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We study the overall framework surrounding the Nyström approximation of integral operators with positive-semidefinite (PSD) kernels and the Nyström method for PSD-matrix approximation. These two methods correspond to two distinct approximation schemes, referred to as measure-based and projection-based, and where the approximation is characterised by an approximate measure or by the orthogonal projection onto a closed linear subspace of the underlying reproducing kernel Hilbert space (RKHS), respectively. Since an approximate measure also defines a projection-based approximation, these two schemes can be interpreted in a measure-dependent setting. Criteria for the characterisation of efficient approximate measures can then be defined from the norms of the Hilbert-Schmidt spaces naturally involved in the definition of an integral operator with PSD kernel. We study the properties of these criteria and their interrelations, and describe the connections between Nyström approximation and the kernel embedding of measures in RKHSs associated with squared PSD kernels. We in parallel discuss the possibility to implement first-order methods for the design of approximate measures leading to efficient approximations.

Introduction.

Integral operators with positive-semidefinite (PSD) kernels play a central role in kernel methods, a class of learning and modelling techniques exploiting the properties of reproducing kernel Hilbert spaces (RKHSs), see e.g. [START_REF] Cucker | On the mathematical foundations of learning[END_REF][START_REF] Smola | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF][START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF][START_REF] Hofmann | Kernel methods in machine learning[END_REF][START_REF] Steinwart | Support Vector Machines[END_REF][START_REF] Paulsen | An Introduction to the Theory of Reproducing Kernel Hilbert Spaces[END_REF]. The discrete counterparts of such operators are the PSD matrices, emphasising their widespreadness in Mathematics and Data Science. Sparse and low-rank approximation schemes for this type of operators are essential for the implementation, acceleration and scaling-up of numerical strategies involving PSD kernels or large-scale PSD matrices.

Context and motivations.

In Numerical Analysis, the Nyström method is a wellestablished technique for integral-operator and integral-equation approximation; it is in this framework also referred to as the quadrature method, see e.g. [START_REF] Hackbusch | Integral Equations : Theory and Numerical Treatment[END_REF][START_REF] Kress | Linear Integral Equations[END_REF]. In Machine Learning, the Nyström method generally refers to a column-sampling-based approach for low-rank PSDmatrix approximation; see for instance [START_REF] Mahoney | On the Nyström method for approximating a Gram matrix for improved kernel-based learning[END_REF][START_REF] Kumar | Sampling methods for the Nyström method[END_REF][START_REF] Mahoney | Revisiting the Nyström method for improved large-scale machine learning[END_REF][START_REF] Sterge | Gain with no pain: efficiency of kernel-PCA by Nyström sampling[END_REF]. Although sharing the same name and being related, these two methods correspond to two distinct approximation schemes.

Intuitively (see Sections 2 and 3 for a detailed presentation), a PSD kernel and a measure naturally define an integral operator of the form , [ ]( ) = ∫ ( , ) ( )d ( ); in particular, if is a finite sum of Dirac measures with unit weights, then , can be regarded as a kernel matrix, and reciprocally (see Remark A.1). In practice, the measure might for instance correspond to any measure defining an integral operator of interest, or to the empirical measure related to a data set (see e.g. [START_REF] Rosasco | On learning with integral operators[END_REF][START_REF] Gauthier | Convex relaxation for IMSE optimal design in random-field models[END_REF]). The Nyström method for integral-operator approximation then consists of approximating the initial operator , by an operator , , defined by the initial kernel and an approximate measure ; we refer to this scheme as measure-based. In practice, the measure is generally finitely-supported, so that the resulting approximate operator , can be easily implemented.

The approximation scheme underlying the Nyström method for PSD-matrix approximation consists of approximating the kernel by the reproducing kernel of a closed linear subspace  of the RKHS  associated with . The operator , is then approximated by the operator , , defined by the approximate kernel and the initial measure (to be presice, depending on the situation, the approximate operator might also correspond to ,  , with  the orthogonal projection from  onto  ); we refer to this scheme as projection-based. The subspace  is in practice of relatively low dimension, resulting in a low-rank approximation of the initial integral operator or matrix. A natural connection between the measure-based and projection-based approximation schemes arises from the fact that a measure defines a closed linear subspace  of , with reproducing kernel . Consequently, an approximate measure defines an approximate operator in each scheme: the measure-based approximate operator , , and the projection-based approximate operator , (or ,  ). In Nyström PSD-matrix approximation, the support of characterises a sample of columns of the initial matrix.

Two Hilbert spaces underlie the definition of , : the space of square-integrable functions 2 ( ) and the RKHS  associated with ; see e.g. [START_REF] Zhou | Learning theory estimates via integral operators and their approximations[END_REF][START_REF] Zhou | Geometry on probability spaces[END_REF][START_REF] Rosasco | On learning with integral operators[END_REF][START_REF] Steinwart | Mercer's theorem on general domains: on the interaction between measures, kernels, and RKHSs[END_REF]. Under a finite-trace condition on and , the integral operator , naturally arises from the embedding of  in 2 ( ), and

, can be regarded either as a Hilbert-Schmidt (HS) operator from 2 ( ) to , on 2 ( ), on , or from  to 2 ( ); these four interpretations of , are natural, in the sense that they follow directly from the definition of the considered embedding. The measure-based and projection-based approximation schemes can then be defined in the relevant HS spaces, and the approximation accuracy can be assessed through the corresponding HS norms, inducing distinctive criteria to discriminate among approximate measures in the measure-dependent setting (i.e. for measure-based approximation and projection-based approximation with subspaces characterised by measures).

Various sampling methods can be used to generate finitely-supported approximate measures, based for instance on space-filling strategies, random sampling or clustering techniques; see e.g. [START_REF] Niederreiter | Random Number Generation and Quasi-Monte Carlo Methods[END_REF][START_REF] Kumar | Sampling methods for the Nyström method[END_REF][START_REF] Wang | Towards more efficient SPSD matrix approximation and CUR matrix decomposition[END_REF][START_REF] Cai | SMASH: Structured matrix approximation by separation and hierarchy[END_REF][START_REF] Pauwels | Relating leverage scores and density using regularized Christoffel functions[END_REF][START_REF] Derezinski | Improved guarantees and a multiple-descent curve for Column Subset Selection and the Nyström method[END_REF]. In practice, the design of efficient approximate measures is especially important in the sparse approximation regime, as the approximation accuracy may in this case strongly vary from one measure to another. To complement the existing methodologies, we investigate the possibility to design approximate measures corresponding to low-values of the aforementioned HS-norm-based criteria; we in particular describe the connections between the Nyström approximation of an operator with PSD kernel and the kernel embedding of measures (see e.g. [START_REF] Sriperumbudur | Hilbert space embeddings and metrics on probability measures[END_REF][START_REF] Damelin | On energy, discrepancy and group invariant measures on measurable subsets of Euclidean space[END_REF][START_REF] Gretton | A kernel two-sample test[END_REF][START_REF] Muandet | Kernel mean embedding of distributions: a review and beyond[END_REF]) in the RKHS associated with the squared kernel | | 2 .

Contribution and organisation of the paper.

We study the overall framework surrounding the Nyström approximation of integral operators with PSD kernels and the Nyström method for PSD-matrix approximation. We analyse the properties of the HS-norm-based criteria naturally arising from the measure-dependent setting, and we in parallel discuss, from a theoretical standpoint, the possibility to implement numerically efficient first-order methods for the design of approximate measures corresponding to low values of these criteria.

Section 2 introduces the theoretical framework and the main notations of the paper. We in particular describe how the embedding of  in 2 ( ) defines an integral operator of the form , that can naturally be interpreted either as an element of HS( , ), HS( ), HS() or HS(, ), the Hilbert spaces of all HS operators from 2 ( ) to , on 2 ( ), on , and from  to 2 ( ), respectively.

In Section 3, we study the measure-based and projection-based approximation schemes in the relevant HS spaces. Section 3.1 describes the relation between the measure-based approximation scheme in HS() and the kernel embedding of measures in the RKHS  associated with the squared kernel | | 2 ; see in particular Theorem 3.1 and Remark 3.2. We also show that the induced squared-kernel discrepancy (SKD) criterion ↦ ‖ , -, ‖ 2 HS() is convex on the convex cone  + ( ) of all admissible approximate measures, and that its directional derivatives can be easily evaluated or approximated. Section 3.2 focuses on the projection-based approximation scheme in the HS spaces HS( , ), HS( ), HS() and HS(, ). Theorem 3.11 shows that the criteria naturally arising from the measure-dependent setting correspond to convex piecewise-constant maps on  + ( ); combined with their costly-to-evaluate nature, this result illustrates the inherent difficulty in directly optimising these criteria. We also describe the relations between the considered criteria and classical criteria in low-rank PSD-matrix approximation and design of experiments.

The link between measure-based and measure-dependent projection-based approximations is investigated in Section 3.3. For an approximate measure , defining a closed linear subspace  of , we show that the squared norms of the projection-based approximation errors in HS( ) and HS() are bounded by the SKD between and , so that subspaces corresponding to measures with low SKD inherit interesting properties in the projection-based approximation framework.

Section 4 is devoted to the study of the radial SKD, a variation of the SKD invariant under rescaling of the approximate measures (such an invariance is also verified by the criteria naturally arising from the projection-based framework); low-SKD configurations on a convex cone of approximate measures then for instance correspond to low-radial-SKD configurations on specific sections of this cone, offering more flexibility in characterising efficient approximations. We describe the generalised convexity and directional differentiability of the radial-SKD criterion on  + ( ); see in particular Theorem 4.3. We also illustrate the extent to which the SKD and radial-SKD criteria can be regarded as differentiable relaxations of the criteria induced by the projection-based approximation scheme in HS( ) and HS().

In Section 5, we discuss the possibility to evaluate the partial derivatives of the SKD and radial SKD criteria with respect to the weight parameters { } =1 and location parameters { } =1 characterising a finitely-supported approximate measure of the form = ∑ =1 . We illustrate that from a numerical standpoint, the evaluation of such partial derivatives is significantly more affordable in the SKD framework than in the projection-based framework.

Section 6 consists of a concluding discussion, and Appendix A gathers the proofs of all the results stated in the main body of the paper together with some additional remarks. For generality, we assume that  is a complex RKHS; nevertheless, the presentation also holds true for real RKHSs, associated with symmetric positive-semidefinite (SPSD) kernels.

Framework and notations.

We consider a measurable space ( , ), and let  be a separable RKHS of complex-valued functions on , with reproducing kernel ; see e.g. [START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF][START_REF] Paulsen | An Introduction to the Theory of Reproducing Kernel Hilbert Spaces[END_REF]. For ∈ , we denote by ∶ → ℂ the function defined as ( ) = ( , ), with ∈ . We have ∈  and (ℎ | )  = ℎ( ), for all ℎ ∈ , where (⋅ | ⋅)  stands for the inner product of , assumed to be linear with respect to its left argument. We denote by ‖⋅‖  the corresponding norm on , and we use similar notations for the inner products and norms of all the Hilbert spaces encountered in this work.

We assume that is measurable on ( , ) for all ∈ , so that all the functions ℎ ∈  are measurable. Since  is separable, the kernel is measurable on the product measurable space ( × , ×); see e.g. [START_REF] Steinwart | Support Vector Machines[END_REF]Lemmas 4.24 and 4.25]. We also assume that the diagonal of , denoted by diag[ ], is a measurable real-valued function on ( , ).

RKHS embedding and integral operator.

We denote by  the set of all -finite signed measures on ( , ), and by  + the real convex cone of all positive measures in . We introduce the set

 ( ) = ∈  | | | | , = ∫ ( , )d| |( ) < +∞ ,
with | | the variation of , and the real convex cone  + ( ) =  ( ) ∩  + .

For ∈  + ( ), let 2 ( ) be the Hilbert space of square-integrable functions with respect to . We denote by ∶  → 2 ( ) the compact embedding defined as [ℎ] = [ℎ] ∼ , with

[ℎ] ∼ the equivalence class of all measurable functions -almost everywhere equal to ℎ ∈ , see Remark 2.1; see also [START_REF] Steinwart | Mercer's theorem on general domains: on the interaction between measures, kernels, and RKHSs[END_REF] for a detailed discussion.

Remark 2.1. For ∈  + ( ) and for any orthonormal basis (ONB) {ℎ } ∈ of , with ⊆ ℕ, we have

∑ ∈ ‖ ‖ [ℎ ] ‖ ‖ 2 2 ( ) = ∑ ∈ ∫ | | (ℎ | )  | | 2 d ( ) = ∫ ‖ ‖ ‖ ‖ 2  d ( ) = , ,
so that is Hilbert-Schmidt. For ℎ ∈ , we also have ‖ ‖

[ℎ] ‖ ‖ 2 2 ( ) ⩽ , ‖ℎ‖ 2  .
⊲ When this is not a source of errors, we interpret square-integrable functions with respect to as elements of 2 ( ), and reciprocally; a similar remark holds for all the 2 spaces encountered in this work. The adjoint * ∶ 2 ( ) →  of can then be regarded as an integral operator defined from the PSD kernel and the measure ∈  + ( ); for all ∈ 2 ( ) and ∈ , we indeed have From the embedding , the integral operator , defined by and ∈  + ( ) can thus be interpreted as one of the following HS operators:

(C.1) * ∈ HS( , ), the Hilbert space of all HS operators from 2 ( ) to ; (C.2) * ∈ HS( ), the Hilbert space of all HS operators on 2 ( ); (C.3) * ∈ HS(), the Hilbert space of all HS operators on ; (C.4) * ∈ HS(, ), the Hilbert space of all HS operators from  to 2 ( ). See for instance [START_REF] Zhou | Learning theory estimates via integral operators and their approximations[END_REF][START_REF] Zhou | Geometry on probability spaces[END_REF][START_REF] Steinwart | Mercer's theorem on general domains: on the interaction between measures, kernels, and RKHSs[END_REF][START_REF] Santin | Approximation of eigenfunctions in kernel-based spaces[END_REF] for a further discussion. The operators * and * are both self-adjoint and trace-class, with trace , . From Remark 2.1, we have ∈ HS(, ).

Subspaces characterised by measures.

For ∈  + ( ), we denote by  0 the null space of ;  0 is a closed linear subspace of , and let  be its orthogonal complement in . The closed linear subspace  ⊆  is the closure of the range of * . Endowed with the inner product of , the vector spaces  and  0 are RKHSs, with reproducing kernels and 0 , respectively; we then have = + 0 , corresponding to the orthogonal decomposition  =  ⦹  0 .

The following Remark 2.2 describes the decomposition  =  ⦹  0 induced by a finitely-supported measure ; in particular, since ( ,

) = ‖ ‖ 2
 is finite for all ∈ , finitely-supported measures always belong to  + ( ).

Remark 2.2. We denote by the Dirac measure at ∈ . For = ∑

=1

, with ∈ ℕ, and > 0 and ∈ for all ∈ {1, ⋯ , }, we have

 = span 1 , ⋯ , , and 
 0 = ℎ ∈  | | ℎ( ) = 0 for all ∈ {1
, ⋯ , } , so that the orthogonal decomposition  =  ⦹  0 only depends on the support of any finitely-supported measure . ⊲

Approximations and Hilbert-Schmidt norms.

We now discuss the approximation of an initial integral operator , , defined form a PSD kernel and a measure ∈  + ( ), in the four cases (C.1)-(C.4) described in Section 2.1. We consider two types of approximation schemes, as listed below.

(A.1) Measure-based approximation: the initial measure is approximated by an approximate measure ∈  + ( ), so that the operator * ∈ HS() is approximated by * ∈ HS(). (A.2) Projection-based approximation: the initial embedding ∈ HS(, ) is approximated by  ∈ HS(, ), where  is the orthogonal projection from  onto a closed linear subspace  ⊆ . Intuitively, in (A.1) the initial integral operator , is approximated by , . In (A.2), the kernel is approximated by the reproducing kernel of  , and the initial operator , is approximated by , or ,  , depending on the considered underlying HS space. 3.1. Squared-kernel discrepancy. We consider the approximation sheme (A.1). We denote by | |2 ∶ × → ℝ the SPSD kernel defined as

| | 2 ( , ) = | | ( , ) | | 2 = | | ( , ) | | 2
, for all and ∈ .

Let  be the RKHS of real-valued functions on for which the squared kernel

| | 2 is repro- ducing. For all ∈ , the map ↦ | | 2 ( ) = | | ( , ) | | 2
is measurable, so that  consists of measurable functions on ( , ).

For any signed measure ∈  ( ), the linear map

∶  → ℝ, with [ ] = ∫ ( )d ( ), for all ∈ , is bounded (we may notice that | | [ ] | | ⩽ ‖ ‖  , ). There thus exists ∈  such that [ ] = ( | )  , for all ∈ ; taking = | | 2 , we obtain ( ) = | | | | 2  = ∫ | ( , )| 2 d ( ), for all ∈ .
For all signed measures and ∈  ( ) such that + ∈  ( ), we have ( + ) = + . THEOREM 3.1. For and ∈  + ( ), we have ∈ 2 ( × ) and

* | | * HS() = ‖ ‖ 2 2 ( × ) = ( | )  = ∫ ( )d ( ) = ∫ ( )d ( ).
From Theorem 3.1, for all and ∈  + ( ), we have

(3.1) ‖ ‖ * - * ‖ ‖ 2 HS() = ‖ ‖ -‖ ‖ 2  = ‖ ‖ ‖ ‖ 2 2 ( × ) + ‖ ‖ ‖ ‖ 2 2 ( × ) -2 ‖ ‖ ‖ ‖ 2 2 ( × ) .
The measure-based approximation scheme in HS() is thus isometrically related to the kernel embedding of measures in the real RKHS  associated to the squared kernel | | 2 ; see also Remark 3.2 and [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF]. We refer to (3.1) as the squared-kernel discrepancy (SKD) between the measures and ∈  + ( ). For ∈  ( ), we also refer to ‖ ‖ 2  and as the energy and potential of the measure with respect to the squared kernel | | 2 , respectively; see e.g. [START_REF] Damelin | On energy, discrepancy and group invariant measures on measurable subsets of Euclidean space[END_REF].

Remark 3.2. Let HS * () ⊂ HS() be the closed real linear subspace of all self-adjoint HS operators on ; endowed with the inner-product of HS(), the real vector space HS * () is a Hilbert space. For ∈ , let ∈ HS * () be the operator defined as [ℎ] = (ℎ | )  , for all ℎ ∈ . For and ∈ , we have (see also [START_REF] Blanchard | Statistical properties of kernel principal component analysis[END_REF]Section 4]) | defining a linear partial isometry between the real Hilbert space HS * () and the real RKHS . We denote by Γ ∶ HS * () →  this partial isometry, given by

Γ[ ]( ) = | | HS() = [ ] | | 
, for all ∈ HS * () and ∈ . The initial space of Γ is the closed real linear subspace

 * () = span ℝ | | ∈ HS()
⊆ HS * (), and its final space is . The subspace  * () consists of all the self-adjoint HS operators on  that can be isometrically represented in  through Γ. For all ∈  + ( ), we have Γ[ * ] = , and from Theorem 3.1, * ∈  * (). We can also notice that = * , with ∈  + ( ) the Dirac measure at ∈ , and that Γ[ ] = | | 2 . The partial isometry Γ ∶ HS * () →  is also well-defined when  is a real RKHS. ⊲ For a fixed initial measure ∈  + ( ), from (3.1), we define the SKD criterion

( ) = ‖ ‖ * - * ‖ ‖ 2 HS() = ‖ ‖ -‖ ‖ 2  , for all ∈  + ( ).
The map is convex on  + ( ), and for all and ∈  + ( ), we have

( ) = ( ) + 2( -| -)  + ‖ -‖ 2  , where the term (3.2) 2( -| -)  = lim →0 + 1 + ( -) - ( )
corresponds to the directional derivative of at in the direction -. We can notice that the evaluation of the directional derivative (3.2) only involves the computation of integrals of the squared kernel | | 2 ; see also Remark 3.3. Remark 3.3. We assume that the measures and are supported by and points, respectively; in most practical applications, we in this case have ≪ . The time complexity of evaluating ‖ ‖ 2  is then ( 2 ); it is ( 2 ) for ‖ ‖ 2  , and ( ) for ( | )  . Noticeably, when comparing the SKDs with respect to of several approximate measures, the term ‖ ‖ 2  may be regarded as a fixed constant and so does not necessarily need to be computed.

In view of (3.2), the evaluation of the directional derivatives of involved the evaluation of the function -; for ∈ , the time complexity of evaluating ( ) -( ) is ( + ). In the sparse-approximation regime (i.e. when dealing with approximate measures supported by relatively small numbers of points) and from a numerical standpoint, for a general measure , the main bottleneck of the SKD framework is the evaluation of the integrals with respect to . Nevertheless and depending on the application, the cost induced by might be mitigated by evaluating only at some specific locations (see e.g. [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF]); also, when is finite and assuming for instance that one is able to draw samples from the probability measure ∕ ( ), then numerically-affordable stochastic approximations of the derivatives might be implemented (c.f. stochastic gradient, see e.g. [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF]). ⊲ We introduce the set

 = ∈  ( ) | | = 0
, consisting of all the signed measures in  ( ) with null potential with respect to | |2 (in other words, measures in  do not interact with the squared kernel | | 2 ). We then in particular have ( + ) = ( ), for all ∈  + ( ) and ∈  such that + ∈  + ( ). We may also notice that if ∈  + ( ) ∩ , then = 0. Remark 3.4. If  = {0  }, with 0  the null measure on ( , ), then the kernel | | 2 is said to be characteristic, and is strictly convex on  + ( ); see e.g. [START_REF] Sriperumbudur | Universality, characteristic kernels and RKHS embedding of measures[END_REF][START_REF] Muandet | Kernel mean embedding of distributions: a review and beyond[END_REF][START_REF] Ziegel | Strictly proper kernel scores and characteristic kernels on compact spaces[END_REF]. ⊲ The following Remark 3.5 discusses elements related to the continuity of .

Remark 3.5. We consider a sequence of approximate measures { } ∈ℕ ⊂  + ( ), and an approximate measure ∈  + ( ). If the sequence { } ∈ℕ converges weakly to in , then ‖ ‖  ⩽ lim inf ‖ ‖  , and thus ( ) ⩽ lim inf ( ). When the RKHS  consists of continuous functions on , this situation for instance occurs for all weakly-convergent sequences of measures, resulting in the weak lower-semicontinuity of . If the sequence { } ∈ℕ converges to in , then { ( )} ∈ℕ converges to ( ). ⊲ LEMMA 3.6. We define the set = ∈ | | ( ) = 0 ; for any measure ∈  + ( ), there always exists a measure ∈  + ( ) such that ( ) = 0 and ( ) ⩽ ( ). In view of Lemma 3.6, the search of low-SKD configurations with respect to an initial measure can be restricted to measures ∈  + ( ) such that ( ) = 0. The following Remark 3.7 characterises the infimum of over a convex set ⊆  + ( ).

Remark 3.7. Let ⊆  + ( ) be a convex set of approximate measures; we define the closed convex set

= { | ∈ }  ⊂ , i.e.
is the closure in  of the convex set { | ∈ }. We denote by the metric projection from  onto . We have

inf ∈ ( ) = ‖ ‖ - [ ] ‖ ‖ 2  , so that a measure ⋄ ∈ minimises over if and only if ⋄ = [ ]. ⊲ 3.2.
Embedding and orthogonal projections. For a fixed initial measure ∈  + ( ), we now consider the projection-based approximation scheme (A.2) and study, in the four cases (C.1)-(C.4), the approximations induced by approximate embeddings of the form  , with  the orthogonal projection onto a closed linear subspace  ⊆ . We denote by the reproducing kernel of  , and let  0 be the orthogonal complement of  in . We have = + 0 , with 0 the reproducing kernel of  0 . We may notice that =  .

Generalities.

We consider an approximate embedding  ∶  → 2 ( ). We have (  ) * =  * , and since  [ ]( ) = ( , ), for all and ∈ ,

 * [ ]( ) = | |  [ ] 2 ( ) = ∫ ( , ) ( )d ( ), for all ∈ 2 ( ).
The operators  * ∈ HS( , ) and

  * =
 * ∈ HS( ) can thus be regarded as integral operators of the form , , defined from the kernel and the measure . In the same way, for all ℎ ∈  and ∈ , we have

 *  [ℎ]( ) = ∫ ( , )  [ℎ]( )d ( ), so that  *  ∈ HS() and  *
 ∈ HS(, ) can be regarded as operators of the form ,  (see Remark 3.13 for more details regarding  ̃ [3] 

( ) = ‖ ‖ * - *  ‖ ‖ 2 HS() = ‖ ‖ ‖ ‖ 2 2 ( × ) -‖ ‖ ‖ ‖ 2 2 ( × )
, and (N3) ̃ [4] 

( ) = ‖ ‖ * -  *  ‖ ‖ 2 HS(, ) = ∫ ∫ ∫ ( , ) ( , ) ( , ) + ( , ) ( , ) ( , ) -2 ( , ) d ( )d ( )d ( ). (N4)
In (N4), we may notice that

* | |  *  HS(, ) = ‖ ‖  * ‖ ‖ 2 HS(, )
. We can in addition remark that ̃ [2] ( ) ⩽ ̃ [1] ( )

2 . When = ∑ =1
is a finite sum of Dirac measures with unit weights (with ∈ and ∈ ℕ), the norms (N1)-(N4) can be regarded as measures of the approximation error in Nyström PSD-matrix approximation. In particular, the term ‖ -‖ 2 ( × ) then corresponds to the Frobenius norm, and the integral ∫ ( , ) -( , )d ( ) corresponds to the trace norm; see Remark A.1. We can in addition notice that (N1) is related to the integrated-meansquared-error design criterion for a centred-random-field interpolation model with covariance kernel , see e.g. [START_REF] Rasmussen | Gaussian Processes for Machine Learning[END_REF][START_REF] Gauthier | Convex relaxation for IMSE optimal design in random-field models[END_REF][START_REF] Santner | The Design and Analysis of Computer Experiments[END_REF].

Remark 3.8. In the framework of (N1)-(N4), for ∈  + ( ) and for a given ∈ ℕ, the optimal rank-approximations of the operators * ∈ HS( , ), * ∈ HS( ), * ∈ HS() and * ∈ HS(, ) are obtained for  =  ,trc , where  ,trc is a closed linear subspace of  spanned by linearly independent eigenvectors associated with of the largest eigenvalues of * ; see for instance [START_REF] Hsing | Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators[END_REF]Theorem 4.4.7]. The approximate operators induced by  ,trc then correspond to truncated spectral expansions of the corresponding initial operators induced by ; for instance,  ,trc * corresponds to a truncated singular value decomposition of * , and  ,trc * corresponds to a truncated eigendecomposition of * . In practice, a direct implementation of such optimal approximations is therefore only possible for operators or matrices for which a spectral decomposition can be computed beforehand (and otherwise, measure-based or projection-based approximation schemes might be used to approximate such spectral decompositions; see Remark A.2). ⊲ LEMMA 3.9. We consider two closed linear subspaces  and  of , with  ⊆  ; we denote by  the orthogonal complement of  in  . For all ∈ {1, 2, 3, 4}, we have ), with equality if and only if  ⊆  0 .

̃ [ ] ( ) ⩽ ̃ [ ] (
In Nyström PSD-matrix approximation, Lemma 3.9 for instance illustrates that the Frobenius and trace norms of the approximation error can never increase with the number of iterations of any sequential column-sampling strategy.

In what follows, we shall pay a particular attention to the norms (N2) and (N3) as they can be directly related to the SKD framework, as discussed in the forthcoming Section 3.3; the following relation (Lemma 3.10) holds between these two norms. LEMMA 3.10. Let  be a closed linear subspace of ; we have ̃ [2] ( ) ⩽ ̃ [3] ( ).

Subspaces defined by approximate measures.

We now consider closed linear subspaces  ⊆  of the form  =  , with ∈  + ( ), and study the properties of the measure-dependent criteria arising from (N1)-(N4); as measures and ∈  + ( ) such that  =  yield the same projection-based approximation, we can expect these criteria to verify specific properties. By analogy with Section 3.1, for all ∈ {1, 2, 3, 4}, we set 

(3.3) lim →0 + 1 [ ] + ( -) -[ ] ( ) = 0 if  ∖ ⊆  0 , -∞ otherwise.
In view of Theorem 3.11, the criteria [ ] , with ∈ {1, 2, 3, 4}, consist of convex piecewise-constant maps on  + ( ). For and ∈  + ( ) such that  ∖ ⊆  0 and

 ∖ ⊆  0 , we have [ ] ( ) = [ ] ( ) = [ ] (
), for all non-null measure belonging to the conical hull of { , }. Also, the criteria [ ] are maximum on the convex cone

∈  + ( ) | |  ⊆  0 .
In contrast with the SKD criterion considered in Section 3.1, it is therefore not possible to use directional derivatives on  + ( ) to design approximate measures corresponding to low values of the criteria [ ] defined from (N1)-(N4). Depending on the relation between the measures , and , a schematic representation of the convex map ↦ [ ] + ( -) , with ∈ [0, 1] and ∈ {1, 2, 3, 4}, is given in Figure 1 (see also Figure 4). From a computational standpoint, while the evaluation of ( ) only involves integrals of the squared kernel | | 2 , the evaluation of [ ] ( ), with ∈ {1, 2, 3, 4}, also requires a suitable characterisation of the reproducing kernel of  , which is often challenging for general approximate measures ; see Remark A.1 for more details.

 ∖ ⊆  0  ∖ ⊆  0 0 1 [ ] ( ) = [ ] ( )  ∖ ⊈  0 0 1 [ ] ( ) > [ ] ( )  ∖ ⊈  0 0 1 [ ] ( ) < [ ] ( ) 0 

Relations between measure-based and projection-based approximations.

We now compare the approximations * and  *  of * ∈ HS() defined by an approximate measure ∈  + ( ). LEMMA 3.12. For all ∈  + ( ), we have

‖ ‖ * - * ‖ ‖ 2 HS() = ‖ ‖  *  - * ‖ ‖ 2 HS() + ‖ ‖ * - *  ‖ ‖ 2 HS()
. Combining Lemmas 3.10 and 3.12, we obtain [2] ( ) ⩽ [3] ( ) ⩽ ( ), for all approximate masures ∈  + ( ). The criteria [2] and [3] are thus bounded by the SKD criterion ; see Section 4.1 for a further discussion. A graphical representation of the geometry behind these inequalities is given in Figure 2.

Lemma 3.12 also illustrates that, in HS(), the operator  *  is always a more accurate approximation of * than * . These approximations are nevertheless not of the same type: the operator  *  still involves the initial measure , while * only depends on ; see also Remarks 3.13 and A.2. In practice, the type of approximation to consider depends on the application.

HS()

 *  - * * - *  * - * ‖ -‖ 2 ( × )
FIG. 2. Geometric relations between the approximations * and  *  of the initial operator * in HS() induced by ∈  + ( ), and comparison with the scale of the kernel approximation error in 2 ( × ), see (N2). We recall that ‖ * - * ‖ 2 HS() = ( ), and that ‖ * - *  ‖ 2 HS() = [3] ( ).

Remark 3.13. For a self-adjoint HS operator ∈ HS * () and a closed linear subspace  of , the operator   is the orthogonal projection, in HS * (), of onto the closed real linear subspace of all self-adjoint operators with range included in  . For all ∈ , we set =  [ ], so that ( ) = ( , ), with ∈ ; following Remark 3.2, we have

Γ[   ]( ) =   [ ] | |  = [ ] | |  . In particular, for ∈  + ( ), we obtain Γ[  *  ] = ∈ , with ( ) = ∫ | | ( , ) | | 2 d ( ), for all ∈ .
By definition of , we can then notice that

‖  *  ‖ 2 HS() = ‖ ‖ 2 2 ( × ) = ( | )  , so that  *  ∈  * () if and only if ( | )  = ‖ ‖ 2  . ⊲ 4.
Radial SKD and invariance under rescaling. For all ∈  + ( ) and > 0, we have  =  , so that [ ] ( ) = [ ] ( ), for all ∈ {1, 2, 3, 4}; the criteria [ ] are thus, in particular, invariant under rescaling of the approximate measures. In what follows, we describe the possibility to factor such an invariance under rescaling into the SKD framework while preserving most of the properties enjoyed by the map (in contrast, the inclusion of an invariance with respect to approximate measures characterising a same subspace of  results in a difficult-to-optimise convex piecewise-constant criterion; see Remark A.3).

For a fixed initial measure ∈  + ( ), we define the radial SKD criterion

( ) = min ⩾0 ( ) = ‖ ‖ - [ ] ‖ ‖ 2  = ‖ ‖ ‖ ‖ 2  -‖ ‖  [ ] ‖ ‖ 2 
, for all ∈  + ( ), with  the orthogonal projection from  onto the linear subspace spanned by . The real ( ) corresponds to the minimum of on the ray of  + ( ) spanned by the measure . For all ∈  + ( ) and > 0, we by definition have ( ) = ( ), i.e. is constant on the rays of the convex unpointed cone  + ( )∖{0  }; we hence refer to ( ) as the radial SKD of with respect (the terminology conic SKD is used in [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF]).

For ∈  + ( )∖, i.e. ∈  + ( ) and ≠ 0, we have

(4.1) ( ) = ‖ ‖ 2  - ( | ) 2  ‖ ‖ 2  = ( ), with = ( | )  ‖ ‖ 2  , so that  [ ] =
. Also, ( ) = ‖ ‖ 2  for all approximate measures ∈  + ( )∖ , with the real convex unpointed cone defined as

= ∈  + ( ) | | ( | )  > 0 ;
we may notice that  + ( ) ∩  ⊆  + ( )∖ . As with , the evaluation of ( ) only involves the computation of integrals of the squared kernel | | 2 . The radial SKD criterion can equivalently be defined from the Hilbert space HS(), see Remark 4.1; and

( ) can also be interpreted in terms of kernel energies, as described in Remark 4.2. . ⊲ Remark 4.2. In the framework of (4.1), we have

( | ) 2  = ∫ ∫ ( ) ( )d ( )d ( ),
corresponding to the energy of the measure with respect to the SPSD kernel ⊗ , defined as ⊗ ( , ) = ( ) ( ), for all and ∈ . The term ( | ) 2  ∕‖ ‖ 2  can thus be regarded as the ratio of the energies of with respect to the kernels ⊗ and | | 2 . ⊲ 4.1. Generalised convexity. For and ∈  + ( ), let Θ( ; ) be the directional derivative of at in the direction -, i.e.

Θ( ; ) = lim

→0 + 1 + ( -) -( ) .
THEOREM 4.3. The map is quasiconvex on  + ( ). For and ∈  + ( ), we have

(4.2) Θ( ; ) = 2 ( | -)  if ∉ , 0 if ∈  and ∉ , -∞ if ∈  and ∈ ,
and the map is in addition pseudoconvex on . As with convex maps, the quasiconvexity of the map ↦ ( ) ensures that a local minimum for over a convex set of approximate measures ⊆  + ( ) is a global minimum over . If ∩ ≠ ∅, then the pseudoconvexity of on in addition implies that first-order methods can be used to produce minimising sequences for over ∩ ; in particular, since  ∩ = ∅, the design of such minimising sequences is not affected by the non-finiteness of the directional derivatives Θ( ; ), for ∈  and ∈ . As with , the evaluation of the partial derivatives of only involves integrals of the squared kernel | | 2 ; see also Remark 3.3 and Section 5.

We can notice that Remark 3.5 and Lemma 3.6 still hold if we replace by (in Remark 3.5, we should then also replace  + ( ) by  + ( )∖). The following Remark 4.4 discusses the minimisation of over a convex set of approximate measures ⊆  + ( ), and Figure 3 illustrates the differences between minimising and over such a convex set . Remarks 4.5 and 4.6 describe some further properties of the radial-SKD criterion .

Remark 4.4. Let ⊆  + ( ) be a convex set; following Remark 3.7, we define the closed convex cone = { | ∈ and ⩾ 0}  ⊂ , and we denote by the metric projection from  onto (we may notice that if is a convex cone, then = ). We have

inf ∈ ( ) = ‖ ‖ - [ ] ‖ ‖ 2  , so that ⋆ ∈ minimises over if and only if there exists ̃ ⩾ 0 such that ̃ ⋆ = [ ]. In particular, if ∩ ≠ ∅ and if a measure ⋆ minimising over exists, then ⋆ ∈ and ̃ = ⋆ . ⊲ 0  coni( ) ⋆ ⋆ ⋆ ⋄ ⋆ ∈ arg min ∈ ( ) ⋄ ∈ arg min ∈ ( ) FIG. 3.
For a convex set of approximate measures ⊆  + ( ), with ∩ ≠ ∅, and in case of existence of solutions, schematic representation of the potential difference between the measures ⋄ and ⋆ minimising and over , respectively (see Remarks 3.7 and 4.4). The set is represented as a segment, and coni( ) is the conical hull of . The dotted ellipses correspond to contour lines of on coni( ), the minimun of on coni( ) being reached at ⋆ ⋆ ≠ 0  . Remark 4.5. For and ∈  + ( )∖, we have

( ) = ( ) + Θ( ; ) + -| | [ -]  + ‖ -‖ 3  , with
the bounded self-adjoint operator on  (Hessian operator) given by

[ ] = 2 - 4 ‖ ‖ 2  | | -1 2  ( - 1 
2 ), for all ∈ .

We then have

-1 2 = ( -1 2 ), with = 2 -‖ ‖ 2  ‖ ‖ 2
 ⩽ 0, so that the real corresponds to the unique negative-or-null eigenvalue of the operator on , in accordance with the quasiconvexity of on  + ( ); all the other eigenvalues of are equal to 2 , and are thus positive-or-null. ⊲ Remark 4.6. Let and ∈ be two measures such that Θ( ; ) < 0 and Θ( ; ) < 0. The map ↦ + ( -) , with ∈ [0, 1], is minimum at = ∈ (0, 1), with

(4.3) = ‖ ‖ 2  ( | - [ ])  ‖ ‖ 2  ( | - [ ])  + ‖ ‖ 2  ( | - [ ])  ,
and then

+ ( -) = ( ) -( | - [ ]) 2  ( | - [ ])  . Equation (4.
3) corresponds to the value of the optimal stepsize related to a descent from in the direction -(i.e. exact line search). ⊲ Following Section 3.3, and from the invariance under rescaling of [2] and [3] , we have [2] ( ) ⩽ [3] ( ) ⩽ ( ) ⩽ ( ), for all ∈  + ( ), with in particular [2] (0  ) = [3] 

(0  ) = (0  ) = (0  ) = ‖ ‖ 2 2 ( × )
, and [2] ( ) = [3] 

( ) = ( ) = ( ) = 0.
The radial SKD criterion in addition verifies

( ) ⩽ ‖ ‖ 2 2 ( × )
for all ∈  + ( ), so that takes values in the same interval as [2] and [3] ; by contrast, for all ∈  + ( )∖, we have ( ) → +∞ as ⩾ 0 tends to +∞. The SKD and radial SKD criteria and may in these respects be regarded as differentiable relaxations of the criteria [2] and [3] ; see Figure 4 for an illustration. See also Remark A.2 for a discussion on the interest of low-SKD configurations for spectral approximation.

Weight parameters. For a measure given by (5.1) and in view of (5.2), for a fixed set of locations { } =1 , the map { } =1 ↦ ( ) is a convex quadratic function. Following (3.2), the partial derivatives of with respect to the weight parameters { } =1 are given by

(5.3) ( ) = 2 ( ) -( ) = 2 ∑ =1 | | ( , ) | | 2 -∫ | | ( , ) | | 2 d ( ) ,
for all ∈ {1, ⋯ , }. In the same way, for ∉ , the partial derivatives of the quasiconvex map { } =1 ↦ ( ) follow from (4.2), that is

( ) = 2 ( ) -( ) .
Location parameters. For simplicity, we assume that = ℝ ; for ∈ ℝ , let [ ] , with ∈ {1, ⋯ , }, be the -th coordinate of in the canonical basis of ℝ . For ∈ , we denote by (assuming they exist) We consider a measure of the form (5.1). Assuming that all the involved terms are well-defined, for ∈ {1, ⋯ , } and ∈ {1, ⋯ , }, the partial derivative of with respect to the -th coordinate of is given by

[ ] ( ) = 2 {d} [ ] | | 2 ( , ) + 2 ∑ =1 ≠ {l} [ ] | | 2 ( , ) -2 ∫ {l} [ ] | | 2 ( , )d ( ). (5.5) 
For ∉ , we can accordingly obtain (again, when they exist) the partial derivatives of with respect to the coordinates of the location parameters. Discussing in detail the extent to which all the terms in (5.5) are well-defined is out of the scope of this work; we can for instance remark that if is finite and if the partial derivatives in (5.4) exist and are bounded for all and ∈ , then the partial derivative (5.5) is well-defined (such conditions are nevertheless only sufficient and may be relaxed).

Numerical complexity. If the initial measure is supported by points, then the time complexity of evaluating the partial derivatives (5.3) of with respect to the weight parameters of is  ( + ) . Assuming that = ℝ and in view of (5.5), the time complexity of the evaluation of the partial derivatives of with respect to the coordinates of the location parameters is  ( + ) . In the same way, the time complexity of the evaluation of the partial derivatives of with respect to the weight parameters of is  ( + ) , and  ( + ) for the partial derivatives of with respect to coordinates of the location parameters. As previously mentioned in Remark 3.3, in the sparse-approximation regime and for a general initial measure , the main bottleneck underlying the computation of such parametric partial derivatives is the evaluation of the integrals with respect to , and stochastic-gradient-type approximations might then be implemented for numerical efficiency.

Remark 5.1. We consider a measure of the form (5.1); we assume that = ℝ and that all the weight parameters of are strictly positive. For all ∈ {1, 2, 3, 4}, the map ↦ [ ] ( ) only depends on the support of ; see Remark 2.2. We also assume that the initial measure is supported by points. When they exist, the time complexity of the computation of the partial derivatives of [1] with respect to the coordinates of the support points of is  3 ( + ) ; for the criteria [2] and [3] , the corresponding time complexity is  3 ( +2 ) , and  3 ( + 3 ) for [4] . In each case, we may notice that the term 4 corresponds to the mutualised evaluation of the partial derivatives, with respect to the coordinates of the support points of , of the inverse of the kernel matrix defined by and the support of (assuming this matrix is invertible); the terms 3 , 3 2 and 3 3 then corresponds to the evaluation of the integrals with respect to , × and × × , respectively (see also Remark A.1). From a numerical standpoint, the evaluation or approximation of such partial derivatives is thus significantly more affordable for or than for [1] , [2] , [3] or [4] . ⊲ 6. Concluding discussion. We studied the overall framework surrounding the Nyström approximation of integral operators with PSD kernels and the Nyström method for PSD-matrix approximation. In the measure-dependent setting (i.e. for measure-based approximation and for projection-based approximation with subspaces characterised by measures), we discussed the properties of the criteria induced by the norms of the HS spaces underlying the definition of an integral operator with PSD kernel.

For the projection-based approximation scheme, we showed that the measure-dependent criteria [ ] induced by (N1)-(N4) consist of convex piecewise-constant maps on the convex cone  + ( ) of all admissible approximate measures. Combined with their costly-to-evaluate nature (in particular since they involve the reproducing kernels of subspaces of the initial RKHS; see also Remark 5.1), this observation illustrates the inherent difficulty in directly optimising these criteria. The column-sampling problem for Nyström PSD-matrix approximation is a particular instance of this general framework.

For the measure-based approximation scheme, we described the relation between the approximation in HS() and the kernel embedding of measures in the RKHS  associated with the squared kernel | | 2 . In contrast with the criteria [ ] , with ∈ {1, 2, 3, 4}, the SKD and radial SKD criteria and can be optimised using directional derivatives on  + ( ); the SKD and radial SKD criteria also inherit interesting numerical properties in the parametric framework of Section 5. Moreover and as discussed in Sections 3.3 and 4.1, and can be regarded as differentiable relaxations of the criteria [2] and [3] (see also Figure 4 for an illustration), so that the SKD and radial SKD criteria can be used as surrogate criteria for the characterisation of efficient measure-dependent projection-based approximations.

↦ ( ) 1 2 ↦ ( ) 1 2 ↦ [2] ( ) 1 2 
FIG. 4. For a two-dimensional example, graphical representation of the maps , , and [2] as functions of the weight parameters characterising an approximate measure . The measures and are supported by the same set of points { 1 , 2 } ⊆ , and described by their weight parameters ( 1 , 2 ) and ( 1 , 2 ) ∈ ℝ 2 ⩾0 , respectively; the red star represents the weight parameters of = 1 1 + 2 2 . The presented graphs correspond to the case To allow for the design of sparse finitely-supported approximate measures, the inclusion of sparsity-inducing mechanisms into the SKD framework should be investigated. For instance, a regularised-SKD-based approach for the design of sparse approximate measures with support included in a large fixed finite set of points was implemented in [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF] (c.f. sparsityinducing penalisation; see e.g. [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF]). Also, SKD and radial-SKD-based sequential sampling strategies of kernel-herding-type (see e.g. [START_REF] Chen | Super-samples from kernel herding[END_REF][START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF][START_REF] Briol | Frank-Wolfe Bayesian quadrature: probabilistic integration with theoretical guarantees[END_REF]) may be considered; and the raw and radial SKDs may be directly optimised in the parametric setting of Section 5, as illustrated in Figure 5 (we may notice that when the location parameters are optimised, the descents are often only local). As an interesting feature and when relevant, stochastic approximations of the involved derivatives, based on samples related to , might be considered (c.f. stochastic gradient, see e.g. [START_REF] Bottou | Optimization methods for large-scale machine learning[END_REF]). More generally, the theoretical and practical implications of the analogy between integral operator approximation and the kernel embedding of measures, arising from the partial isometry Γ described in Remark 3.2, should be explored in greater depth. , and of the form = ∑ =1 ′ for the measure on the right ( = 49). The dots and the crosses indicate the locations of the Dirac measures; for the measure on the left, the area of the dots is proportional to their associated weight. Both measures were obtained by local optimisation in the framework of Section 5, the SKD was used for the measure on the left, and the radial SKD for the measure on the right (so that the parameter could be omitted during the optimisation); descents were initialised at a measure supported by a 7 × 7 grid. The kernel is given by ( , ) = -‖ -‖ 2 , with = 16 (squared-exponential kernel; ‖.‖ is the Euclidean norm), and the initial measure corresponds to the restriction of a bi-Gaussian distribution to [-1, 1] 2 ; some contour lines of the density of with respect to the Lebesgue measure are presented. Proof of Theorem 3.11. We consider two measures and ∈  + ( ). For ∈ (0, 1), we define the measure = + ( -) ∈  + ( ); for all ℎ ∈ , we have 

‖ ‖ [ℎ] ‖ ‖ 2 2 ( ) = (1 -) ‖ ‖ [ℎ] ‖ ‖ 2 2 ( ) + ‖ ‖ [ℎ] ‖ ‖

[

  ] ( ) = ̃ [ ] ( ), for all ∈  + ( ). THEOREM 3.11. For all ∈ {1, 2, 3, 4}, the map [ ] is convex on  + ( ). For and ∈  + ( ), we denote by  ∖ the orthogonal complement of  in  +   , the closure in  of the sum of the closed linear subspaces  and  . The map ↦ [ ] + ( -) is constant on the open interval (0, 1), and

1 FIG. 1 .

 11 FIG. 1. Schematic representation of the map ↦ [ ] + ( -) , with ∈ {1, 2, 3, 4}, ∈ [0, 1], and and ∈  + ( ), depending on the relation between the measures , and ; see Theorem 3.11. The figure reads like a table: for instance, the bottom-right entry corresponds to the case  ∖ ⊈  0 and  ∖ ⊈  0 .

Remark 4 . 1 . 2 HS

 412 We denote by { * } the orthogonal projection, in HS(), of * onto the linear subspace spanned by * . Following Remark 3.2, since * and * ∈  * (), we have Γ { * } =  [ ], and thus ( ) = ‖ ‖ * -{ * } ‖ ‖

  | 2 ( , ) and {d} [ ] | | 2 ( , ) the partial derivatives of the maps ↦ | ( , )| 2 and ↦ | ( , )| 2 at and with respect to the -th coordinate of , respectively; the notation {l} indicates that the left entry of the kernel is considered, while {d} refers to the diagonal of the kernel.

31 FIG. 5 .

 315 FIG. 5. Graphical representation of two low-SKD configurations; the approximate measure on the left is of the form = ∑=1

Proof of Lemma 3 . 6 . 2 HS

 362 The set is measurable since the function is measurable. For ∈  + ( ), let ∈  + be defined as ( ) = ( ∖ ), for all ∈ . Since diag[ ] ⩾ 0, we have ∫ ( , )d ( ) ⩾ ∫ ( , )d ( ) = ∫ ( , )d ( ), with the complement of , and thus ∈  + ( ). Since | | 2 ⩾ 0, we in the same way obtain ‖ ‖ 2  ⩾ ‖ ‖ 2  , and we conclude by noticing that (| )  = ( | )  .Proof of Lemma 3.9. We have =  +  , with   =   = 0. Considering (N1), we obtain ‖  * ‖ 2 HS( ,) = ‖  * ‖ 2 HS( ,) + ‖  * ‖ 2 HS( ,), leading to the expected inequality. We also have * | |  * HS( ) = ‖  *  ‖ 2 HS(), entailing the inequality related to (N2). Considering (N3), the inequality follows from‖  *  ‖ 2 HS() = ‖  *  ‖ 2 HS() + ‖  *  ‖ HS(, ) = ‖  *  ‖ 2 HS(, ) ; the expansion of ‖ ‖ (  +  ) * (  +  ) ‖ ‖ 2 HS(, )then yields the expected inequality. We conclude by noticing that  ⊆  0 if and only if  = 0, and that the operators  * ∈ HS( , ),  * ∈ HS( ),  *  ∈ HS() and  *  ∈ HS(, ) are null as soon as any of them is null. Proof of Lemma 3.10. We have ( 0 | ) 2 ( × ) = ‖  *  0 ‖ 2 HS() ⩾ 0 for any closed linear subspace  of . Since = + 0 , we obtain ( | ) 2 ( × ) = ‖ ‖ 2 2 ( × ) + ( 0 | ) 2 ( × ) ⩾ ‖ ‖ 2 2 ( × ) , which concludes the proof.

.

  so that  0 =  0 ∩  0 and  =  +   , independently of ∈ (0, 1). Hence, for all ∈ {1, 2, 3, 4}, the map ↦ [ ] + ( -) is constant on (0, 1). Since  ⊆  and  ⊆  , from Lemma 3.9, we have [ ] ( )⩽ [ ] ( ) and [ ] ( ) ⩽ [ ] ( ). Consequently, the map ↦ [ ] + ( -) is convex on [0, 1]for all and ∈  + ( ), and [ ] is convex on  + ( ). The two possible values for the limit defined in (3.3) follow directly from Lemma 3.9 and the inclusion  ⊆  +   Proof of Lemma 3.12. Since the ranges of * and  *  are both included in  , a direct computation gives * - *  | |  *  - * HS() = 0, and the result follows; see also Remark 3.13. Proof of Theorem 4.3. We consider and ∈ , so that > 0 and > 0. For all ∈ [0, 1], there exist > 0 and ′ ∈ [0, 1] such that (1 -) + = (1 -′ ) + ′ , translating the fact that the ray of  + ( ) spanned by = + ( -) always intersects with the set + ̃ ( -) | | ̃ ∈ [0, 1] . From the invariance under rescaling of , we obtain (1 -) + = (1 -′ ) + ′ ⩽ (1 -′ ) + ′ .

= | | 2 ( ) = | | 2 | | | | 2  ,

( × ) , (N2)

=

= 1, with ( 1 , 1 ) = 1.225, ( 2 , 2 ) = 0.894 and ( 1 , 2 ) = 0.316. In the graphs of and[START_REF] Bach | On the equivalence between herding and conditional gradient algorithms[END_REF] , the point on the vertical axis indicates the value of the map at = 0  ; the bold lines indicate the constant values taken by these maps along the horizontal axes.

Affine restriction.

The invariance under rescaling of the map offers additional flexibility in characterising low-SKD configurations on a convex cone of approximate measures ⊆  + ( ). While considering the radial SKD criterion , we may indeed restrict the search to convex sets of the form

with a positive real-valued measurable function on ( , ), and with > 0 (see also Remark 4.8). We introduce the following condition on : (AR) the integral ∫ ( )d ( ) = , is finite and strictly positive for all ∈ ∩ .

Under (AR), for all ∈ ∩ , we have the measure ̃ is a probability measure on ( , ), and ̃ ( ) = 1 ∫ ( )d ( ), for all ∈ . Following Remark 4.2, the radial SKD ( ), with ∈ ℛ , , is then related to the ratio of the energies of the probability measure ̃ with respect to the kernels ( ⊗ )∕( ⊗ ) and | | 2 ∕( ⊗ ). Such a change of measure is of interest for applications since it allows us to recover the probability-measure-optimisation framework, independently of and . ⊲ 5. Finitely supported approximate measures and parametrisation. For ∈ ℕ, we consider an approximate measure of the form (5.1) = ∑

=1

, with ∈ ℝ ⩾0 and ∈ for all ∈ {1, ⋯ , }.

We refer to { } =1 ∈ ℝ ⩾0 as the weight parameters of , and to { } =1 ∈ as its location parameters.

For a measure given by (5.1), we have

for ∉  and following (4.1), we can accordingly express ( ) from the terms appearing in the RHS of (5.2). In this section, we discuss the possibility to compute the partial derivatives of the SKD and radial SKD criteria with respect to the parameters characterising a finitelysupported measure of the form (5.1). The optimisation of such finitely-supported measures with gradient-descent algorithms is sometimes referred to as particle gradient descent, see for instance [START_REF] Chizat | Sparse optimization on measures with over-parameterized gradient descent[END_REF]; see Figure 5 for an illustration of the type of approximate measures that can be obtained in this framework.

Appendix A. Proofs and further remarks.

Proof of Theorem 3.1. We first notice that for any closed linear subspace

where ℎ ⊗ ℎ stands for the rank-1 PSD kernel given by ℎ ⊗ ℎ ( , ) = ℎ ( ) ⊗ ℎ ( ), for all and ∈ . Since the series ∑ ∈ ℎ ⊗ ℎ converges to in 2 ( × ) for all and ∈  + ( ), see e.g. [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF], we obtain

. We conclude by noticing that we have ‖ ‖ The convexity of entails (1 -′ ) + ′ ⩽ (1 -′ ) ( ) + ′ ( ), and then (A.1)

(1 -) + ⩽ max ( ), ( ) .

Inequality (A.1) also holds if or ∈  + ( )∖ , and is thus quasiconvex on  + ( ). For ∈  + ( )∖ and ∈  + ( ), a direct differentiation of (4.1) gives

We now assume that ∈  + ( ) ∩ , so that = 0. For ∈  + ( ) and ∈ (0, 1), we introduce = + ( -) ∈  + ( ); we then have = , and thus  =  . We obtain:

 , leading to the expected values of Θ( ; ).

We consider and ∈ such that Θ( ; ) ⩾ 0; we then have

By definition of

, we have ( | )  > 0 and ( | )  > 0; we then also have ‖ ‖  > 0 and ‖ ‖  > 0, and from (A.2), ( | )  > 0. We obtain

the last inequality following from the Cauchy-Schwarz inequality applied to ( | )  . We thus have ( ) ⩽ ( ), so that is pseudoconvex on .

Remark A.1. We assume that = ∑

=1

, with  = { } =1 ⊆ and ∈ ℕ; we have ∈  + ( ) since is finitely-supported, and * [ ]( ) = ∑ =1 ( , ) ( ), for all ∈ 2 ( ) and ∈ . Let be the × kernel matrix defined by and  , with , entry ( , ). Denoting by ∈ ℂ the column vector with -th entry ( ), we can notice that , [ ]( ) corresponds to the -th entry of the column vector ∈ ℂ . The map ↦ defines a linear isometry from 2 ( ) to the complex Euclidean space ℂ , and the operator * ∈ HS( ) then corresponds to the kernel matrix ; see [START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF]Section 4] for more details.

Let = ∑ =1 be another finitely-supported measure, with  = { } =1 ⊆ , and > 0 for all ∈ {1, ⋯ , }, and ∈ ℕ. We denote by the × kernel matrix defined by and  , with , entry ( , ); we then in particular have [1] ( ) = ‖ -‖ * , and [2] ( ) = ‖ -‖ 2 , and [3] 

where ‖.‖ * and ‖.‖ stand for the trace and Frobenius norms, respectively. When  ⊆  , the support of characterises a subset of columns of . From a numerical standpoint, for and ∈ , the evaluation of ( , ) from the kernel requires the orthogonalisation of the system { } =1 in  (in practice, the inverse or pseudoinverse of the × kernel matrix defined by and  is often computed), with a time complexity of ( 3 ). In case of multiple evaluations, the orthogonalisation step can be mutualised, so that the time complexity of ∈ ℕ evaluations of is ( 3 + 2 ). When is supported by points, the time complexity of the evaluation of [1] ( ) is thus ( 3 + 2 ), it is ( 3 + 2 2 ) for [2] ( ) and [3] ( ), and ( 3 + 2 3 ) for [4] , is an orthonormal system in  (all eigenvalues are repeated with multiplicity, with + , and + , ⊆ ℕ). From Lemma 3.12 and the orthogonal decomposition  =  ⦹  0 , we obtain

This observation further illustrates that the operator  *  yields a more accurate approximation of * ∈ HS() than * , and emphasises the interest of low-SKD configurations for spectral approximation.

In practice, a spectral decomposition of the operator * ∈ HS() is generally derived from the diagonalisation of * ∈ HS( ): indeed, if ̃ ∈ 2 ( ) and > 0 are such that * [̃ ] = ̃ , then * [̃ ] is an eigenvector of * , with associated eigenvalue . Spectral decompositions of  * ∈ HS( ) and  *  ∈ HS() can then be obtained from the diagonalisation of the operator on 2 ( + , ) corresponding to the Gram matrix with , entry [ ] |

| [ ] 2 ( ) . We indeed have

, and the aforementioned Gram matrix corresponds to the operator * ; see e.g. [START_REF] Saad | Numerical Methods for Large Eigenvalue Problems[END_REF][START_REF] Kress | Linear Integral Equations[END_REF][START_REF] Santin | Approximation of eigenfunctions in kernel-based spaces[END_REF][START_REF] Gauthier | Optimal quadrature-sparsification for integral operator approximation[END_REF] for further details. ⊲ Remark A.3. Approximate measures and ∈  + ( ) such that  =  lead to the same projection-based approximation. Following Section 4, to factor such an invariance into the SKD framework, we could define the criterion ( ) = inf ( ) | | ∈  + ( ) and  ⊆  . The evaluation of involves the solving of an optimisation problem, and following Theorem 3.11, the map is convex and piecewise-constant on  + ( ). Consequently and in most practical applications, a direct minimisation of , over a convex set of approximate measures or in the parametric framework of Section 5, would generally be numerically intractable. ⊲