
A Federated Learning Aggregation Algorithm for
Pervasive Computing: Evaluation and Comparison

Sannara EK
Univ. Grenoble Alpes,
CNRS, Grenoble INP

LIG F-38000,
Grenoble, France

sannara.ek@gmail.com

François PORTET
Univ. Grenoble Alpes,
CNRS, Grenoble INP

LIG F-38000,
Grenoble, France

francois.portet@imag.fr

Philippe LALANDA
Univ. Grenoble Alpes,
CNRS, Grenoble INP

LIG F-38000,
Grenoble, France

philippe.lalanda@imag.fr

German VEGA
Univ. Grenoble Alpes,
CNRS, Grenoble INP

LIG F-38000,
Grenoble, France

german.vega@imag.fr

Abstract—Pervasive computing promotes the installation of
connected devices in our living spaces in order to provide services.
Two major developments have gained significant momentum
recently: an advanced use of edge resources and the integration of
machine learning techniques for engineering applications. This
evolution raises major challenges, in particular related to the
appropriate distribution of computing elements along an edge-
to-cloud continuum. About this, Federated Learning has been
recently proposed for distributed model training in the edge.
The principle of this approach is to aggregate models learned on
distributed clients in order to obtain a new, more general model.
The resulting model is then redistributed to clients for further
training. To date, the most popular federated learning algorithm
uses coordinate-wise averaging of the model parameters for
aggregation. However, it has been shown that this method is
not adapted in heterogeneous environments where data is not
identically and independently distributed (non-iid). This corre-
sponds directly to some pervasive computing scenarios where
heterogeneity of devices and users challenges machine learning
with the double objective of generalization and personalization.
In this paper, we propose a novel aggregation algorithm, termed
FedDist, which is able to modify its model architecture (here, deep
neural network) by identifying dissimilarities between specific
neurons amongst the clients. This permits to account for clients’
specificity without impairing generalization. Furthermore, we
define a complete method to evaluate federated learning in
a realistic way taking generalization and personalization into
account.

Using this method, FedDist is extensively tested and compared
with three state-of-the-art federated learning algorithms on the
pervasive domain of Human Activity Recognition with smart-
phones.

Index Terms—Federated Learning, algorithm, evaluation, Hu-
man Activity Recognition.

I. INTRODUCTION

Pervasive computing promotes the integration of smart
devices in our living spaces to develop services [1], [2]. These
devices, including sensors, actuators, and computing capabil-
ities, enable the development of various services providing
assistance to people, automating the management of infrastruc-
tures, or driving industrial processes through data analytics,
etc. Many such services are already in place and take on
considerable importance in numerous fields and organizations.

This work has been partially supported by MIAI@Grenoble Alpes (ANR-
19-P3IA-0003).

We are now seeing the emergence of smarter services based
on Machine Learning (ML) techniques. For example, such
services are already being used to predict parts’ wear rate in
smart factories or vehicles [3].

The goal of machine learning (ML) is to train an algo-
rithm to automatically make a decision, like a prediction or
a classification, by identifying patterns that may be hidden
within massive data sets whose exact nature is unknown and
therefore cannot be programmed explicitly. Such systems have
been tremendously successful in fields like computer vision,
natural language processing, or decision making. It is then
not surprising that today, there is an increasing demand to
apply ML techniques in pervasive domains where traditional
solutions cannot be used because of the lack of modeling tools
and excessive algorithmic complexity.

Bringing such services into production nevertheless raises
several problems. Current implementations are actually based
on distributed architectures where models are computed in the
cloud, based on data collected by physical devices. These
relatively generic models are then deployed and executed
on these same devices. This approach is, however, not well
adapted to pervasive computing. It undergoes major limitations
in terms of security (data collected in physical environments
has to be sent up to the cloud), performance (communication
latency is not controlled), and even costs (communications
can be intensive and expensive). One interesting solution is
to make more advanced use of edge resources like gateways
or smartphones [1]. The notion of the edge was mentioned
in 2009 [4] and generalized by Cisco Systems in 2014 as a
new operational model. The main idea is to place computing
and storage functions as close as possible to data sources.
Regarding machine learning, it comes down to offloading
some learning tasks in edge resources. In doing so, data to be
transferred can be reduced, and reactivity can be improved.
Also, privacy can be better preserved since the nature of
the exchanged information is modified. However, the lack of
computing resources on edge devices and the limited amount
of available data (according to learning standards) must be
addressed.

Google recently proposed federated learning [5]–[7], a
new machine learning paradigm enhancing the use of edge

devices. Federated learning encourages the computation of
local models on edge devices and sending them to a cloud
server where they are aggregated into a more generic one.
The new model is redistributed to devices as a bootstrap
model for the next local learning iteration. Federated learning
reduces communication costs and improves security because
only models are exchanged between the edge and cloud [8]. It
has immediately attracted attention as a promising paradigm
that can meet the challenges of ML-based pervasive applica-
tions. Nevertheless, it has been essentially used in traditional
learning fields like computer vision [5], [9]–[11] and still needs
to be adapted to the specificity of the pervasive domain. In that
domain, models are more likely to diverge because of data and
clients heterogeneity, and because of different data volumes
generated by clients. Also, clients evolve at different paces and
are connected intermittently, which involves synchronization
issues.

In this paper, we propose a new aggregation algorithm,
called FedDist, that has been designed to meet the specific
needs of pervasive applications. We also present an extensive
set of experiments, based on a well-defined evaluation method,
that has been conducted to assess FedDist, as well as three
other representative algorithms. Experiments were carried out
in the illustrative field of Human Activity Recognition (HAR)
on smartphones. This domain aims to automatically identify
human physical activities, like running or walking, using
sensors embedded in smartphones. HAR is well suited to our
FL experiments because activities tend to have generic patterns
(an activity involves the same sequence of movements for
anybody) while being highly idiosyncratic (data depends on
people, devices, the way devices are carried, the environment,
etc.) [12]. Furthermore, the collected data is private and should
not be sent over the network. HAR has long been addressed
as a classification problem where the common approach is to
process windows of data streams to extract a vector of features
that, in turn, is used to feed a classifier. Many instance-
based classifiers such as Bayesian Network, Random Forest,
or Support Vector Machines have been used with reasonable
success [13], [14]. Today, however, the most popular and
effective technology is undoubtedly deep neural networks [15],
[16].

The paper is organized as follows. First, some background
about federated learning is provided. In particular, the most
representative aggregation algorithms are presented. Then, our
proposed algorithm, FedDist, is detailed in Section III. Then,
Section IV details the evaluation method that has been defined
to evaluate and compare the different aggregation algorithms.
Section V presents the experiments and the associated results.
Finally, the paper ends with a conclusion based on our main
findings and presents open perspectives and future work in
Section VI.

II. BACKGROUND

A. Federated Learning principles

As introduced before, federated learning promotes the com-
putation of local models on edge devices and the aggrega-

tion of these models on a server to produce a new, more
generic model that is sent back to all the clients. Clients
start learning again from this new model and, after a while,
send it to the server to do a new aggregation. This spe-
cialization/generalization cycle is repeated until a satisfactory
model is obtained. A specialization/generalization cycle is
usually called a communication round. After that first model
convergence, more rounds may be necessary if new customers
arrive or if new data is acquired. This approach is illustrated
hereafter by Figure 1.

Fig. 1: Federated learning architecture and principles.

A key point in federated learning is the way specialized
models are aggregated at the server. In the case of deep
learning, two families of algorithms implementing different
strategies can be considered. The first strategy is to empha-
size generalization. The aggregation algorithm considers local
models in their entirety (all layers and neurons) and builds
a new model that potentially calls into question all layers
and all the weights associated with neurons. This approach is
exemplified by the FedAvg [5] and FedMA [11] algorithms,
which will be detailed next. Let us also mention the FedProx
algorithm [17] that penalizes clients that diverge too much
from the others avoid outliers. The second strategy, in contrast,
focuses more on client specialization. Thus, the algorithm does
not question certain parts of the local models. Specifically,
only the local models’ base layers are sent to the server for
generalization, while the last layers are kept unchanged. This
approach is exemplified by the FedPer algorithm [9], which is
presented subsequently.

B. Federated Averaging (FedAvg)

The FedAvg [5] starts with random initialization of a neural
model on a device or, more frequently, on a central server
in charge of coordinating and managing model transfers with
client devices. Initialization is a major step since it defines
the neural model’s structure in terms of layers and neurons.
The resulting model is sent to clients to start local training
from it. When on-device training is finished, the weights of
the local models are sent to the server. Here, aggregation is
done in a weighted averaging manner where clients with more
data influence more significantly the newly aggregated model.

The obtained model is sent back to all the clients, and another
communication round can start.

FedAvg, however, has a naive form of aggregation due to
its coordinate wise averaging that may lead to sub-optimal
solutions. For instance, with non-Independent and Identically
Distributed (non-IID) data, neurons in the same coordinate
may be opted for entirely different purposes due to clients’
specialization. Thus, averaging neurons that are drastically
different causes decremental results. Also, the training has to
go through long learning phases at each round to recover some
specialization.

C. Federated Learning with Personalization Layers (FedPer)

The FedPer algorithm is similar to the FedAvg in the way it
computes new weights in the aggregated models. However, it
differs strongly on the parts of the model that are considered
during aggregation. Precisely, clients only communicate the
neural model’s base layers to the server and retain the other
layers. The underlying idea is that the base layers deal with
representation learning and can be advantageously shared by
clients through aggregation. The upper layers are more con-
cerned with decision making, which is more specific to each
client. In doing so, FedPer helps clients better handle various
inputs (in the base layers) while being able to specialize in
their particular data (in the upper layers). However, let us
note that the aggregated model, on the server-side, is only
partial and is not usable for decision-making due to the missing
layers. The global approach is illustrated in figure 2.

Fig. 2: FedPer illustration.

FedPer can be seen as an adaption of the Transfer Learning
[18] methodology into a federated learning scheme. Studies
[19] have shown that it can surpass centralized learning and
FedAvg approach in the HAR field (with well-distributed
datasets).

D. Federated Matched Averaging (FedMA)

The FedMA algorithm [11] is a recent algorithm that per-
forms a more subtle model aggregation. Specifically, FedMA
modifies the neural model architecture by incorporating a
layer-wise aggregation process where similar neurons can be
fused, and new ones can be added. This approach treats
the number of nodes in a layer as a sub-problem to solve

rather than a hyper-parameter to be set as an extension of
[20] to convolutional neural networks and recurrent neural
networks. FedMA considers that neurons in a neural network
layer are permutation invariant to perform a more intelligent
aggregation. The algorithm’s central intuition is that all clients
can contain neurons that are similar and should be merged
together. These neurons can be clustered in a non-parametric
way where all neurons in the same cluster are averaged
to produce a global neuron. To find which neurons can be
fused, the algorithm uses a 2D permutation matrix that is
computed iteratively from increasing rank layers. This matrix
is calculated thanks to the Beta-Bernoulli Process - Maximum
a Posteriori (BBP-MAP) [21]. The Hungarian algorithm [22] is
then used on the resulting matrix to select which local neurons
can be fused and decide on which other neurons to be added.
Modified layers are incrementally distributed back to clients.
Note that the soft-max layer uses weighted averaging, just like
FedAvg.

Fig. 3: FedMA illustration (similar neurons in same color).

Experiments with deep convolutional neural networks and
Long short-term memory architectures show that the FedMA
algorithm outperforms FedAvg on computer vision data-sets
[11]. It also appears that communications are reduced at the
cost of greater complexity. Calculating the permutation matrix
makes the algorithm particularly slow during the aggregation
stage.

E. Synthesis

Federated learning is a very promising approach but still
in its infancy. A major issue today is the lack of structured,
extensive tests of the different aggregation algorithms that
have been proposed. So far, these algorithms are evaluated
independently on traditional learning fields like computer
vision, usually on relatively homogeneous data, with no out-
liers or little divergence at the client-side, although federated
learning has been designed to tackle unevenly distributed data
[23]. Also, most studies do not include the influence of the
network or consider the client’s behavior. Further studies are
needed to really understand how the server and client models
evolve and how well they behave regarding generalization (can
a client model work correctly on data that have not been
seen beforehand?) and specialization (can a client work well

with data that have the same properties as the one used for
training?).

Federated learning has not been widely used in the context
of pervasive computing. For instance, there are only a few
works in the HAR domain [19], [24]–[27], with missing
analysis regarding the performance of global and local models
on generalization and specialization with different approaches.
Additionally, most tests were performed on small and pre-
processed datasets collected in laboratory environments. Also,
existing algorithms do not consider the specific requirements
of pervasive computing, where data are usually skewed, het-
erogeneous, and non-IID. For instance, FedAvg is bounded to
a single model shape with a fixed amount of filters or neurons
to tackle an ever-growing problem (since new data and clients
keep coming). Finally, contrary to centralized learning, where
the model is learned to increase performance on one unique
dataset, in FL the objective is to increase all individual clients’
performances. To do so, FL must account for the fact that data,
even though in the same domain, might evolve very differently
according to the clients and would necessitate adapting the
features to be induced (i.e., the representation must be learned
again). In order to account for the heterogeneity of clients,
a solution must be found to adapt the global model in a way
that makes it respect the peculiarity of each client. The FedDist
algorithm presented below is our attempt to reach this goal.

III. FEDDIST, A NEW FEDERATED LEARNING ALGORITHM

In this section, we present a novel neuron matching and
detail a federated learning algorithm based on a euclidean
distance dissimilarity measurement. This algorithm, which
includes some elements of FedAvg and FedMA, is called
FedDist (Federated Distance) for its emphasis on computing
distances of neurons of similar coordinates when comparing
clients and server models.

FedDist recognizes, like FedMA, that some client’s models
may diverge because of heterogeneous, non-IID data. This
results in neurons that cannot be matched with neurons from
other models (because of weights that are too far apart). A
naive coordinate averaging approach, like in FedAvg, has very
negative effects. Indeed, these diverging neurons are simply
erased by the averaging process, while they are actually able to
deal with specific situations not encountered by other clients.
FedDist also recognizes that the model’s structure is relatively
stable, which means that neurons with the same coordinates
play a similar role. This view provides an opportunity to build
on a coordinate-wise approach.

FedDist identifies diverging neurons using euclidean dis-
tances. These neurons that are specific to certain clients are
added to the aggregated model as new neurons. We believe
that this technique is particularly suited for tackling sparse
data, where specific features are only found in a small subset
of clients or data points. Thus, this new neuron adding scheme
can lead to larger models that are able to generalize better. As
new neurons are added to a layer, a layer-wise training round
is added in order to allow the neurons in the next layers to
adjust to the new incoming neurons and weights. To do so,

‘
Fig. 4: FedDist unit generating process

the layer with the new neuron and those below are frozen, and
the subsequent layers are trained. This introduces intermediate
communication rounds: a full communication round is finished
when all layers have been treated, and a new aggregated model
is computed. This process is summarized in Figure 4. First, a
global server model is computed from all clients (left part of
the figure). Outliers are identified using the euclidean distance
(upper-right) and added to the aggregated model (lower-right)
sent back to the client.

The detailed algorithm is presented hereafter (Algorithm 1).
It starts by distributing the server model (wt) to all clients
(wtk). These clients then commit to training locally their
own model, where we denote the process as the function
ClientUpdate_start, and send it to the server where a
weighted averaging is performed similarly to FedAvg. A
pairwise euclidean distance (see equation 3 in section IV for
details) is iteratively calculated for each unit in a layer between
the client models and the aggregated server model to generate
a cost-distance matrix (

∏
).

Then, the mean (µ) and standard deviation (σ) of the
euclidean distance for every neuron are calculated. The
average provides information about the direction taken by
most clients. With the normal distribution property, the values
less than one standard deviation away from the mean holds
for 68.27% of the set, while two standard deviations holds for
95.45% and three standard deviations for 99.73%. Thus, by
using this distribution property, we define a threshold as below:

threshold = 3 ∗ σ + µ+ penaltyFunc(comRound)

A penalty function has also been implemented to raise the
threshold as training continues to prevent the never-ending
addition of new neurons. If a neuron in any of the clients
holds an individual distance above the threshold, it is then
added to the server model. The process is performed layer-
wise. At each communication round, it is performed on the
first layer. Then the first layer is updated and frozen at the

Algorithm 1 Federated Distance (FedDist)

Require: L = ModelLayerCount, T = CommunicationRound,
K = ClientCount

1: initialize w1 on server
2: for each communication round t = 1, 2, · · ·T do
3: for k = 1, 2, · · ·K do
4: wtk = wt

5: wtk ← k.ClientUpdate_start(wtk)
6: end for
7: wt ←

∑K
k=1

nk
n

wtk

8: for each layer l = 1, 2, · · ·L− 1 do
9: for each client k = 1, 2, · · ·K do

10:
∏l

t ⇐ calculatePairWiseDistance(wl
t, w

l
tk)

11: end for
12: µl, σl ⇐ calculateMean&stdOfNeuron(

∏l
t)

13: newNeuron = False
14: for each neuron distance d = 1, 2, · · ·D in

∏l
t do

15: threshold = 3 ∗ σl
d + µl

d + penaltyFunc(t)
16: if mean(d) > threshold then
17: appendNeuronTo(wl

t)
18: newNeuron = True
19: end if
20: end for
21: if newNeuron then
22: for each client k = 1, 2, · · ·K do
23: wl

tk = wl
t . Freeze layers l and below

24: wl
tk ← k.ClientUpdate_start(wl+1

tk ,, wL
tk)

25: wt ←
∑K

k=1

nk
n

wl
tk

26: end for
27: end if
28: end for
29: wt+1 ← wt

30: end for

client-side. The model is then retrained on the client-side (all
already treated layers frozen) to allow the next layers to adjust
and adapt to any newly added neuron weights. In this stage,
the client model only needs to send back unfrozen layers of
the model to reduce communication overhead.

If we consider all layers of equal size, the average com-
munication overhead with respect to FedAvg is thus (L−1)

2 ∗
FedAvgcost since for L layers, the process is repeated L
times with a decrementing number of layers. In practice, the
cost is much lower since layer-wise training is skipped for
layers where no unit has been added in the previous layer.
Additionally, if all client models become fully saturated with
no new neuron added, then layer-wise training is no longer
needed, and the learning becomes equivalent to FedAvg.

IV. EVALUATION METHOD

A proper reproducible evaluation of FL algorithms requires
a clear definition of the evaluation method and baseline
systems. This section describes the datasets considered in the

study, the baseline HAR models, the evaluation strategy, and
the evaluation metrics.

A. HAR Task and Datasets

In this paper, we favor reproducibility, heterogeneity, and
realistic situations. Hence, the ideal dataset(s) should be: freely
accessible, acquired in real-life environments with several
participants and devices, include high-class imbalance, and
carefully annotated. Furthermore, since FL implies several
local learning phases, the dataset should be large enough to
simulate an extended period of time.

Despite HAR Task being well investigated, attempts to
benchmark it on smartphones are only recent. As reported in
a recent survey [28], a large number of datasets acquired from
smartphones, worn in different ways, with various sensors and
sampling frequency, make it difficult to reach a uniformity in
tasks, sensors, protocols, time windows, etc.

Furthermore, some datasets are very imbalanced because
activity distributions among classes are very different. HAR
is thus a perfect fit for testing FL in realistic scenarios.

In the HAR domain, we have identified more than 20
datasets. A well-known example is the UCI dataset [29] which
has been widely used as a benchmark in the domain. However,
this dataset is not realistic (it was acquired in-lab following
strict scenarios), and it is small in size (3.6 hours). Since
the size is an important requirement of our study, we have
selected the REALWORLD dataset [30], which contains 125
hours of recorded data, including accelerometer and gyroscope
readings. Data were collected from 15 subjects in 7 different
device/body position configurations, using Samsung Galaxy
S4 and LG G Watch R with a sampling rate of 50 Hz. The
recording was performed outdoor, where the subjects were
told to perform specific activities without any restraints. Eight
activities have been labeled in the data: Climbing Down,
Climbing Up, Laying, Sitting, Standing, Walking, Jumping,
and Running.

This dataset is in-line with a survey on HAR on smartphones
[31] that has shown that the optimal sampling frequency
is between 20 Hz and 50Hz and that accelerometers and
gyroscopes are the most adequate sensors for classification.
We believe the REALWORLD dataset represents well HAR
data in the wild and exhibits realistic high-class imbalance
(for instance, the ‘standing’ activity represents 14% of the
data while the ‘jumping’ one is limited to 2%). Furthermore,
the dataset is particularly relevant for the study since each
client can be modeled by a single participants’ own data as
one would expect in real pervasive computing scenarios.

B. Baseline HAR models

Since FL is a meta-learning scheme, it is important to
choose the classification model for the HAR task carefully.
State-of-the-art approaches in HAR on smartphones have
shown a broad appeal for embracing shallow neural networks.
Table I summarizes the performance of recent state-of-the-
art models on the UCI test set, which despite its small size
and variability, is a de facto benchmark in the HAR domain.
It can be seen that Convolution Neural Networks (CNNs)

models are widely used for HAR due to their ability to model
features from raw data. Furthermore, they present a smaller
size than more complex neural network architectures, which
only slightly outperform basic CNN [32]. This is an important
aspect that helps reduce the costs of communication and on-
device computing. It is important to note that these results are
not entirely comparable since some models used handcrafted
features and sometimes different learning sets.

TABLE I: State-of-the-art models and accuracy on UCI.

Reference Models Accuracy (%)
Ronao and Cho, 2016 [33] 3 * Conv + Dense layer 94.79
Jiang and Yin, 2015 [34] 2 Conv + Dense Layer 95.18

Ronao and Cho, 2015 [35] 3 * Conv + Dense Layer 94.79
Almaslukh, 2017 [36] 2 * Dense Layer (SAE) 97.50

Ignatov, 2018 [15] 1 * Conv + Dense Layer 96.06
Anguita et al., 2013b [37] SVM 96.37
Cho and Yoon, 2018 [16] DT + 2 * CNN 97.62

In our study, we will then use standard CNN models that
will be tuned specifically for the task.

C. Evaluation strategy

For the sake of reproducibility, all our experiments have
been performed in simulation mode (like most federated
learning evaluations). However, let us note that we have also
implemented our approach on real devices, i.e., Google’s Pixel
2, to check the approach’s feasibility. This is not reported here
due to a lack of space.

As previously explained, the interest of federated learning
over classical learning is the ability to merge several client
models into a global one in order to improve genericity
without degrading specialization. To assess these properties,
we then decided to compute three different metrics for each
experiment:

1) Global accuracy. This accuracy is computed by the
server with the global model aggregated from all the
clients. It tells how well federated learning is able to cre-
ate a general model and permits to answer the research
question "Does FL bring better global performances
than centralized global learning?"

2) Personalization accuracy. This accuracy is computed
by the client using its local datasets. It tells how per-
sonalized the client models are and permits to answer
the research question "Does FL bring better local per-
formances with already seen data than local learning
only?"

3) Generalization accuracy. This accuracy is computed
by the client using the global dataset. It tells how well
the client models are able to retain generalization and
permits to answer the research question "Does FL bring
better local performances with unfamiliar data than
local learning only?" This evaluation is crucial because
it qualifies one of the main potential benefits of the
federated learning approach.

Another important question of the evaluation is how to
model clients. Many FL studies partition a unique dataset into

several equally distributed datasets to represent the clients.
This is not a realistic way of simulating heterogeneous clients.
In our study, each client is represented by the record of a single
identified human participant, without combining data from
several participants. In that way, the FL algorithm is left deal-
ing with a very personalized local model, which corresponds
to realistic settings. Figure 5 illustrates how partitioning has
been designed. Each client is represented by a set of records
of one participant extracted from REALWORLD.

Fig. 5: Depiction of data partitioning/arrangement

For each client, the dataset is partitioned into a training set
and a test set. The test set is used for the local evaluation of
each client. These evaluation results are then aggregated to
give the Personalization accuracy evaluation. The concate-
nation of all client test sets forms the global test set, which
is used to evaluate the Global accuracy. It is also used for
the local evaluation of each client. These evaluation results
are then aggregated to give the Generalization accuracy
evaluation.

D. Metrics

For HAR performance metrics, we have used standard
classification metrics such as accuracy, precision, and recall.
From these, we have computed the F1 score as a complemen-
tary measure that gives a per-class evaluation, which is the
harmonic mean of precision and recall. It is defined as below:

F1_score =
2 · Precision ·Recall
Precision+Recall

(1)

Since HAR datasets are often imbalanced (e.g., "jump"
activity far less present than “ walking” activity), we also
reported the individual F1 scores’ macro average. The macro
F1 score is defined as:

macro F1_score =
∑
i=1

F1_score(i)/|C| (2)

where F1_score(i) is the F1 score of the ith class and C is
the set of classes. In this way, a model that performs well only
with the majority classes will be penalized by the minority
classes.

While classification metrics are interesting for assessing
final performances, they do not give insight into how each FL
algorithm modifies the neural network layers. Indeed, after a
few local-epochs of training on local devices, the client and
server model weights may differ drastically. In the case of

CNNs, a client filter may specialize in detecting a specific
feature. After a few communication rounds, the aggregation
at the server model should make the first layer of all clients
identical with only the final layers still personalized by the
local dataset.

To monitor this aspect, we proposed a Pair-wise Dissimilar-
ity measure which evaluates how different neurons are between
the server and the client model. When the client models are
very close, the distance between neurons of different clients
should be relatively low. In this work, we used an equivalent
of the L2 norm on the difference between two vectors, that is
the Euclidean distance between the weight of two neurons as
below:

dist(N1,N2)=
√

(N
w1
1 −N

w1
2)2+···+(N

wK
1 −N

wK
2)2 (3)

where N1 and N2 are two different neurons and wi is the ith of

the K weights of the neurons. A large distance would indicate
a strong dissimilarity, while neurons that are very similar to
one another should have a small distance.

Such measure is particularly useful to assess how diverging
the client weights are from the server ones. This enables to
identify clients that become outliers during the learning by
constantly diverging from the server model. This measure is
also the basis of the distant measure used in FedDist.

V. EXPERIMENT AND RESULTS

A. Settings

The four different algorithms were evaluated using the RE-
ALWORLD dataset. Each client has been simulated using data
corresponding to the dataset’s individual participant, leading to
15 different clients. Each client dataset was, in turn, partitioned
into an 80% – 20% ratio to obtain local train and test datasets.
Furthermore, the local test sets were aggregated into a global
test set, used to evaluate the genericity/personalization trade-
off of the different algorithms.

We built and evaluated three models. In the Global ac-
curacy evaluation, we tested the aggregated model against
the combined global dataset. Let us note that this was not
possible for the FedPer algorithm, which lacks a global model.
In the Personalization accuracy evaluation, we tested each
client model on its own local dataset. In the Generalization
accuracy evaluation, we tested each client model on the
combined global dataset. For each evaluation, we computed
the accuracy, recall, precision, and F-score.

The input data of the REALWORLD dataset were provided
by the Inertial Measurement Unit (IMU) of smartphones. That
is the 3-axis accelerometer data with the 3-axis gyroscope data,
sampled at 50hz. As common in deep learning approaches
(i.e., features are learned and not hand-crafted), no features
extraction was applied to let the model build its own repre-
sentation. The data was preprocessed using channel-wise z-
normalization and sampled using a window-frame size of 128
with a 50 overlap of 6 channels of each axis.

All experiments were implemented using TensorFlow 2
[38] and run on a Debian 4.19.132-1 version 10 using a

GPU GeForce GTX TITAN Black 6GB. We used our own
implementation of FedAvg and FedPer to overcome the lim-
itations of TensorFlow Federated (TFF) (memory size) at the
time of the experiment. FedMA was adapted from the own
code of the authors with minimal modifications. FedDist was
entirely implemented by us. The FedAvg, FedMA, and FedPer
implementations were able to reproduce the results of the
original authors.

B. HAR model with Traditional Learning

To select a state-of-the-art HAR model, we performed
several experiments where we trained models without any
collaborative techniques. We used Dense Neural Networks
(DNNs) and Convolution Neural Networks (CNNs) of differ-
ent architectures, chosen to limit the model complexity and
size. The models were trained during 200 epochs using a mini-
batch SGD of size 32, and a dropout rate of 0.50 was em-
ployed. Table II shows the performance of the models trained
in a centralized approach on the REALWORLD dataset. All
evaluations were performed on the global test set.

TABLE II: Centralized learning performance with several
models on the REALWORLD dataset

Model Architecture Acc F-Score (%)
196-16C_4M_1024D 91.39 92.48
196-16C_4M_1024D_512D 89.75 90.72
1024D_512D 84.59 85.90
400D_100D 82.41 84.76

From the experiment, the best model is 196-
16C_4M_1024D. The shape of this model is 196 filters
of 16x1 convolution layer, followed by a 4x1 max pool
layer, then 1024 units of the dense layer, and finally the
softmax layer with 8 units. This model reaches 92.48%
of F-Score, which is far above the current state-of-the-art
on REALWORLD dataset, which was previously 81% of
F-Score [30]. The experiment shows that our CNN model is
well-tuned and superior to the state-of-the-art for this dataset.
This experiment shows why we have chosen this model for
all the subsequent experiments.

We also trained the model on each of the 15 individual client
datasets. In that case, the client models’ mean F-Score with
this local learning approach on the local test-sets was 96.04%.
This result is high but highly biased. If the local models are
tested on the global test-set (the combined test-sets of all the
clients), the obtained mean F-Score is 51.94%. Hence a model
learned on local data is highly personalized but clearly lacks
generalization capability (i.e., this is a classical case of over-
fitting)

C. Federated Learning

The four FL algorithms were run using the CNN model
architecture defined in the previous section. Before learning,
all models were randomly initialized. We experimented with
each FL algorithm during 200 communication rounds. The
clients were all set to perform local learning for 5 epochs.

Table III presents the results of the learning. The Centralized
Server Global accuracy (92.48%) and Local Personalization
accuracy results (96.04%) give the upper limit in terms of
generalization and personalization. Among the FL algorithms,
FedDist outperforms all other algorithms for the three mea-
sures (Global, Personalization, and Generalization accuracy).
It exhibits the best trade-off between generalization and per-
sonalization (Generalization accuracy = 74.23%). FedAvg is
the second-best algorithm (Generalization accuracy = 72.99%)
while FedMA (60.09%) and FedPer (53.01%) show a trend
towards overfitting but without beating FedDist or FedAvg
in terms of personalization. Apart from FedMA, all algo-
rithms seem slow in converging before the 200 communication
rounds. We detail the results for each algorithm below.

The FedAvg algorithm, despite its simplicity, seems difficult
to beat. As shown in Figure 6, with this method, the model
at the server level generalizes well on the global test-set with
an F-Score of 83.44% accuracy (which is still far from the
centralized learning approach of 92.48%). The client model
obtained a mean F-Score of 95.82% on the local-test set and
72.99% on the global test set. The learning curve showed in
Figure 6 exhibits a classic shape where the learning starts
with a steep improvement until it reaches a slow monotonic
increase after communication round 20. It seems that the
performance on the global-test set would be able to grow
with more communication rounds further. We highlight that
the slower convergence, compared to the traditional learning
approach, is due to the averaging property of FedAvg, where
it produces effects similar to regularization techniques where
we limit over-fitting at the cost of slower convergence. The
client level learning is less monotonic with sometimes sharp
changes in the standard deviation for the Personalization and
Generalization accuracy evaluation. This trait can be attributed
due to some clients’ peculiarities.

With the FedPer algorithm, only the CNN layer part is
communicated to the server while the dense layer (i.e., the
personalized layer) is kept local. This scheme might explain
why the FedPer algorithm does not succeed in generalizing
(Generalization accuracy = 53.01%), as it can be seen in Figure
7. The personalization layer stays too strong, and such the
model is not able to react appropriately to new data. However,
the results show that even the personalization feature of FedPer
is not significantly better than any of the other FL algorithms.

The FedMA algorithm reached an F-Score of 78.67% for
the Global accuracy, as exhibited in Figure 8. It has the lowest
ability to personalize with some minor drawbacks (Person-

TABLE III: Overall results of the learning experiments on the
REALWORLD dataset

REALWORLD
Global Personalization Generalization Server Client

F-Score (%) F-Score (%) F-Score (%) Best Rnd Best Rnd
Centralized 92.48 N/A N/A 197 (Epoch) N/A

Local N/A 96.04 ± 1.77 51.94 ± 3.39 N/A 198 (Epoch)
FedAvg 83.44 95.82 ± 1.53 72.99 ± 1.84 198 187
FedPer N/A 95.46 ± 1.62 53.01 ± 2.93 N/A 190
FedMA 78.67 93.65 ± 2.21 60.09 ± 1.73 137 171
FedDist 84.52 95.84 ± 1.59 74.23 ± 2.29 196 191

FedAvgFedDist_size 83.97 95.74 ± 2.35 73.73 ± 1.54 197 183

Fig. 6: FedAvg learning over 200 communication rounds

Fig. 7: FedPer learning over 200 communication rounds

alization accuracy = 93.65%) while performing moderately
on the global test-set (Generalization accuracy = 60.09%).
Furthermore, FedMA has a much higher training cost. Indeed,
in our experimentation, 5 local epochs are used to train client
models. For FedMA, this means a total of 25 local epochs for
each communication round (5 local epochs for each of the first
and second layer, and another 15 for the softmax layers).

FedDist presents the best performance overall in our exper-
iments. The learning curve shown in Figure 10 exhibits a two-
step behavior. This is because at a certain point, after many
communication rounds, no new neuron or filter is added to the
global model, and thus, training can stabilize better onward.
This behavior is further enforced with a penalty function that
takes the current communication round as input to raise new
neurons’ acceptance rate in later rounds. After no new neurons
are needed, we expect the late stages of training similar to the
FedAvg algorithm. However, the initial step was sufficient to
present better performances than FedAvg. In the end, FedDist
gets the best Generalization accuracy (e.g., the best trade-off
between generalization and personalization) and could even
reach more with further training.

The final global model shape, when FedDist stopped adding
new filters and neurons, is 222-16C_4M_2250D. From the
original size of the CNN, 26 new filters have been added
to the convolutional layer, and a total of 1222 neuron units
were gained on the dense layer. With the new model size,

Fig. 8: FedMA learning over 200 communication rounds

Fig. 9: FedAvg and FedDist results of the learning experiments
on the UCI dataset

Fig. 10: FedDist learning over 200 communication rounds

we then ran another experiment with FedAvg with the same
setting (FedAvgFedDist_size in table III) and found that the
results were short of the original FedDist implementation.
Additionally, when compared to the FedAvg approach with
the original model size, some benefits were gained in the
global and server accuracy at the cost of a slight loss in
personalization.

Finally, FedDist and FedAvg were also evaluated on the
UCI dataset partitioned into 5 uniformly distributed clients.
As shown in table IV, both algorithms give the same results
(96.96% global F-score) in-line with the state of the art (cf.
Table I). This outcome can be explained by the fact that
FedDist did not add any neuron and thus behaved like FedAvg.
This is not surprising since UCI is a very uniform dataset.
Nevertheless, this experiment shows that FedDist is versatile

TABLE IV: FedAvg and FedDist results of the learning
experiments on the UCI dataset

UCI
Global Personalization Generalization Server Client

F-Score (%) F-Score (%) F-Score (%) Best Rnd Best Rnd
FedAvg 96.96 96.73 ± 1.32 96.85 ± 0.21 194 198
FedDist 96.96 96.73 ± 1.32 96.85 ± 0.21 194 198

enough to adapt to both uniform and heterogeneous datasets.

VI. CONCLUSION AND FURTHER WORK

Federated Learning (FL) exhibits clear theoretical advan-
tages over classical centralized learning from a pervasive
computing perspective. It provides a solution for distributed
learning and, to some extent, to privacy preservation. However,
little is known about the behavior of such a learning approach
and how to evaluate it in a realistic pervasive computing
situation where devices can be very mobile and highly specific.
Up to now, most of the studies about FL have been conducted
in the computer vision area, without considerations for the
specific needs of pervasive applications. Furthermore, despite
a recent and active research effort, as our paper reveals, the
standard simple FL algorithm FedAvg is a difficult approach
to beat, and more subtle but complex algorithms do not
demonstrate a clear superiority. In this paper, our new FL
algorithm FedDist unites the efficiency of FedAvg with the
flexibility to make the machine learning model evolve over
communication rounds. We also introduce a straightforward
methodology to evaluate state-of-the-art FL algorithms and
FedDist in the context of a HAR from smartphone sensors.

Our evaluation method showed that FedDist clearly out-
performed the other FL algorithms on the three measures of
generalization and personalization. Indeed, FL should lead to
a high degree of adaptation to the device (high client accuracy
on its own data) while keeping a high degree of generalization
(e.g., prevent over-fitting, high client accuracy on global data).
FedAvg also exhibited such behavior, but more complex FL
algorithms such as FedMA and FedPer were not able to keep
a high degree of generalization and did not show the superior
capacity of personalization. One advantage of FedDist over
other algorithms is its ability to make the initial CNN model
evolves along with communication rounds. Since deciding on
the initial size of a NN model is an open problem, the property
FedDist computing the number of new specialized neurons to
add automatically to a model provides a flexible way to adapt
the model architecture to the task. While FedDist is more
computationally intensive than FedAvg, it is far less complex
than the FedMA algorithm and with better performance on
HAR.

Although these results add credence to the interest of
federated learning for pervasive computing, a lot of challenges
still remain. The study must be replicated with more datasets
and different tasks [39]. We also plan to study the robustness
of FL in scenarios such as asynchronous learning (devices
come and go), a sudden change in client data, communication
issues, heterogeneous population of devices (e.g., traveling
device), and mismatches between server data and clients
(noisy acquisition). Furthermore, long term studies are needed
to optimize communication schedule, and life-long learning
effects such as catastrophic forgetting [40]. We also suggest the
community set up benchmarks for comparison and replication
of research in this area, and we believe that the study presented
here is a stepping stone in this direction.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
2016.

[2] C. Becker, C. Julien, P. Lalanda, and F. Zambonelli, “Pervasive com-
puting middleware: current trends and emerging challenges,” CCF
Transactions on Pervasive Computing and Interaction, vol. 1, 02 2019.

[3] A. Gouarir, G. Martinez-Arellano, G. Terrazas, P. Benardos, and
S. Ratchev, “In-process tool wear prediction system based on ma-
chine learning techniques and force analysis,” Procedia CIRP, vol. 77,
pp. 501–504, 01 2018.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[5] H. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017.

[6] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecný, S. Mazzocchi, H. B. McMahan, T. V.
Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards federated
learning at scale: System design,” in Proceedings of Machine Learning
and Systems 2019, 2019.

[7] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[8] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[9] M. Ghuhan Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choud-
hary, “Federated Learning with Personalization Layers,” arXiv e-prints,
p. arXiv:1912.00818, Dec. 2019.

[10] D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model
distillation,” ArXiv, vol. abs/1910.03581, 2019.

[11] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos, and Y. Khazaeni,
“Federated learning with matched averaging,” in International Confer-
ence on Learning Representations, 2020.

[12] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard,
A. Dey, T. Sonne, and M. M. Jensen, “Smart devices are different:
Assessing and mitigating mobile sensing heterogeneities for activity
recognition,” in 13th ACM Conference on Embedded Networked Sensor
Systems, p. 127–140, 2015.

[13] O. D. Lara and M. A. Labrador, “A mobile platform for real-time human
activity recognition,” in 2012 IEEE Consumer Communications and
Networking Conference (CCNC), pp. 667–671, 2012.

[14] D. Blachon, D. Cokun, and F. Portet, “On-line Context Aware Phys-
ical Activity Recognition from the Accelerometer and Audio Sensors
of Smartphones,” in European Conference on Ambient Intelligence,
vol. 8850 of Ambient Intelligence, (Eindhoven, Netherlands), pp. 205–
220, Springer International Publishing, 2014.

[15] A. Ignatov, “Real-time human activity recognition from accelerometer
data using convolutional neural networks,” Applied Soft Computing,
vol. 62, pp. 915 – 922, 2018.

[16] H. Cho and S. Yoon, “Divide and conquer-based 1d cnn human activity
recognition using test data sharpening,” Sensors (Basel, Switzerland),
vol. 18, 04 2018.

[17] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in On-Device
Intelligence, 2020.

[18] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–
1359, 2010.

[19] Q. Wu, K. He, and X. Chen, “Personalized federated learning for
intelligent iot applications: A cloud-edge based framework,” IEEE Open
Journal of the Computer Society, vol. 1, pp. 35–44, 2020.

[20] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang, and
Y. Khazaeni, “Bayesian nonparametric federated learning of neural
networks,” in Proceedings of the 36th International Conference on
Machine Learning (K. Chaudhuri and R. Salakhutdinov, eds.), vol. 97 of
Proceedings of Machine Learning Research, (Long Beach, California,
USA), pp. 7252–7261, 09–15 Jun 2019.

[21] R. Thibaux and M. I. Jordan, “Hierarchical beta processes and the indian
buffet process,” in Proceedings of the Eleventh International Conference
on Artificial Intelligence and Statistics (M. Meila and X. Shen, eds.),

vol. 2 of Proceedings of Machine Learning Research, (San Juan, Puerto
Rico), pp. 564–571, PMLR, 21–24 Mar 2007.

[22] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[23] J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
2016.

[24] K. Sozinov, V. Vlassov, and S. Girdzijauskas, “Human activ-
ity recognition using federated learning,” in 2018 IEEE Intl
Conf on Parallel Distributed Processing with Applications, Ubiqui-
tous Computing Communications, Big Data Cloud Computing, So-
cial Computing Networking, Sustainable Computing Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 1103–1111, 2018.

[25] L. Wang, W. Wang, and B. Li, “CMFL: Mitigating communication
overhead for federated learning,” in 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS), pp. 954–964,
2019.

[26] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated
multi-task learning,” in Advances in Neural Information Processing
Systems 30 (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett, eds.), pp. 4424–4434, Curran
Associates, Inc., 2017.

[27] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “Fedhealth: A federated
transfer learning framework for wearable healthcare,” IEEE Intelligent
Systems, vol. 35, no. 4, pp. 83–93, 2020.

[28] L. Wang, H. Gjoreski, M. Ciliberto, P. Lago, K. Murao, T. Okita, and
D. Roggen, “Summary of the sussex-huawei locomotion-transportation
recognition challenge 2019,” in Adjunct Proceedings of the 2019 ACM
International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2019 ACM International Symposium on Wear-
able Computers, UbiComp/ISWC ’19 Adjunct, (New York, NY, USA),
p. 849–856, Association for Computing Machinery, 2019.

[29] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones,” in
ESANN, 2013.

[30] T. Sztyler and H. Stuckenschmidt, “On-body localization of wearable
devices: An investigation of position-aware activity recognition,” in
2016 IEEE International Conference on Pervasive Computing and
Communications (PerCom), pp. 1–9, 2016.

[31] W. Sousa Lima, E. Souto, K. El-Khatib, R. Jalali, and J. Gama, “Human
activity recognition using inertial sensors in a smartphone: An overview,”
Sensors, vol. 19, p. 3213, 07 2019.

[32] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-
based activity recognition: A survey,” CoRR, vol. abs/1707.03502, 2017.

[33] C. Ronao and S.-B. Cho, “Human activity recognition with smartphone
sensors using deep learning neural networks,” Expert Systems with
Applications, vol. 59, 04 2016.

[34] W. Jiang and Z. Yin, “Human activity recognition using wearable sensors
by deep convolutional neural networks,” in Proceedings of the 23rd
ACM International Conference on Multimedia, MM ’15, (New York,
NY, USA), p. 1307–1310, Association for Computing Machinery, 2015.

[35] C. A. Ronao and S.-B. Cho, “Deep convolutional neural networks
for human activity recognition with smartphone sensors,” in Neural
Information Processing (S. Arik, T. Huang, W. K. Lai, and Q. Liu,
eds.), (Cham), pp. 46–53, Springer International Publishing, 2015.

[36] B. Almaslukh, “An effective deep autoencoder approach for online
smartphone-based human activity recognition,” International Journal of
Computer Science and Network Security, vol. 17, 04 2017.

[37] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones,” in
ESANN, 2013.

[38] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pp. 265–283, 2016.

[39] A. Brenon, F. Portet, and M. Vacher, “Arcades: A deep model for
adaptive decision making in voice controlled smart-home,” Pervasive
and Mobile Computing, vol. 49, pp. 92 – 110, 2018.

[40] Z. Chen and B. Liu, “Lifelong machine learning,” Synthesis Lectures on
Artificial Intelligence and Machine Learning, vol. 12, no. 3, pp. 1–207,
2018.

