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ON THE ELEGANCE OF RAMANUJAN'S SERIES FOR
1

π

CHIEH-LEI WONG

Abstract. Re presenting the traditional proof of Srinivasa Ramanujan's own favorite series for the reciprocal of π :

1

π
=

√
8

9801

+∞∑
n=0

(4n)!

(n!)4
1103 + 26390n

3964n
,

as well as several other examples of Ramanujan's in�nite series. As a matter of fact, the derivation of such formulae has involved

specialized knowledge of identities of classical functions and modular functions.

The Archimedes' constant π appears in many formulae [2] in various areas of mathematics and physics, such as :

James Gregory (1671)

+∞∑
n=0

(−1)n

2n+ 1
=
π

4
, (0.1)

Leonhard Euler (1734)

+∞∑
n=0

1

n2
=
π2

6
, (0.2)

Carl Friedrich Gauss (1809)

∫ +∞

−∞
e−x

2

dx =
√
π , (0.3)

Stephen Hawking (1974) T =
1

8πkB

~c3

GM
. (0.4)

The irrationality of π was �rst proven by Jean-Henri Lambert in 1761. Finally in 1882, Ferdinand von Lindemann established
its transcendence, thus laying to rest the problem of � squaring the circle �.

1. Aesthetics in mathematics ?

In 2014, researchers in neurobiology [14] from the University College London (in United Kingdom) used functional MRI to image
the brain activity of 15 mathematicians (aged from 22 to 32 years, postgraduate or postdoctoral level, all recruited from colleges
in London) when they viewed mathematical formulae. Each subject was given 60 mathematical formulae - including (0.1), (0.2)

or (0.3) that correspond successively to arctan(1), ζ(2) and Γ

(
1

2

)
- to study at leisure and rate as ugly [−1], neutral [0] or

beautiful [+1]. Note the absence of the nonsimple continued fraction :

William Brouncker (1655)
4

π
= 1 +

12

2 +
32

2 +
52

2 +
72

2 +
92

2 +
. . .

(1.1)

in their list. Results of the study showed that the one most consistently rated as � ugly � was Equation (14) :

1

π
=

√
8

9801

+∞∑
n=0

(4n)!

(n!)4
1103 + 26390n

3964n
, (1.2)

an in�nite series due to Ramanujan - with an average rating of −0, 7333 ! Truly, beauty is in the eye of the beholder.

Since the starting point of (1.2) lays upon the new foundations of elliptic integrals instilled by the works of both Niels Henrik
Abel and Carl Gustav J. Jacobi [9] in the 19th century, we might remember the premonitory words of Felix Klein :

�When I was a student, Abelian functions were, as an e�ect of the Jacobian tradition, considered the uncontested
summit of mathematics, and each of us was ambitious to make progress in this �eld. And now ? The younger
generation hardly knows Abelian functions. �

Date: February 3, 2021.
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Historically, the identity (1.2) appeared in [12]. Afterwards, it fell into near oblivion, until the end of 1985 when it was revived
in a modern computational context. Seven decades after its publication, Bill Gosper Jr. used it for computing 17, 5.106 decimal
digits of π - and brie�y held the world record. But a signi�cant issue remained : no mathematical proof existed back then that

the series (1.2) actually converges to
1

π
. It was somehow a leap of faith, yet an educated one. In fact, he veri�ed beforehand

that the sum was correct to 10 million places by comparing this same number of digits of his own calculation to a previous
calculation done by Yasumasa Kanada and al.

2. Preliminaries

2.1. Jacobi's elliptic integrals.

Let k ∈]0, 1[ denote the elliptic modulus, then the quantity k′ =
√

1− k2 is called the complementary modulus. Complete
elliptic integrals of the �rst and second kinds are respectively de�ned as :

K(k) =

∫ π
2

0

dθ√
1− k2 sin2 θ

=
π

2
2F1

 1

2
,

1

2
1

∣∣∣∣∣ k2
 (2.1)

and E(k) =

∫ π
2

0

√
1− k2 sin2 θ dθ =

π

2
2F1

 −1

2
,

1

2
1

∣∣∣∣∣ k2
 , (2.2)

while their derivatives are given by :

dK

dk
=
E − k′2K
kk′2

and
dE

dk
=
E −K
k

. (2.3)

It is also customary to de�ne the complementary integrals K ′ and E′ as :

K ′(k) = K(k′) and E′(k) = E(k′) .

Finally, these 4 quantities K, K ′, E and E′ are linked by the remarkable Legendre relation :

K(k)E′(k) + E(k)K ′(k)−K(k)K ′(k) =
π

2
. (2.4)

2.2. Jacobi's theta functions.

The theta functions [9], [10] are classically de�ned as :

θ2(q) =

+∞∑
n=−∞

q(n+
1
2 )

2

, θ3(q) =

+∞∑
n=−∞

qn
2

and θ4(q) =

+∞∑
n=−∞

(−1)nqn
2

= θ3(−q) (2.5)

for |q| < 1. After rewriting the nome q in terms of the elliptic modulus k :

q = exp

[
−πK

′(k)

K(k)

]
,

it is valuable to regard k as a function of q. Thus, we have inversely :

k =
θ22(q)

θ23(q)
, k′ =

θ24(q)

θ23(q)
and K(k) =

π

2
θ23(q) . (2.6)

2.3. Ramanujan-Weber's class invariants.

Let us introduce Ramanujan's class invariants :

G =

(
1

2kk′

)1/12

and g =

(
k′2

2k

)1/12

, (2.7)

as well as the Klein's absolute invariant :

J =
(4G24 − 1)3

27G24
=

(4g24 + 1)3

27g24
=

4

27

[
1− (kk′)2

]3
(kk′)4

. (2.8)

In terms of Ramanujan's class invariants, we can explicitly write the elliptic moduli as :

k =
1

2

(√
1 +

1

G12
−
√

1− 1

G12

)
, k′ =

1

2

(√
1 +

1

G12
+

√
1− 1

G12

)
,

or k = g6
√
g12 +

1

g12
− g12 , k′ =

√
2k g6 .
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2.4. Singular value functions λ∗ and α.

De�nition 2.1. Let λ∗(r) = k(e−π
√
r) be as in (2.6), then the singular value function of the second kind is de�ned by :

α(r) =
E′(k)

K(k)
− π

4
[
K(k)

]2 (2.9)

for positive r.

Since lim
r→+∞

λ∗(r) = 0, then α(r) converges to
1

π
with exponential rate :

0 < α(r)− 1

π
6
√
r
[
λ∗(r)

]2
6 16

√
r e−π

√
r .

Using the functional equation (2.4) and the fact that
K ′
(
λ∗(r)

)
K
(
λ∗(r)

) =
√
r, we get :

α(r) =
π

4
[
K(k)

]2 −√r [E(k)

K(k)
− 1

]
.

On substituting E with the di�erential equation (2.3), we may establish that :

α(r) =
1

π

[
π

2K(k)

]2
−
√
r

[
kk′2

1

K(k)

dK

dk
− k2

]
,

so that :

1

π
=
√
rkk′2

[(
2

π

)2

K(k)
dK

dk

]
+
[
α(r)−

√
rk2
] [ 2

π
K(k)

]2
(2.10)

where k = λ∗(r). Also, observe that α(r) is algebraic for r ∈ Q+ (as seen in Tables 1 and 2 in the next section, or in the
computation of g258 and k58 in Subsection 3.2.3). Actually, it is well-known that the quantities λ∗(r), Gr, gr and α(r) are
algebraic numbers expressible by surds when r is a positive rational number.

2.5. Quadratic and cubic transformations of the hypergeometric function 2F1.

Let us recall the de�nition of the hypergeometric series :

2F1

(
a, b
c

∣∣∣ z) =

+∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (2.11)

where parameters a, b and c are arbitrary complex numbers, and (a)n =
Γ(a+ n)

Γ(a)
denotes the Pochhammer symbol. However,

if and only if the numbers :

± (1− c) , ± (a− b) , ± (a+ b− c) (2.12)

have the property that one of them equals
1

2
or that two of them are equal, then there exists a so-called quadratic transformation.

Proposition 2.2. For k ∈
[
0,

1√
2

]
, we have :

2

π
K(k) = 2F1

 1

4
,

1

4
1

∣∣∣∣∣ (2kk′)2
 (2.13)

and

[
2

π
K(k)

]2
= 3F2

 1

2
,

1

2
,

1

2
1, 1

∣∣∣∣∣ (2kk′)2
 . (2.14)

Proof. The �rst identity (2.13) derives from Kummer's identity :

2F1

(
2a, 2b

a+ b+
1

2

∣∣∣∣∣ z
)

= 2F1

(
a, b

a+ b+
1

2

∣∣∣∣∣ 4z(1− z)
)

(2.15)

and can be veri�ed by showing that both sides satisfy the appropriate hypergeometric di�erential equation, are analytic and
agree at 0. The second identity (2.14) is a special case of Clausen's product identity :

2F1

 1

4
+ a,

1

4
+ b

1 + a+ b

∣∣∣∣∣ z


2F1

 1

4
− a, 1

4
− b

1− a− b

∣∣∣∣∣ z
 = 3F2

 1

2
,

1

2
+ a− b, 1

2
− a+ b

1 + a+ b, 1− a− b

∣∣∣∣∣ z
 (2.16)

for hypergeometric functions. �
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In like fashion, a cubic transformation exists if and only if either two of the numbers in (2.12) are equal to
1

3
or if :

1− c = ±(a− b) = ±(a+ b− c) .

Thus, quadratic and cubic transformations of 2F1 lead to a variety of alternate hypergeometric expressions for K and K2.

Proposition 2.3. We also have :

2

π
K(k) =

1

k′
2F1

 1

4
,

1

4
1

∣∣∣∣∣ −
(

2k

k′2

)2
 for k ∈ [0,

√
2− 1] ,

2

π
K(k) =

1√
k′

2F1

 1

4
,

1

4
1

∣∣∣∣∣ −
(
k2

2k′

)2
 for k2 ∈ [0, 2(

√
2− 1)] ,

2

π
K(k) =

1√
1 + k2

2F1

 1

8
,

3

8
1

∣∣∣∣∣
(

2

g12 + g−12

)2
 for k ∈ [0,

√
2− 1] ,

2

π
K(k) =

1√
k′2 − k2 2F1

 1

8
,

3

8
1

∣∣∣∣∣ −
(

2

G12 −G−12

)2
 for k ∈

[
0,

1−
√√

2− 1

23/4

]
,

and
2

π
K(k) =

1[
1− (kk′)2

]1/4 2F1

 1

12
,

5

12
1

∣∣∣∣∣ 1

J

 for k ∈
[
0,

1√
2

]
.

Proof. See e.g. [8] or [1]. �

Proposition 2.4. For k restricted as in Proposition 2.3 :[
2

π
K(k)

]2
=

1

k′2
3F2

 1

2
,

1

2
,

1

2
1, 1

∣∣∣∣∣ −
(

2k

k′2

)2
 ,

[
2

π
K(k)

]2
=

1

k′
3F2

 1

2
,

1

2
,

1

2
1, 1

∣∣∣∣∣ −
(
k2

2k′

)2
 ,

[
2

π
K(k)

]2
=

1

1 + k2
3F2

 1

4
,

3

4
,

1

2
1, 1

∣∣∣∣∣
(

2

g12 + g−12

)2
 ,

[
2

π
K(k)

]2
=

1

k′2 − k2 3F2

 1

4
,

3

4
,

1

2
1, 1

∣∣∣∣∣ −
(

2

G12 −G−12

)2
 ,

and

[
2

π
K(k)

]2
=

1√
1− (kk′)2

3F2

 1

6
,

5

6
,

1

2
1, 1

∣∣∣∣∣ 1

J

 .

Proof. Apply the Clausen's identity (2.16) to Proposition 2.3. �

In each case, we have provided series for
2

π
K and

(
2

π
K

)2

in terms of the Ramanujan's invariants. Indeed, we have :

[
2

π
K(k)

]2
= m(k)F

(
ϕ(k)

)
for algebraic m and ϕ, while F (ϕ) has a hypergeometric-type power series expansion

+∞∑
n=0

anϕ
n. Then :

(
2

π

)2

K
dK

dk
=

1

2

[
dm

dk
F +m

dϕ

dk

dF

dϕ

]
and substitution in (2.10) lead to :

1

π
=

+∞∑
n=0

an

{
1

2

√
rkk′2

dm

dk
+
[
α(r)−

√
rk2
]
m+

1

2
n
√
rkk′2

m

ϕ

dϕ

dk

}
ϕn . (2.17)

Thus for rational r, the braced term in (2.17) is of the form A+ nB with A and B algebraic.
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3. Examples of hypergeometric-like series representations for
1

π

3.1. Deriving Ramanujan's series for
1

π
.

By combining Propositions 2.2, 2.3 and 2.4 with the formula (2.17), it is now straightforward to build the next 6 series :

(series in GN )
1

π
=

+∞∑
n=0

[
1

n!

(
1

2

)
n

]3 [
α(N)−

√
Nk2N + n

√
N
(
k′2N − k2N

)]( 1

G12
N

)2n

(3.1)

(series in gN )
1

π
=

+∞∑
n=0

(−1)n

[
1

n!

(
1

2

)
n

]3 [
α(N)

k′2N
+ n
√
N

1 + k2N
k′2N

](
1

g12N

)2n

(3.2)

(series in g4N = 2
1/4gNGN )

1

π
=

+∞∑
n=0

(−1)n

[
1

n!

(
1

2

)
n

]3{[
α(N)−

√
N
k2N
2

]
1

k′N
+ n
√
N

(
k′N +

1

k′N

)}(
1

g124N

)2n

(3.3)

On setting xN =
2

g12N + g−12N

=
4kNk

′2
N

(1 + k2N )2
and yN =

2

G12
N −G

−12
N

=
4kNk

′
N

1− (2kNk′N )2
:

(series in xN )
1

π
=

+∞∑
n=0

(
1

4

)
n

(
1

2

)
n

(
3

4

)
n

(n!)3

[
α(N)

xN (1 + k2N )
−
√
N

4g12N
+ n
√
N
g12N − g

−12
N

2

]
x2n+1
N (3.4)

(series in yN )
1

π
=

+∞∑
n=0

(−1)n

(
1

4

)
n

(
1

2

)
n

(
3

4

)
n

(n!)3

[
α(N)

yN (k′2N − k2N )
+
√
N
k2NG

12
N

2
+ n
√
N
G12
N +G−12N

2

]
y2n+1
N (3.5)

And eventually the series in JN :

1

π
=

1

3
√

3

+∞∑
n=0

(
1

6

)
n

(
1

2

)
n

(
5

6

)
n

(n!)3

{
2
[
α(N)−

√
Nk2N

] (
4G24

N − 1
)

+
√
N

√
1− 1

G24
N

+ 2n
√
N
(
8G24

N + 1
)√

1− 1

G24
N

}(
1

J
1/2
N

)2n+1

(3.6)
that is valid for N > 1.

3.2. Applications.

Let us �rst evaluate the Pochhammer symbols. It is well-known that :

1

n!

(
1

2

)
n

=
1

4n

(
2n

n

)
in terms of the central binomial coe�cient. For the remaining symbols, we may require the following lemma :

Lemma 3.1. For any n ∈ N, we have : (
1

4

)
n

(
1

2

)
n

(
3

4

)
n

=
1

44n
(4n)!

n!
,

as well as

(
1

6

)
n

(
1

2

)
n

(
5

6

)
n

=
1

123n
(6n)!

(3n)!
.

Proof. Let p, q ∈ N∗, observe that : (
p

q

)
n

=
1

qn

n∏
m=1

[
p+ (m− 1)q

]
.

Subsequently : (
1

4

)
n

(
1

2

)
n

(
3

4

)
n

=
1

43n

n∏
m=1

(4m− 3)(4m− 2)(4m− 1) =
1

44n
(4n)!

n!
,

whereas

(
1

6

)
n

(
1

2

)
n

(
5

6

)
n

=
1

63n

n∏
m=1

(6m− 5)(6m− 3)(6m− 1) =
1

123n
(6n)!

(3n)!
.

�

De�nition 3.2. Let d be a square-free integer, we consider the real quadratic number �eld k = Q(
√
d). If ∆k denotes the

discriminant of k i.e. :

∆k =

{
d if d = 1 (mod 4)
4d if d = 2, 3 (mod 4)

,
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then the fundamental unit ud > 1 is uniquely characterized as the minimal real number :

ud =
a+ b

√
∆k

2
(3.7)

where (a, b) is the smallest solution to m2−∆kn
2 = ±4 in positive integers. This equation is essentially Pell-Fermat's equation.

Of course, the most challenging part in the formula (2.17) lies in the evaluation of the singular value function α. For positive
rational r, many values of α(r) are obtainable. But details would be slightly beyond the scope of this paper, with deep roots
in number-theoretic objects and techniques such as modular equations, multipliers, modular forms, the Dedekind's η function,
and so on. Alternatively, we shall rely on Weber [13] and Ramanujan [12]. Some of the nicest singular values are collected in
the following tables.

N kN
1

G12
N

α(N) uN

3

√
3− 1

2
√

2

1

2

√
3− 1

2
2 +
√

3

5

√√
5− 1−

√
3−
√

5

2

(√
5− 1

2

)3 √
5−

√
2
√

5− 2

2

1 +
√

5

2

7
3−
√

7

4
√

2

1

8

√
7− 2

2
8 + 3

√
7

9
(
√

2− 31/4)(
√

3− 1)

2
(2−

√
3)2

3− 33/4
√

2(
√

3− 1)

2
−

13

√
10
√

13− 34− 5 +
√

13

2
√

2

(√
13− 3

2

)3 √
13−

√
74
√

13− 258

2

3 +
√

13

2

15
(2−

√
3)(3−

√
5)(
√

5−
√

3)

8
√

2

1

8

(√
5− 1

2

)4 √
15−

√
5− 1

2
4 +
√

15

25
(
√

5− 2)(3− 2× 51/4)√
2

(√
5− 1

2

)12 5
[
1− 2× 51/4(7− 3

√
5)
]

2
−

37

√
290
√

37− 1762 + 29− 5
√

37

2
√

2
(
√

37− 6)3
√

37− (171− 25
√

37)
√√

37− 6

2
6 +
√

37

Table 1. Selected singular values, class invariants GN and fundamental units uN for N odd.

In Table 1, observe that G4
N = uN for N = 5, 13 and 37.

N kN
1

g12N
α(N) uN/2 uN

2
√

2− 1 1
√

2− 1 − 1 +
√

2

6 (2−
√

3)(5− 2
√

6)1/2 (
√

2− 1)2 (
√

2 + 1)(2−
√

3)(5− 2
√

6)1/2(3−
√

2) 2 +
√

3 5 + 2
√

6

10 (
√

2− 1)2(
√

10− 3)

(√
5− 1

2

)6 (√
5 + 1

2

)3

(
√

2− 1)2(
√

10− 3)(3
√

5− 4)
1 +
√

5

2
3 +
√

10

18 (7− 4
√

3)(5
√

2− 7) (
√

3−
√

2)4 3(
√

3 +
√

2)2(7− 4
√

3)(5
√

2− 7)(7− 2
√

6) − 1 +
√

2

22 (10− 3
√

11)(197− 42
√

22)1/2 (
√

2− 1)6 (
√

2 + 1)3(10− 3
√

11)(197− 42
√

22)1/2(33− 17
√

2) 10 + 3
√

11 197 + 42
√

22

58 (
√

2− 1)6(13
√

58− 99)

(√
29− 5

2

)6

3

(√
29 + 5

2

)3

(
√

2− 1)6(13
√

58− 99)(33
√

29− 148)
5 +
√

29

2
99 + 13

√
58

Table 2. Selected singular values, class invariants gN and fundamental units uN/2 and uN for N even.
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For N = 6, 10, 18, 22 and 58, observe that the values of the function α in Table 2 are all expressed in the form α(N) = g6NkNfN ,

where fN is an element of some quadratic �eld Q(
√
d) with d | N .

Many more singular moduli are given in [4] or [11].

3.2.1. The case N = 7.

Table 1 provides :

G12
7 = 8 and α(7) =

√
7

2
− 1 ,

so that k27 =
8− 3

√
7

16
. By putting these values in the series (3.1) which is valid for N > 1, we obtain :

1

π
=

1

16

+∞∑
n=0

[
(2n)!

]3
(n!)6

5 + 7× 6n

642n
. (3.8)

This is equivalent to Equation (29) in Ramanujan's original paper [12]. Being composed of fractions whose numerators grow
like ∼ 26n and whose denominators are exactly 16× 212n, the above series can be employed to calculate the second block of n
binary digits of π without calculating the �rst n binary digits.

Note that the series (3.5) is valid for N > 4. On using the invariant y7 =
16

63
in (3.5), we get :

1

π
=

1

9
√

7

+∞∑
n=0

(−1)n
(4n)!

(n!)4
8 + 65n

632n
, (3.9)

while combining J7 =

(
85

4

)3

with (3.6) shall produce the series :

1

π
=

18

85

√
3

85

+∞∑
n=0

(6n)!

(3n)!(n!)3
8 + 7× 19n

2553n
. (3.10)

One may recognize Equation (34) of [12] which adds 4 decimal digits a term.

3.2.2. The case N = 37.

Let us recall that G4
37 = u37 = 6 +

√
37. From Table 1, we get :

y37 =
2

G12
37 −G

−12
37

=
1

882
,

G12
37 +G−1237

2
= 145

√
37 , α(37) =

√
37− (171− 25

√
37)G−237

2
,

as well as :

k237 =
1

2

(
1− 1

G6
37

√
G12

37 −
1

G12
37

)
=

1

2

(
1− 42

G6
37

)
=⇒ k237G

12
37

2
=
G6

37(G6
37 − 42)

4
.

Consequently :

α(37)

y37(k′237 − k237)
+
√

37
k237G

12
37

2
=

21

2

[√
37− (171− 25

√
37)G−237

]
G6

37 +
√

37
(G6

37 − 42)G6
37

4

=
G4

37

4

[
−42(171− 25

√
37) +

√
37G8

37

]
=

6 +
√

37

4

[
−42(171− 25

√
37) +

√
37(6 +

√
37)2

]
=

1123

4
.

Putting these numerical values into (3.5) yields :

1

π
=

+∞∑
n=0

(−1)n

44n
(4n)!

(n!)4

[
α(37)

y37(k′237 − k237)
+
√

37
k237G

12
37

2
+ n
√

37
G12

37 +G−1237

2

]
y2n+1
37

=
1

3528

+∞∑
n=0

(−1)n
(4n)!

(n!)4
1123 + 37× 580n

141122n
(3.11)

which can be identi�ed with Equation (39) of [12].
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3.2.3. The case N = 58.

Let r ∈ Q∗+, it turns out that :
+∞∑′

m,n=−∞

(−1)m

m2 + rn2
= − π√

r
log(2g4r) . (3.12)

Since this zeta sum over a 2-dimensional lattice (with the exception of the origin) can be decomposed into a sum of products
of L-series, we have :

+∞∑′

m,n=−∞

(−1)m+1

m2 + 58n2
=

π√
58

log 2 +
∑
d|29

[
1−

(
2

d

)]
L− 232

d
(1)Ld(1) =

π√
58

log 2 + 2L−8(1)L29(1)

where

(
2

d

)
denotes the Kronecker symbol of 2 and d > 0. Hence :

π√
58

log(2g458) =
π√
58

(log 2 + 2 log u29) =⇒ g258 = u29 =
5 +
√

29

2
.

From the relation :
+∞∑′

m,n=−∞

(−1)m

m2 + 2rn2
− 4

+∞∑′

m,n=−∞

(−1)m

m2 + 8rn2
= − π√

2r
log

(
kr
4

)
, (3.13)

we may similarly deduce that k58 =
1

u62u58
= (
√

2− 1)6(13
√

58− 99). So k58 +
1

k58
= 198

√
2(13
√

29 + 70).

On inserting now the numerical values :

x58 =
2

g1258 + g−1258

=
1

9801
,

g1258 − g−1258

2
= 1820

√
29 , α(58) = 3g658k58(33

√
29− 148) ,

and :

α(58)

x58(1 + k258)
−
√

58

4g1258
=

3(33
√

29− 148)

x58(k58 + k−158 )

(√
29 + 5

2

)3

− 1

2

√
29

2

(√
29− 5

2

)6

=
1

2
√

2

[
297(33

√
29− 148)−

√
29(9801− 1820

√
29)
]

= 2
√

2× 1103

into the series (3.4), we �nd that :

1

π
=

+∞∑
n=0

1

44n
(4n)!

(n!)4

[
α(58)

x58(1 + k258)
−
√

58

4g1258
+ n
√

58
g1258 − g−1258

2

]
x2n+1
58

=
2
√

2

9801

+∞∑
n=0

(4n)!

(n!)4
1103 + 29× 910n

3964n
. (3.14)

This concludes the proof of Equation (44) in [12]. As observed by Ramanujan himself, the series (1.2) is extremely rapidly
convergent by adding 8 decimal digits a term !

As an exercise, the reader is encouraged to determine the other series of [12] with the singular values in Tables 1 and 2. A solution
is provided in the companion �le https://clwmypage.files.wordpress.com/2021/01/ramanujan-reciprocal-pi.pdf.

4. Conclusion

Srinivasa Ramanujan recorded the bulk of his mathematical results in several notebooks of looseleaf paper and mostly written
up without proofs. Hence, his works were often shrouded in a veil of divine magic and mystery. As being a deeply religious
Hindu, he credited his substantial capacities to divinity, and stated that formulae were revealed to him by his family goddess,
Namagiri Thayar. During the 20th century, the many results in Ramanujan's Notebooks inspired numerous papers by later
mathematicians trying to prove what he had previously found.

As demonstrated, the general formula (2.17) produces multiple reciprocal series for π in terms of the function α(r) and related
modular quantities. Thus, we showed that the amazing sum (1.2) is a specialization (when N = 58) of (2.17) coupled with the

invariant ϕ(k) =

[
4k(1− k2)

(1 + k2)2

]2
.

For the sake of simplicity, we have intentionally skipped here some technical aspects, namely about modular equations of order p
(with p prime), modular forms, Eisenstein series, the Dedekind's η function, etc. References [3] and [5] (as well as multiple

references therein) are accessible expository papers in connection with Ramanujan's series for
1

π
. For a deeper insight, material

based on the context of elliptic and modular curves can be found e.g. in [4], [6] or [7].

https://clwmypage.files.wordpress.com/2021/01/ramanujan-reciprocal-pi.pdf
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This leads naturally to an other famous instance of Ramanujan-Sato series, to wit :

Chudnovsky (1988)
1

π
= 12

+∞∑
n=0

(−1)n
(6n)!

(3n)!(n!)3
13591409 + 163× 3344418n

6403203(n+
1
2 )

(4.1)

when N = 163. On the quest for digits of π, the series (4.1) was used by Alexander J. Yee and Shigeru Kondo to calculate
more than 12, 1.1012 decimal places for a new record-breaking computation in 2013.

It was only recently that Heng Huat Chan and Shaun Cooper [6] discovered a general approach that used the underlying
modular congruence subgroup Γ0(N) to generate a set of all-new Ramanujan-Sato series, such as :

Chan & Cooper (2012)
1

π
= 2
√

2

+∞∑
n=0

[
n∑

m=0

(−1)n−m

64m
(4m)!

(m!)4

(
n+m

n−m

)][
−24184 + 9801

√
29

(
n+

1

2

)](√
29− 5

2

)12(n+ 1
2 )

which can be considered as a counterpart of (1.2).

Acknowledgements. The author would like to thank the anonymous referee for his / her constructive comments and
suggestions which signi�cantly improved the present manuscript.
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