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Abstract—With the popularity of software defined networking
architectures, the growing complexity of its use cases dictates
the need for better auditability especially for security. In this
paper, we aim at facilitating high-level management-plane policy
configuration conformance auditing and their reflection in the
data plane, to detect missing or spurious flow rules with respect to
security policies. To this end, we propose an efficient conformance
checking approach based on an intentional northbound interface
as well as traces of management, control and data plane.
Leveraging a proof-of-concept implementation of our approach,
we compare its conformance-checking runtime and precision
against a direct method on virtual topologies and find that
it significantly improves scalability. We conclude by proposing
directions for further enhancements extending the techniques
presented herein.

Index Terms—Software-defined networking, Intent-based net-
working, security, conformance checking,

I. INTRODUCTION

Modern technological infrastructure deployments are of a
substantively more complex nature than those that preceded
them. With systems that can number in the thousands of
servers and virtualized instances, new network management
paradigms have emerged. Among them one finds software
defined networks (SDN) [1], whose aim is centralizing and
simplifying the administration of large and potentially hetero-
geneous infrastructure. However, SDN also bring about novel
security challenges causing organizations to adopt strategies
to both preempting and responding to cybersecurity incidents
notably post-mortem analysis through security policy confor-
mance checking.

To this end, organizations deployed technologies to collect
all possible incident data so that new knowledge can be
derived from tangible evidence of what has occurred. Since
the network is one of the most common attack vector auditing
discrepancies between high-level security policies and their
concrete implementation in Forwarding Devices (FD) is of
paramount importance [2]. However, network traces can be
massive in size and quite low-level, making its analysis
difficult. In this respect, Intent-based networking offers a very
interesting approach by providing a high-level abstraction to
specify policies rather than mechanisms [3].

This work was also supported by the project C4IIoT funded by the European
Commission under Grant Agreements No. 833828. This publication reflects
the views only of the authors, and the Commission cannot be held responsible
for any use which may be made of the information contained therein.

In order to engineer such auditing capabilities in SDN, we
must tackle the following research questions:

1) How to verify that the data plane flows conform to man-
agement plane decisions without missing or spurious
flow rules?

2) How to improve conformance checking performance
with management rules expressed in a high-level abstract
form?

The rest of the paper is organized as follows. We first give
some technical background for our approach in Section II. We
then present the key features of our architecture and the tech-
nical challenges that it addresses in Section III. We proceed
to evaluate and discuss the experiment that we conducted and
its result in Section IV before concluding with perspectives of
future improvements in Section V.

II. BACKGROUND/RELATED WORK

In this section, we shade light on the research questions, and
give the intuitions driving the construction of our approach.

In this paper, we employ the term conformance checking
to refer to the verification of high-level rule enforcement
through execution traces, as it is commonly done in the
business process community. We consider cases where the
management plane does not have a deep understanding of the
lower-level intricacies of the network and its models are thus
too abstract to be directly used in traditional model checking
[4]. This is often the case when decisions are taken by artificial
intelligence [5]. Our proposal extends the concept of Intent
Assurance [6], where the network controller provides functions
and interfaces to assess that the network adhere and comply
with the intents, to the management layer.

In classical SDN Architectures, the management plane is re-
sponsible for faults, monitoring and configuration management
operations of the network [7]. Its responsibilities also include
orchestrating the full lifecycle of the enterprise Information
System, infrastructure resource provisioning, security control,
and compatibility with third-party systems.

Once a decision has been passed to the control plane, it
is often necessary to monitor the actual implementation of
the management configuration change. One possibility is to
use data plane centric solutions for collecting measurement
data such as NetFlow [8] or OpenSketch [9] for production
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Fig. 1: High-Level Architecture

settings or Open VSwitch monitor for lab settings. In a large-
scale scenario, however, the enormous quantity of information
collected might be counterproductive to really understand the
relationship between the low-level configuration of the FDs
and the real business cases motivating each rule. Just as
decentralized control plane has been proposed to tackle with
the scalability issues [10], distributed monitoring started being
integrated in production-ready SDN controllers [11] to this
end.

In this paper, we propose an Intent-based approach [3] to
collect traces to verify that management plane original inten-
tions are correctly implemented in the data plane. By creating
intent primitives that include the management plane business
objectives in their design, we can achieve both ambitions of
minimizing the quantity of information stored and making its
interpretation easier for auditing purposes.

Finally, determining the level of abstraction of our moni-
toring construct is of paramount importance. Several options
can be considered, depending on the targeted domain. For
technical domains, such as software-defined wireless connec-
tivity, Coronado et al. [12] adopted programming abstraction
allowing administrators to specify how a precise portion of the
flow space shall be treated in the wireless access segment were
proposed. For regulatory domains, Ujcich et al. [13] proposed
a GDPR-aware intent to enforce regulatory requirements for
system and network design.

In this paper, we aim at assessing if a security and connec-
tivity policy decided in the management plane is well deployed
in the data plane. To this end, we designed a simple host-
based ban list. It can be easily implemented by composing
built-in intents developed for traffic management provided by
the SDN controller. In the following sections, we demonstrate
how Intent-based security-policies can be used to achieve
conformance checking.

III. AUDITABLE NETWORK MANAGEMENT MODEL

Figure 1 presents the high-level architecture of our model.
It comprises a) an Operational System that carries out traffic
management, at both the control and forwarding planes and b)
the Logging and Conformance System that bring the auditabil-
ity features into the picture.

A. Operational systems

This set of components follow the usual Layers and Archi-
tecture Terminology from RFC 7426, and also support Intent-
based Networking.

1) 3-Tiered SDN Infrastructure: In this system, the security
policy configurator maintains a high-level view of its business
objectives, possibly provided through algorithms, artificial
intelligence or regulatory constraints. It keeps its models
synchronized with the logging and conformance systems by
publishing the same management rules used to configure the
SDN apps deployed on the SDN Controller.

On the control plane, the SDN Controller is at the in-
tersection of network management and data plane. It hosts
SDN applications extending its features from different do-
mains ranging from connectivity to security. Applications rely
on the controller northbound interface (e.g., REST API) to
manipulate the various data models (Flows Model, Topology
Model and Intents Model).

Once an SDN app modifies the controller data models (e.g.,
submit an intent, deploy a flow), the device drivers translate it
into instruction sent in the protocol supported by the FD (e.g.,
OpenFlow) so that the data plane can successfully forward
traffic. Two logger adaptors are deployed in the modular
runtime system of the SDN controller. Each adaptor subscribes
to changes the SDN controller data models and populates
the logger database/ with updates, respectively intents for the
intent logger adaptor and Flows for the flow logger adaptor.



In the data plane, monitoring of flow-rule updates of FD can
be achieved by subscribing to flow tables. In our model, flow-
rule monitors are responsible for sending flow rules updates
to the logging and conformance systems.

2) Intent-Aware SDN Controller: Intent-based networking
[14] allows defining high-level network specifications that are
enforced at the Controller level, without having to manage
the flow-level configuration. When an intent is deployed to
the SDN controller, it is compiled according to the current
topology. If the compilation succeeds, it updates the controller
flows models and subsequently triggers the deployment of
the computed flow rules on the FDs. In case of topology
changes, such as a device or link addition or removal, intents
are recompiled and flow rules are redeployed accordingly,
reducing the logic needed at the SDN app level.

If the network topology is not able to accommodate the
intent anymore, the recompilation fails and the SDN app de-
ployed within the controller can handle the issue and possibly
deploy a new intent e.g., to reroute the traffic to another
available back-up host. In any case, should the intent fail to
deploy, the management plane can be informed to take action.

In our model, a custom Security and Connectivity (SCO)
SDN application relies on the controller intent API to update
the data models according to the Security Policy Configurator
management rules. Intents are particularly useful for confor-
mance checking operations between the management plane
and the control place, since they can be expressed in a high-
level form with similar semantics.

Now that we have covered the SDN infrastructure, we move
on to the components responsible for persisting traces of
modifications in the management, control and data plane and
establishing the conformity between them.

B. Logging and Conformance Systems

These systems support both the collection and analysis
of the data used for network policy conformance reports,
highlighting discrepancies between management rules and data
plane flows. We use a logging mechanism to store the network
data which raise several issues such as scalability, security
and performance. Although the design of such a logging
mechanism is important, it is beyond the scope of this paper
and is left for future work.

1) Intents & Management Rules: Employing intents at the
control plane level is applicable to a vast range of use cases.
We implemented a proof of concept of a network security
policy system providing connectivity of hosts in the data plane
using management rules containing white listed subnets and
black listed hosts and host-to-host connections.

This kind of simple use case is common in industrial plants
to logically segregates a compromised host from the rest of
the network, while maintaining connectivity between trusted
hosts. Listing 1 shows an example of management rules. As
we can see, the intents of the management rules are easily
understandable, as they allow any two host on the s1 subnet to
communicate while preventing host h2 to communicate with

Method Name Complexity Comment
Direct method
(III-B2a)

O(KLN2) K: the average number of sim-
ple paths between 2 hosts, L
the average size of the K-
shortest path, N: the number of
nodes

Indirect method
(III-B2b+III-B2c)

O(N2 + F ) N: the number of nodes, F: the
number of flows

TABLE I: Conformance checking algorithm complexity
assuming simple path lookup complexity of O(1)
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Fig. 2: Conformance checking operations crossing semantic domains is hard,
and easy within semantic domains.

any other host. It also precludes hosts h3 and h4 exchanging
any traffic.

a l l o w s1
b l o c k h2
block−from−t o h3 h4

Listing 1: SCO (Security and Connectivity) Configuration example

Having shown an example of management rules, we will
now demonstrate how one ensures that such rules get indeed
implemented down the data plane level.

2) Conformance checking strategies: Due to lack of space,
we only provide the intuitions of the conformance checking
algorithms1 and complexity of the main steps in table I.

a) Flow-based conformance of the management rules:
(direct method III-B2a) to prove that a blocked host or blocked
links are isolated from the rest of the network, we need to
make sure that no FD form the data plane allows access to the
incriminated hosts. At the other end of the spectrum, proving
that connectivity intents are respected requires to actually find
a valid flow between the two hosts. This involves finding the
k-shortest paths between the hosts and testing them one by
one until we find a valid one.

Since management rules and flow rules use different seman-
tics, checking the conformity between these rules is difficult
and compute intensive.

b) Intent-based conformance of the management rules:
(indirect intent method III-B2b) Conversly, conformance
checking between management rules and intent data models is
made easy by the fact that they are expressed with the same
semantic. In fact, SCO simply states that two hosts should
be able to communicate by issuing a Host-to-Host intent

1code and details for this work, including conformance checking algorithms
available https://github.com/nherbaut/netsoft-2021-paper

https://github.com/nherbaut/netsoft-2021-paper


FatTree(3) FatTree(4) FatTree(5) FatTree(6)
Direct method III-B2a 30s 36s 1152s >3h

Indirect method III-B2b 0.3s 0.4s 0.4s 1.2s
III-B2c 0.1s 0.1s 0.1s 0.2s

TABLE II: Run times comparison for conformance checking report generation, following scenario IV-B
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Fig. 3: Missing and spurious flow detection error ratio

containing both hosts IP address. When deploying this intent
in the intent data models, SCO informs the SDN controller that
it should list the k-shortest path between the host, pick one
and finally try to deploy the flow rules on the FDs accordingly.
If the flow rules are not successfully deployed (e.g., due to a
saturated flow table or a FD down along the path), they must
be rolled back and another path should be tried next until no
path remains.

Intent-based conformance checking involves looking up the
intent list composed of host pairs to make sure that no intent
grant connectivity to a blocked host. It also involves verifying
that for each non-blocked host pair, there exists an intent. Since
we used the SDN controller built-in intents to implement SCO,
development efforts are kept minimal.

c) Flow-based conformance of the FD flow rules:
(III-B2c) is also easy, since flow data models are expressed
with the same semantic as flows rules on the FDs. We simply
need to check that for each FD, the flows are identical to the
SDN Controller’s corresponding flow data models.

C. Conformance Checking

To successfully find discrepancies between management
rules and flow rules, we can apply the direct conformance
checking algorithm III-B2a. It verifies whether the manage-
ment rules are consistent with the FD flow rules. This task
is difficult, as discussed earlier and illustrated in Figure 2,
because it involves verification across semantic boundaries.

We propose to use intents to circumvent this issue and use
an indirect method III-B2b+III-B2c, e.g., checking a) whether
the management rules are consistent with the intent models and
b) whether the flow data models conform with the FDs flow
rules. Theoretically, direct and indirect methods are equivalent,
since the controller intent engine is supposed to make intents
models consistent with the flow model at all times (i.e. (1)
for every intent, the corresponding flows are also in the data
models and (2) no flow is present in the flow data models

that have not been created by an intent deployment). If this
assumption holds, having intents conforming to the manage-
ment rules implies that the flow data models also conform
the management rules. However, this does not always hold
empirically: SDN controllers data models are only eventually
consistent, since flow deployments following a management
rules update are not done immediately, due to the delay caused
by the intent installation.

In the next section, we evaluate if upon configuration
changes, the SDN controller data models converge fast enough
to actually use intents for conformance checking.

IV. PRELIMINARY EVALUATION AND DISCUSSION

A. Experimental testbed

We deployed SCO on top of an ONOS 2.4 SDN Controller.
We used Mininet 2.2.2 to generate fat tree data center topolo-
gies of order K. We used an E-2176G Xeon machine with 32
GB of RAM to run our implementation and the conformance-
checking. The flow rules monitors applications were built on
top of Open vSwitch monitoring.

B. Test Scenario

The experiment consisted in attaching the virtual topology
to the ONOS controller, and letting hosts periodically connect
to each other through ICMP. Once the intents were installed
and the flows deployed by the SCO app, we simulated manage-
ment rules updates, to artificially generate both types of con-
formance checking errors. Each L second (L ∼ Poisson(λ)),
a host was chosen at random in the topology. If the host was
not blocked by the security policy, we added it to the list
of blocked hosts and tested if the corresponding flows were
removed, i.e., that no spurious flow rules remained on the
data plane. Conversely, if the chosen host was blocked in the
current management rules, we unblocked it and made sure that
the flow rules were correctly deployed, i.e., that the set flow



rules providing connectivity between the two hosts were not
missing.

Traces were collected by the logger adaptors and transmitted
to the logger by the security policy configurator app, the logger
adaptors and the flow rules monitors whenever a data model
change was detected. After a 100s runtime, we ran a custom
Python3 conformance-checker tool implementing the methods
described in Section III-C.

Runtime was also recorded to empirically confirm the com-
plexity of the different strategies of conformance checking.

C. Results

1) Conformance checking performances: Table II shows
that for typical Datacenter Fat-Tree topologies, flow-based
conformance checking (the direct methodIII-B2a) is in-
tractable for size K > 5, requiring several hours to run. On the
other hand, the intent-based indirect method returns results in a
matter of seconds. We conclude that performing conformance
checking with intents (III-B2b) is the only viable option for
medium or large topologies. Algorithm (III-B2c) runtimes are
negligible compared to (III-B2a) and (III-B2b).

2) Direct vs. Indirect Method Precision Comparison: For
Intent-based conformance checking to be useful, we need
to make sure that it provides similar results than the flow-
based ones. To verify this assumption, we run experiments for
FatTree Topologies with K = 4 and computed the number of
conformance rules violation with direct and indirect methods
while injecting new management rules in a random fashion
with a mean arrival time of 10, 5 and 2 seconds.

Results are presented in Figure 3 where we show the
conformance error ratio corresponding to the connectivity
breach and spurious flows.

Direct and indirect conformance checking methods lead to
very similar error detection: curves are almost overlapping
in Figure 3 and the maximum delta between them is 10.8
% with an average of 0.11% over the three experiments. We
observed that the cases where the conformance result of both
methods differed was always a case of missing connectivity
undetected through indirect method. This difference can be
explained by the extra processing required by intents to install
flows, causing the intent models to be incorrectly labeled as
conforming in step III-B2b. In these cases, the discrepancy
was always resolved in less than 1s.

This experiment shows that conformance checking can
be applied to intents instead of flows with a marginal and
transitory impact on precision for the specified topologies on
our test bed. It offers a better scalability thanks to the semantic
proximity between intents and management rules.

Note that the conformance checking algorithm in this paper
performs a complete revalidation for all the applicable intents
and flow configuration at any point in time. This approach
could be optimized, as proposed by Ujcich et al. [15], by
recording the provenance and evolution of intents for each
change in the applications requests or the state of the network.
Our proposal can also be used to detect Intent drifts [6], caused
by changes in intent realization over time.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a new method to improve the
auditability of programmable networks. We developed a proof
of concept for auditing security rules and we relied on Intent-
based networking to make the problem more tractable. We
simulated the implementability of our approach on a virtual
testbed, and discussed some performance aspects of Intent-
based conformance checking.

In Industrial Internet of Things, a key motivation to use
SDN is productivity optimization and predictability [16]. This
why overcoming it is the priority of our current work in H2020
project ”Cybersecurity for the IIoT”. In future work, we plan to
investigate how to implement the logger in a distributed fash-
ion with a blockchain to make is more scalable and tamper-
proof. Moreover, we plan to extend security policy intents
beyond vulnerability minimization to also include mitigation
to suspected attacks.
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