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ABSTRACT

One of the main objectives of statistical climatology is to extract relevant information hidden in complex

spatial–temporal climatological datasets. To identify spatial patterns, most well-known statistical techniques

are based on the concept of intra- and intercluster variances (like the k-means algorithm or EOFs). As

analyzing quantitative extremes like heavy rainfall has become more and more prevalent for climatologists

and hydrologists during these last decades, finding spatial patterns withmethods based on deviations from the

mean (i.e., variances) may not be the most appropriate strategy in this context of studying such extremes. For

practitioners, simple and fast clustering tools tailored for extremes have been lacking. A possible avenue to

bridging this methodological gap resides in taking advantage of multivariate extreme value theory, a well-

developed research field in probability, and to adapt it to the context of spatial clustering. In this paper,

a novel algorithm based on this plan is proposed and studied. The approach is compared and discussed with

respect to the classical k-means algorithm throughout the analysis of weekly maxima of hourly precipitation

recorded in France (fall season, 92 stations, 1993–2011).

1. Introduction

Clustering algorithms are routinely run to summarize

and visualize important spatial and/or temporal patterns

in the climate sciences. For example, Stefanon et al.

(2012) proposed a method for defining and classifying

heatwave events in the Euro-Mediterranean region. An-

other example corresponds to the use of the k-means al-

gorithm (e.g., Hastie et al. 2009) to provide the different

phases of the North Atlantic Oscillation (NAO; e.g.,

Cassou et al. 2004). The k-means method is based on

the choice of a metric classically related to a Euclidean

(L2) norm (i.e., deviations from the mean behavior like

intra- and intervariances). In a nutshell, the k-means

principle finds clusters such that the variance within

each cluster is minimized. This makes sense for appli-

cations that aim at identifying patterns with respect to

mean behaviors. In particular, it is ideally suited when

the variable of interest follows a mixture of normal

distributions because Gaussian random vectors are fully

characterized by their mean vectors and their covari-

ancematrix (e.g., von Storch and Zwiers 2002). Coming

back to the NAO example, it seems reasonable to im-

plicitly assume that winter monthly sea level pressure

means [the k-means inputs in Cassou et al. (2004)] can

be represented by a mixture of normal distributions. The

central limit theorem (e.g., see p. 35 of von Storch and

Zwiers 2002) ensures the normality of such means within

each weather regime. But other atmospheric variables,

like hourly precipitation amounts, may strongly differ

from being Gaussian or even a Gaussian mixture. Pre-

cipitation intensities take only nonnegative values, their

probability densities are skewed and their extremes may

be heavy tailed (e.g., Katz et al. 2002). In such instances,

it is still possible to implement the k-mean algorithm, but

one can wonder if the clusters are interpretable when

means and variances become ambiguous summaries for

skewed and heavy-tailed probability densities. Does

this imply that clustering algorithms like the k means

should be discarded? If so, what could be a statistically

sound alternative? Answering those types of questions

within the context of analyzing maxima is important

(e.g., Plaut et al. 2001). Shedding light on new spatial or
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temporal patterns for maxima may help the under-

standing of climate extremes, provide useful statistical

tools for impact studies, and also avoid some erroneous

interpretations of extreme event analysis derived from

inappropriate clustering techniques.

The statistical analysis of maxima is based on the well-

developed extreme value theory (EVT; e.g., see Resnick

2007; de Haan and Ferreira 2006; Beirlant et al. 2004;

Coles 2001). This theory indicates that the generalized

extreme value distribution (GEV) represents the ideal

candidate for modeling the marginal distribution of block

maxima (as opposed to the peaks-over-threshold ap-

proach). This probabilistic framework has been applied

in climate studies (e.g., see Kharin et al. 2007). In a spa-

tial context,multivariateEVTalso provides a theoretical

blueprint to represent dependencies among maxima re-

corded at different locations. Coles et al. (1999) give an

overview of such dependence measures. For example, it

is possible to adapt the variogram, a well-known distance

used in geostatistics (e.g., Wackernagel 2003), to EVT.

This special variogram called an F-madogram (see sec-

tion 2 for details) was proposed by Cooley et al. (2006)

and Naveau et al. (2009), who studied a nonparametric

approach for estimating pairwise dependence among

maxima. It was applied to precipitation maxima mea-

sured in Belgium (Vannitsem and Naveau 2007). Those

past studies indicate that it is possible to measure the

distance between two time series of maxima recorded

at two different locations and that this measure, the

F-madogram, is in compliance with EVT and differs

from classical measures of variability like the variance

used in the k-means algorithm.

The aim of the present work is to develop a clustering

algorithm for maxima based on the F-madogram. A

natural strategy could be to simply replace the L2

norm (the variance) in the k-means algorithm by the

F-madogram distance. But in the k-means algorithm,

new centroids at each time step are obtained by aver-

aging the observations within each cluster. Averages

of normally distributed observations remain Gaussian,

but averages of GEV distributed maxima do not stay

GEV distributed. This poses a problem in terms of in-

terpretability within the EVT framework and leads us to

work with the partitioning around medoids (PAM) clus-

tering algorithm proposed by Kaufman and Rousseeuw

(1990). Similar to k means, PAM is a partitioning al-

gorithm that divides datasets into groups and aims at

minimizing an overall distance. Whereas the k-means

algorithm represents each cluster center by its mean,

the PAM algorithm looks for representative objects

(called medoids). This implies that maxima remain

maxima and no smoothing (averaging) is performed

within PAM.

Our paper is organized as follows: section 2 recalls

some theoretical background about bivariate EVT and

makes the necessary links between EVT and the PAM

clustering algorithm. Rainfall maxima over the French

region are spatially clustered in section 3. Section 4 leads

to a discussion.

2. Algorithm description

In terms of notations, the random variable Mi gener-

ically represents weekly maxima of hourly precipitation

located at weather station i. Dividing a region into co-

herent spatial patterns is a classical endeavor in clima-

tology. To be able to cluster points, we need to assess the

strength of the spatial dependence between the maxi-

mum Mi and the maximum Mj (i.e., how to model their

pairwise distribution). Following the mathematical

framework of multivariate EVT (e.g., see Resnick 2007;

de Haan and Ferreira 2006; Beirlant et al. 2004; Coles

2001; Foug�eres 2004), it is reasonable to assume that

the bivariate vector (Mi, Mj)
T follows a bivariate EVT

distribution

P(Mi #u;Mj # y)5 exp

(
2Vij

"
21

lnFi(u)
,

21

lnFj(y)

#)
,

(1)

where Fi(u) 5 P(Mi # u) represents the marginal dis-

tribution of Mi and the extremal dependence function

Vij(�, �) is defined as

Vij(x, y)5 2

ð1
0
max

�
w

x
,
12w

y

�
dHij(w) ,

whereHij(�) corresponds to any distribution function on

[0, 1] such that its expectation equals 0.5. This class

of distributions arises as the natural nondegenerated

limit of rescaled independent and identically distributed

(i.i.d.) componentwise maxima of random vectors (de

Haan and Ferreira 2006; Resnick 2007). At this stage,

such a definition may appear rather obscure, and some

light can be shed on Eq. (1) by looking at the special case

where u 5 y. Because of the definition of Vij, we have

Vij(x, x) 5 Vij(1, 1)/x and it follows from Eq. (1) (e.g.,

Naveau et al. 2009) that

P(Mi #u;Mj # u)5 [P(Mi # u)P(Mj # u)]Vij
(1,1)/2 .

(2)

The scalar Vij(1, 1), called the ‘‘extremal coefficient,’’

gives partial but paramount information about the de-

gree of dependence between Mi and Mj (e.g., see
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Schlather 2002; Schlather and Tawn 2003). If those two

variables are independent, then Eq. (2) implies that

Vij(1, 1)5 2. If they are equal, then we haveVij(1, 1)5 1.

Hence, the extremal coefficient can go fromone (complete

dependence) to two (full independence), and therefore

it can capture relevant information about the depen-

dence strength. Another way to interpret the extremal

coefficient is to make the connection with a specific

variogram of order one. A variogram of order p is de-

fined as the moment of order p of the difference be-

tween Mi and Mj, EjMi 2 Mjjp (e.g., see Wackernagel

2003). Cooley et al. (2006) showed that the F-madogram

defined as

dij 5
1

2
EjFi(Mi)2Fj(Mj)j (3)

can be expressed in terms of the extremal coefficient

dij 5
1

2

Vij(1, 1)2 1

Vij(1, 1)1 1
. (4)

If the two weather stations i and j are close to each other

and local conditions at both places are basically identi-

cal, the precipitation maxima Mi and Mj should be

similar, and dij should be close to zero. Equation (4) tells

us that the extremal coefficient should be near 1. Con-

versely, if the two locations i and j are far away from

each other and can be considered as independent, then

the extremal coefficient is close to 2, and Eq. (4) implies

that the madogram should be equal to 1/6. Besides be-

ing an interpretable distance, another advantage of the

madogram resides in the fact that its value can be easily

inferred in a nonparametric fashion. The distance dij in

Eq. (3) corresponds to an expectation and can be in-

ferred as a sample mean. Given a sample of maxima

(M
(t)
i ,M

(t)
j )T recorded at two locations i and j and at T

different time units, then the definition of the mado-

gram dij provides a natural nonparametric estimator

d̂ij 5
1

2T
�
T

t51

jF̂i(M
(t)
i )2 F̂j(M

(t)
j )j , (5)

where T is the bivariate sample length and F̂i is the

empirical distribution function

F̂i(u)5
1

T
�
T

t51

1fM(t)
i #ug ,

where 1fM(t)
i
#ug represents the indicator function of the

event fM(t)
i # ug. By plugging d̂ij in Eq. (4), an estimator of

the extremal coefficient Vij(1, 1) is automatically de-

duced. For the theoretical properties of those estimators,

we refer to Cooley et al. (2006) and Naveau et al. (2009).

The definition of the madogram dij also emphasizes

an essential point concerning the interpretation of our

results. Applying to the random variable Mi its own dis-

tribution Fi(u)5 P(Mi# u) in Eq. (3) makes the variable

Fi(Mi) uniformly distributed. The same is true for Fj(Mj).

This implies that the madogram (or equivalently the ex-

tremal coefficient) does not depend on the marginal

laws and, consequently, it cannot provide information

about how much rain can fall at a specific site. It is a

dimensionless concept and it only describes the depen-

dence strength. The term copula is often used in the sta-

tistical literature to describe this decoupling between

margins and the dependence function. This decoupling

between the marginals and the dependence strength will

be beneficial when we will have to interpret the map of

our clustered maxima. To infer the madogram values,

we just need to plug in the empirical versions of Fj and

Fi and compute an average [see Eq. (3) and appendix A].

This means that we do not need to fit a GEV at each

weather station. This saves computational time and allows

weaker modeling assumptions than imposing GEV mar-

ginals. Naveau et al. (2009) showed that the dependence

V(�, �) can be estimated from the empirical madogram

estimator as the sample size and the block size increase

[see proposition 4 of Naveau et al. (2009)]. So, it was

not assumed that maxima were GEV distributed but

that they only belong to the domain of the attraction of

max-stable distribution.

Having at our disposal the distance dij that is tailored

from maxima motivated by Eq. (1), we have to choose

a clustering algorithm. As already stated in the intro-

duction, the k-means algorithm creates cluster centers

by averaging points within a cluster. Such an averaging

operation destroys the max-stable property encapsulated

in Eq. (1), since the average of more than one maximum

is no longer amaximum.As an attractive alternative, the

PAM algorithm proposed by Kaufman and Rousseeuw

(1990) is known to preserve the observations at hand;

a weekly maximum remains a weekly maximum. The

PAM algorithm divides a dataset of N objects into K

clusters. Three preprocessing steps are needed before

implementing PAM. First, the distance matrix fdijg de-

fined by Eq. (3) has to be computed. Second, the num-

ber of clustersK has to be chosen, and third, to initialize

the PAM algorithm, an initial set of K medoids has to

be randomly selected (i.e., a group of K randomly cho-

sen stations). Then, the PAM algorithm can be run as

follows:

(i) Form K clusters by assigning every point to its

closest medoid.

(ii) For each cluster, find the newmedoid for which the

total intracluster distance based on dij is minimized.
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(iii) If at least one medoid has changed, then go back to

(i), otherwise end the algorithm.

In summary, PAM proceeds by moving around K me-

doids while trying to make the total intracluster distance

as small as possible. As mentioned previously, the cen-

ters of the cluster, the so-called medoids, still represent

the valid weekly precipitation maxima at each step of

the algorithm. Consequently, the distance dij can always

be interpreted via Eq. (4) at any stage within the PAM

algorithm.

To choose a relevant number K of clusters and to

assess if a weather station is well classified, Rousseeuw

(1986) developed the so-called ‘‘silhouette coefficient’’

that compares cluster tightness (small dikwithin the cluster

k) with cluster dissociation (see di,2k defined below). After

running the PAMalgorithmwith a givenK, each location

i is associated with a medoid k. The silhouette coefficient

for the weather station i is defined as follows

si(K)5 12 (dik/di,2k) ,

where dik represents the intracluster distance between

medoid k and station i and di,2k corresponds to the

smallest distance between station i and all the other

medoids but k. For the PAM algorithm procedure, si(K)

necessarily belongs to the interval [21, 1]. If si(K)’ 1, it

means that the intracluster distance is much smaller than

the intercluster distances. Consequently, the maximum

Mi can be considered as well classified. In contrast, if si
is near zero, the clustering is viewed as noninformative,

meaning that Mi could have been in another cluster as

well with the same relevancy. To summarize the quality

of a partitioning into K clusters, one can derive the av-

erage silhouette coefficient

s(K)5
1

N
�
N

i51

si(K) (6)

or other statistics from the set fs1(K), . . . , sN(K)g. Such
summaries will be used in our application. To imple-

ment our approach, a package for the open-source sta-

tistical R software is available at the homepage of the

second author (http://www.lsce.ipsl.fr/Phocea/Pisp/visu.

php?id=44&uid=naveau).

3. Applications to French precipitation maxima

Here we focus on the weekly maxima of hourly pre-

cipitation at 92 French stations during the fall season

[September–November (SON)] from 1993 to 2011. They

were provided by the French meteorological service

M�et�eo-France. The stations were chosen in function of

their quality and to have a fairly homogeneous coverage

of France. To avoid dealing with zeros and in order to be

consistent with EVT, very small values of precipitation

(rainfall amounts below 3mm) were discarded (qqplots

and other diagnostics, available upon request, were used

to not reject the hypothesis of GEV distributed mar-

ginals). Before applying our PAM approach to those

data, we have applied the classical k-means algorithm to

those rainfall maxima.

Figure 1a displays the outputs into five clusters. The

difference between the left and right maps in Fig. 1a is

a result of the nature of the k-means inputs, rawmaxima

(left) and their logarithm (right). This discrepancy be-

tween the two maps indicates that the choice of the

marginal laws has a strong effect on the clustering out-

puts. For example, rainfall recorded in Brittany along

the Atlantic coast is very different (in a distributional

sense) from precipitation measured in Corsica, an island

in the Mediterranean Sea. This emphasizes that it is

unreasonable to ‘‘compare apples and oranges’’ (i.e., to

perform clustering on time series with different mar-

ginal laws). Quantitatively, this can be assessed by fit-

ting a GEV probability distribution function defined

by G(x)5 expf2[1 1 j(x2m/s)]21/j
1 g, where the real

m is the location parameter, s is the positive-scale pa-

rameter, and j 2 R is the shape parameter.

Figure 1b displays the scale and shape GEV param-

eters inferred for each location (by probability weighted

moments; e.g., see Dielbolt et al. 2008), respectively the

left and right maps. Figure 1b indicates well-known cli-

matological results. Fall heavy rainfall intensities are

located near the Mediterranean coast, while the center

and northern parts of France have milder extreme pre-

cipitation intensities.

Comparing the left of Fig. 1a with Fig. 1b suggests that

the southeast region with heavy rainfall (i.e., with large

GEV parameters) influences the k-means algorithm.

This makes sense because having large scale and shape

parameters corresponds to strong variability, and the

variance is the key clustering criterion for the k-means

algorithm. But this also means that this clustering at-

tempts to answer two different questions that may not be

linked. The question regarding the intensity of rainfall

at a given weather station (a univariate concept based

on the marginal distribution) is mixed with the inquiry

about the strength as the spatial relationship between

two neighboring weather stations (a bivariate distribu-

tional concept). This is an undesirable trait that renders

the interpretation of those clusters extremely complex.

As previously mentioned our proposed PAM ap-

proach based on the F-madogram is marginal free and

implemented via a nonparametric approach. This sec-

ond point implies that we do not need to fit a GEV
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distribution at each weather station. This reduces com-

putational time and removes a source of uncertainty (it

is always difficult to infer accurately a shape GEV pa-

rameter and its associated confidence intervals).

To visualize the differences between the classical

k-means approach and our proposed method based on

the PAM algorithm, Fig. 2 compares the clustering out-

puts for both methods: maps on the left for our PAM

FIG. 1. Weekly maxima of hourly precipitation (fall season, 92 stations over France, 1993–2011). (a) The clustering into five classes is

obtained with the k-means algorithm applied (left) to the raw maxima and (right) to their logarithm. This indicates that transforming

marginal laws has a strong effect on the clustering. (b) Displayed are (left) the estimated scale s and (right) the shape parameter j after

fitting a GEV distribution at each location. This means that the marginal law behavior varies spatially with heavier extremes in the south

of France than in the north.
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FIG. 2. Displayed are the clustering outputs from our (left) PAM algorithm and the (right) k-means

algorithm. (left) The medoids are represented by black diamonds and points not attached to a medoid by

a gray line correspond to locations with nonsignificant silhouette coefficients. The number of clusters K

equals (a) 2, (b) 5, and (c) 7.
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approach and on the right for the k-means algorithm

applied on log–precipitation maxima (to reduce the mar-

gins problem). Figures 2a–c corresponds to a different

number of clusters K 5 2, 5, and 7. Each medoid has

a diamond shape with a black contour. Each station is

linked to its medoid by a gray line if its silhouette co-

efficient is significant. Otherwise, it simply appears as

a circle (instead of a diamond).

To determine the 90% confidence level for a fixed K,

our PAM algorithm was rerun after randomly sampling

our rainfall data in order to break any spatial depen-

dence. This scheme was repeated 20 times and the 95%

quantile was taken from this sample of 20 average sil-

houette coefficients. At this stage, it is important to em-

phasize that the k-means and PAM algorithms run

without any geographical information but only rainfall

records. So, finding coherent spatial structures from only

rainfall measurements was not automatic. From Fig. 2,

it appears that the PAM and k-means approaches pro-

vide strikingly different clusters. This may be one of

the most important messages of this work. Choosing

a clustering method and a specific metric can have an

enormous impact on clustering patterns and lead to po-

tentially different or even conflicting climatological in-

terpretations. For example, PAM with K 5 2 (Fig. 2a)

divides France into a north–south fashion along the

Loire valley line, while the kmean roughly reproduces the

main characteristic of the GEV parameter (see Fig. 1b).

This feature is linked to rainfall intensities but not nec-

essarily to spatial precipitation dependencies. For K 5 5

(Fig. 2b), PAM isolates the west region above Bordeaux

(blue color) from the central region (around Paris), while

the k means emphasizes Corsica and two Mediterranean

cities (blue color), again stressing rainfall intensities.

As the number of clusters increases (K 5 7 in Fig. 2c),

sharper regional features appear and are geographically

coherent. ForK5 7, kmeans start to break down a little

bit by creating clusters without any spatial structure; see

the isolated four light orange points in Brittany.

In the south of France, extreme rainfall events in the

fall are usually caused by southern winds forcing warm

and moist air to interact with mountainous areas of the

Pyr�en�ees, C�evennes, and Alps, resulting in severe thun-

derstorms. A systematic inventory of those situations

over the 1958–94 period was studied by Jacq (1994).

Those events may be very local in some cases but often

affect one-third to one-half of the Mediterranean coastal

area. Large-scale extreme events, occurring on both

Corsica and Var (around Toulon) or in the Alpes

Maritimes (around Nice) regions, are very likely to

affect the Rhône valley, the Alps, and even farther west

to Montpellier. The ‘‘Corsica–Nice–Toulon’’ cluster

does not seem to be very justified climatologically. The

Millau, Mende, and Carcassonne series should belong to

the Mediterranean cluster rather than to the ‘‘southwest

cluster’’ (Agen medoid), which is the case in PAM with

K 5 7. In the north of France, heavy rainfall is often

produced by midlatitude perturbations. Depending on

their tracks, some affect Brittany, while others only

influence the north of France and Paris. The very large

northern cluster produced by k means (K 5 2 and 5) is

not consistent with our understanding of synoptic vari-

ability, while PAM clusters can be interpreted easily.

Isolating central and eastern clusters (PAM; K 5 7) is

coherent with climatic and topographic features.

To complete this example, it is natural to wonder what

would be the most appropriate number of clusters.

Each boxplot in Fig. 3 summarizes the silhouette co-

efficient distribution for a givenK varying from 2 to 16.

Applying Eq. (6), the average silhouette coefficient is

represented by the solid black line. The dotted line with

gray diamonds corresponds to the upper 95% level ob-

tained after randomly reshuffling our precipitation data.

This breaks down the spatial structure (figures avail-

able upon request), and the silhouette coefficients be-

low such thresholds are considered nonsignificant (see

small circles in Fig. 2). Figure 3 does not bring a clear

winner here as the largest average silhouette coefficients

are very close around 0.12 (K 5 2) and 0.11 (K 5 5). In

regards to the maps displayed in Fig. 2, the spatial pat-

terns for K 5 5 or even K 5 7 indicates that the clusters

are coherent with geographical features. To keep the

maps interpretable and avoid overparameterization,

choosing around K5 5 represents a good compromise.

Although significant, the silhouette coefficients in this

example are not very large, and this may be explained

by the variable under study. Extreme precipitation events

certainly have short-range spatial dependences. A finer

spatial resolution should give stronger localized struc-

tures, but such precipitation data at the hourly scale and

of high quality are difficult to find at the scale of a country.

4. Discussion

By combining two statistical methods, the PAM al-

gorithm with the F-madogram, a simple clustering al-

gorithm for maxima was proposed and studied. Besides

being in compliance with EVT, it offers a different

perspective for those who are interested in identifying

spatial or temporal patterns in statistical climatology.

As an illustration, a partitioning of the French region

with respect to fall precipitation maxima was obtained.

This clustering strongly differs from a variance-based

approach like the k-means algorithm. This opens new

challenges concerning the analysis of heavy rainfall

over France and elsewhere. At the hydrological basin
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scale, our approach could complement the well-known

regional frequency analysis (RFA; see, e.g., Gaume et al.

2010) performed in hydrology to find homogenous re-

gions with respect to extreme events. Despite its name,

RFA does not take into account any dependence among

maxima. It is a method solely based on marginal proba-

bility densities. In contrast, our approach is fully de-

coupled from the margins, and so it could ideally

supplement RFA by making regions based on the de-

pendence strength among maxima.

In addition, taking different block sizes (say a month

instead of a week) with different precipitation types

(say daily instead of hourly) may provide different

clustering patterns. This could lead to new avenues to

explore clustering maps, especially with respect to more

traditional approaches. Another possible direction could

be to apply our method within a context of dimension re-

duction. Currently, very few statistical EVT approaches

exist to deal with this issue.

Finally, our approach is computationally fast and could

be applied to large datasets such as global climate models

outputs. For example, it could be used to compare spa-

tial clustering of yearly maxima (or minima) of daily

temperatures.
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