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Game-Theoretic and Inhibition-Based models for crowd motion

F. Al Reda, B. Maury
Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, 91405 Orsay Cedex, France

Abstract

We propose a new microscopic crowd motion model based on Game-Theoretic principles, from which we derive an
Inhibition-Based model for evacuation situations. Each individual is supposed to have a desired velocity that they
adapt to the behavior of neighbors that influence them. Possible adapted velocities are defined as instantaneous
Nash equilibria: each individual does their best with respect to a personal objective (desired velocity), considering
the behavior of the neighbors that influence them (to avoid overlapping). We address theoretical and modeling
issues in various situations, in particular when each individual is influenced by all their neighbors, and in the case
where the influence relations are structured in a hierarchical way. The second particular case is used to define the
Inhibition-Based model.

Résumé

Principes de théorie des jeux et comportement d’inhibition dans les modèles de foules. Nous pro-
posons un nouveau modèle microscopique de mouvement de foule basé sur la théorie des jeux, à partir duquel
nous dérivons une version particulière dédiée aux situations d’évacuation, basée sur un principe d’inhibition. Nous
supposons que chaque individu a une certaine vitesse souhaitée qu’il adapte en fonction du comportement des
voisins qui l’influencent. Les vitesses adaptées possibles sont définies comme des équilibres de Nash instantanés:
chaque indivivu fait de son mieux par rapport à un objectif personnel (vitesse souhaitée), en tenant compte du
comportement des voisins qui l’influencent (pour éviter un chevauchement avec eux). Nous abordons des questions
relatives à la modélisation ainsi que les aspects théoriques du problème dans diverses situations, en particulier
dans le cas où chaque individu est influencé par tous ses voisins, et dans le cas où les relations d’influence entre
les individus ont une structure hiérarchique. Le second cas particulier fait l’objet du modèle basé sur un principe
d’inhibition.

1. Modelling

In [5,6], a crowd motion model of the granular type was proposed, based on identifying individuals
with rigid disks. It relies on the following principles: each individual has a desired, “selfish”, velocity
(the velocity they would like to have if they were alone), and the actual velocity field is defined as the
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projection of the field of desired velocities on the set of velocity fields that are globally admissible (which
do not lead to overlapping between discs). In this granular model, individuals are considered active and
asocial: individual tend to behave as if they were alone, and interactions do not correspond to individual
decisions, they are rather of mechanical nature (actual contact between grains). This model applies
to highly congested situations where individuals passively undergo forces exerted by their neighbors
(including some which they do not see). In real-life situations, even highly crowded ones, people tend to
avoid hard physical contact by adapting their instantaneous velocity to the ones of their close neighbors.
We propose here to model this very behavior by modifying the desired velocities before the projection
step. We suppose that each individual is influenced by some others (practically those who are in their cone
of vision). The adapted desired velocities that are likely to occur are such that each individual chooses
the velocity that is the closest to their desired one, accounting for the behavior of others that influence
them. Since the constraints on each velocity depends on velocities chosen by neighbors, the problem is
very similar to finding Nash equilibria [7] in competitive games.

As we shall see, this approach does not properly define a single velocity field, it rather defines a set
of velocity fields compatible with those requirements. The core of the approach therefore relies in the
definition of the set of adapted desired velocities (set Λ defined by Eq.(2) below). Defining this set does
not provide a proper evolution model since, as we shall see, it might be empty in some situations and,
when it is not, it generally contains more than one element. We establish in Section 2 properties of this
set, in two particular situations: when the influence graph is complete (each individual is potentiallly
influenced by all the others), and when it does not contain cycles. In the latter situation, Λ is reduced to
a single element, which yields, along with the projection step, a proper evolution model which we shall
call Inhibition-Based model (IB model). The relevance of this approach is supported by a comparison
between the IB model and the purely granular (selfish) model in an evacuation situation: we check that
the civilized behavior of individuals leads to a faster evacuation, which is known as the Faster is Slower
effect.

Mathematical formulation

Consider N individuals represented by disks of centers q1,. . . , qN ∈ R2 and common radius R. The
configuration of all individuals is denoted by q = (q1, . . . , qN ) ∈ R2N . We denote by Ui ∈ R2 the desired
velocity of individual i and define the set of feasible configurations by:

K =
{

q ∈ R
2N , Dij(q) ≥ 0, ∀i 6= j

}

where Dij(q) = |qi − qj | − 2R is the distance between individuals i and j.

qi
qj

Dij

eij

−eij R

R

Figure 1. Notation

To alleviate notation, we consider only non-overlapping constraints between individuals, keeping in
mind that contacts between individuals and walls of the domain can be handled in the same manner.

Each individual is influenced by some others (not necessarily all of them) and we denote by Ii the set
of pedestrians that influence i. We represent the influence relations between individuals by a directed
graph built as follows: the nodes of the graph are the individuals, and an oriented edge i → j exists if
and only if j ∈ Ii.
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Figure 2. Configuration of individuals with desired velocities (black vectors) and influence graph (blue dotted vectors)

For the granular model proposed in [5,6], the actual velocity field is defined as the euclidean projection
of the desired velocity field U = (U1, . . . , UN ) on the set of globally admissible velocity fields defined by:

C(q) =
{

v = (v1, . . . , vN ) ∈ R
2N , ∀j 6= i, Dij(q) = 0⇒ eij(q) · (vi − vj) ≤ 0

}

(1)

where eij(q) = (qj − qi)/|qj − qi|.

The Nash approach that we propose consists in considering that the desired velocity undergoes an
adaptation step, which accounts for the fact that individuals tend to avoid overlapping with the people
at distance zero from them, and which they see (i.e. which are in their influence set). Assuming that this
first step leads to a proper adapted velocity, the latter may lead to a violation of the non overlapping
constraints. Therefore this first step is supplemented by a projection step, which consists in projecting
the adapted desired velocity on the set of feasible velocities C(q). From the modeling standpoint, the
first step accounts for decisional processes (individual adaptation to avoid collisions), whereas the second
step has a mechanical nature: it accounts for unanticipated collisions between individuals. The overall
approach writes:
(i) (Adaptation step) The first step writes















Find Ũ ∈ Λ, where Λ is defined by

Λ =

{

v ∈ R2N , vi = argmin
w∈Ci(q,v−i)

1

2
|w − Ui|

2, ∀i = 1, . . . , N

}

(2)

where
Ci(q, v−i) =

{

w ∈ R
2, ∀j ∈ Ii, Dij(q) = 0⇒ eij(q) · (w − vj) ≤ 0

}

(3)

with the usual notation v−i = (v1, . . . , vi−1, vi+1, . . . , vN ).

(ii) (Projection step) The second step consists in defining the actual velocity field as the projection of
Ũ on the set of globally admissible velocity fields C(q) defined by (1):

u = PC(q)Ũ.

This approach raises delicate issues in terms of existence and uniqueness of adapted desired velocities
since Nash equilibria are not unique in general and even existence is not always guaranteed. Notably, the
classical theory about existence of Nash equilibria for generalized games (see for example [2]) does not
apply for this problem due to the particular form of the minimization functional. In the next section,
we consider two particular cases of influence graphs: the case of a complete graph (each individual is
influenced by all the others) and the case of directed acyclic graph (hierarchical interactions between
individuals). We prove that, in the first case, the set Λ is non-empty, and not reduced to a singleton in

3



general. In the second case, existence of a unique adapted velocity field can be established, which properly
defines an evolution process.

2. Theoretical issues

We address here the well-posedness of Problem (2)-(3) in two situations where existence can be proven.
In the first one, all interactions are accounted for so that the influence graph is complete: each individual
is influenced by all their neighbors. Solutions can then be constructed as classical solutions of a granular
problem with arbitrary masses, and uniqueness does not hold in general. In the second situation, where the
graph is assumed to be acyclic (hierarchical case), we shall prove existence and uniqueness of a solution.

Let us start by formulating the optimization problems that characterize individual velocities in a saddle
point manner.
Proposition 2.1 The collection of minimization problems (2)-(3) is equivalent to the collection of saddle-
point formulations: for each i = 1, . . . , N , there exist nonnegative Lagrange multipliers (λij)j∈Ic

i
such that











































Ũi +
∑

j∈Ic
i

λijeij = Ui,

eij · (Ũi − Ũj) ≤ 0, ∀j ∈ Ici ,

∑

j∈Ic
i

λij eij · (Ũi − Ũj) = 0,

(4)

where Ici ⊂ Ii is the set of individuals j that influence i, and that are in contact with i, i.e. such that
Dij = 0.
Proof. The functional is quadratic and the constraints are affine, thus automatically qualified. Therefore,
for each i = 1, . . . , N , Ũi is a solution of Problem (2)-(3) if and only if there exists nonnegative Lagrange
multipliers (λij)j∈Ic

i
such that (Ũi, λ) is a solution of the saddle point formulation (4) (by Kuhn-Tucker

theorem, see [1] for more details). ✷

Remark 1 Each λij quantifies the correction that i makes on their own velocity to preserve the constraint
pertaining to their neighbor j. In the granular approach proposed in [5,6], a similar Lagrange multiplier
λij was involved to account for the non-overlapping constraint between i and j, more precisely to quantify
the interaction force between i and j. The fact that, in this granular setting, λij is common to i and j,
expresses the mechanical character of the interaction (the Law of Action–Reaction holds). The situation
here is different: it may occur that λij 6= λji, which breaks the symmetry of the interaction, and underlines
the fact that each λij results from a personal decision made by the individual i.

Complete influence graph situation

In this case, each pedestrian takes into consideration the actions of all the others when choosing their
own action. We state the existence of an adapted desired velocity field in the following proposition, which
gives a constructive process to build an infinite number of equilibria. This process is based on mechanical
principles, so that the law of action and reaction automatically holds: it restricts this approach to case
where the influence graph is complete. Note also (see Proposition 2.5 below) that, in general, this process
will not make it possible to build all Nash equilibria.
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Proposition 2.2 We assume that the influence graph is complete. We consider a collection of strictly
positive masses m1, . . . ,mN respectively attributed to individuals q1, q2, . . . , qN . We shall denote by M =
(m1, . . . ,mN ) the corresponding vector. The problem

min
v∈C(q)

1

2

N
∑

i=1

mi|vi − Ui|
2, (5)

where C(q) is defined by (1), has a unique solution. This solution is a particular solution of Problem (2)-
(3).
Proof. We proceed using the saddle point formulations of both Problems (2) and (5). Problem (5) is
equivalent to its saddle point formulation, we denote by (uM , λM ), λM ≥ 0, its saddle-point, so we have
that, for all i = 1, . . . , N ,











































miu
M
i +

∑

j 6=i,Dij=0

λM
ij eij = miUi,

eij · (u
M
i − uM

j ) ≤ 0, ∀j 6= i, Dij = 0,

∑

j 6=i,Dij=0

λM
ij eij · (u

M
i − uM

j ) = 0.

(6)

Hence, setting λij = λM
ij /mi, the couple (uM

i , (λij)j 6=i,Dij=0) satisfies the saddle point formulation (4) of
Problem (2)-(3). ✷

In general, varying M allows one to define infinitely many Nash equilibria. Let us consider for instance
the interaction between two agents in contact (see Fig. 3, left). Assume that the agent 1 on the left (resp.

1 2

U −U

Figure 3. Two-agent and many-agent conflicts

the agent 2 on the right) has a desired velocity +U (resp. −U), with U > 0. Consider the mass vector
Mα = (1, α), with α > 0. The projection of (U,−U) on the set of admissible velocities, for the norm
associated to Mα, corresponds to a common velocity u for 1 and 2, with

u =
1− α

1 + α
U.

For α varying between 0 and +∞, we thus obtain a continuum of Nash equilibria in the form (u, u), with
u ∈ (−U,U). The two limit cases are obtained by having α go to 0 and +∞. Notice that, in this two-agent
situation, different mass vectors (apart from scaling) lead to different equilibria. This one-to-one character
may be ruled out in general. Consider for instance an array of discs (see Fig. 3, right), where the desired
velocities decrease from left to right. In this setting, for any mass vector M , the projection onto the set
of feasible velocities is such that all velocities are the same, as stated by the following lemma.
Lemma 2.3 We consider a cluster of N discs in a row, in the one-dimensional setting. The desired
velocities U1, U2, . . . , UN are assumed to be non-increasing, i.e. Ui+1 ≤ Ui for i = 1,. . . ,N − 1. For any
mass vector M , the projection of the desired velocity field on the set of admissible velocities, for the norm
associated to M , has the form (u, u, . . . , u).

5



Proof. Let u = (u1, . . . , uN) be the projection of U = (U1, . . . , UN ) on C(q), for the norm associated to
M (Problem (5)). Since u is admissible, it holds that ui+1 ≥ ui for every i. Let us prove that equality
holds for every i. If ui+1 > ui for some i, then either ui+1 > Ui+1, but then the distance can be reduced
by changing ui+1 in ui+1 − ε, or ui+1 ≤ Ui+1, but then ui < Ui+1 ≤ Ui, and the cost can be reduced by
changing ui onto ui + ε. As a consequence, it holds that ui+1 = ui for every i, i.e. the solution writes
(u, u, . . . , u). ✷

Now consider a cluster of 2N + 1 discs, indexed by i = −N , −N + 1, . . . , 0, 1, . . .N , and a collection
of desired velocities that is nondecreasing from left to right, and odd with respect to the central disc, i.e.
U−i = −Ui for i = 0, 1, . . . , N . We furthermore assume that masses are symmetric with respect to the
central discs, i.e. m−i = mi for i = 1, 2, . . . , N . By Lemma 2.3, the solution to Problem (5) is such that
all discs have the same velocity, and by symmetry this common velocity is 0. This property holds for any
symmetric mass distribution, which shows that the correspondence

Mass vector M 7−→ Solution to (5)

is not injective in general, beyond the obvious scale degeneracy.

We shall see that some Nash equilibria cannot be recovered as limits of such mechanical equilibria. Let
us first establish the closed character of Λ.
Proposition 2.4 For the case of a complete influence graph, the set Λ of all Nash equilibria is closed in
R2N .
Proof. Let (Ũn)n be a sequence in Λ which converges to Ũ . We denote by (λn

ij)j 6=i,Dij=0 the nonnegative

Lagrange multipliers associated to Ũn
i , for all i = 1, . . . , N and n ∈ N:











































Ũn
i +

∑

j 6=i,Dij=0

λn
ijeij = Ui

eij · (Ũ
n
i − Ũn

j ) ≤ 0, ∀j 6= i, Dij = 0,

∑

j 6=i,Dij=0

λn
ij eij · (Ũ

n
i − Ũn

j ) = 0

(7)

Let Ji be the set:

Ji =
{

j 6= i, (λn
ij) has an infinite number of non-zero terms

}

.

Beyond some rank, the sequence
∑

j∈Ji

λn
ijeij is equal to

∑

j 6=i,Dij=0

λn
ijeij = Ui − Ũn

i and is then convergent.

Since the set of nonnegative linear combinations of (eij)j∈Ji
is closed, the limit can be written in the form

∑

j∈Ji

λijeij for some λij ≥ 0, for all j ∈ Ji. We set λij = 0 for all j /∈ Ji, so we can write:

Ũi +
∑

j 6=i,Dij=0

λijeij = Ui.

We pass to the limit in the second equation of (7) to get:

eij · (Ũi − Ũj) ≤ 0

for all j 6= i and Dij = 0. So it remains to be proved that the complementary condition
∑

j 6=i,Dij=0

λij eij · (Ũi − Ũj) = 0
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holds. For j ∈ Ji, there exists a sub-sequence still denoted by (λn
ij)j 6=i,Dij=0 such that λn

ij is strictly
positive starting from a given rank. The complementarity condition

λn
ij eij · (Ũ

n
i − Ũn

j ) = 0

is satisfied for all n ∈ N, so eij · (Ũ
n
i − Ũn

j ) = 0 for a subsequence of n going to infinity. Passing to the
limit in the last equality we get

eij · (Ũi − Ũj) = 0

for all j ∈ Ji. Then, the following holds for all i = 1, . . . , N :










































Ũi +
∑

j 6=i,Dij=0

λijeij = Ui

eij · (Ũi − Ũj) ≤ 0, ∀j 6= i, Dij = 0,

∑

j 6=i,Dij=0

λij eij · (Ũi − Ũj) = 0,

which means that (Ũ, (λij)j 6=i,Dij=0) is a solution of the saddle point formulation of Problem (2)-(3), and

thus Ũ belongs to Λ. ✷

We denote by Λg (g for “granular”) the set of all those velocity fields which can be obtained as a
solution of (5), where M is a vector associated to masses m1, . . . , mN > 0. We have already shown that
Λg ⊂ Λ, and the previous proposition extends the inclusion to the closure: Λg ⊂ Λ. A natural question
arises: does it hold that Λg = Λ ? This question is also important from the modeling standpoint: do all
Nash equilibria correspond to a global trade-off, the actual outcome of which would only depend on some
sort of underlying hierarchy (encoded by the different masses) ?

The answer is yes in dimension one and it can be proved by straightforward computations. We show
in the following proposition that it is not true in dimension two, which means that some equilibria are
genuinely of the Game-Theoretic type, i.e. they cannot be recovered by mechanical principles.
Proposition 2.5 The inclusion Λg ⊂ Λ is strict in dimension two.
Proof. We consider the 4-disc configuration represented on Figure 4.

1

2

3
4

: Desired velocities

: Adapted velocities

(Nash equilibrium)

Figure 4. Four individuals forming a cycle

The desired velocities of 1, 2, 3 and 4 (bold arrows on the figure) are, respectively, (1, 0), (0,−1),
(−1, 0), and (0, 1). Let us show that the collection of velocities (1, 1), (1,−1), (−1,−1), (−1, 1) (tiny
arrows on the figure) corresponds to a Nash equilibrium. Let us show first that the disc 2 realizes its
optimum (i.e. minimal distance to desired velocity (0,−1)), given the constraints exerted by discs 1 and
3. Let (u, v) be the velocity of disc 2, the corresponding constraints are u ≥ 1 and v ≤ −1. The problem
for 2 consists in minimizing u2 + |v +1|2 under those constraints, which yields (u, v) = (1,−1). The very
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same approach can be carried out for each of the three other discs, which shows that the collection of
velocities (1, 1), (1,−1), (−1,−1), (−1, 1) is indeed a Nash equilibrium.

We aim now at proving that this equilibrium is not the limit of equilibria associated to mass vectors
(see Proposition 2.2). Consider the velocities that would result from a projection of the desired velocity
field on the set of feasible velocities, for some non degenerated mass vector M (see Eq. (5)). Since m1 and
m2 are finite and positive, the horizontal velocity of 1 is necessarily reduced, which is not the case here
(individual 1 fully imposes their horizontal velocity to individual 2). Focusing on the 1 ↔ 2 interaction,
the considered adapted velocity field can be obtained only by having m1/m2 go to infinity. Similarly,
considering the remaining interactions 2 ↔ 3, 3 ↔ 4, and 4 ↔ 1, we obtain that m2/m3 → +∞,
m3/m4 → +∞ and m4/m1 → +∞. This is impossible since, by cyclicity, the product of these four ratios
is 1. ✷

Hierarchical influence graph

This particular case of hierarchical influence graph is characterized by extreme asymmetric interactions
between individuals: two individuals cannot influence each other mutually, neither directly nor indirectly.
We state in the following proposition the existence and uniqueness of adapted desired velocity field
belonging to Λ.
Proposition 2.6 We suppose that the influence graph is directed and acyclic, then Problem (2)-(3) has
a unique solution.
Proof. The proof is based on a construction procedure that enables us to explicitly determine a unique
solution of Problem (2)-(3). We consider the following partition of nodes:
– E0 is the subset of individuals that have no leaders. For any i ∈ E0, we have Ũi(q) = Ui.
– E1 is the subset of individuals whose leaders are all in E0. For any i ∈ E1, Ũi(q) is uniquely determined
as the solution to the minimization problem (2)-(3), from the velocities of individuals in E0 that have
already been determined.

– Ek, for k = 2, 3, . . . , is the subset of individuals whose leaders are in E0 ∪ E1 ∪ · · · ∪ Ek−1, with
at least one leader in Ek−1. Like previously, for any i ∈ Ek, Ũi(q) is determined as the solution to
Problem (2)-(3), from the velocities of individuals in E0 ∪ E1 ∪ · · · ∪ Ek−1.

Since the set of individuals is finite, all individuals are handled after a finite number of steps, and this
approach determines a solution to Problem (2)-(3) in a unique way. ✷

3. Inhibition-Based model

We now consider the practical case of the evacuation of a room through a single exit. In such a situation,
individuals point toward the direction of the exit door, focusing on the direction of desired velocity and
disregarding neighbors which are not located in front of them. We show in this section that, under some
condition on the desired velocities and on the cone of vision, the influence relations between individuals
become hierarchical, which makes the problem fully resolvable by Proposition 2.6.

As a main assumption, we consider that the desired velocity of an agent depends on their position only.
More precisely, we consider that the desired velocity of agent i located at qi is defined as Ui = U(qi),
where x 7→ U(x) is a global velocity field, shared by all agents.

We suppose that each individual is influenced by the neighbors which they can see, i.e. which lie in their
cone of vision. The cone of vision of each individual is considered to be centered around the direction of
their desired velocity with a fixed angle α < π/2. The influence set of each individual contains all others
whose positions are in their cone of vision (see Figure 5). In the following lemma we show that, providing
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a certain condition on the global velocity field and the angle α is met, the influence graph is hierarchical.

Lemma 3.1 We suppose that the desired velocity field U and the angle of vision α satisfy the following
inequality:

||∇U ||2 <
cos α

R
. (8)

The induced influence graph is then acyclic.

Proof. We introduce θi = ̂(Ui, eij) and θj = ̂(Uj , eji) (see Fig. 5). We ensure that two individuals i and j
do not see each other mutually if max(θi, θj) > α.

Ui

Ui
Uj

−Uj

θi θj

(θi + θj)/2

Figure 5. Notation

To satisfy this constraint, it is sufficient to have

cos

(

θi + θj
2

)

< cosα.

Moreover, straightforward computations (see Fig. 5) yield

cos

(

θi + θj
2

)

=
||Ui −Uj||

2
≤ R ||∇U||2.

By prescribing the last term to be less than cosα, we obtain the following condition on the angle of vision
α and the desired velocity field U :

||∇U ||2 <
cos α

R
, (9)

which ends the proof. ✷

By making this assumption, we ensure that the graph of influence induced by the cones of vision does
not contain cycles, so that Problem (2)(3) can be used to explicitly determine an inhibited velocity field.

As detailed in the previous section, each individual has two different types of interactions with the
others:
– Interactions with individuals in their cone of vision: these interactions are based on a decision pro-
cess and handled in the first step of the model (anticipation of possible collisions based on visual
information).

– Interactions with the rest of individuals: these interactions are handled in a mechanical way (manage-
ment of possible collisions between individuals that do not see each other).
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Since the graph is acyclic we consider that individuals are enumerated according to the topological sorting
algorithm (see proof of Proposition 2.6), so that the adapted desired velocity field for the IB model is
the unique solution of Problem (2)-(3). In other words, all adapted desired velocities are determined
in a frontal way, starting from the most influential individuals (who do what they want) to the less
influential ones (who do what they can). The next step consists in computing the actual velocity field as
the projection of the adapted desired velocity field on the set of globally admissible velocity fields.

For this special case, characterized by an acyclic influence graph based on cones of vision around the
desired direction, the decision taken by each individual (adaptation of the desired velocity) reduces their
desired velocity in the direction where they want to go, which motivates the denomination Inhibition-
Based (IB) model. This is asserted by the following proposition.

Proposition 3.2 Let U be a desired velocity field and suppose that Condition (8) is satisfied. Then,
denoting by Ũ the unique element of Λ, the following holds:

Ui · Ũi ≤ ||Ui||
2, ∀i = 1, . . . , N.

Proof. The first equation of the saddle point formulation (4) implies that:

Ũi · Ui +
∑

j∈Ic
i

λijeij · Ui = ||Ui||
2, ∀i = 1, . . . , N

which ends the proof since λijeij · Ui ≥ 0 for all j ∈ Ici . ✷

Time discretization

We describe here a time discretization strategy to approximate solutions of the IB model. At each
time step, we first compute the inhibited velocity field based on the current hierarchy. This field is then
projected on the cone of feasible velocities, to handle the residual mechanical collisions which have not
been prevented by the first step.

Let t0 = 0 be the initial time, τ > 0 a time step and tn = nτ . We suppose that condition (8) is satisfied
for every t ∈ [0, T ]. Consider a given initial configuration q0 = q(t0) ∈ K. At each time step, we start
by re-indexing the individuals according to the topological sorting algorithm, so that any individual i is
influenced by individuals with an index j > i. We keep the same notation for readability reasons. We
update the individuals’ positions as follows: qn+1 = qn+τun+1 where un+1 is the actual velocity computed
in two steps, both based on a first order expansion of the non-overlapping constraint (as described in [5]).

The first step corresponds to individual adaptation (decision taking phase). We start with the highest
index: individual N picks the velocity ũn

N that approaches best their desired one UN , subject to constraints
with their neighbors. When i’s turn comes, all velocities ũn

i+1,. . . , ũ
n
N have already been computed. For

all j ∈ Ii, if i takes the velocity w during τ , the first order expansion of Dij writes

Dij(q
n) + τeij(q

n) · (ũn
j − w),

that is an affine expression which depends on velocities that have already been computed, thanks to the
hierarchical ordering. We simply prescribe that the previous expression is non-negative, i.e. we prescribe

Dij(q
n) + τeij(q

n) · (ũn
j − ũn

i ) ≥ 0 ∀j ∈ Ii.

The second step (global preservation of non-overlapping constraints) consists in projecting the adapted
velocity ũn on the set of admissible velocities that ensure the non-overlapping of individuals at each time
step. These velocities should satisfy, for all i 6= j,

Dij(q
n) + τeij(q

n) · (un
j − un

i ) ≥ 0,

that is again the first order expansion of Dij(q
n + τun) ≥ 0.

10



To sum-up, the algorithm reads as follows:
(i) (Adaptation step)

We solve the following minimization problems in the following order i = N,N − 1, . . . , 1:

ũn+1
i = argmin

w∈Cτ
i
(qn,ũn

−i
)

1

2
|w − Ui(q

n
i )|

2

where

Cτ
i (q

n, ũn
−i) =

{

w ∈ R
d, ∀j ∈ Ii(q

n), Dij(q
n) + τeij(q

n) · (ũn
j − w) ≥ 0

}

.

Note that, because of the hierarchical indexing, all indices j correspond to individuals that have
already decided their velocity ũn

j .
(ii) (Projection step)

The vector of inhibited velocities ũn+1 is projected on the set of globally admissible velocities (with
respect to the non-overlapping constraint):

un+1 = argmin
v∈Cτ (qn)

1

2
|v − ũn|2

Cτ (qn) =
{

v ∈ R
dN , ∀j 6= i, Dij(q

n) + τeij(q
n) · (vj − vi) ≥ 0

}

.

The minimization problems in the first step are local, they involve a very few degrees of freedom, and
can be solved instantaneously. The problem in the second step is global, thus possibly more expensive,
but it is a simple quadratic minimization problem with affine constraints, it can be e.g. solved by a Uzawa
algorithm.

We illustrate in the following example the difference between the IB model and the purely granular
one in evacuation situations.
Example 1 We consider some individuals trying to evacuate a room. The angle of the cone of vision is
set at the value π/3. We represent their desired velocities, their adapted ones and their actual velocities
according to the granular model and the IB one in Figure 6. When applying the granular projection directly
to the desired velocity field, individuals get clogged and a jam is created upstream the door. However, the
IB model gives the priority to the individual in front of the door to pass first and no jams then occur.
This example illustrates the so-called Faster is Slower effect, as shall be detailed in the next section.

Decision
−−−−−→
process

G
ra

n
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la
r

←
−
−
−
−
−

p
ro

je
c
ti
o
n

G
ra

n
u
la
r

←
−
−
−
−
−

p
ro

je
c
ti
o
n
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Granular model IB model

Figure 6. Example of computation of actual velocities according to the granular model (bottom left) and the IB one (bottom
right).

4. Faster is slower effect

The Faster is Slower effect was described by Helbing et al. [4] as one of the characteristic features of
escape panic. When pedestrians are in a rush, they tend to increase their velocity and show maladaptive
pushing behavior that leads to a reduction of the flow through the exit. This effect has been proved
experimentally in the experiences described in [3] where a group of individuals are asked to evacuate a
room twice with low and high competitiveness level. The evacuation with low-competitiveness level gets
to its end faster than the case of high competitiveness level.

Figure 7. Faster is Slower effect: Evacuation of 150 pedestrians with the Granular model (top) and IB model (bottom)

Since individuals have the tendency to go slower for the IB model compared to the granular one, we
propose to compare the behavior of individuals for both models in evacuation situations. For this purpose,
we run some numerical simulations for the same initial configuration and compare the numerical results.
Some snapshots of an evacuation simulation are displayed in Figure 7. The influence graph is represented
by black vectors for the IB model. For both cases individuals are colored according to their frustration
level (red for high frustration level) computed as follows:

12



fi = 1−
ui · Ui

|Ui|2
, ∀i = 1, . . . , N.

The evacuation gets to its end faster for the IB model compared to the granular one where jams sys-
tematically occur during the evacuation. We also run some periodic evacuation simulations (evacuated
individuals are re-injected at a random position at the back of the room) for both models and compute
the mean of time lapses between consecutive egresses and the flow rate. The results are displayed in
Table 1 with a 95% confidence level, and they clearly highlight the Faster is Slower effect, or equivalently,
the Slower is Faster effect.

Model Time lapses (mean) Flow rate

Granular 0.41± 0.02 s 2.42± 0.1 pers/s

IB 0.31± 0.004 s 3.18± 0.04 pers/s

Table 1

Different evacuation situations with their respective mean of time lapses and flow rate.
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