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Abstract

We prove the higher integrability of the gradient for minimizers of
the thermal insulation problem, an analogue of De Giorgi’s conjecture
for the Mumford-Shah functional. We deduce that the singular part of
the free boundary has Hausdorff dimension strictly less than n− 1.
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1 Introduction

We fix a bounded connected set Ω ⊂ Rn. The thermal insulation problem
consists in minimizing the functional

I(A, u) :=

ˆ
A
|∇u|2 dLn +

ˆ
∂A
|u∗|2 dHn−1 + Ln(A) (1)

among all pairs (A, u) where A ⊂ Rn is an admissible domain and u ∈
W 1,2(A) is a function such that u = 1 for Ln-a.e. on Ω. Here, u∗ is the trace
of u on ∂A.

In [3] and [7], Caffarelli and Kriventsov transpose the problem to a
slightly different setting in order to apply the direct method of the calculus
of variation. The authors represent a pair (A, u) by the function u1A and
relax the functional on SBV. The new problem consists in minimizing the
functional

F(u) =

ˆ
Rn

|∇u|2 dLn +

ˆ
Ju

(u2 + u2) dHn−1 + Ln({u > 0 }) (2)

among all functions u ∈ SBV(Rn) such that u = 1 Ln-a.e. on Ω. The
definition of Ju and u, u are given in Appendix A. This new setting is more
suited to a direct minimization since it enjoys the compactness and closure
properties of SBV. In parenthesis, there always exist functions u ∈ SBV(Rn)
such that u = 1 Ln-a.e. on Ω and F(u) <∞. For example, u = 1B where B
is an open ball containing Ω. In [3, Theorem 4.2], Caffarelli and Kriventsov
prove that the SBV problem has a solution u. A key point property of
solutions is that there exists 0 < δ < 1 (depending on n, Ω) such that
spt(u) ⊂ B(0, δ−1) and

u ∈ { 0 } ∪ [δ, 1] Ln-a.e. on Rn. (3)

This property has also been proved in [2].
The main goal of the present article is to prove that there exists p > 1

such that |∇u|2 ∈ Lploc(R
n \ Ω). A parallel property was conjectured by

De Giorgi for minimizers of the Mumford-Shah functional and solved by De
Philippis and Figalli in [5]. Our proof is inspired by the technique of [5] and it
relies on three key properties: the Ahlfors-regularity of the free boundary, the
uniform rectifiability of the free boundary and the ε-regularity theorem. For
the thermal insulation problem, the conclusion of the ε-regularity theorem is
that the free boundary looks like a pair of graphs rather than just one graph.
Moreover, the function u satisfies an elliptic equation with a Robin boundary
condition at the boundary rather than a Neumann boundary condition. In
our approach we deduce a porosity property which means that the singular
part Σ of the free boundary has many holes in a quantified way. Finally,
once we establish the higher integrability of the gradient, we are also able to
conclude that the dimension of Σ is less than n− 1.
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Notations. We work in the Euclidean space Rn with n > 1. For x ∈ Rn

and r > 0, B(x, r) is the open ball centered in x and of radius r. Sometimes
x is omitted and the open ball is simply denoted by Br. Given an open ball
B = B(x, r), the notation 2B means B(x, 2r). Given a set A ⊂ Rn, the
indicator function of A is denoted by 1A. Given two sets A,B ⊂ Rn, the
notation A ⊂⊂ B means that there exists a compact set K ⊂ Rn such that
A ⊂ K ⊂ B. We have gathered some definitions and results from the theory
of BV functions in the introduction of Appendix A.

2 Minimizers

Our ambient space is an open set X of Rn. One can think of X as Rn \ Ω.
We introduce a few notations for a given u ∈ SBVloc(X). We define the set
Ku as the support of the singular part of Du:

Ku := spt(|u− u|Hn−1 Ju) (4a)

:= spt(Hn−1 Ju). (4b)

When there is no ambiguity, we will write K instead of Ku. For any open
ball B such that B ⊂ X, we define a competitor of u in B as a function
v ∈ SBVloc(X) such that v = u Ln-a.e. on X \ B. For x ∈ Ku and r > 0
such that B(x, r) ⊂ X, we define

ω2(x, r) = r−(n−1)

ˆ
B(x,r)

|∇u|2 dLn (5a)

β2(x, r) =

(
r−(n+1) inf

V

ˆ
K∩B(x,r)

d(y, V )2 dHn−1(y)

) 1
2

(5b)

where V runs among (n− 1) planes V ⊂ Rn passing through x.

2.1 Definition

For the purposes of the present paper, we fix a constant δ ∈]0, 1[ considered
to be universal.

Definition 2.1. We say that u ∈ SBVloc(X) is a minimizer if

1. for Ln-a.e. x ∈ X, we have u ∈ { 0 } ∪ [δ, δ−1];

2. for all open balls B such that B ⊂ X and for all competitors v of u in
B,
ˆ
B
|∇u|2 dLn +

ˆ
Ju∩B

(u2 + u2) dHn−1 + Ln(B ∩ {u > 0 })

≤
ˆ
B
|∇v|2 dLn +

ˆ
Jv∩B

(v2 + v2) dHn−1 + Ln(B ∩ { v > 0 }). (6)
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As a first consequence, we have that u, u ∈ { 0 } ∪ [δ, δ−1] everywhere in
X. In particular, u ≥ δ everywhere on Su. For all open balls B such that
B ⊂ X, we have

ˆ
B
|∇u|2 dLn +

ˆ
Ju∩B

(u2 + u2) dHn−1 <∞. (7)

This shows that |∇u|2 ∈ L1
loc(X) and that Ju is Hn−1− locally finite in

X. One can show that u is harmonic in X \ Su. We deduce that in each
connected component of X \ Su, we have either u > δ everywhere or u = 0
everywhere.

2.2 General properties

The properties of this section can also be adapted to almost-minimizers ([7,
Definition 2.1]). The next result has been proved in [3].

Proposition 2.2 (Ahlfors-regularity). Let u ∈ SBVloc(X) be a minimizer.
There exists r0 > 0 and C ≥ 1 (both depending on n, δ) such that the
following holds true.

1. For all x ∈ X, for all 0 < r ≤ r0 such that B(x, r) ⊂ X,
ˆ
B(x,r)

|∇u|2 dLn +Hn−1(K ∩B(x, r)) ≤ Crn−1. (8)

2. For all x ∈ Su, for all 0 < r ≤ r0 such that B(x, r) ⊂ X,

Hn−1(K ∩B(x, r)) ≥ C−1rn−1. (9)

Corollary 2.3. Let u ∈ SBVloc(X) be a minimizer.

(i) We have K = Su = Ju and Hn−1(K \ Ju) = 0.

(ii) The set Au := {u > 0 } \K is open and ∂Au = K.

Proof. It is straighforward that K ⊂ Ju ⊂ Su. On the other hand, property
(9) shows that Su ⊂ K. We justify that Hn−1(K \ Ju) = 0. The jump set
Ju is Borel and Hn−1 locally finite in X, so for Hn−1-a.e. x ∈ X \ Ju,

lim
r→0

Hn−1(B(x, r) ∩ Ju)

rn−1
= 0 (10)

(see [9, Theorem 6.2]). We draw our claim from the observation that this
limit contradicts (9).
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We study the set Au. We recall that the function u is continuous in
X \K (since it coincides with u outside Su) and u ∈ { 0 } ∪ [δ, 1] everywhere
in X \K. As a consequence, the sets

Au := {u > 0 } \K, (11)
Bu := {u = 0 } \K (12)

are open subsets of X \K and thus of X. The space X is the disjoint union

X = K ∪Au ∪Bu, (13)

where Au and Bu are open and K is relatively closed, so Au ⊂ Au ∪K. We
show that Su ⊂ Au. Let us suppose that there exists x ∈ Su and r > 0
such that B(x, r) ∩ Au = ∅. Then B(x, r) \K ⊂ {u = 0 } so we have u = 0
Ln-a.e. on B(x, r) and thus x is a Lebesgue point of u (a contradiction). We
conclude that Su ⊂ Au and in turn K ⊂ Au so Au = Au ∪K.

We use [4] to justify thatKu is locally contained in a uniformly rectifiable
set. For the reader’s convenience we have summarised some results of [4] in
Appendix C.

Proposition 2.4 (Rectifiability). Let u ∈ SBVloc(X) be a minimizer. There
exists r0 > 0 (depending on n, δ) such that the following holds true. For
all x ∈ K and 0 < r ≤ r0 such that B(x, 2r) ⊂ X, there is a closed,
Ahlfors-regular, uniformly rectifiable set E of dimension (n − 1) such that
K ∩ B(x, r) ⊂ E. The constants for the Ahfors-regularity and uniform rec-
tifiability depends on n, δ.

Proof. We want to show that (u,K) satisfy Definition C.1, or rather the
alternative Definition given in Remark C.5. Then the Proposition will follow
from Theorem C.4. First, it is clear that (u,K) is an admissible pair. Let
B be an open ball of radius r > 0 such that B ⊂ X. Let an admissible pair
(v, L) be a competitor of (u,K) in B. As explained in Remark C.2, we can
assume without loss of generality that L is Hn−1 locally finite. Therefore,
v ∈ SBVloc(X) and Hn−1(Jv \L) = 0. We have included more details about
the construction of SBV functions in Appendix A. We can now apply the
minimality inequality. We have
ˆ
B
|∇u|2 dLn +

ˆ
Ju∩B

(u2 + u2) dHn−1 + Ln(B ∩ {u > 0 })

≤
ˆ
B
|∇v|2 dLn +

ˆ
Jv∩B

(v2 + v2) dHn−1 + Ln(B ∩ { v > 0 }) (14)

so ˆ
B
|∇u|2 dLn + δ2Hn−1(Ju ∩B) + Ln(B ∩ {u > 0 })

≤
ˆ
B
|∇v|2 dLn + δ−2Hn−1(Jv ∩B) + Ln(B ∩ { v > 0 }). (15)
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We ommit the term Ln(B ∩ {u > 0 }) at the left and we bound the term
Ln(B ∩ { v > 0 }) at the right by ωnrn where ωn is the Lebesgue volume of
the unit ball. We can replace Ju by K at the left since Hn−1(K \ Ju) = 0.
We can replace Jv by L at the right since Hn−1(Jv \ L) = 0. It follows that

Hn−1(K ∩B) ≤ δ−4Hn−1(L ∩B) + δ−2∆E + δ−2ωnr
n (16)

where
∆E =

ˆ
B
|∇v|2 −

ˆ
B
|∇u|2 dLn. (17)

Next we cite our proper ε-regularity theorem [7, Theorem 14.1]. Con-
trary to the ε-regularity theorem for the Mumford-Shah problem, it does not
require ω2(x, r) to be small. It says that when K is very close to a plane, K
is given by a pair of smooth graphs. We are going to describe this situation
in the next definition. When we are given a point x0 ∈ Rn and a vector
n ∈ Sn−1, we define

H = {h ∈ Rn | h · n = 0 } (18)

and we decompose each point y ∈ Rn under the form y = x0 + (y′ + ynn)
where y′ ∈ H and yn ∈ R.

Definition 2.5. Let u ∈ SBVloc(X) be a minimizer. Let x0 ∈ K and R > 0
be such that B(x0, R) ⊂ X. We say that K is regular in B(x0, R) if it
satisfies the three following conditions.

(i) There exists a vector n ∈ Sn−1 and two C1 functions

fi : B(0, R) ∩H → R (i = 1, 2) (19)

such that fi(0) = 0, f2 ≤ f1 and K ∩B = Γ1 ∪ Γ2 where

Γi = { y ∈ B(x0, R) | yn = fi(y
′) } . (20)

(ii) For all h ∈ B(0, R) ∩H,

|∇fi(h)| ≤ 1

4
(21)

and there exists α > 0 such that for all h1, h2 ∈ B(0, R) ∩H

|∇fi(h1)−∇fi(h2)| ≤
(
|h1 − h2|

R

)α
. (22)

(iii) There are two possible cases. The first case is{
u > 0 in { y ∈ B(x0, R) | yn > f1(y′) or yn < f2(y′) }
u = 0 in { y ∈ B(x0, R) | f1(y′) < yn < f2(y′) }

(23)
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The second case is f1 = f2 and{
u > 0 in { y ∈ B(x0, R) | yn > f1(y′) }
u = 0 in { y ∈ B(x0, R) | yn < f1(y′) }

(24)

or inversely.

Theorem 2.6 (ε-regularity theorem). Let u ∈ SBVloc(X) be a minimizer.
Fix x ∈ K.

(i) For all β > 0, there exists ε > 0 (depending on n, δ, β) such that the
following holds true. For r > 0 such that B(x, r) ⊂ X and β2(x, r) +
r ≤ ε, we have ω2(x, r) ≤ β.

(ii) There exists ε > 0, C ≥ 1 (both depending on n, δ) such that the
following holds true. For r > 0 such that B(x, r) ⊂ X and β2(x, r) +
r ≤ ε, the set K is regular in B(x,C−1R).

2.3 Porosity of the set where K is not regular

The results of this subsection are specific to minimizers rather than almost-
minimizers.

Lemma 2.7. Let x0 ∈ K and R > 0 be such that B(x0, R) ⊂ X. We assume
that K is regular in B(x0, R) (and we use the notations of Definition 2.5).
Then u solves the Robin problem{

∆u = 0 in A1

∂νu− u∗1 = 0 in Γ1,
(25)

where A1 = { y ∈ B | yn > f1(y′) }, the vector ν is the inner normal vector
to A1 and the function u∗1 is the trace of u|A1

on Γ1.

Proof. We only detail the case (23) since it is the complicated one. We
would like to clarify the relationship between traces and upper/lower limits.
The easy situation is when a L1

loc function v has a trace on each side of a
hyperplane. Say that for some x ∈ Rn and ν ∈ Sn−1, there exists two scalars
v∗1, v

∗
2 such that

lim
r→0

r−n
ˆ
Br∩H+

|v(y)− v∗1| dLn(y) = 0 (26a)

lim
r→0

r−n
ˆ
Br∩H−

|v(y)− v∗2|dLn(y) = 0, (26b)

where Br = B(y, r) and

H+ = { z ∈ Rn | (y − x) · ν > 0 } (27a)
H− = { z ∈ Rn | (y − x) · ν < 0 } . (27b)
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Then one has v = max { v∗1, v∗2 } and v = min { v∗1, v∗2 }. Thus,

v2 + v2 = (v∗1)2 + (v∗2)2. (28)

Our situation is almost the same but we deal with smooth surfaces rather
than planes. We include the details below. We partition B in three sets
(modulo Ln)

A1 = { z ∈ B | yn > f1(y′) } (29)
A2 = { z ∈ B | yn < f2(y′) } (30)
A3 = { z ∈ B | f2(y′) < xn < f1(y′) } . (31)

Let v ∈ L∞(B) ∩W 1,2
loc (B \K) be such that v = 0 in A3. For each i = 1, 2,

there exists v∗i ∈ L1(Γi) such that for Hn−1-a.e. x ∈ Γi,

lim
r→0

r−n
ˆ
Br∩Ai

|v(y)− v∗i (x)| dLn(y) = 0. (32)

We refer to such x as a point where the trace v∗i (x) exists. We emphasise
that, by the regularity of Γi at x, there exists ν ∈ Sn−1 such that

lim
r→0

r−nLn(Br ∩ (Ai∆H
+)) = 0 (33)

so (32) is equivalent to

lim
r→0

r−n
ˆ
Br∩H+

|v(y)− v∗i (x)| dLn(y) = 0. (34)

We are going to compute v2 + v2 on Γ1 (a similar reasoning can be done on
Γ2).

Let x ∈ Γ1\Γ2 be such that (34) holds for i = 1. For r > 0 small enough,
Br is disjoint from A2 so

lim
r→0

r−n
ˆ
Br\A1

|v| dLn = lim
r→0

ˆ
Br∩A3

|v|dLn (35)

= 0 (36)

and as before, this is equivalent to

lim
r→0

r−n
ˆ
Br∩H−

|v|dLn = 0. (37)

Combining (34) for i = 1 and (37), we have

v2 + v2 = (v∗1)2. (38)

Next, let x ∈ Γ1 ∩ Γ2 be such that (34) holds for i = 1 and i = 2. The
surfaces Γ1 and Γ2 have necessary the same tangent plane at x (and the
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inner normal vectors are opposed). Combining (34) for i = 1 and i = 2, we
have

v2 + v2 = (v∗1)2 + (v∗2)2. (39)

We come back to our minimizer u ∈ SBVloc(X). We fix ϕ ∈ C1
c (B). For

ε ∈ R, we define v : X → R by

v =

{
u+ εϕ in A1

u in X \A1

(40)

It is clear that v is C1 in X \K. As K is Hn−1 locally finite, we conclude
v ∈ SBVloc(X) and Sv ⊂ K.

Remember that u ≥ δ in A1 ∪ A2, and u = 0 in A3. We take ε small
enough so that |εϕ|∞ < δ. As a consequence v > 0 in A1 ∪A2 and v = 0 in
A3. The sets B ∩ {u > 0 } and B ∩ { v > 0 } are equivalent modulo Ln.

Let us check the multiplicities on the discontinuity set. As we have seen
before, Jv ∩ B ⊂ Γ1 ∪ Γ2. We observe that for x ∈ Γ1 such that the trace
u∗1(x) exists, we have

v∗1(x) = u∗1(x) + εϕ(x) (41)

and for x ∈ Γ2 such the trace u∗2(x) exists, we have

v∗2(x) = u∗2(x). (42)

Using the previous discussion, we deduce that for Hn−1-a.e. on Γ1 \ Γ2,

v2 + v2 = (u∗1 + εϕ)2 (43)

= (u2 + u2) + 2εϕu∗1 + ε2|ϕ|2 (44)

that for Hn−1-a.e. on Γ1 ∩ Γ2,

v2 + v2 = (u∗1 + εϕ)2 + (u∗2)2 (45)

= (u2 + u2) + 2εϕu∗1 + ε2|ϕ|2 (46)

and that for Hn−1-a.e. on Γ2 \ Γ1,

v2 + v2 = (u∗2)2 (47)

= u2 + u2. (48)

Finally, it is clear that

ˆ
B
|∇v|2 dLn =

ˆ
B
|∇u|2 dLn + 2ε

ˆ
A1

〈∇u,∇ϕ〉 dLn

+ ε2

ˆ
A1

|∇ϕ|2 dLn. (49)
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We plug all these informations in the minimality inequality and we obtain
that

0 ≤ 2ε

ˆ
A1

〈∇u,∇ϕ〉dLn + 2ε

ˆ
Γ1

ϕu∗1 dHn−1 + C(ϕ)ε2. (50)

As this holds for all small ε (positive or negative), we conclude thatˆ
A1

〈∇u,∇ϕ〉 dLn +

ˆ
Γ1

ϕu∗1 dHn−1 = 0. (51)

We now state the porosity of the set Σ ⊂ K where K is not regular. It is
simpler to obtain than in the Mumford-Shah problem (see for example [10])
because our ε-regularity theorem only requires to control the flatness.

Corollary 2.8 (Porosity). Let u ∈ SBVloc(X) be a minimizer. There exists
0 < r0 ≤ 1 and C ≥ 1 (both depending on n,δ) for which the following holds
true. For all x ∈ K and all 0 < r ≤ r0 such that B(x, 2r) ⊂ X, there exists
y ∈ K ∩ B(x, r) such that K is regular in B := B(y, C−1r). Moreover, we
can assume that

sup
B\K
|∇u|2 ≤ Cr−1. (52)

Proof. The letter C is a constant ≥ 1 that depends on n, δ. For y ∈ K and
t > 0 such that B(y, t) ⊂ X, we define

β(y, t) = inf
V

sup
z∈K∩B(y,t)

t−1 d(z, V ) (53)

where the infimum is taken over the set of all affine hyperplanes V of Rn.
Observe that

β2(y, t)2 ≤ r−(n−1)Hn−1(K ∩B(y, t))β(y, t)2 (54)

so as soon as t is small enough for the Ahlfors-regularity, we have β2(y, t) ≤
Cβ(y, t).

Let r0 be the minimum between 1, the radius of Proposition 2.2 (Ahfors-
regularity) and the radius of Proposition 2.4 (uniform rectifiability). We fix
x ∈ K and 0 < r ≤ r0 such that B(x, 2r) ⊂ X. According to Proposition
2.4, there exists an Ahlfors-regular and uniformly rectifiable set E such that
K ∩ B(x, r) ⊂ E. Moreover, the constants for the Ahfors-regularity and
uniform rectifiability depends on n, δ. For y ∈ E and t > 0, we define as
before

βE(y, t) = inf
V

sup
z∈E∩B(y,t)

t−1 d(z, π) (55)

where the infimum is taken on the set of all affine hyperplanes V of Rn. The
key property of βE is that, according to [4, Theorem 73.11], for all ε > 0,
the set

{ (y, t) | y ∈ E, 0 < t < diam(E), βE(y, t) > ε } (56)
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is a Carleson set. This means that for all ε > 0, there exists C0(ε) ≥ 1
(depending on n, δ, ε) such that for all y ∈ E and all 0 < t < diam(E),

ˆ t

0

ˆ
E∩B(y,t)

1{βE(z,s)>ε }(z) dHn−1(z)
ds

s
≤ C0(ε)tn−1. (57)

In particular,
ˆ r

0

ˆ
K∩B(x,r)

1{β(z,s)>ε }(z) dHn−1(z)
ds

s
≤ C0(ε)rn−1. (58)

We are going to deduce that for all ε > 0, there exists C(ε) ≥ 1, a point
y ∈ K ∩ B(x, r) and a radius t such that C(ε)−1r ≤ t ≤ r and β(y, t) < ε.
We proceed by contradiction for some C(ε) to be precised. We get

ˆ r

0

ˆ
K∩B(x,r)

1{β(z,s)>ε }(z) dHn−1(z)
ds

s

≥ Hn−1(K ∩B(x, r))

ˆ r

C(ε)−1r

ds

s

(59)

≥ Hn−1(K ∩B(x, r)) ln(C(ε)) (60)

≥ C−1rn−1 ln(C(ε)) (61)

and this contradicts (58) if C(ε) is too big compared to C0(ε).
Now, we assume that we have such a pair (y, t) for a certain ε. In

particular, β2(y, t) ≤ Cβ(y, t) ≤ Cε. We also assume that r0 ≤ ε. According
to the second statement of Theorem 2.6, we can choose ε (depending on n,
δ) so that K is regular in B := B(y, C−1t). Then K ∩ B is given by a pair
of graphs Γ1∪Γ2 and B can be divided in two or three open sets: one where
u = 0 and one or two where u > 0 and satisifes an elliptic equation with
Robin boundary conditions on Γi. Using Appendix B, and more precisely
(166), we deduce that for all z in

(
1
4B
)
\K,

|∇u(z)|2 ≤ C
 
B
|∇u|2 dLn + C|u|2∞. (62)

Remember that by Ahlfors-regularity (Proposition 2.2), we have
 
B
|∇u|2 dLn ≤ Ct−1. (63)

By definition of minimizers and since 0 < t ≤ 1, we also have trivially
|u|2∞ ≤ C ≤ Ct−1. We conclude that for z ∈

(
1
4B
)
\K,

|∇u(z)|2 ≤ Ct−1. (64)

The conclusion of the Lemma holds true for the ball 1
4B.
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3 Higher integrability of the gradient

Theorem 3.1. Let u ∈ SBV(X) be minimal. There exists p > 1 such that
|∇u|2 ∈ Lploc(X).

Our proof follows the ideas [5]. We present them below. Let B be a
(small) open ball of radius R such that B ⊂ X. For γ > 1, we observe thatˆ

B
|∇u|2γ dLn =

ˆ ∞
0
Ln(B ∩ { |∇u|2γ > t }) dt (65)

= γR−γ
ˆ ∞

0
sγ−1Ln(B ∩ { |∇u|2 > sR−1 }) ds (66)

and for M ≥ 1,

γR−γ
ˆ ∞

1
sγ−1Ln(B ∩ { |∇u|2 > sR−1 }) ds

≤ γR−γ
∞∑
h=0

ˆ Mh+1

Mh

sγ−1Ln(B ∩ { |∇u|2 > sR−1 }) ds

(67)

≤ γR−γ
∞∑
h=0

(ˆ Mh+1

Mh

sγ−1 ds

)
Ln(B ∩ { |∇u|2 > MhR−1 }) (68)

≤ (Mγ − 1)R−γ
∞∑
h=1

MhγLn(B ∩ { |∇u|2 > MhR−1 }). (69)

We are going to prove that there exists M ≥ 1, α > 0 and C ≥ 1 such that
for all h ∈ N,

Ln(B ∩ { |∇u|2 > MhR−1 }) ≤ CRnM−h(1+α) (70)

and then take γ = 1 + 1
2α.

We start with a covering Lemma. When we are given a point xk ∈ Rn

and a vector n ∈ Sn−1, we define

H = {h ∈ Rn | h · n = 0 } (71)

and we decompose each point y ∈ Rn under the form y = xk + (y′ + ynn)
where y′ ∈ H and yn ∈ R.

Lemma 3.2 (Covering Lemma). Let E ⊂ Rn be a bounded set. Let (Bk) be
a family of open balls such that

1. for each k 6= l, 2Bk ∩Bl = ∅;

2. for each k, the ball Bk is centered at a point xk ∈ E and for all x ∈ 2Bk,
there exists a vector n ∈ Sn−1 and a 1

4 -Lipschitz function f : H → R
such that f(0) = 0 and

x ∈ { y ∈ 2Bk | yn = fi(y
′) } ⊂ E (72)
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Let 0 < r ≤ infk radius(Bk). There exists a sequence of open balls (Di)i∈I of
radius r and centered in E \

⋃
k Bk such that

E \
⋃
k

Bk ⊂
⋃
i∈I

Di (73)

and the balls (12−1Di)i∈I are pairwise disjoint and disjoint from
⋃
k Bk.

Proof. Let 0 < r0 ≤ infk radius(Bk). We define

F := E \
⋃
k

Bk. (74)

The goal is to cover F with a controlled number of balls of radius r0. We
will in fact work with a radius 0 < r ≤ r0 which will be precised during the
proof. As F is bounded, there exists a maximal sequence of points (xi) ∈ F
such that B(xi, r) ⊂ Rn \

⋃
k Bk and |xi − xj | ≥ r. For i 6= j, we have

|xi − xj | ≥ r so the balls (B(xi,
1
2r))i are disjoint.

Next, we show that
F ⊂

⋃
i

B(xi, 6r). (75)

Let x ∈ F . If B(x, r) ⊂ Rn\
⋃
k Bk, then by maximality of (xi), there exists i

such that |x− xi| < r. We now focus on the case where there exists an index
k such that B(x, r)∩Bk. Let us write Bk = B(x0, R). As x ∈ F = E\

⋃
k Bk

and B(x, r) ∩ B(x0, R) 6= ∅, we have R < |x− x0| < R + r. We are going
to justify that there exists y ∈ K such that R + r < |y − x0| < R + 3r and
|x− y| < 5r. As r ≤ R, we have x ∈ B(x0, 2R). According to the assuptions
of the Lemma, there exists a vector n ∈ Sn−1 and a 1

4 -Lipschitz function
f : H → R such that f(0) = 0 and

x ∈ { y ∈ B(x0, 2R) | yn = f(y′) } ⊂ E. (76)

The estimate R < |x− x0| < R+ r can be rewritten

R <
∣∣x′ + f(x′)n

∣∣ < R+ r. (77)

Then we are looking for a vector h ∈ H close to x′ such that

R+ r < |h+ f(h)n| < R+ 3r. (78)

As limt→+∞ |tx′ + f(x′)n| = ∞, there exists t ≥ 1 such that the vector
h := tx′ satisfies |h+ f(x′)n| = R + 2r. We estimate how close h is to x′.
As h = tx′ with t ≥ 1, we have the identity

∣∣h− x′∣∣ =
|h|2 − |x′|2

|h|+ |x′|
≤ |h|

2 − |x′|2

2|x′|
. (79)
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We compute

|h|2 −
∣∣x′∣∣2 =

∣∣∣∣∣h+ f(x′)n
∣∣2 − ∣∣x′ + f(x′)n

∣∣2∣∣∣ (80)

≤ (R+ 2r)2 −R2 (81)

≤ 4rR
(

1 +
r

R

)
. (82)

Let ε be the Lipschitz constant of f . We have |f(x′)| ≤ ε|x′| so the inequality
|x′ + f(x′)n| ≥ R implies |x′| ≥ (1 + ε2)−

1
2R. We conclude that∣∣h− x′∣∣ ≤ 2r(1 + ε2)
1
2

(
1 +

r

R

)
. (83)

We assume that r ≤ 1
2R and we use ε ≤ 1

4 to finally obtain |h− x′| < 4r.
We have estimated how close h is to x′. We then estimate∣∣(h+ f(h)n)− (h+ f(x′)n)

∣∣ =
∣∣f(h)− f(x′)

∣∣ (84)
≤ ε
∣∣h− x′∣∣ (85)

< r (86)

and since |h+ f(x′)n| = R + 2r, this yields R + r < |h+ f(h)| < R + 3r.
Similarly, we estimate∣∣(h+ f(h)n)− (x′ + f(x′)n)

∣∣ ≤ (1 + ε)
∣∣h− x′∣∣ (87)

< 5r. (88)

In conclusion we define y := x0 + h + f(h)n and we have |y − x| < 5r
and R + r < |y − x0| < R + 3r as promised. We assume r ≤ 1

3R so that
y ∈ B(x0, 2R) and thus y ∈ E. We are going to justify that B(y, r) ⊂
Rn \

⋃
k Bk. We recall that B(x0, 2R) is disjoint from all the other balls of

the family (Bk). We observe first that

B(y, r) ⊂ B(x0, R+ 4r) \B(x0, R) (89)

and then we assume r ≤ 1
4R so that B(y, r) ⊂ B(x0, 2R) \ B(x0, R). Our

claim follows. By maximality of the family (xi), there exists i such that
|y − xi| < r and thus |x− xi| < 6r. We finally choose r = 1

6r0. As r0 ≤
infk radius(Bk), we have all the required bounds on r and F ⊂

⋃
iB(xi, 6r) ⊂⋃

iB(xi, r0). The balls (Di) are Di = B(xi, r0).

Proof of Theorem 3.1. We define A as the set of all open balls B centered
in K such that 2B ⊂ X and K is regular in 2B. We fix a point x0 ∈ K. To
simplify the notations, we assume x0 = 0. There exists a radius R > 0 and
constants C0, C1 ≥ 1 such that B(0, 4R) ⊂ X and
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(i) for all x ∈ B(0, 2R), for all 0 < r ≤ 2R,
ˆ
B(x,r)

|∇u|2 dLn +Hn−1(K ∩B(x, r)) ≤ C0r
n−1; (90)

(ii) for all x ∈ K ∩B(0, 2R), for all 0 < r ≤ 2R,

Hn−1(K ∩B(x, r)) ≥ C−1
0 rn−1. (91)

(iii) for all x ∈ K ∩ B(0, 2R), for all 0 < r ≤ 2R, there exists B ∈ A of
radius C−1

1 r such that 24B ⊂ B(x, r) and

sup
2B
|∇u|2 ≤ C1r

−1. (92)

Note that C0, C1 depends on n, δ. The two first properties are referred to as
Ahlfors-regularity. The third property is referred to as the porosity.

We consider M = max { 4C0, C0C1 } and we define for h ∈ N,

Ah := {x ∈ B(0, 1
4R) \K | |∇u|2 > MhR−1 } . (93)

Our goal is to show that there exists C ≥ 1 and α > 0 (both depending on
n, δ) such that for h ≥ 1,

Ln(Ah) ≤ CRnM−(1+α)h. (94)

The proof is based on the fact that Ah is at distance ∼ M−hR from K
and has many holes of size ∼ M−hR near K. We justify more precisely
these observations. Let x ∈ Ah and assume that B(x,C0M

−hR) is disjoint
from K. We use the subharmonicity of |∇u|2 and the Ahfors-regularity to
estimate

|∇u|(x)2 ≤
 
B(x,C0M−hR)

|∇u|2 dLn (95)

≤MhR−1. (96)

This contradicts the definition of Ah. We deduce that there exists y ∈ K
such that |x− y| < C0M

−hR. For our next observation, we consider a
point x ∈ K ∩ B(0, 2R) and we apply the porosity property to the ball
B(x,C1M

−hR). We obtain an open ball B ∈ A of radius M−hR such that
24B ⊂ B(x, r) and

sup
2B
|∇u|2 ≤MhR−1. (97)

In particular, 2B is disjoint from Ah.
We start the proof by defining for h ≥ 1,

rh = M−hR (98)

Rh = (1
2 +M−h+1)R. (99)
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The sequence (Rh)h is decreasing, we have R1 < 2R, limh→∞Rh = 1
2 and

Rh+1 + rh ≤ Rh. For each h ≥ 1, we build an index set I(h) and a family
of balls αh = (Bi)i∈I(h) ∈ A as follow. First we define I(1) = ∅ and α1 = ∅.
Let h ≥ 2 be such that α1, . . . , αh−1 have been built. We assume that the
index sets I(g), where g = 1, . . . , h−1, are pairwise disjoint. We also assume
that for all i ∈ Ig, the balls Bi have radius C−1

1 rg and that for all indices
i, j ∈

⋃h−1
g=1 I(g) with i 6= j, 2Bi ∩Bj = ∅. Then, we introduce the sets

Kh := K ∩B(0, Rh) \
h−1⋃
g=1

⋃
i∈I(g)

Bi (100)

K∗h := K ∩B(0, Rh+1) \
h−1⋃
g=1

⋃
i∈I(g)

Bi. (101)

According to Lemma 3.2, there exists a sequence of open balls (Di)i∈I(h)

centered in K∗h of radius rh such that

K∗h ⊂
⋃

i∈I(h)

Di, (102)

and such that the balls (12−1Di) are pairwise disjoint and disjoint from⋃h−1
g=1

⋃
i∈I(g)Bi. We can assume that index set I(h) is disjoint from the sets

I(g), g = 1, . . . , h − 1. Since Rh+1 + rh ≤ Rh, we observe that the balls
(12−1Di) are included in

B(0, Rh) \
h−1⋃
g=1

⋃
i∈I(g)

Bi. (103)

Next, we apply the porosity to the balls (Di). For each i ∈ I(h), there exists
Bi ∈ A of radius C−1

1 rh such that Bi ⊂ 24−1Di and

sup
2Bi

|∇u|2 ≤ C1r
−1
h . (104)

We finally define αh = (Bi)i∈I(h). We should not forget to mention that for
all i ∈ I(h), we have 2Bi ⊂ 12−1Di so 2Bi is disjoint from all the other balls
we have built so far.

Now, we estimate Ln(Ah) for h ≥ 1. We recall that we have taken
M = max { 4C0, C0C1 }. We show first that the points of Ah cannot be too
far from K∗h. Let x ∈ Ah. We have seen earlier that there exists y ∈ K
such that |x− y| < C0M

−hR. We are going to show that y ∈ K∗h. Since
|x| ≤ 1

4R, we have
|y| ≤ 1

4R+ C0M
−hR ≤ 1

2R. (105)
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Let us assume that there exists g = 1, . . . , h−1 and i ∈ I(g) such that y ∈ Bi.
The radius of Bi is C−1

1 rg ≥ C−1
1 M−(h−1)R and since |x− y| < C0M

−hR,
we have x ∈ 2Bi. Then by construction,

sup
2Bi

|∇u|2 ≤ C1r
−1
g ≤ C1M

h−1R−1 (106)

and this contradicts the fact that x ∈ Ah. We have shown that y ∈ K∗h. As a
consequence, there exists i ∈ I(h) such that y ∈ Di. As radius(Di) = M−hR
and |x− y| < C0M

−hR, we deduce finally that

Ah ⊂
⋃

i∈I(h)

(1 + C0)Di. (107)

This allows to estimate Ln(Ah):

Ln(Ah) ≤ ωn(1 + C0)n|I(h)|rnh (108)

where ωn is the Lebesgue measure of the unit ball.
We want to estimate |I(h)|. The balls (12−1Di)i∈I(h) are disjoint and

included in the set B(0, Rh) \
⋃h−1
g=2

⋃
i∈I(g)Bi so by Ahlfors-regulary,

C−1
0 12−(n−1)r

(n−1)
h |I(h)| ≤

∑
i∈I(h)

Hn−1(K ∩ 12−1Di) (109)

≤ Hn−1(Kh). (110)

We are going to see thatHn−1(Kh) is bounded from above by a decreasing
geometric sequence. We have

Hn−1(K∗h) ≤
∑
i∈I(h)

Hn−1(K ∩Di) (111)

≤ C0

∑
i∈I(h)

rn−1
h (112)

≤ C0C
n−1
1

∑
i∈I(h)

(C1rh)n−1 (113)

≤ C2
0C

n−1
1

∑
i∈I(h)

Hn−1(K ∩Bi) (114)

≤ C3Hn−1(Kh \Kh+1). (115)

where C3 = C2
0C
−(n−1)
1 . We deduce

Hn−1(Kh) ≤ C3Hn−1(Kh \Kh+1) +Hn−1(K ∩BRh
\BRh+1

). (116)

We rewrite this inequality as

Hn−1(Kh+1) ≤ λHn−1(Kh) + C−1
3 H

n−1(K ∩BRh
\BRh+1

) (117)
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where λ = C−1
3 (C3 − 1). Then, we multiply both sides of the inequality by

λ−h+1:

λ−(h+1)Hn−1(Kh+1)

≤ λ−hHn−1(Kh) + C−1
3 λ−hHn−1(K ∩BRh

\BRh+1
)

(118)

≤ λ−hHn−1(Kh) +Hn−1(K ∩BRh
\BRh+1

). (119)

Summing this telescopic inequality, we obtain that for all h ≥ 1,

λ−hHn−1(Kh) ≤ 2Hn−1(K ∩B(0, 2R)) (120)

≤ 2nC0R
n−1. (121)

In summary, we have proved that some constant C ≥ 1 (depending on n, δ)
and for h ≥ 1

Ln(Ah) ≤ CRn−1rhλ
h (122)

≤ CRn(λM−1)h. (123)

As 0 < λ < 1 and M > 1, there exists α > 0 such that λ = M−α.

4 Dimension of the singular set

The Hausdorff dimension of a set A ⊂ Rn is defined by

dimH(A) = inf { s ≥ 0 | Hs(A) = 0 } . (124)

We take the convention that for s < 0, the termHs-almost-everywhere means
everywhere and the inequality dimH(A) < 0 means A = ∅. As usual, we work
in an open set X ⊂ Rn.

4.1 Generalities about the density of Lploc functions

Lemma 4.1. Let µ be a Radon measure in X such that µ is dominated by
Ln and let s < n. Then for Hs-a.e. x ∈ X, we have

lim
r→0

r−sµ(B(x, r)) = 0. (125)

Proof. If s < 0, the limit is indeed 0 for every x ∈ X. We assume 0 ≤ s < n.
We fix a closed ball B ⊂ X, a scalar λ > 0 and a set

A = {x ∈ B | lim sup
r→0

r−sµ(B(x, r)) > λ } . (126)

According to [1, Theorem 2.56],

µ(A) ≥ λHs(A). (127)
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As A ⊂ B and µ is a Radon measure, we have µ(A) <∞. Then (127) gives
Hs(A) < ∞ and since s < n, Ln(A) = 0. The measure µ is dominated by
Ln so µ(A) = 0 and now (127) gives Hs(A) = 0. We can take a sequence of
scalars λk → 0 to deduce

Hs({x ∈ B | lim sup
r→0

r−sµ(B(x, r)) > 0 }) = 0. (128)

We can then conclude that

Hs({x ∈ X | lim sup
r→0

r−sµ(B(x, r)) > 0 }) = 0. (129)

by covering X with a a sequence of closed balls Bk ⊂ X.

The previous Lemma can be restated as follow: for v ∈ L1
loc, for s < n

and for Hs-a.e. x ∈ X,

lim
r→0

r−s
ˆ
B(x,r)

v dLn = 0 (130)

We are going to see that we have an improvement when v has a higher
integrability.

Corollary 4.2. Let v ∈ Lploc(X) for some p ≥ 1 and let s < n. Then, for
Hn−p(n−s)-a.e. x ∈ X,

lim
r→0

r−s
ˆ
B(x,r)

v dLn = 0. (131)

Proof. Without loss of generality, we assume v ≥ 0. Let us fix t < n. For
x ∈ X and for r > 0, the Hölder inequality shows that

r
−(n−n

p
)
ˆ
B(x,r)

v dLn ≤

(ˆ
B(x,r)

vp dLn
) 1

p

(132)

so

r
−(n+ t

p
−n

p
)
ˆ
B(x,r)

v dLn ≤

(
r−t

ˆ
B(x,r)

vp dLn
) 1

p

. (133)

We apply Lemma 4.1 and we see that for Ht-a.e. x ∈ X,

lim
r→0

r
−(n+ t

p
−n

p
)
ˆ
B(x,r)

v dLn = 0. (134)

The scalar t such that s = n+ t
p −

n
p is t = n− p(n− s) < n.
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4.2 Dimension of the singular set

Theorem 4.3. Let u ∈ SBVloc(X) be a minimizer. We define

Σ = {x ∈ K | K is not regular at x } . (135)

For p > 1 such that |∇u|2 ∈ Lploc(X), we have

dimH(Σ) ≤ max {n− p, n− 8 } < n− 1. (136)

Proof. According to Corollary 4.2, we have for Hn−p-a.e. x ∈ X,

lim
r→0

ω2(x, r) = 0 (137)

and according to [3, Theorem 8.2], the set{
x ∈ X ∩ Σ

∣∣∣ lim
r→0

ω2(x, r) = 0
}

(138)

has a Hausdorff dimension ≤ n− 8.

Remark 4.4. It is in conjectured in [3] that, in the plane, Σ = ∅.

Appendices

A Generalities about BV functions

We recall a few definitions and results from the theory of BV functions ([1]).
We work in an open set X of the Euclidean space Rn (n > 1). When a point
x ∈ X is given, we abbreviate the open ball B(x, r) as Br.

Let u ∈ L1
loc(X). The upper and lower approximate limit of u at at a

point x ∈ X are defined by

u(x) := inf { t ∈ R | lim
r→0

r−n
ˆ
Br∩{u>t }

(u− t) dLn = 0 } , (139)

u(x) := sup { t ∈ R | lim
r→0

r−n
ˆ
Br∩{u<t }

(t− u) dLn = 0 } . (140)

The functions u, u : X → R are Borel and satisfies u ≤ u. We have two
examples in mind. We say that x is a Lebesgue point if there exists t ∈ R
such that

lim
r→0

 
Br

|u− t| dLn = 0. (141)

We then have u(x) = u(x) = t and we denote t by ũ(x). The set of non-
Lebesgue points x ∈ X is called the singular set Su. Both the set Su and
the function X \ Su → R, x 7→ ũ(x) are Borel ([1, Proposition 3.64]). In
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parenthesis, the Lebesgue differentiation theorem states that for Ln-a.e. x ∈
X, we have x ∈ X \ Su and u(x) = ũ(x). We say that x is a jump point if
there exist two real numbers s < t and a (unique) vector νu(x) ∈ Sn−1 such
that

lim
r→0

 
Br∩H+

|u(y)− s| dLn(y) = 0 (142a)

lim
r→0

 
Br∩H−

|u(y)− t| dLn(y) = 0, (142b)

where

H+ = { y ∈ Rn | (y − x) · νu(x) > 0 } (143a)
H− = { y ∈ Rn | (y − x) · νu(x) < 0 } . (143b)

We then have u(x) = t and u(x) = s. The set of jump points x ∈ X is called
the jump set Ju. Both the set Ju and the function Ju → Sn−1, x 7→ νu(x)
are Borel ([1, Proposition 3.69]).

Here we summarize [1, Proposition 3.76, 3.78]). Let u ∈ BV (X). The
singular set Su is Hn−1 rectifiable and Hn−1(Su \ Ju) = 0. According to the
Besicovitch derivation theorem, we can write

Du = Dau+Dsu (144)

where Dau is the absolutely continuous part of Du with respect to Ln and
Dsu is the singular part of Du with respect to Ln. As a consequence, there
exists a unique vector-valued map ∇u ∈ L1(X;Rn), the approximate gra-
dient, such that Dau = ∇uLn. The measures Ln and ‖Dsu‖ are mutually
singular which means that there exists a Borel set S ⊂ X such that

Ln(S) = ‖Dsu‖(Rn \ S) = 0. (145)

A candidate for S could be Su but S may not be a (n− 1) dimensional set.
We can write

Dsu = Dus Su +Dsu (X \ Su) (146)

where Dsu Su is the jump part and Dsu (X \ Su) is the Cantor part. The
jump part has an explicit formula,

Dsu Su = (u− u)νuHn−1 Ju, (147)

whereas the Cantor part vanishes on Hn−1 σ-finite sets B ⊂ X (and not
only B = Su). Remark that Du always vanishes on Hn−1 negligible sets.
Finally, we define SBV(X) as the subspace of functions u ∈ BV(X) whose
Cantor part is zero, that is

‖Dsu‖(X \ Su) = 0. (148)
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For u ∈ BV(X) to be SBV, it suffices that there exists a Hn−1 σ-finite
set K ⊂ X such that ‖Dsu‖(X \K) = 0. Since ‖Dsu‖ and Ln are mutually
singular, this also amounts to say the measure ‖Du‖ (X \K) is dominated
by Ln. A natural way to build SBV(X) functions is to have a pair (u,K)
where K ⊂ X is relatively closed, Hn−1 locally finite and u ∈W 1,1(X \K).

A set of finite perimeter in X is a Borel set E ⊂ X such that 1E ∈
BV(X). The singular set of 1E is called essential boundary or measure-
theoretic boundary and denoted by ∂ME. The jump set of E is denoted
by ∂∗E. One can see that 1E ,1E ∈ { 0, 1 } everywhere on X. Thus, if x
is a Lebesgue point of 1E , we have either limr→0 r

−nLn(Br \ E) = 0 or
limr→0 r

−nLn(Br ∩ E) = 0. The essential boundary ∂ME can be reformu-
lated as the set of points x ∈ X such that

lim sup
r→0

r−nLn(Br \ E) > 0 (149a)

lim sup
r→0

r−nLn(Br ∩ E) > 0. (149b)

Similarly, the jump set ∂∗E can be reformulated as the set of points x ∈ X
for which there exists a (unique) vector nE(x) ∈ Sn−1 such that

lim
r→0

r−nLn(Br ∩ (E∆H+)) = 0 (150)

where
H+ = { y ∈ Rn | (y − x) · nE(x) > 0 } . (151)

The vector nE(x) is called the measure-theoretic inner normal to E at x. We
have the inclusions ∂∗E ⊂ ∂ME ⊂ ∂E. The measure D1E has no absolutely
continuous part, neither Cantor part; it is given by the formula

D1E = nEHn−1 ∂∗E. (152)

B A Robin problem

B.1 Statement

We work in the Euclidean space Rn (n > 1) and we denote by (e1, . . . , en)
its canonical basis. The space {h ∈ Rn | h · en = 0 } is denoted by Rn−1.
Every x ∈ Rn can be written

x = x′ + xnen (153)

where x′ ∈ Rn−1 and xn ∈ R. We fix an open ball B := B(0, R) ⊂ Rn. We
fix a graph Γ passing through the origin: there exists a continuous function
f : Rn−1 ∩B → R such that f(0) = 0 and

Γ = {x ∈ B | xn = f(x′) } . (154)
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We assume that f is C1 in Rn−1 ∩ B so at each point x ∈ Γ, there exists a
normal vector to Γ going upward

ν(x) :=
−∇f(x′) + en√

1 + |∇f(x′)|2
. (155)

We assume that there exists L,L′ > 0 and α > 0 such that for all h ∈
Rn−1 ∩B,

|∇f(x)| ≤ L (156)

and for all h1, h2 ∈ Rn−1 ∩B,

|∇f(h1)−∇f(h2)| ≤ L′
(
|h1 − h2|

R

)α
. (157)

In practice, we may want to assume L small (depending only on n) so that
it is easier to approximate ν(x) by en. We underline that for all x ∈ B,

d(x,Γ) ≤
∣∣xn − f(x′)

∣∣ ≤ (2 + L)d(x,Γ). (158)

Indeed, we observe first that |xn − f(x′)| = |x− (x′ + f(x′)en)| ≥ d(x,Γ).
Next, we see that for any y ∈ Γ,∣∣x− (x′ + f(x′)en)

∣∣ ≤ |x− y|+ ∣∣(x′ + f(x′)en)− (y′ + f(y′)en
∣∣ (159)

≤ (2 + L)|x− y|. (160)

Given a subset S ⊂ B, we define

S+ = {x ∈ S | xn > f(x′) } (161)

S0 = {x ∈ S | xn = f(x′) } . (162)

For u ∈ BV(B+), we denote by u∗ the trace of u in L1(∂B+). It is charac-
terized by the property that for Hn−1-a.e. x0 ∈ ∂B+,

lim
r→0

r−n
ˆ
B+∩Br(x)

|u− u∗(x0)|dLn = 0. (163)

We denote byW 1,2
0 (B+∪B0) the space of functions u ∈W 1,2(B+) such that

u∗ = 0 on ∂B+ \ B0. Our object of study is the functions u ∈ W 1,2(B+) ∩
L∞(B+) such that u is a weak solution of{

∆u = 0 in B+

∂νu− u∗ = 0 in B0,
(164)

that is, for all v ∈W 1,2
0 (B+ ∪B0),

ˆ
B+

〈∇u,∇v〉 dLn +

ˆ
B0

u∗v∗ dHn−1 = 0. (165)
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According to Weyl’s lemma, u coincide almost-everywhere in B+ with an
harmonic functions. We replace u by this harmonic representative so that
u is pointwise defined and smooth in B+. Our goal is to prove that there
exists C ≥ 1 (depending on n, α, L, L′) such that for all x ∈ (1

4B)+,

|∇u(x)| ≤ C
( 

B
|∇u|2 dLn

) 1
2

+ C|u|∞. (166)

This will be a consequence of Proposition B.4 and Proposition B.5.
We rely on [8, Theorem 1.2] which establishes that viscosity solutions of

such problem are pointwise C1,α up to the boundary. The viscosity approach
is based on the maximum principle but it is easy to prove a maximum prin-
ciple for the weak solutions of our problem. We can thus follow the ideas of
[8].

We state below our maximum principle.

Lemma B.1 (Maximum principle). Let u ∈ W 1,2(B+) be a weak solution
of {

∆u ≥ 0 in B+

∂νu− u∗ ≥ 0 in B0,
(167)

that is, for all non-negative function v ∈W 1,2
0 (B+ ∪B0),

ˆ
B+

〈∇u,∇v〉dLn +

ˆ
B0

u∗v∗ dHn−1 ≤ 0. (168)

If u∗ ≤ 0 on ∂B+ \B0, then u ≤ 0 on B+.

Proof. Let u ∈ W 1,2(B) and let u+ = p(u) where p : R → [0,∞[ is the or-
thogonal projection onto [0,∞[. According to the chain rule, u+ ∈W 1,2(B+)
and for Ln-a.e. x ∈ B,

∇u+(x) =

{
∇u(x) if u(x) > 0

0 if u(x) = 0.
(169)

One can also see that (u+)∗ = p(u∗) using the characterization (163) and
the fact that p is Lipschitz. Now, we assume that u is a weak solution of
(167) and that u∗ ≤ 0 on ∂B+ \B0. We have u+ ∈W 1,2

0 (B+) so (168) gives
ˆ
B+

〈∇u,∇u+〉dLn +

ˆ
B0

u∗u∗+ dHn−1 ≤ 0. (170)

As u∗u∗+ = (u∗+)2 and 〈∇u,∇u+〉 = |∇u+|2, we conclude that u+ = 0 on
B+.
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B.2 Hölder continuity up to the boundary

We aim to prove the following result. We recall that the letter B stands for
B(0, R).

Proposition B.2 (Hölder continuity). Let u ∈ W 1,2(B+) ∩ L∞(B+) be a
weak solution of (164). There exists constants C ≥ 1 (depending on n, α, L,
L′) and β > 0 (depending on n) such that for all x, y ∈ B+,

|u(x)− u(y)| ≤ C|u|∞
(
|x− y|
r

)β
. (171)

here r = min { d(x,Rn \B), d(y,Rn \B) }.

We need a weak harnack inequality at the boundary.

Lemma B.3 (Weak Harnack Inequality). Assume that L is small enough
(depending on n). Let u ∈W 1,2(B+) be a non-negative weak solution of{

∆u = 0 in B+

∂νu− u∗ = 0 in B0.
(172)

Then there exists a constant C ≥ 1 (depending on n) such that

u(1
2Ren) ≤ C inf {u(z) | z ∈ B(0, 1

4R)+ } . (173)

Proof. For all x′ ∈ Rn−1 such that |x′i| ≤ 1
2R, we have∣∣f(x′)

∣∣ ≤ ∣∣f(x′)− f(0)
∣∣ (174)

≤ 1
2LR (175)

We define m = −1
2LR so that for all x′ ∈ Rn−1 such that |x′| ≤ 1

2R,

m ≤ f(x′) ≤ m+ LR. (176)

We fix some δ ∈]0, 1
2 [ (it will be precised later and depends only on n). We

assume that L ≤ 1
2δ ≤ 1. We introduce the cubes

Q := {x ∈ Rn |
∣∣x′∣∣ ≤ 1

2R, m ≤ xn ≤ m+ δR } (177)
Q0 := {x ∈ Rn |

∣∣x′∣∣ ≤ 1
2R, m+ δR ≤ xn ≤ 1

2R } . (178)

and the quantity

A := inf {u(x) |
∣∣x′∣∣ ≤ 1

2R, xn = δR } . (179)

We will work in Q0 to show that supQ0
u ≤ C infQ0 u and then we will work

in Q to show that

A ≤ C inf {u(x) |
∣∣x′∣∣ ≤ 1

4R, f(x′) < xn ≤ δR } . (180)
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Let us focus of Q0. It is clear that Q0 ⊂ B+. In addition, we are going
to see that for x ∈ Q0,

d(x, ∂B+) ≥ min { 1
6δ, (1−

√
2

2 ) }R. (181)

For x ∈ Q0, we have |x′| ≤ 1
2R and |xn| ≤ 1

2R so |x| ≤
√

2
2 R and then

d(x, ∂B) ≥ (1−
√

2
2 )R. We also have by (178) and (176),

xn ≥ m+ δR (182)

≥ f(x′) + δ
2R (183)

so the right hand side of (158) gives

d(x,Γ) ≥ 1

2(2 + L)
δR ≥ 1

6δR. (184)

The inequality (181) allows us to apply the Harnack inequality for harmonic
functions with a controlled constant (remember that δ only depends on n).
There exists C ≥ 1 (depending on n) such that supQ0

u ≤ C infQ0 u. Now, we
focus on Q. To simplify the notations, we change the origin of the coordinate
system so that

Q = {x ∈ Rn |
∣∣x′∣∣ ≤ 1

2R, 0 ≤ xn ≤ δR } . (185)

We are going to build a paraboloid p such that

(i) p ≥ 0 on Q;

(ii) p ≥ 1 on {x ∈ Rn | |x′| = 1
2R, 0 ≤ xn ≤ δR };

(iii) p ≤ 3
4 on K := {x ∈ Rn | |x′| ≤ 1

4R, 0 ≤ xn ≤ δR };

(iv) ∆p ≤ − 1
R2 on Q;

(v) ∂νp ≤ − 1
R on Q0.

Then we will apply the maximum principle to w = u+ Ap− A. Indeed, we
check that {

∆w ≤ 0 in Q+

∂νw − w ≤ 0 in Q0.
(186)

As w ≥ 0 on ∂Q+ \Q0, the maximum principles implies that w ≥ 0 on Q+

and in particular, u ≤ 1
4A on K+. The paraboloid is

p(x) =
1

2
− 1

4

( xn
δR

)
− 1

4

( xn
δR

)2
+

(
2|x′|
R

)2

. (187)

Let us check these properties. It is clear that for x ∈ Q,(
2|x′|
R

)2

≤ p ≤ 1

2
+

(
2|x′|
R

)2

. (188)
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The first three items follow. We compute

∆p = − 1

2(δR)2
+

8(n− 1)

R2
(189)

We take δ small enough (depending on n) so that ∆p ≤ − 1
R2 on Q. For

x ∈ Rn, we have

∇p(x) = − en
4δR

− xnen
2(δR)2

+
8x′

R2
. (190)

so for x ∈ Q0,

∂νp(x) =
1√

1 + |∇f(x′)|2

(
− 1

4δR
− xn

2(δR)2
− 8(x′ · ∇f(x′))

R2

)
. (191)

In addition xn ≥ 0 and |x′| ≤ R
2 so

− 1

4δR
− xn

2(δR)2
− 8(x′ · ∇f(x′))

R2
≤ − 1

4δR
+

4

R

∣∣∇f(x′)
∣∣ (192)

≤ − 1

4δR
+

4

R
. (193)

We take δ small enough (depending on n) so that − 1
4δR + 4

R ≤ −
1
R and we

finally conclude that ∂νp(x) ≤ − 1
R .

We are ready to prove Proposition B.2.

Proof of Proposition B.2. We introduce

∆ := { (x, r) | x ∈ B+ ∪B0, B(x, r) ⊂ B } (194)

and for (x, r) ∈ ∆,

osc(x, r) := sup { |u(z)− u(y)| | y, z ∈ B(x, r)+ } . (195)

We are going to show that there exists 0 < τ < 1 (depending on n, α, L′)
and 0 < λ < 1 (depending on n) such that for all (x, r) ∈ ∆ with r ≤ τR,

osc(x, 1
16r) ≤ λosc(x, r) (196)

We are going to distinguish three cases: the case x ∈ B0, the case B(x, 1
8r)∩

Γ 6= ∅ and the case B(x, 1
8r) ∩ Γ = ∅.

Let (x, r) ∈ ∆ with x ∈ Γ. We restrict the system of equation to the
ball B(x, r) and we make a translation-rotation to assume that x = 0 and
∇f(x′) = 0. For all x′ ∈ Rn−1 such that |x′| ≤ r, we have∣∣∇f(x′)

∣∣ ≤ ∣∣∇f(x′)−∇f(0)
∣∣ (197)

≤ L′
( r
R

)α
. (198)
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There exists 0 < τ < 1 (depending on n, α, L′) such that if r ≤ τR, then
the Lipschitz of f is small enough in Rn−1 ∩ B(0, r) to apply the previous
Lemma. From now on, we assume that r ≤ τR. Let

M = sup {u(z) | z ∈ B(0, r)+ } (199)
m = inf {u(z) | z ∈ B(0, r)+ } (200)

and

M ′ = sup {u(z) | z ∈ B(0, 1
4r)

+ } (201)
m′ = inf {u(z) | z ∈ B(0, 1

4r)
+ } . (202)

We apply Lemma B.3 to M − u and u−m in B(0, r)+ and we obtain that
there exists C ≥ 1 (depending on n) such that

M − u(q) ≤ C(M −M ′) (203)
u(q)−m ≤ C(m′ −m) (204)

where q := 1
2ren. It follows that M −m ≤ C(M −M ′ +m′ −m) and then

M ′ −m′ ≤ λ(M −m) (205)

where λ := C−1(C − 1). This proves that osc(x, 1
4r) ≤ λosc(x, r).

Let (x, r) ∈ ∆ be such that r ≤ τR and such that there exists x∗ ∈
B(x, 1

8r) ∩ Γ. We observe that

B(x, 1
16r) ⊂ B(x∗, (1

8 + 1
16)r). (206)

Then by the previous step

osc(x∗, (1
8 + 1

16)r) ≤ λosc(x∗, 4(1
8 + 1

16)r) (207)
≤ λosc(x∗, (1

2 + 1
4)r) (208)

and

B(x∗, (1
2 + 1

4)r) ⊂ B(x, (1
2 + 1

4 + 1
8)r) (209)

⊂ B(x, r). (210)

This proves that osc(x, 1
16r) ≤ λosc(x, r).

Let (x, r) ∈ ∆ be such that r ≤ τR and B(x, 1
8r)∩Γ = ∅. Then we have

osc(x, 1
16r) ≤ λosc(x,

1
8r) (211)

by reasonning as in the case x ∈ Γ. Here we replace the previous Lemma by
the usual Harnack inequality for harmonic functions.
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We have proved (196) in all cases. We fix x ∈ B+ and we define the
radii r0 := d(x,Rn \ B) and r1 := τr0 ≤ τR. For all 0 < r ≤ r1, we have
osc(x, 1

16r) ≤ λosc(x, r) and it is easy to deduce that for all 0 < r ≤ r1

osc(x, r) ≤
(
r

r1

)β
osc(x, r1) (212)

where β = ln(λ)
ln(16) . This implies that for all y ∈ B(x, r1)+,

|u(y)− u(x)| ≤
(
|y − x|
r1

)β
osc(x, r1) (213)

≤ 2|u|∞
(
|y − x|
r1

)β
. (214)

In fact, this inequality is also true for y ∈ B+ such that |y − x| ≥ r1 because
we always have |u(y)− u(x)| ≤ 2|u|∞. We conclude that for all y ∈ B+,

|u(y)− u(x)| ≤ 2|u|∞τ
−β
(
|y − x|
r0

)β
. (215)

B.3 Gradient estimates

According to [8, Theorem 1.2], the viscosity solutions are pointwise C1,α up
to the boundary. Although we use a weak formulation, the proof also applies
in our case. The proof relies on the maximum principle (as Lemma B.1), the
Hölder continuity (as Proposition B.2) and regularity results for solutions of
the Neumann problem in a spherical cap. We extract an estimate that is
useful for our paper. We recall that the letter B stands for B(0, R).

Proposition B.4 (Partial Schauder Estimate). Let u ∈W 1,2(B+)∩L∞(B+)
be a weak solution of (164). Then there exists C ≥ 1 (depending on n, α, L,
L′) such that for all x ∈ (1

4B)+,

|∇u(x)| ≤ C

R
osc(u) + C|u|∞. (216)

where osc(u) = sup { |u(x)− u(y)| | x, y ∈ (1
2B)+ }.

Proof. The letter C is a constant ≥ 1 that depends on n, α, L, L′. We fix
any x0 ∈ B+. The function v = u−u(x0) is a weak solution of the Neumann
problem {

∆v = 0 in (1
2B)+

∂νv = u∗ in (1
2B)0.

(217)
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We have restricted the equation to 1
2B so that the function u∗ is Cβ for some

β > 0. More precisely, |u∗|∞ ≤ |u|∞ and according to Lemma B.2, there
exists β > 0 (depending on n) such that for all x, y ∈ (1

2B)0,

|u∗(x)− u∗(y)| ≤ C|u|∞
(
|x− y|
R

)β
. (218)

Then we apply the scaled version of [8, Theorem 1.2] and we obtain that for
x ∈ (1

4B)+,

|∇v(x)| ≤ C

R
(|v|∞ +R|u|∞) (219)

This last result helps to estimate the oscillations of u.

Proposition B.5 (Local Boundedness). Let u ∈W 1,2(B+) ∩ L∞(B+) be a
weak solution of (164). Then there exists C ≥ 1 (depending on n,α,L,L′)
such that

osc(u) ≤ CR
( 

B
|∇u|2 dLn

) 1
2

+ CR|u|∞. (220)

where osc(u) = sup { |u(x)− u(y)| | x, y ∈ (1
2B)+ }.

Proof. The letter C is a constant ≥ 1 that depends on n, α, L, L′. Let m be
the average value of u on B+. The function v := u −m is a weak solution
of the Neumann problem {

∆v = 0 in B+

∂νv = u∗ in B0.
(221)

We apply a local boundedness estimate for weak solutions of Neumann prob-
lems ([6, Theorem 1.6 and Remark 1.12]): for all x ∈ (1

2B)+

|v(x)| ≤ C
( 

B
|v|2 dLn

) 1
2

+ CR|u|∞. (222)

The triangular inequality show that

osc(u) ≤ 2 sup { |v(x)| | x ∈
(

1
2B
)+ } (223)

and the Poincaré inequality gives( 
B
|v|2 dLn

) 1
2

≤ CR
( 

B
|∇u|2 dLn

) 1
2

. (224)
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C Extracts from [4]

We extract some important results of [4]. We work in an open set X of the
Euclidean space Rn (n > 1) and we fix a triple of parameters P = (r0, a,M)
composed of r0 > 0, a ≥ 0 andM ≥ 1. We start by summarizing Definitions
2.1 (admissible pairs), 7.2 (competitors), 7.21 (local quasiminimizers) and
8.24 (coral pairs).

Definition C.1. The set of admissible pairs A is the set of all pairs (u,K)
where K ⊂ X is relatively closed in X and u ∈W 1,2

loc (X \K). Let (u,K) be
an admissible pair and let B be an open ball such that B ⊂ X. A competitor
of (u,K) in B is a pair (v, L) ∈ A such that K \ B = L \ B and u = v Ln
a.e. on X \ (K ∪B). In this case, we set

E(u) =

ˆ
B
|∇u|2 dLn, E(v) =

ˆ
B
|∇v|2 (225)

and
∆E = max { (E(v)− E(u)),M(E(v)− E(u)) } . (226)

We say that (u,K) is a local P-quasiminimizer in X if for all open balls
B of radius 0 < r < r0 such that B ⊂ X, for all competitors (v, L) of (u,K)
in B, we have

Hn−1(K \ L) ≤MHn−1(L \K) + ∆E + arn−1. (227)

In addition, we say that (u,K) is coral if K = spt(Hn−1 K) in X. This
means that for all x ∈ K and all r > 0, Hn−1(K ∩B(x, r)) > 0.

Remark C.2. If (u,K) is a quasiminimizer, we can see easily that K is Hn−1

locally finite. For all open ball B of radius r < r0 such that B ⊂ X, we
consider the competitor

v =

{
u in X \B
0 in B

(228)

and L = (K \B) ∪ ∂B. In particular, we have K \ L ⊂ B, L \K ⊂ ∂B and
∆E ≤ −M

´
B|∇u|

2. This proves that Hn−1(K ∩B) <∞ (and even better).
For all competitors (v, L) of (u,K), we have either Hn−1(L \ K) = ∞

and thus (227) says nothing or Hn−1(K \L) <∞ and thus L is Hn−1 locally
finite. In conclusion, we can always assume that L is Hn−1 locally finite.

We are mainly concerned about Ahlfors-regularity (Definition 18.9) and
uniform rectifiability (Section 73).

Definition C.3 (Ahlfors-regularity). A closed set E ⊂ Rn is Ahlfors-regular
of dimension n − 1 if there exists a constant C ≥ 1 such that for all x ∈ E
and for all 0 < r < diam(E)

C−1rn−1Hn−1(E ∩B(x, r)) ≤ Crn−1. (229)
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We don’t give definitions of uniform rectifiability since there are too many
and rich. These definitions are all equivalent for closed, Ahlfors-regular sets.
The reader can find a survey of uniform rectifiability in [4, Section 73] and
also on Guy David’s webpage (Notes-Parkcity.dvi).

Next, we summarize Definition 18.14 (TRLQ class), Section 72 and Sec-
tion 74. It says that quasiminimizers are locally Ahlfors-regular and locally
contained in a uniformly rectifiable set. In fact, we have already seen the
first item in Remark C.2.

Theorem C.4. Let P = (r0, a,M) be a triple of parameters composed of
r0 > 0, a ≥ 0 and M ≥ 1. Assume that a is small enough (depending on n,
M). Let (u,K) be a coral local P-quasiminimizer in X.

1. For all x ∈ X, for all 0 < r < r0 such that B(x, r) ⊂ X,

Hn−1(K ∩B(x, r)) ≤ Crn−1. (230)

where C ≥ 1 depends on n, M .

2. For all x ∈ K, for all 0 < r < r0 such that B(x, r) ⊂ X,

Hn−1(K ∩B(x, r)) ≥ C−1rn−1. (231)

where C ≥ 1 depends on n, M .

3. For all x ∈ K and 0 < r < r0 such that B(x, 2r) ⊂ X, there is a
closed, Ahlfors-regular, uniformly rectifiable set E of dimension (n−1)
such that K ∩ B(x, r) ⊂ E. The constants for the Ahfors-regularity
and uniform rectifiability depends on n, M and a.

Remark C.5. One can observe that (227) implies

Hn−1(K ∩B) ≤MHn−1(L ∩B) + ∆E + arn−1. (232)

This is equivalent when M = 1 but strictly weaker when M > 1. We claim
that (C.4) still holds with (232) in place of (227). The first item is easy (see
Remark C.2). The second item works as usual. The most critical point is
probably the third item. In Section 74, David builds a suitable competitor
(w,G) of (u,K) in a ball B. The set G is of the form G = (K \ B) ∪ Z
where Z a special subset of ∂B containing K ∩ ∂B. The quasi-minimality
condition (C.4) is used only once at line (22) of Section 74. Then David uses
the inequalities

Hn−1(K \G) ≥ Hn−1(K ∩B) (233)

Hn−1(G \K) ≤ Hn−1(Z) (234)

but we also have anyway

Hn−1(K ∩B) ≥ Hn−1(K ∩B) (235)

Hn−1(G ∩B) ≤ Hn−1(Z). (236)

32



Acknowledgments

This work was co-funded by the European Regional Development Fund and
the Republic of Cyprus through the Research and Innovation Foundation
(Project: EXCELLENCE/1216/0025).

References

[1] L. Ambrosio; N. Fusco; D. Pallara Functions of bounded variation and
free discontinuity problems. Oxford Mathematical Monographs. The
Clarendon Press, Oxford University Press, New York, 2000. xviii+434
pp. ISBN: 0-19-850245-1

[2] D. Bucur and S. Luckhaus Monotonicity formula and regularity for
general free discontinuity problems. Arch. Ration. Mech. Anal. 211
(2014), no. 2, 489-511.

[3] L. A. Caffarelli and D. Kriventsov A free boundary problem related to
thermal insulation. Comm. Partial Differential Equations 41 (2016),
no. 7, 1149-1182.

[4] G. David Singular sets of minimizers for the Mumford-Shah functional.
Progress in Mathematics, 233. Birkhauser Verlag, Basel, 2005. xiv+581
pp. ISBN: 978-3-7643-7182-1; 3-7643-7182-X

[5] G. De Philippis and A. Figalli Higher integrability for minimizers of
the Mumford-Shah functional. Arch. Ration. Mech. Anal. 213 (2014),
no. 2, 491-502.

[6] S. Kim Note on local boundedness for weak solutions of Neumann
problem for second-order elliptic equations. J. Korean Soc. Ind. Appl.
Math. 19 (2015), no. 2, 189-195.

[7] D. Kriventsov A free boundary problem related to thermal insulation:
flat implies smooth. Calc. Var. Partial Differential Equations 58 (2019),
no. 2, Paper No. 78, 83 pp.

[8] D. Li; K. Zhang Regularity for fully nonlinear elliptic equations with
oblique boundary conditions. (English summary) Arch. Ration. Mech.
Anal. 228 (2018), no. 3, 923-967.

[9] P. Mattila Geometry of sets and measures in Euclidean spaces. (En-
glish summary) Fractals and rectifiability. Cambridge Studies in Ad-
vanced Mathematics, 44. Cambridge University Press, Cambridge,
1995. xii+343 pp.

33



[10] S. Rigot Big pieces of C1,α-graphs for minimizers of the Mumford-
Shah functional. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000),
no. 2, 329-349.

Camille Labourie
University of Cyprus
Department of Mathematics & Statistics
P.O. Box 20537
Nicosia, CY- 1678 CYPRUS
labourie.camille@ucy.ac.cy

Emmanouil Milakis
University of Cyprus
Department of Mathematics & Statistics
P.O. Box 20537
Nicosia, CY- 1678 CYPRUS
emilakis@ucy.ac.cy

34


