)− x∗‖ = 0,

where x∗ is the element of minimal norm of argmin f , that is x∗ = projargmin f0.

Further, if there exists T ≥ t0, such that the trajectory {x(t) : t ≥ T} stays either in the open ball

B(0, ‖x∗‖) or in its complement, then x(t) converges strongly to x∗ as t→ +∞.

Proof The proof is parallel to that of Theorem 9. We analyze the behavior of the trajectory x(·)
depending on its position with respect to the ball B(0, ‖x∗‖).

I. Assume that ‖x(t)‖ ≥ ‖x∗‖ for all t ≥ T. Let us denote ft(x) = f(x) + ε(t)
2 ‖x‖

2, and consider
the energy functional E : [t1,+∞[→ R defined by

E(t) := ft(x(t))− ft(x∗) +
1

2
‖c(t)(x(t)− x∗) + ẋ(t)‖2,
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where c(t) = K
√
ε(t). Note that E(t) = E(t) − ε(t)

2 ‖x
∗‖2, where E(t) was defined in the proof

of Theorem 5. Hence, reasoning as in the proof of Theorem 5, see (25) (and keeping the term
containing ‖x(t)‖2 in the right hand side of (22)), we get for all t ≥ t1 that

Ė(t) + µ(t)E(t) ≤
(
ε̇(t)

2
− c(t) ε(t)

2
+ µ(t)

ε(t)

2

)
(‖x(t)‖2 − ‖x∗‖2), (70)

where µ(t) = − ε̇(t)
2ε(t) + (δ−K)

√
ε(t). An elementary computation gives ε̇(t)

2 − c(t)
ε(t)
2 +µ(t) ε(t)2 ≤ 0,

because of ε(·) decreasing and K ≥ δ
2 . Since ‖x(t)‖ ≥ ‖x∗‖ for all t ≥ T , (70) yields

Ė(t) + µ(t)E(t) ≤ 0, for all t ≥ T1 = max{T, t1}. (71)

Set

M(t) = exp

(∫ t

T1

µ(s)ds

)
= exp

(∫ t

T1

− ε̇(s)

2ε(s)
+ (δ −K)

√
ε(s)ds

)
.

Therefore, we have with C =
√
ε(T1)

M(t) = C
1√
ε(t)

exp

(∫ t

T1

(δ −K)
√
ε(s)ds

)
.

Multiplying (71) with M(t) and integrating on an interval [T1, t], we get for all t ≥ T1 that

M(t)E(t) ≤M(T1)E(T1) = C′.

Consequently, there exists C′1 > 0 such that for all t ≥ T1 one has

E(t) ≤
C′1
√
ε(t)

exp

(∫ t

T1

(δ −K)
√
ε(s)ds

) .
Further, ft(x(t))− ft(x∗) ≤ E(t), for all t ≥ t1. Therefore,

ft(x(t))− ft(x∗) ≤
C′1
√
ε(t)

exp

(∫ t

T1

(δ −K)
√
ε(s)ds

) , for all t ≥ T1. (72)

For fixed t let us denote xε(t) = argmin ft(x). Obviously ‖xε(t)‖ ≤ ‖x∗‖.
Using the gradient inequality for the strongly convex function ft we have

ft(x)− ft(xε(t)) ≥
ε(t)

2
‖x− xε(t)‖

2 for all x ∈ H and t ≥ t0.

On the other hand

ft(xε(t))− ft(x
∗) = f(xε(t))− f

∗ +
ε(t)

2
(‖xε(t)‖

2 − ‖x∗‖2) ≥ ε(t)

2
(‖xε(t)‖

2 − ‖x∗‖2).

Now, by adding the last two inequalities we get

ft(x)− ft(x∗) ≥
ε(t)

2
(‖x− xε(t)‖

2 + ‖xε(t)‖
2 − ‖x∗‖2) for all x ∈ H and t ≥ t0. (73)

Hence, (72) and (73) lead to

‖x(t)− xε(t)‖
2 + ‖xε(t)‖

2 − ‖x∗‖2 ≤ C′2√
ε(t) exp

(∫ t

T1

(δ −K)
√
ε(s)ds

) , for all t ≥ T1. (74)
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Now, by taking the limit as t→ +∞, and using that xε(t) → x∗ as t→ +∞ and the assumption in
the hypotheses of the theorem we get limt→+∞ ‖x(t)− xε(t)‖ ≤ 0, and hence limt→+∞ x(t) = x∗.

II. Assume now, that ‖x(t)‖ < ‖x∗‖ for all t ≥ T. By Corollary 1 we get that f(x(t)) → min f
as t → +∞. Now, we take x̄ ∈ H a weak sequential cluster point of the trajectory x, which exists
since the trajectory is bounded. This means that there exists a sequence (tn)n∈N ⊆ [T,+∞) such
that tn → +∞ and x (tn) converges weakly to x̄ as n → +∞. We know that f is weakly lower
semicontinuous, so one has

f(x̄) ≤ lim inf
n→+∞

f (x (tn)) = min f ,

hence x̄ ∈ argmin f. Now, since the norm is weakly lower semicontinuous one has that

‖x̄‖ ≤ lim infn→+∞ ‖x (tn)‖ ≤ ‖x∗‖

which, from the definition of x∗, implies that x̄ = x∗. This shows that the trajectory x(·) converges
weakly to x∗. So ∥∥x∗∥∥ ≤ lim inf

t→+∞
‖x(t)‖ ≤ lim sup

t→+∞
‖x(t)‖ ≤

∥∥x∗∥∥ ,
hence we have

lim
t→+∞

‖x(t)‖ =
∥∥x∗∥∥ .

From the previous relation and the fact that x(t) ⇀ x∗ as t→ +∞, we obtain the strong convergence,
that is

lim
t→+∞

x(t) = x∗.

III. We suppose that for every T ≥ t0 there exists t ≥ T such that ‖x∗‖ > ‖x(t)‖ and also
there exists s ≥ T such that ‖x∗‖ ≤ ‖x(s)‖. From the continuity of x, we deduce that there exists
a sequence (tn)n∈N ⊆ [t0,+∞) such that tn → +∞ as n→ +∞ and, for all n ∈ N we have

‖x(tn)‖ =
∥∥x∗∥∥ .

Consider x̄ ∈ H a weak sequential cluster point of (x (tn))n∈N. We deduce as at case II that
x̄ = x∗. Hence, x∗ is the only weak sequential cluster point of x(tn) and consequently the sequence
x(tn) converges weakly to x∗.

Obviously ‖x(tn)‖ → ‖x∗‖ as n → +∞. So, it follows that x(tn) → x∗, n → +∞, that is
‖x (tn)− x∗‖ → 0 as n→ +∞. This leads to lim inft→+∞ ‖x(t)− x∗‖ = 0.

4.1 The case ε(t) is of order 1/tr, 2
3 < r < 2

Take ε(t) = 1/tr, 2
3 < r < 2. Then,

∫+∞
t0

ε
3
2 (t)dt =

∫+∞
t0

1

t
3
2
r
dt < +∞,

(
1√
ε(t)

)′
= r

2 t
r
2
−1 and

lim
t→+∞

1√
ε(t) exp

(∫ t

t0

(δ −K)
√
ε(s)ds

) = lim
t→+∞

Ct
r
2

exp
(

2(δ−K)
2−r t1−

r
2

) = 0.

Therefore, Theorem 10 can be applied. Let us summarize these results in the following statement.

Theorem 11 Take ε(t) = 1/tr, 2
3 < r < 2. Let x : [t0,+∞[→ H be a global solution trajectory of

ẍ(t) +
δ

t
r
2

ẋ(t) +∇f (x(t)) +
1

tr
x(t) = 0.

Then, lim inft→+∞ ‖x(t)− x∗‖ = 0.

Further, if there exists T ≥ t0, such that the trajectory {x(t) : t ≥ T} stays either in the open ball

B(0, ‖x∗‖) or in its complement, then x(t) converges strongly to x∗ as t→ +∞.
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5 Fast inertial algorithms with Tikhonov regularization

On the basis of the convergence properties of continuous dynamic (TRIGS), one would expect to
obtain similar results for the algorithms resulting from its temporal discretization. To illustrate
this, we will do a detailed study of the associated proximal algorithms, obtained by implicit dis-
cretization. A full study of the associated first-order algorithms would be beyond the scope of this
article, and will be the subject of further study. So, for k ≥ 1, consider the discrete dynamic

(xk+1 − 2xk + xk−1) +
α

k
(xk − xk−1) +∇f(xk+1) +

c

k2
ξk = 0, (75)

with time step size equal to one. We take ξk = xk, which gives

(IPATRE)

{
yk = xk + αk(xk − xk−1)

xk+1 = proxf
(
yk − c

k2 xk
)
,

where (IPATRE) stands for Inertial Proximal Algorithm with Tikhonov REgularization. According
to (75) we have

xk+1 = αk(xk − xk−1)−∇f(xk+1) +
(

1− c

k2

)
xk. (76)

5.1 Convergence of values

We have the following result.

Theorem 12 Let (xk) be a sequence generated by (IPATRE). Assume that α > 3. Then for all s ∈[
1
2 , 1
[

the following hold:

(i) f(xk)−minH f = o(k−2s), ‖xk − xk−1‖ = o(k−s) and ‖∇f(xk)‖ = o(k−s) as k → +∞.

(ii)

+∞∑
k=1

k2s−1(f(xk)−min
H

f) < +∞,
+∞∑
k=1

k2s−1‖xk − xk−1‖2 < +∞,

+∞∑
k=1

k2s‖∇f(xk)‖2 < +∞.

Proof Given x∗ ∈ argmin f , set f∗ = f(x∗) = minH f . For k ≥ 2, consider the discrete energy

Ek := ‖ak−1(xk−1 − x∗) + bk−1(xk − xk−1 +∇f(xk))‖2 + dk−1‖xk−1‖2, (77)

where ak = akr−1, 2 < a < α− 1 and bk = kr, r ∈]0, 1]. The sequence (dk) will be defined later. Set
shortly ck := c

k2 . Let us develop Ek.

Ek = a2k−1‖xk−1 − x∗‖2 + b2k−1‖xk − xk−1‖2 + b2k−1‖∇f(xk)‖2 + 2ak−1bk−1〈xk − xk−1, xk−1 − x∗〉
+ 2ak−1bk−1〈∇f(xk), xk−1 − x∗〉+ 2b2k−1〈∇f(xk), xk − xk−1〉+ dk−1‖xk−1‖2. (78)

Further

2ak−1bk−1〈xk − xk−1, xk−1 − x∗〉 = ak−1bk−1(‖xk − x∗‖2 − ‖xk − xk−1‖2 − ‖xk−1 − x∗‖2)

2ak−1bk−1〈∇f(xk), xk−1 − x∗〉 = 2ak−1bk−1〈∇f(xk), xk − x∗〉 − 2ak−1bk−1〈∇f(xk), xk − xk−1〉.

Consequently, (78) becomes

Ek = ak−1bk−1‖xk − x∗‖2 + (a2k−1 − ak−1bk−1)‖xk−1 − x∗‖2 + (b2k−1 − ak−1bk−1)‖xk − xk−1‖2

+b2k−1‖∇f(xk)‖2 + 2ak−1bk−1〈∇f(xk), xk − x∗〉+ (2b2k−1 − 2ak−1bk−1)〈∇f(xk), xk − xk−1〉
+dk−1‖xk−1‖2. (79)
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Let us proceed similarly with Ek+1. Let us first observe that from (77) we have

Ek+1 = ‖ak(xk − x∗) + bk(αk(xk − xk−1)− ckxk)‖2 + dk‖xk‖2.

Therefore, after development we get

Ek+1 = a2k‖xk − x
∗‖2 + α2

kb
2
k‖xk − xk−1‖2 + b2kc

2
k‖xk‖

2 + 2αkakbk〈xk − xk−1, xk − x∗〉
−2αkb

2
kck〈xk − xk−1, xk〉 − 2akbkck〈xk, xk − x∗〉+ dk‖xk‖2. (80)

Further,

2αkakbk〈xk − xk−1, xk − x∗〉 = −αkakbk(‖xk−1 − x∗‖ − ‖xk − xk−1‖2 − ‖xk − x∗‖2)

−2αkb
2
kck〈xk − xk−1, xk〉 = αkb

2
kck(‖xk−1‖2 − ‖xk − xk−1‖2 − ‖xk‖2)

−2akbkck〈xk, xk − x∗〉 = akbkck(‖x∗‖2 − ‖xk − x∗‖2 − ‖xk‖2).

Therefore, (80) yields

Ek+1 = (a2k + αkakbk − akbkck)‖xk − x∗‖2 − αkakbk‖xk−1 − x∗‖2 (81)

+ (α2
kb

2
k + αkakbk − αkb2kck)‖xk − xk−1‖2 + (b2kc

2
k + dk − αkb2kck − akbkck)‖xk‖2

+ αkb
2
kck‖xk−1‖2 + akbkck‖x∗‖2.

By combining (79) and (81), we obtain

Ek+1 − Ek = (a2k + αkakbk − akbkck − ak−1bk−1)‖xk − x∗‖2

+ (−αkakbk − a2k−1 + ak−1bk−1)‖xk−1 − x∗‖2

+ (α2
kb

2
k + αkakbk − αkb2kck − b

2
k−1 + ak−1bk−1)‖xk − xk−1‖2

+ (b2kc
2
k + dk − αkb2kck − akbkck)‖xk‖2 + (αkb

2
kck − dk−1)‖xk−1‖2 − b2k−1‖∇f(xk)‖2

+ 2ak−1bk−1〈∇f(xk), x∗ − xk〉+ (2b2k−1 − 2ak−1bk−1)〈∇f(xk), xk−1 − xk〉+ akbkck‖x∗‖2. (82)

By convexity of f , we have

〈∇f(xk), x∗ − xk〉 ≤ f∗ − f(xk) and 〈∇f(xk), xk−1 − xk〉 ≤ f(xk−1)− f(xk).

According to the form of (ak) and (bk), there exists k0 ≥ 2 such that bk ≥ ak for all k ≥ k0.
Consequently, 2b2k−1 − 2ak−1bk−1 ≥ 0 which, according to the above convexity inequalities, gives

2ak−1bk−1〈∇f(xk), x∗ − xk〉+ (2b2k−1 − 2ak−1bk−1)〈∇f(xk), xk−1 − xk〉 (83)

≤ 2ak−1bk−1(f∗ − f(xk)) + (2b2k−1 − 2ak−1bk−1) [f(xk−1)− f(xk)]

= −2ak−1bk−1(f(xk)− f∗) + (2b2k−1 − 2ak−1bk−1)
[
(f(xk−1)− f∗)− (f(xk)− f∗)

]
= (2b2k−1 − 2ak−1bk−1)(f(xk−1)− f∗)− 2b2k−1(f(xk)− f∗)

= (2b2k−1 − 2ak−1bk−1)(f(xk−1)− f∗)−
(

(2b2k − 2akbk) + (2b2k−1 − 2b2k + 2akbk)
)

(f(xk)− f∗).

Set µk := 2b2k − 2akbk and observe that µk ≥ 0 for all k ≥ k0, and µk ∼ Ck2r (we use C as a generic
positive constant). Let us also introduce mk := 2b2k−1 − 2b2k + 2akbk, and observe that mk ≥ 0 for
all k ≥ k0. Equivalently, let us show that for all 1

2 ≤ r ≤ 1 one has b2k − akbk ≤ b2k−1 for all k ≥ 1.

Equivalently k2r − ak2r−1 − (k − 1)2r ≤ 0. By convexity of the function x 7→ x2r, the subgradient
inequality gives

(x− 1)2r ≥ x2r − 2rx2r−1 ≥ x2r − ax2r−1,
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where the second inequality comes from 2r < a. Replacing x with k gives the claim. In addition
mk ∼ Ck2r−1. Combining (82) and (83), we obtain that for all k ≥ k0

Ek+1 − Ek + µk(f(xk)− f∗)− µk−1(f(xk−1)− f∗) +mk(f(xk)− f∗) (84)

≤ (a2k + αkakbk − akbkck − ak−1bk−1)‖xk − x∗‖2

+ (−αkakbk − a2k−1 + ak−1bk−1)‖xk−1 − x∗‖2

+ (α2
kb

2
k + αkakbk − αkb2kck − b

2
k−1 + ak−1bk−1)‖xk − xk−1‖2

+ (b2kc
2
k + dk − αkb2kck − akbkck)‖xk‖2 + (αkb

2
kck − dk−1)‖xk−1‖2 − b2k−1‖∇f(xk)‖2

+ akbkck‖x∗‖2.

Let us now analyze the right hand side of (84).

i) Write the coefficient of ‖xk−x∗‖2 so as to show a term similar to the coefficient of ‖xk−1−x∗‖2.
This will prepare the summation of these quantities. This gives

a2k + αkakbk − akbkck − ak−1bk−1 = (αk+1ak+1bk+1 + a2k − akbk) (85)

+(αkakbk − akbkck − ak−1bk−1 − αk+1ak+1bk+1 + akbk).

a) By definition, αk+1ak+1bk+1 + a2k − akbk = a(k + 1)2r−1 − αa(k + 1)2r−2 + a2k2r−2 − ak2r−1.
Proceeding as before, let us show that a(x + 1)2r−1 − αa(x + 1)2r−2 + a2x2r−2 − ax2r−1 ≤ 0 for
x large enough. By taking 1

2 ≤ r ≤ 1, by convexity of the function x 7→ −x2r−1, the subgradient
inequality gives (2r − 1)x2r−2 ≥ (x+ 1)2r−1 − x2r−1. Therefore,

a(x+ 1)2r−1 − ax2r−1 − αa(x+ 1)2r−2 + a2x2r−2 ≤ a(2r − 1)x2r−2 − αa(x+ 1)2r−2 + a2x2r−2.

But a(2r − 1)x2r−2 + a2x2r−2 ≤ αa(x+ 1)2r−2 since 2r + a ≤ α+ 1 and the claim follows.
Therefore, there exists k1 ≥ k0 such that for all 1

2 ≤ r ≤ 1 we have

αk+1ak+1bk+1 + a2k − akbk ≤ 0, for all k ≥ k1. (86)

Set νk := −αk+1ak+1bk+1 − a2k + akbk. According to (86), νk ≥ 0 for all k ≥ k1, and νk ∼ Ck2r−2.

b) Consider now the second term in the right hand side of (85):

akakbk − akbkck − ak−1bk−1 − αk+1ak+1bk+1 + akbk

= 2ak2r−1 − αak2r−2 − ack2r−3 − a(k − 1)2r−1 − a(k + 1)2r−1 + αa(k + 1)2r−2.

Let us show that for all 1
2 ≤ r ≤ 1

φ(x, r) = 2ax2r−1 − αax2r−2 − acx2r−3 − a(x− 1)2r−1 − a(x+ 1)2r−1 + αa(x+ 1)2r−2 ≤ 0

for x large enough. By convexity of the function x 7→ x2r−1− (x−1)2r−1 (one can easily verify that
its second order derivative is nonnegative), the subgradient inequality gives (x+ 1)2r−1− 2x2r−1 +
(x− 1)2r−1 ≥ (2r − 1)(x2r−2 − (x− 1)2r−2). Therefore

φ(x, r) = −a[(x+ 1)2r−1 − 2x2r−1 + (x− 1)2r−1]− αax2r−2 − acx2r−3 + αa(k + 1)2r−2

≤ −a[(2r − 1)(x2r−2 − (x− 1)2r−2)]− αax2r−2 − acx2r−3 + αa(k + 1)2r−2

= a(2r − 1)(x− 1)2r−2 − a(α+ 2r − 1)x2r−2 − acx2r−3 + αa(x+ 1)2r−2.

Similarly, by convexity of the function x 7→ (x − 1)2r−2 − x2r−2, the subgradient inequality gives
2x2r−2−(x+1)2r−2−(x−1)2r−2 ≥ (2r−2)((x−1)2r−3−x2r−3). Therefore, aα(x+1)2r−2−aαx2r−2 ≤
aα(x2r−2 − (x− 1)2r−2)− aα(2r − 2)((x− 1)2r−3 − x2r−3). Consequently,

φ(x, r) ≤ a(2r − 1− α)((x− 1)2r−2 − x2r−2)− aα(2r − 2)((x− 1)2r−3 − x2r−3)− acx2r−3.
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Finally, by convexity of the function x 7→ x2r−2, the subgradient inequality gives (x − 1)2r−2 −
x2r−2 ≥ −(2r − 2)x2r−3. Taking into account that a(2r − 1− α) ≤ 0 we get

φ(x, r) ≤ −a(2r − 1− 2α)(2r − 2)x2r−3 − aα(2r − 2)(x− 1)2r−3 − acx2r−3.

Since 2α+1−2r
α > 1 we obtain that φ(x, r) ≤ 0 for x > 1.

Consequently, there exists k2 ≥ k1 such that for all 1
2 ≤ r ≤ 1

αkakbk − akbkck − ak−1bk−1 − αk+1ak+1bk+1 + akbk ≤ 0, for all k ≥ k2. (87)

Set nk := −αkakbk + akbkck + ak−1bk−1 + αk+1ak+1bk+1 − akbk. So nk ≥ 0 for all k ≥ k2 and
nk ∼ Ck2r−3.

ii) Let us now examine the coefficient of ‖xk − xk−1‖2. By definition we have

α2
kb

2
k + αkakbk − αkb2kck − b

2
k−1 + ak−1bk−1

= k2r − (k − 1)2r + (−2α+ a)k2r−1 + a(k − 1)2r−1 + (α2 − αa− c)k2r−2 + αck2r−3.

Let us show that for all 1
2 ≤ r ≤ 1

φ(x, r) = x2r − (x− 1)2r + (−2α+ a)x2r−1 + a(x− 1)2r−1 + (α2 − αa− c)x2r−2 + αcx2r−3 ≤ 0,

if x is large enough. By convexity of the function x 7→ x2r−ax2r−1, the subgradient inequality gives
((x − 1)2r − a(x − 1)2r−1) − (x2r − ax2r−1) ≥ −(2rx2r−1 − a(2r − 1)x2r−2). Therefore, taking into
account that r − α+ a ≤ 1− α+ a ≤ 0, we obtain

φ(x, r) ≤ 2(r − α+ a)x2r−1 − a(2r − 1)x2r−2 + (α2 − αa− c)x2r−2 + αcx2r−3 ≤ 0,

for x large enough. Consequently, there exist k3 ≥ k2 such that for all 1
2 ≤ r ≤ 1

α2
kb

2
k + αkakbk − αkb2kck − b

2
k−1 + ak−1bk−1 ≤ 0, for all k ≥ k3. (88)

Set ηk := −α2
kb

2
k − αkakbk + αkb

2
kck + b2k−1 − ak−1bk−1. So ηk ≥ 0 for all k ≥ k3 and ηk ∼ Ck2r−1.

iii) The coefficient of ‖xk−1‖2 is αkb
2
kck − dk−1. We proceed in a similar way as in i), and

write the coefficient of ‖xk‖2 as

b2kc
2
k + dk − αkb2kck − akbkck = (−αk+1b

2
k+1ck+1 + dk) + (b2kc

2
k + αk+1b

2
k+1ck+1 − αkb2kck − akbkck).

We have

b2kc
2
k + αk+1b

2
k+1ck+1 − αkb2kck − akbkck = c2k2r−4 + c(k + 1)2r−2 − αc(k + 1)2r−3

− ck2r−2 + αck2r−3 − ack2r−3.

Let us show that for all 1
2 ≤ r ≤ 1

φ(x, r) = c(x+ 1)2r−2 − αc(x+ 1)2r−3 − cx2r−2 + αcx2r−3 − acx2r−3 + c2x2r−4 ≤ 0

for x large enough. Since for x large enough, the function x 7→ x2r−2 − αx2r−3 is convex, the
subgradient inequality gives

(x2r−2 − αx2r−3)− ((x+ 1)2r−2 − α(x+ 1)2r−3) ≥ −((2r − 2)(x+ 1)2r−3 − α(2r − 3)(x+ 1)2r−4).

Therefore, by taking into account that r ≤ 1, we obtain

φ(x, r) ≤ (2r − 2)c(x+ 1)2r−3 − α(2r − 3)c(x+ 1)2r−4 − acx2r−3 + c2x2r−4 ≤ 0



Inertial optimization algorithms with vanishing Tikhonov regularization 25

for x large enough. Consequently, there exists k4 ≥ k3 such that for all 1
2 ≤ r ≤ 1 we have

b2kc
2
k + αk+1b

2
k+1ck+1 − αkb2kck − akbkck ≤ 0 for all k ≥ k4. (89)

Let us denote σk := αk+1b
2
k+1ck+1 − dk and sk := −b2kc

2
k − αk+1b

2
k+1ck+1 + αkb

2
kck + akbkck and

observe that sk ≥ 0 for all k ≥ k4 and sk ∼ Ck2r−3.

Combining (84), (86), (87), (88) and (89) we obtain that for all k ≥ k4 and r ∈
[
1
2 , 1
]

it holds

Ek+1 − Ek + µk(f(xk)− f∗)− µk−1(f(xk−1)− f∗) +mk(f(xk)− f∗) (90)

+ νk‖xk − x∗‖2 − νk−1‖xk−1 − x∗‖2 + nk‖xk − x∗‖2

+ σk‖xk‖2 − σk−1‖xk−1‖2 + sk‖xk‖2

+ ηk‖xk − xk−1‖2 + b2k−1‖∇f(xk)‖2 ≤ akbkck‖x∗‖2.

Finally, take dk−1 = 1
2αkb

2
kck. Then, σk = 1

2αk+1b
2
k+1ck+1 ∼ Ck2r−2, σk ≥ 0 for all k ≥ k5 =

max(α− 1, k4). Further, µk,mk, νk, nk, sk and ηk are nonnegative for all k ≥ k5 and r ∈
[
1
2 , 1
]
.

Assume now that 1
2 ≤ r < 1. According to

∑
k≥k5 akbkck‖x

∗‖2 = ac‖x∗‖2
∑
k≥k5 k

2r−3 = C <

+∞, by summing up (90) from k = k5 to k = n > k5, we obtain that there exists C1 > 0 such that

En+1 ≤ C1,

µn(f(xn)− f∗) ≤ C1, hence f(xn)− f∗ = O(n−2r),∑
k≥k5

mk(f(xk)− f∗) ≤ C1, hence
∑
k≥1

k2r−1(f(xk)− f∗) < +∞,

νk‖xk − x∗‖2 ≤ C1, hence ‖xn − x∗‖ = O(n1−r),∑
k≥k5

nk‖xk − x∗‖2 ≤ C1, hence
∑
k≥1

k2r−3‖xk − x∗‖2 < +∞,

σk‖xk‖2 ≤ C1, hence ‖xn‖ = O(n1−r),∑
k≥k5

sk‖xk‖2 ≤ C1, hence
∑
k≥1

k2r−3‖xk‖2 < +∞,

∑
k≥k5

ηk‖xk − xk−1‖2 ≤ C1, hence
∑
k≥1

k2r−1‖xk − xk−1‖2 < +∞

∑
k≥k5

b2k−1‖∇f(xk)‖2 ≤ C1, hence
∑
k≥1

k2r‖∇f(xk)‖2 < +∞.

Since
∑
k≥1 k

2r‖∇f(xk)‖2 < +∞, we have ‖∇f(xn)‖ = o(n−r). Combining this property with

En+1 ≤ C1 yields supn≥1 ‖an
r−1(xn − x∗) + nr(xn+1 − xn)‖+ c

2

(
1− α

n

)
n2r−2‖xn−1‖2 < +∞.

Let us show now, that f(xn)− f∗ = o(n−2r) and ‖xn − xn−1‖ = o(n−r). From (90) we get∑
k≥1

[(Ek+1+µk(f(xk)−f∗)+νk‖xk−x∗‖2)−(Ek+µk−1(f(xk−1)−f∗)+νk−1‖xk−1−x∗‖2)]+ < +∞.

Therefore, the following limit exists

lim
k→+∞

(‖akr−1(xk − x∗) + kr(xk+1 − xk)‖2 + dk‖xk‖2 + µk(f(xk)− f∗) + νk‖xk − x∗‖2).

Note that dk ∼ Ck2r−2, µk ∼ Ck2r and νk ∼ Ck2r−2. Further, we have∑
k≥1 k

2r−3‖xk−x∗‖2 < +∞,
∑
k≥1 k

2r−1‖xk−xk−1‖2 < +∞,
∑
k≥1 k

2r−1(f(xk)− f∗) < +∞ and∑
k≥1 k

2r−3‖xk‖2 < +∞, hence∑
k≥1

1

k
(‖akr−1(xk − x∗) + kr(xk+1 − xk)‖2 + dk‖xk‖2 + µk(f(xk)− f∗) + νk‖xk − x∗‖2) < +∞.
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Since
∑
k≥1

1
k = +∞ we get

lim
k→+∞

(‖akr−1(xk − x∗) + kr(xk+1 − xk)‖2 + dk‖xk‖2 + µk(f(xk)− f∗) + νk‖xk − x∗‖2) = 0

and the claim follows.

Remark 4 The convergence rate of the values is f(xk) − minH f = o(k−2s) for any 0 < s < 1.
Practically it is as good as the rate f (x(t))−minH f = O

(
1
t2

)
obtained for the continuous dynamic.

5.2 Strong convergence to the minimum norm solution

Theorem 13 Take α > 3. Let (xk) be a sequence generated by (IPATRE). Let x∗ be the minimum

norm element of argmin f . Then, lim infk→+∞ ‖xk − x∗‖ = 0. Further, (xk) converges strongly to x∗

whenever (xk) is in the interior of the ball B(0, ‖x∗‖) for k large enough, or (xk) is in the complement

of the ball B(0, ‖x∗‖) for k large enough.

Proof Case I. Assume that there exists k0 ∈ N such that ‖xk‖ ≥ ‖x∗‖ for all k ≥ k0. Set ck = c
k2 ,

and define fck(x) := f(x) + c
2k2 ‖x‖2. Consider the energy function defined in (77) with r = 1, that

is ak = a and bk = k2, where we assume that max(2, α− 2) < a < α− 1. Then,

Ek = ‖a(xk−1 − x∗) + (k − 1)2(xk − xk−1 +∇f(xk))‖2 + dk−1‖xk−1‖2,

where the sequence (dk) will be defined later. Next, we introduce another energy functional

Ek =
1

2
ck−1(‖xk−1‖2−‖x∗‖2)+‖a(xk−1−x∗)+(k−1)2(xk−xk−1+∇f(xk))‖2+dk−1‖xk−1‖2. (91)

Note that Ek = 1
2ck−1(‖xk−1‖2 − ‖x∗‖2) + Ek. Then,

Ek+1 − Ek =
1

2
ck(‖xk‖2 − ‖x∗‖2)− 1

2
ck−1(‖xk−1‖2 − ‖x∗‖2) + Ek+1 − Ek. (92)

According to (90), there exists k1 ≥ k0 such that for all k ≥ k1

Ek+1 − Ek + µk(f(xk)− f∗)− µk−1(f(xk−1)− f∗) +mk(f(xk)− f∗) (93)

+ νk‖xk − x∗‖2 − νk−1‖xk−1 − x∗‖2 + nk‖xk − x∗‖2

+ ηk‖xk − xk−1‖2 + b2k−1‖∇f(xk)‖2 ≤ −σk‖xk‖2 + σk−1‖xk−1‖2 − sk‖xk‖2

+
1

2
ck(‖xk‖2 − ‖x∗‖2)− 1

2
ck−1(‖xk−1‖2 − ‖x∗‖2) + akbkck‖x∗‖2.

Adding 1
2 (µk +mk)ck(‖xk‖2 − ‖x∗‖2)− 1

2µk−1ck−1(‖xk−1‖2 − ‖x∗‖2) to both side of (93) we get

Ek+1 − Ek + µk(fck(xk)− fck(x∗))− µk−1(fck−1(xk−1)− fck−1(x∗)) +mk(fck(xk)− fck(x∗))

+νk‖xk − x∗‖2 − νk−1‖xk−1 − x∗‖2 + nk‖xk − x∗‖2 + ηk‖xk − xk−1‖2 + b2k−1‖∇f(xk)‖2 (94)

≤ −σk‖xk‖2 + σk−1‖xk−1‖2 − sk‖xk‖2

+
1

2
(µk +mk + 1)ck(‖xk‖2 − ‖x∗‖2)− 1

2
(µk−1 + 1)ck−1(‖xk−1‖2 − ‖x∗‖2) + akbkck‖x∗‖2.

The right hand side of (94) can be written as(
1

2
(µk +mk + 1)ck − σk − sk

)
(‖xk‖2 − ‖x∗‖2)

+

(
−1

2
(µk−1 + 1)ck−1 + σk−1

)
(‖xk−1‖2 − ‖x∗‖2) + (akbkck − σk − sk + σk−1)‖x∗‖2.
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In this case we have µk = 2b2k − 2akbk = 2k2 − 2ak and mk = 2b2k−1 − 2b2k + 2akbk = 2(a− 2)k + 2.
Further, σk = αk+1b

2
k+1ck+1−dk = c− αc

k+1 −dk and sk = b2kc
2
k−αk+1b

2
k+1ck+1 +αkb

2
kck+akbkck =

αc
k+1 + c(a−α)

k + c2

k2 . Now, take dk = (a+2−α)c
2k ≥ 0 and an easy computation gives that there exists

k2 ≥ k1 such that for all k ≥ k2 one has

1

2
(µk +mk + 1)ck − σk − sk = − (a+ 2− α)c

2k
+

2c2 − 3c

2k2
≤ 0,

−1

2
(µk−1 + 1)ck−1 + σk−1 =

c(a− 2− α)

2(k − 1)
+

αc

k(k − 1)
− c

2(k − 1)2
≤ 0

akbkck − σk − sk + σk−1 =
(a+ 2− α)c

2k
− (a+ 2− α)c

2(k − 1)
− c2

k2
≤ 0.

Now, since by assumption ‖xk‖ ≥ ‖x∗‖ for k ≥ k0, we get that the right hand side of (94) is
nonpositive for all k ≥ k2. Hence, for all k ≥ k2 we have

Ek+1 − Ek + µk(fck(xk)− fck(x∗))− µk−1(fck−1(xk−1)− fck−1(x∗)) +mk(fck(xk)− fck(x∗))

+ νk‖xk − x∗‖2 − νk−1‖xk−1 − x∗‖2 + nk‖xk − x∗‖2 + ηk‖xk − xk−1‖2 + b2k−1‖∇f(xk)‖2 ≤ 0.
(95)

Note that νk ∼ C. Therefore, from (95), similarly as in the proof of Theorem 12, we deduce that
‖xk − x∗‖ is bounded, and therefore (xk) is bounded. Further,

lim
k→+∞

(‖a(xk − x∗) + k(xk+1 − xk)‖2 + µk(fck(xk)− fck(x∗)) + νk‖xk − x∗‖2) = 0,

that is, limk→+∞ νk‖xk − x∗‖2 = 0 and hence limk→+∞ xk = x∗.

Case II. Assume that there exists k0 ∈ N such that ‖xk‖ < ‖x∗‖ for all k ≥ k0. From there we
get that (xk) is bounded. Now, take x̄ ∈ H a weak sequential cluster point of (xk), which exists
since (xk) is bounded. This means that there exists a sequence (kn)n∈N ⊆ [k0,+∞) ∩ N such that
kn → +∞ and xkn converges weakly to x̄ as n → +∞. Since f is weakly lower semicontinuous,
according to Theorem 12 we have f(x̄) ≤ lim infn→+∞ f (xkn) = min f , hence x̄ ∈ argmin f. Since
the norm is weakly lower semicontinuous, we deduce that

‖x̄‖ ≤ lim infn→+∞
∥∥xkn∥∥ ≤ ‖x∗‖ .

According to the definition of x∗, we get x̄ = x∗. Therefore (xk) converges weakly to x∗. So∥∥x∗∥∥ ≤ lim inf
k→+∞

‖xk‖ ≤ lim sup
t→+∞

‖xk‖ ≤
∥∥x∗∥∥ .

Therefore, we have limk→+∞ ‖xk‖ = ‖x∗‖ . From the previous relation and the fact that xk ⇀ x∗

as k → +∞, we obtain the strong convergence, that is limk→+∞ xk = x∗.

Case III. Suppose that for every k ≥ k0 there exists l ≥ k such that ‖x∗‖ > ‖xl‖, and suppose
also there exists m ≥ k such that ‖x∗‖ ≤ ‖xm‖. So, let k1 ≥ k0 and l1 ≥ k1 such that ‖x∗‖ > ‖xl1‖.
Let k2 > l1 and l2 ≥ k2 such that ‖x∗‖ > ‖xl2‖. Continuing the process, we obtain (xln), a
subsequence of (xk) with the property that ‖xln‖ < ‖x

∗‖ for all n ∈ N. By reasoning as in Case II,
we obtain that limn→+∞ xln = x∗. Consequently, lim infk→+∞ ‖xk − x∗‖ = 0.
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5.3 Non-smooth case

Let us extend the results of the previous sections to the case of a proper lower semicontinuous
and convex function f : H → R ∪ {+∞}. We rely on the basic properties of the Moreau envelope
fλ : H → R (λ is a positive real parameter), which is defined by

fλ(x) = min
z∈H

{
f(z) +

1

2λ
‖z − x‖2

}
, for any x ∈ H.

Recall that fλ is a convex differentiable function, whose gradient is λ−1-Lipschitz continuous, and
such that minH f = minH fλ, argminH fλ = argminH f . The interested reader may refer to [21,
24] for a comprehensive treatment of the Moreau envelope in a Hilbert setting. Since the set of
minimizers is preserved by taking the Moreau envelope, the idea is to replace f by fλ in the previous
algorithm, and take advantage of the fact that fλ is continuously differentiable. Then, algorithm
(IPATRE) applied to fλ now reads (recall that αk = 1− α

k )

(IPATRE)

{
yk = xk + αk(xk − xk−1)

xk+1 = proxfλ
(
yk − c

k2 xk
)
.

By applying Theorems 12 and 13, we obtain fast convergence of the sequence (xk) to the element
of minimum norm of f . Thus, we just need to formulate these results in terms of f and its proximal
mapping. This is straightforward thanks to the following formulae from proximal calculus [21]:

1. fλ(x) = f(proxλf (x)) + 1
2λ‖x− proxλf (x)‖2.

2. ∇fλ(x) = 1
λ

(
x− proxλf (x)

)
.

3. proxθfλ(x) = λ
λ+θx+ θ

λ+θ prox(λ+θ)f (x).

We obtain the following relaxed inertial proximal algorithm (NS stands for non-smooth):

(IPATRE-NS)

{
yk = xk + (1− α

k )(xk − xk−1)

xk+1 = λ
1+λ

(
yk − c

k2 xk
)

+ 1
1+λ prox(λ+1)f

(
yk − c

k2 xk
)
.

Theorem 14 Let f : H → R∪{+∞} be a convex, lower semicontinuous, proper function. Assume that

α > 3. Let (xk) be a sequence generated by (IPATRE-NS). Then for all s ∈
[
1
2 , 1
[
, we have:

(i) f(proxλf (xk))−minH f = o(k−2s), ‖xk − xk−1‖ = o(k−s),

‖xk − proxλf (xk))‖ = o(k−s) as k → +∞.

(ii)

+∞∑
k=1

k2s−1(f(proxλf (xk))−min
H

f) < +∞,
+∞∑
k=1

k2s−1‖xk − xk−1‖2 < +∞,

+∞∑
k=1

k2s‖xk − proxλf (xk))‖2 < +∞.

(iii) lim infk→+∞ ‖xk − x∗‖ = 0. Further, (xk) converges strongly to x∗ the element of minimum

norm of argmin f , if (xk) is in the interior of the ball B(0, ‖x∗‖) for k large enough, or if (xk) is in the

complement of the ball B(0, ‖x∗‖) for k large enough.

6 Conclusion, perspective

In the framework of convex optimization in general Hilbert spaces, we have introduced an inertial
dynamic in which the damping coefficient and the Tikhonov regularization coefficient vanish as
time tends to infinity. The judicious adjustment of these parameters makes it possible to obtain
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trajectories converging quickly (and strongly) towards the minimum norm solution. This seems to
be the first time that these two properties have been obtained for the same dynamic. Indeed, the
Nesterov accelerated gradient method and the hierarchical minimization attached to the Tikhonov
regularization are fully effective within this dynamic. On the basis of Lyapunov’s analysis, we
have developed an in-depth mathematical study of the dynamic which is a valuable tool for the
development of corresponding results for algorithms obtained by temporal discretization. We thus
obtained similar results for the corresponding proximal algorithms. This study opens up a large field
of promising research concerning first-order optimization algorithms. Many interesting questions
such as the introduction of Hessian-driven damping to attenuate oscillations [9], [19], [23], and the
study of the impact of errors, perutrbations, deserve further study. These results also adapt well to
the numerical analysis of inverse problems for which strong convergence and obtaining a solution
close to a desired state are key properties.
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5. H. Attouch, R.I. Boţ, E.R. Csetnek, Fast optimization via inertial dynamics with closed-loop damping,

Journal of the European Mathematical Society (JEMS), 2021, hal-02910307.
6. H. Attouch, L.M. Briceño-Arias, P.L. Combettes, A parallel splitting method for coupled monotone

inclusions, SIAM J. Control Optim. 48 (5) (2010), 3246–3270.
7. H. Attouch, L.M. Briceño-Arias, P.L. Combettes, A strongly convergent primal-dual method for

nonoverlapping domain decomposition, Numerische Mathematik, 133(3) (2016), 443–470.
8. H. Attouch, A. Cabot, Asymptotic stabilization of inertial gradient dynamics with time-dependent viscosity,

J. Differential Equations, 263 (9), (2017), 5412–5458.
9. H. Attouch, Z. Chbani, J. Fadili, H. Riahi, First order optimization algorithms via inertial systems with

Hessian driven damping, Math. Program. (2020), https://doi.org/10.1007/s10107-020-01591-1.
10. H. Attouch, Z. Chbani, J. Peypouquet, P. Redont, Fast convergence of inertial dynamics and algorithms

with asymptotic vanishing viscosity, Math. Program., 168 (1-2) (2018), 123–175.
11. H. Attouch, Z. Chbani, H. Riahi, Combining fast inertial dynamics for convex optimization with Tikhonov

regularization, J. Math. Anal. Appl, 457 (2018), 1065–1094.
12. H. Attouch, R. Cominetti, A dynamical approach to convex minimization coupling approximation with

the steepest descent method, J. Differential Equations, 128 (2) (1996), 519–540.
13. H. Attouch, M.-O. Czarnecki, Asymptotic control and stabilization of nonlinear oscillators with non-

isolated equilibria, J. Differential Equations 179 (2002), 278–310.
14. H. Attouch, M.-O. Czarnecki, Asymptotic behavior of coupled dynamical systems with multiscale aspects,

J. Differential Equations 248 (2010), 1315–1344.
15. H. Attouch, M.-O. Czarnecki, J. Peypouquet, Prox-penalization and splitting methods for constrained

variational problems, SIAM J. Optim. 21 (2011), 149–173.
16. H. Attouch, M.-O. Czarnecki, J. Peypouquet, Coupling forward-backward with penalty schemes and

parallel splitting for constrained variational inequalities, SIAM J. Optim. 21 (2011), 1251–1274.
17. H. Attouch, M.-O. Czarnecki, Asymptotic behavior of gradient-like dynamical systems involving inertia

and multiscale aspects, J. Differential Equations, 262 (3) (2017), 2745–2770.
18. H. Attouch, J. Peypouquet, The rate of convergence of Nesterov’s accelerated forward-backward method

is actually faster than 1/k2, SIAM J. Optim., 26(3) (2016), pp. 1824–1834.
19. H. Attouch, J. Peypouquet, P. Redont, Fast convex minimization via inertial dynamics with Hessian

driven damping, J. Differential Equations, 261(10), (2016), 5734–5783.
20. J.-B. Baillon, R. Cominetti, A convergence result for non-autonomous subgradient evolution equations

and its application to the steepest descent exponential penalty trajectory in linear programming, J. Funct.
Anal. 187 (2001) 263-273.

21. H. Bauschke, P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert spaces, CMS
Books in Mathematics, Springer, (2011).

22. R. I. Bot, E. R. Csetnek, Forward-Backward and Tseng’s type penalty schemes for monotone inclusion
problems, Set-Valued Var. Anal. 22 (2014), 313–331.



30 H. Attouch, S. C. László
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33. S.A. Hirstoaga, Approximation et résolution de problèmes d’équilibre, de point fixe et d’inclusion monotone.
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