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Introduction

Optimal control problems have become a very active and successful research area and it can be used in many sciences and engineering. They have various application backgrounds in the operation of physical, social, and economic processes. Concerning the analysis of optimal control problems with PDEs constraints, we must mention the pioneer works in this field, such as [START_REF] Casas | Control of an elliptic problem with pointwise state constaints[END_REF][START_REF] Casas | Second order necessary optimality conditions for some stateconstrained control problem of semilinear elliptic equations[END_REF][START_REF] Hinze | Optimazation with PDEs constraints[END_REF][START_REF] Lions | Optimal Control of Systems Governed by Partial Differential Equations[END_REF][START_REF] Liu | Adaptative Finite element Methods for Optimal Control Governed by PDEs[END_REF][START_REF] Tröltzsch | Optimal control of partial differential equations: theory, methods, and applications[END_REF], for an overview of optimal control problems for more details.

The finite element method have been widely used in PDEs-constraints optimal control problems. There have been many works in literature on the finite element approximation of optimal control problems see [START_REF] Liu | A posteriori error estimates for distributed convex optimal control problems[END_REF][START_REF] Liu | Error analysis for a galerkin-spectral method with coordinate transformation for solving singularly perturbed problems[END_REF][START_REF] Meidner | A priori error estimates for space-time finite element discretization of parabolic optimal control problems[END_REF][START_REF] Caoa | Ciarlet-raviart mixed finite element approximation for an optimal control problem governed by the first bi-harmonic equation[END_REF], and so on.

The h-p version of the finite element which is the general version of finite element method has been applied to many practical problems. We mention the pioneering works [START_REF] Babuška | h-p version of the finite element method with quasiuniform meshes[END_REF], [START_REF] Babuška | The finite element method and its reliability[END_REF] and [START_REF] Melenk | hp-interpolation of nonsmooth functions and an application to hp-a posteriori error estimation[END_REF]. It seems suitable to apply the h -p version methods to approximate optimal control problems. Here, we only mention the following works in [START_REF] Chen | A legendre-galerkin spectral method for optimal control problems governed by elliptic equations[END_REF] [START_REF] Chen | A posteriori error estimates for hp finite element solutions of convex optimal control problems[END_REF] [START_REF] Chen | A posteriori error estimates of hp spectral element methods for integral state constrained elliptic optimal control problems[END_REF] and [START_REF] Chen | hp spectral element approximation for integral state constrained optimal control problems governed by harmonic equations[END_REF]. Yanping Chen and Yijie Lin, in [START_REF] Chen | A posteriori error estimates for hp finite element solutions of convex optimal control problems[END_REF], presented a posteriori error analysis for the h -p finite element approximation of convex optimal control problems. Before obtaining the h -p a posteriori error estimates for the coupled control and state approximations, they derived a new quasi-interpolation operator of Clément type and a new quasi-interpolation operator of the Scott-Zhang type that preserves homogeneous boundary conditions.

A priori error estimate consists in increasing the discretization error in a given norm (or seminorm) by a quantity which depends on the exact solution (in general not known explicitly). It is generally used to prove the convergence of the method under certain assumptions of regularity on the exact solution. But these assumptions in practice are not often verified. Moreover, the estimator is in term of the exact solution of the model, this shows that the a priori estimates cannot be used for an algorithm of mesh adaptation (which is very important in the finite element method because with this method, the discrete solution strongly depends on the mesh used). Hence the notion of a posteriori error analysis which now makes it possible to set up (thanks to an algorithm) an adapted mesh. For optimal control problems, there are many works on a priori error estimates (see, e.g., [START_REF] Liu | Adaptative Finite element Methods for Optimal Control Governed by PDEs[END_REF][START_REF] Tiba | Error estimates for the discretization of state constrained convex control problems: Error estimates for the discretization[END_REF]) for the standard finite element methods.

That is why, after the a priori error analysis, we focused on the adaptability of the mesh, i.e. to build a tool that allows, after a first resolution of the problem on a coarse decomposition, a decomposition choice that is the best suited to the problem (the flexibility of the method with joints that greatly facilitate the construction of the new decomposition), which is a posteriori error estimator. A posteriori error estimates are computable quantities, expressed in terms of the discrete solution and of the data that measure the actual discrete errors without the knowledge of the exact solution. They are essential to design adaptive mesh refinement algorithms which equidistribute the computational effort and optimize the approximation efficiency. Since the pioneering work of Babuška and Rheinboldt [START_REF] Babuška | Error estimates for adaptive finite element computations[END_REF], adaptive finite element methods based on a posteriori error estimates have been extensively investigated. What we propose to do here is to extend in the case of spectral elements a part of the results obtained by Verfiirth [START_REF] Verfürth | A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques[END_REF], concerning indicators constructed from the residue of the equation. The extension is not evident because an important step in the demonstration in finite elements are based on inverse inequalities [START_REF] Markus | On residual-based a posteriori error estimation in hp-fem[END_REF], which are known to be bad in spectral methods, so it is a matter of changing of the indicators appropriately.

However, as part of the h -p version, two choices of "refinement" are possible in the areas where the indicator reveals poor convergence; either divide the domain to reduce the h k setting, or increase the maximum p k degree. The idea to determine the best strategy is to use a spectral decomposition of the indicator in an appropriate base of the Polynomials. Examination of the behaviour of the coefficients allow then to find the best refinement: it is indeed preferable to increase the p k when all coefficients are of the same size and to decrease the h k when the highorder coefficients are small.

The Robin boundary condition is a general form of the isolation boundary condition for convection-diffusion equations and can be viewed as the trade-off Dirichlet and Neumann boundary conditions. They are applied to electromagnetic problems or boundary conditions of convection, for example in heat transmission problems [START_REF] David | Heat conduction[END_REF] and in modeling the convection between the conducting bodies (see [START_REF] Chrysafinos | Error estimates for discontinuous galerkin time-stepping schemes for robin boundary control problems constrained to parabolic pdes[END_REF][START_REF] Casas | Error estimates for the numerical approximation of boundary semilinear elliptic control problems[END_REF]). So, in this paper, the elliptic Robin boundary control problem is approximated by h-p version of finite element method. We mainly consider the following optimal control problem:

min u∈U ad J(u, y) := 1 2 Ω (y -y d ) 2 + ε 2 ∂Ω u 2 (1.1)
Subject to the state equation

-div(a∇y) = f in Ω (1.2)
With the boundary control conditions(Robin )

(a∇y).n = β κ (u -y) on ∂Ω (1.3)
In our work, Ω will be an open bounded subset of R 2 , with Lipschitz continuous boundary ∂Ω. We also assume that Ω is polygonal. The nonempty, closed and convex constraint U ad = {u ∈ L 2 (∂Ω) :

||u|| 2 0,∂Ω ≤ ζ 2 }
, n is outwards unit normal vector from Ω, ε and κ are strictly positive constants.

β : ∂Ω → (0, ∞) is a positive function, β ∈ L ∞ (∂Ω) with ∂Ω β 2 > 0, y d ∈ L 2 (Ω) is the observation, u is the control variable, y is the state variable and f ∈ L 2 (Ω). a(•) = a ij (•) 2×2 ∈ W 1,∞ (Ω) 2×2
such that there is a constant δ satisfying, for all vector x ∈ R 2 , x t ax ≥ δ||x|| 2 R 2 , where x t denote the transpose of x.

For Ω ⊂ R 2 a polygonal convex domain, we set Introduce the function spaces U = L 2 (∂Ω) ⊃ U ad u as the control space, V = H 1 (Ω) as the state space.

L 2 (Ω) = H 0 (Ω), H k (Ω), H k 0 (Ω), k ≥ 0 integer
The outline of this paper is as follows: In section 2, h -p version of the finite element methods for the optimal control problem are constructed, then optimality conditions for both exact and discrete system are given. A priori error estimates for the optimal control problems are obtained in section 3. In section 4, a posteriori error estimates for the optimal control problems are obtained.

Optimality of the optimal control problem and its finite element approximation

In this section, we shall find out the optimality conditions of the optimal problem (1.2)-(1.3) and describe its h -p finite element approximation.

Optimality of the problem

Weak formulation

Let's assume that y is enough regular, so for any regular test function v ∈ C 1 (Ω), integration by parts yields as

Ω f v = Ω (a∇y)∇v - ∂Ω (αu).v + ∂Ω (αy).v (2.1) 
The weak formulation for the boundary control value problem (1.1)-(1.3) using Green's formula is of the form : Find y ∈ V such that The extension to v ∈ V is possible since for y ∈ V both sides are continuous with respect to v ∈ V and since C 1 (Ω) is dense in V .

A(y, v) = l(v), ∀ v ∈ V. ( 2 

Existence and uniqueness of solution of the boundary control problem

It is easy to prove that A(•,

•) : V × V -→ R is linear form defined by A(y, v) = Ω (a∇y)∇v + ∂Ω αyv ∀ y, v ∈ V and l : V -→ R is linear form defined by l(v) = Ω f v + ∂Ω αuv.
The following lemma allowed us to prove the next theorem.

Lemma 2.1 ([27] page 35).

Let Ω ⊂ R N denote a bounded Lipschitz domain and let Γ ⊂ ∂Ω a measurable set such that |Γ| > 0. Then there exists a constant c(Γ) > 0, such that

||y|| 2 1,Ω ≤ c(Γ) Ω |∇y| 2 + Γ y 2 (2.3)
for all y ∈ H 1 (Ω) is satisfied.

We formulated the theorem for the existence and the uniqueness of solution of the boundary control problem.

Theorem 2.2 (Existence and uniqueness).

There exists an unique solution y for the variational problem (2.2).

Proof 2.3.

Ω (a∇y)∇v ≤ Ω |a∇y)∇v| ≤ 2 i,j=1 ||a ij || W 1,∞ Ω |∇y| 2 1/2 Ω |∇v| 1/2 ≤ 2 i,j=1 ||a ij || W 1,∞ ||y|| 1,Ω ||v|| 1,Ω .
(2.4)

By using Cauchy-Schwarz and Poincaré inequalities respectively.

∂Ω αyv ≤ ∂Ω |αy||v| ≤ ||α|| L ∞ (∂Ω) ||y|| 0,∂Ω ||v|| 0,∂Ω ≤ ||α|| L ∞ (∂Ω) c 0 ||y|| 1,Ω ||v|| 1,Ω , c 0 > 0. (2.5)
From (2.4) and (2.5), we conclude that A is a linear and continuous form.

A(v, v) = Ω (∇v) t a∇v + ∂Ω αv 2 ≥ Ω c|∇v| 2 +
∂Ω αv 2 using the assumption on a.

Let assume that there exists > 0 with |∂Ω| > 0 ∀x ∈ ∂Ω , α(x) ≥ . Then

A(v, v) ≥ Ω c|∇v| 2 + Γ v 2 ≥ min(c, ) Ω |∇v| 2 + Γ v 2 ≥ 1 θ(Γ) min(c, )||v|| 2 1,Ω using Lemma2.1 (2.6) Therefore A is V -elliptic. |l(v)| = Ω f v + ∂Ω αuv ≤ Ω |f ||v| + ∂Ω |α||u||v| ≤ ||f || 0,Ω ||v|| 0,Ω + ||α|| L ∞ (∂Ω) ||u|| 0,∂Ω ||v|| 0,∂Ω ≤ ||f || 0,Ω + c 0 ||α|| L ∞ (∂Ω) ||u|| 0,∂Ω ||v|| 1,Ω (2.7)
Therefore l is a linear and continuous form.

According to Lax-Milgram, the theorem is proved.

We have proven in the sequel that the weak formulation is equivalent to the exact formulation.

Equivalence with the equation

Let's recall some properties. If one takes v ∈ C ∞ c ⊂ H 1 (Ω) in (2.9), the edge term vanish and according to the corollary(2.6), div(a∇y) + f = 0 in L 2 (Ω), so almost everywhere in Ω. Accordingly, the left hand of (2.9) is null, then

H 2 (Ω) ∩ C 1 (Ω) -→ L 2 (∂Ω) ∩ C(∂Ω) v -→ γ 1 (v) =
∂Ω [(a∇y).n -α(u -y)].v = 0, ∀v ∈ V.
According to the theorem(2.7), the regular functions are dense in V . Accordingly the above equality is true for all regular function v on ∂Ω. One deduces from a version of the corollary(2.6) adapted to the edge ∂Ω that (a∇y).n = α(u -y), in L 2 (∂Ω) and then almost everywhere on ∂Ω. Theorem 2.8 (Sobolev's one-to-one). Suppose that Ω is bounded and of class C 1 subset of R n . Then we have the following compact injections:

W 1,p (Ω) ⊂ L q (Ω) ∀q ∈ [1, p * ), where 1 p * = 1 p - 1 n , if p < n, W 1,p (Ω) ⊂ L q (Ω) ∀q ∈ [p, +∞), if p = n, W 1,p (Ω) ⊂ C(Ω) if p > n.
In particular, W 1,p (Ω) ⊂ L p (Ω) with compact injection for all p (and all N).

See the proof in [START_REF] Brezis | Functional analysis, Sobolev spaces and partial differential equations[END_REF].

Remark 2.9.

1. We assume that U ad is nonempty, convex and closed. It is well known that L 2 (∂Ω) is a Hilbert space, then U ad is also a Hilbert space. It is also well known that H 1 (Ω) is a Hilbert space.

Let G be a continuous operator which maps from

: u ∈ L 2 (∂Ω) -→ y(u) ∈ H 1 (Ω) ⊂ L 2 (Ω).
We use 

S := E • G : L 2 (∂Ω) -→ L 2 (Ω)
f (u) := 1 2 Ω (Su -y d ) 2 + ε 2 ∂Ω u 2 (2.10)
admits a unique optimal solution u.

Proof 2.11. Since f (u) ≥ 0, there exists the infimum

j := inf u∈U ad f (u),
and there is a sequence

{u n } ∞ n=1 ⊂ U ad such that f (u n ) → j as n → ∞. L 2 (∂Ω)
is a reflexive Hilbert space, its bounded, closed, and convex subset U ad is weakly sequentially compact. Consequently, some subsequence {u n k } ∞ k=1 converges weakly to some u ∈ U ad , that is,

u n k u as k -→ ∞
Since S is continuous, f is also continuous. The convexity of f , which together with the continuity ensures that f is weakly lower semi-continuous. Consequently,

f (u) ≤ lim k→∞ inf f (u n k ) = j. (2.

11)

Since u ∈ U ad , we must have f (u) = j, and u is therefore an optimal control. The asserted uniqueness follows from the strict convexity of f due to the fact that λ > 0.

Theorem 2.12. Let the initial assumptions be satisfied. Then the problem (1.1)-( 1.3) has an optimal control, which is unique.

Let ū ∈ L 2 (∂Ω) denote some locally optimal control of the initial problem. We derive the first order necessary conditions that have to be obeyed by ū and the associated state ȳ. For y we can write y

(u) = G(u) with the control-to-state G : u -→ y(u) maps L 2 (∂Ω) into H 1 (Ω).

Definition 2.13 ([27] page 214)

. Let E ⊂ R n , n ∈ N, be a bounded and measurable set, and

et φ = φ(x, y(•)) : E × R → R be a function. The mapping Φ given by Φ(x) = φ(x, y(•)) which assigns to a function y : E → R the function z : E → R, z(x) = φ(x, y(•))
, is called a Nemytskii operator or superposition operator. Lemma 2.14 ([27] page 219). Suppose that the function φ is measurable with respect to x ∈ E for every y ∈ R and differentiable with respect to y for almost every x ∈ E. Moreover, let φ satisfies the local Lipschitz continuity condition of order 1 be satisfied. Then the Nemytskii operator Φ associated with φ is Fréchet differentiable in L ∞ (E), and we have

(Φ (y)h)(x) = φ y (x, y(x))h(x) for a.e. x ∈ E and all h ∈ L ∞ (E).
(2.12)

Theorem 2.15. Suppose the initial assumption, then f the control-to-state operator

G if Fréchet differentiable form L 2 (∂Ω) into H 1 (Ω). Its directional derivative at ū ∈ L 2 (∂Ω) in the direction u is given by G (ū)u = y
where y denotes the weak solution to the boundary value problem linearized at ȳ = G(ū):

-div(a∇y) = f in Ω (2.13) (a∇y).n + αy = αu on ∂Ω (2.14)

Proof 2.16. We have to show that,

G(ū + u) -G(ū) = Du + r(ū, u) (2.15)
with a continuous linear operator D : L 2 (∂Ω) → H 1 (Ω) and a mapping r that satisfies, where

||r|| 1,Ω ||u|| 0,∂Ω → 0 as ||u|| ∂Ω → 0 (2.16)
Here, it follows that that G (u) = D

The boundary value problem satisfied by ȳ = y(ū) and ỹ = y(ũ + u) read, respectively,

-div(a∇ȳ) = f (a∇ȳ).n + αȳ = αū and -div(a∇ỹ) = f (a∇ỹ).n + αỹ = α(ū + u) (2.

17)

Subtracting them yields

-div(a∇(ỹ -ȳ)) = 0 (2.18) (a∇(ỹ -ȳ)).n + φy(x,y(•))(ỹ-ȳ)+r d α(ỹ -ȳ) = αu où φ(x, y(•)) = αy (2.19)
The Nemytskii operator

Φ(y) = φ(x, y(•)) is, by Lemma2.14 , Fréchet differentiable from H 1 (Ω) into L ∞ (Ω). Therefore, Φ(ỹ) -Φ(ȳ) = φ(•, ỹ(•)) -φ(•, ȳ(•)) = α(ỹ(•) -ȳ(•)) + r d (2.20)
with a remainder r d such that

||r d || L ∞ (Ω) ||ỹ -ȳ|| 1,Ω → 0, as ||ỹ -ȳ|| 1,Ω → 0 (2.21)
One shows that this implies that ỹȳ = y + y ρ (2.22) with the solution y to the boundary value problem and a remainder y ρ that solves the boundary value problem

-div(a∇y ρ ) = -f in Ω (2.23) (a∇y ρ ).n + αy ρ = -r d on ∂Ω (2.24)
It is clear that this problem is uniquely solvable. Since G is a Lipschitz continuous mapping form

L 2 (∂Ω) to H 1 (Ω), it is follows that : ||ỹ -ȳ|| ≤ L||u|| 0,∂Ω , L > 0 (2.25) Moreover, ||r|| L ∞ (Ω) ||u|| 0,∂Ω = ||r|| L ∞ (Ω) ||ỹ -ȳ|| 1,Ω . ||ỹ -ȳ|| 1,Ω ||u|| 0,∂Ω ≤ L ||r|| L ∞ ||ỹ -ȳ|| 1,Ω (2.26 
)

and thus ||r d || L ∞ (Ω) = o(||u|| 0,∂Ω )
. By (2.24), we also have

||y ρ || 1,Ω = o(||u|| 0,∂Ω ) (2.27)
Denoting the continuous linear mapping u → y by D, we conclude that

G(ū + u) -G(ū) = ỹ -ȳ = Du + y ρ = Du + r(ū, u) (2.28)
where r(ū, u) = y ρ has the required properties. This concludes the proof of the theorem.

The cost functional :

f (u) = J(u, y) = J(G(u), u) = F (G(u)) + Q(u) (2.29)
Where F and Q are defined as

F : y -→ 1 2 Ω (y -y d ) 2 maps H 1 (Ω) into R and Q : u -→ ε 2 ∂Ω u 2 maps L 2 (∂Ω) into R
It is well known that F and Q are Fréchet differentiable and since G is Fréchet differentiable then f also, therefore we have:

f (ū)(u -ū) = F (G(ū))G (ū)(u -ū) + Q (ū)(u -ū) = F (ȳ)y + Q (ū)(u -ū) = Ω ϕ y (ȳ)y + ∂Ω ψ u (ū)(u -ū) Where y = G (ū)(u -ū), ϕ(x, y) = 1 2 (y -y d ) 2 and ψ(x, u) = ε 2 u 2 . First, it results in the variational inequality Ω (ȳ -y d )y + ∂Ω εū(u -ū) ≥ 0 ∀u ∈ U ad (2.30)
with the directional derivative y = G (u)(uū) at ū in the direction u -ū, one obtains that y solves the boundary value problem linearized at ȳ

-div(a∇y) = 0 in Ω (a∇y).n + αy = α(u -ū) on ∂Ω (2.31)
The adjoint state p is defined as the weak solution to the adjoint equation.

-div(a * ∇p) = ȳ -y d in Ω (a * ∇p).n + αp = 0 on ∂Ω (2.32)

where p ∈ V.

Lemma 2.17. 

Let function a Ω ∈ L 2 (Ω), a ∂Ω , w ∈ L 2 (∂Ω) and α, β ∂Ω ∈ L ∞ (∂Ω)
∂Ω (αp + εū)(u -ū) ≥ 0 ∀ u ∈ U ad (2.40)
The directional derivative of f (u) = J(Gu, u) at ū in the direction u -ū can be expressed using the equality(2.39) in the form

f (ū)(u -ū) = ∂Ω (αp + εū)(u -ū) (2.41) Definition 2.20. Let L(•) be the Lagrange functional defined form L 2 (∂Ω) 2 to R by L(u, λ) = 1 2 Ω (Su -y d ) 2 + ε 2 ∂Ω u 2 + 1 2 ||u|| 2 0,∂Ω - 1 2 ζ 2 , λ 0,∂Ω (2.42)
where λ ≥ 0. See [START_REF] Tröltzsch | Regular lagrange multipliers for control problems with mixed pointwise control-state constraints[END_REF] Theorem 2.21. p being the adjoint operator, λ Lagrange multiplier and u be the optimal control, then:

p + (ε + λ)u = 0 with ||u|| 2 0,∂Ω ≤ ζ 2 , λ ≥ 0 and ||u|| 2 0,∂Ω -ζ 2 λ = 0 Proof 2.22. By expanding 1 2 ||y -y d || 2 0,Ω , we have, 1 2 ||y -y d || 2 0,Ω = 1 2 ||Su|| 0,Ω -(S * y d , u) 0,Ω + const, here S = G.
Moreover, it is know that the operator S * is given by S * z = p where p ∈ H 1 (Ω) solves the adjoint boundary value

-div(a * ∇p) = z in Ω (a * ∇p).n + αp = 0 on ∂Ω (2.43) ∂L ∂u = S * Su -S * y d + εu + uλ = S * (Su -y d ) + (ε + λ)u = p + (ε + λ)u Then ∂L ∂u = 0 ⇐⇒ p + (ε + λ)u = 0 Theorem 2.23. The pair (u, y) ∈ U ad × V is the optimal solution of the control problem (1.1)- (1.
2) if only if there exists a unique pair (p, λ) ∈ V ×R + such that (u, y, p, λ) satisfies the following optimality conditions

(OCP -OP T )          (i) A(y, v) = (αu, v) 0,∂Ω + (f, v) 0,Ω ∀ v ∈ V (ii) A(q, p) = (y -y d , q) 0,Ω ∀ q ∈ V (iii) (αp + εu, w -u) 0,∂Ω ≥ 0 ∀ w ∈ U ad , (iv) p + (ε + λ)u = 0 (2.44)
where λ satisfies

λ = constant ≥ 0, ||u|| 2 0,∂Ω = ζ 2 0 ||u|| 2 0,∂Ω ≤ ζ 2
(2.45)

H -p finite element method

In this subsection, we construct the hp finite element approximation of the optimal control problems where we assume that Ω is polygonal. We divide the domain Ω into N τ non-overlapping sub-domains (elements

) τ i , 1 ≤ i ≤ N τ : Ω = Nτ i=1 τ i , τ i τ j = ∅, i = j, 1 ≤ i, j ≤ N τ (2.46)
Let T be a local quasi-uniform partitioning of Ω into non-overlapping regular elements τ , and τ = (-1, 1) 2 be the reference element.

Let T U the a partitioning of ∂Ω, such that

∂Ω = Nτ j=1 γ j γ i γ j = ∅, i = j, 1 ≤ i, j ≤ N τ (2.47)
where

γ j j = 1, 2, • • • N τ
are the open sides of the boundary ∂Ω. We further require that P i ∈ ∂Ω where P i (i = 1, • • • , I) is the set associated with the triangulation T . We let µ(T ) denote all edges, and let µ 0 (T ) denote all edges which lie on the boundary ∂Ω.

Each element τ can be the image of the reference element τ under an affine map F τ : τ → τ . We write h τ (h γ ) := diamτ (γ), and assume that the triangulation is χ-shape regular, i.e.,

h τ -1 ||F τ || + h τ ||(F τ ) -1 || ≤ χ (2.48)
For χ-shape regular meshes T on the domain Ω, we associate with each element τ ∈ T a polynomial degree p ∈ N 0 , these polynomial degrees p are collected into the polynomial degree vector p = {p}. For χ-shape regular meshes γ on the boundary ∂Ω, we associate with each element γ ∈ T U a polynomial degree q ∈ N 0 .

Then we can define the spaces of h -p finite element approximation U p (T U , ∂Ω), S p (T , Ω) as follows:

U p (T U , ∂Ω) := {u ∈ L 2 (∂Ω) : u| e∈µ 0 (T ) • F τ ∈ Q p } S p (T , Ω) := {v ∈ H 1 (Ω) : v| e∈µ(T ) • F τ ∈ Q p }
where Q p denotes the space of polynomials in τ of degree ≤ p, q in each variable, respectively. As to polynomial degree distribution p , similarly to (2.48), we assume that the polynomial degrees of neighboring elements are comparable, i.e., there is a constant χ > 0 such that

χ -1 (p τ ) ≤ p τ + 1 ≤ χ(p τ + 1) ∀ τ, τ ∈ T , τ ∩ τ = ∅ (2.49)
Convergence is obtained either by increasing the degree of the polynomials or increasing the number of elements N τ .

Let U h,p := U ad U p (T U , ∂Ω) be the space of approximation of the control, and let S p (T , Ω) be the space of approximation of the state and co-state. Then the h -p spectral element approximation of optimal control problem reads as follows:

(OCP ) hp      min u∈U hp J(u hp , y hp ) = 1 2 Ω (y hp -y d ) 2 + ε 2 ∂Ω u 2 hp A(y hp , v hp ) = (αu hp , v hp ) 0,∂Ω + (f, v hp ) 0,Ω , ∀ v hp ∈ S p (T , Ω).
(2.50)

The following theorem shows the existence and uniqueness of the solution of the above system. 

A(y n hp , v hp ) = (αu n hp , v hp ) 0,∂Ω + (f, v hp ) 0,Ω , ∀ v hp ∈ S p (T , Ω). ( 2 
A(y hp , v hp ) = (αu hp , v hp ) 0,∂Ω + (f, v hp ) 0,Ω , ∀ v hp ∈ S p (T , Ω). (2.54)
Since F is a convex functional on L 2 (Ω) and Q is a strictly convex functional on L 2 (∂Ω), we have

F (y hp ) + Q(u hp ) ≤ lim F (y n hp ) + Q(u n hp )
. Then (y hp , u hp ) is the unique solution of (OCP ) hp . This complete the proof of the theorem.

Furthermore, the following first order optimality conditions are satisfied.

Lemma 2.26. The pair (u hp , y hp ) ∈ U hp × S p (T , Ω) is the optimal solution of the control problem (2.50) if only if there exists a pair (p hp , λ hp ) ∈ (S p (T , Ω), R + ) such that (u hp , y hp , p hp , λ hp ) satisfies the following optimality conditions (OCP

-OP T ) hp            (i) A(y hp , v hp ) = (αu hp , v hp ) 0,∂Ω + (f, v hp ) 0,Ω , ∀ v hp ∈ S p (T , Ω) (ii) A(q hp , p hp ) = (y hp -y d , q hp ) 0,Ω , ∀ q hp ∈ S p (T , Ω) (iii) (αp hp + εu hp , w hp -u hp ) 0,∂Ω ≥ 0 ∀ w hp ∈ U hp , (iv) p hp + (ε + λ hp )u hp = 0. (2.55)
where λ satisfies

λ hp = constant ≥ 0, ||u hp || 2 0,∂Ω = ζ 2 0 ||u hp || 2 0,∂Ω < ζ 2
(2.56)

A priori error estimates

In this section, we study a priori error estimates of the hp finite element approximations. Here we note that Ω is a convex open domain with Lipschitz boundary ∂Ω, and in the light of the optimality conditions, we have y ∈ V .

To derive a priori estimates, we need to prove some important results that will be used later. Since the pair (u hp , y hp ) is the optimal solution of the optimal control problem, we have 

J(u hp , y hp ) = 1 2 Ω (y hp -y d ) 2 + ε 2 ∂Ω u 2 hp = 1 2 τ ∈T T (y hp -y d ) 2 + ε 2 e∈µ 0 e u 2 hp ≤ 1 2 τ ∈T T (y hp (v hp ) -y d ) 2 + ε 2 e∈µ 0 e v 2 hp ≤ C(e,
||p hp || 1,Ω ≤ c||y hp -y d || 0,Ω ≤ C and |λ hp | ≤ C
The proof of the lemma is completed

We introduce the auxiliary system to obtain a priori error estimates for hp finite element method : finding (y hp (u), p hp (u)) ∈ S p (T , Ω) × S p (T , Ω) such that

(i) A(y hp (u), v hp ) = (αu, v hp ) 0,∂Ω + (f, v hp ) 0,Ω , ∀ v hp ∈ S p (T , Ω) (ii) A(q hp , p hp (u)) = (y -y d , q hp ) 0,Ω , ∀ q hp ∈ S p (T , Ω)
This auxiliary system will allow me to derive a priori error estimates for the optimal control problem.

The following error bounded for the interpolation operator I hp can be derived by using a result for the standard interpolation operator based on the reference domain and the technique employed in the hp finite element method. See [3] lemma 4.5.

Lemma 3.3. Let

h = max{h τ i , 1 ≤ i ≤ N t }, the for all v ∈ H s (Ω), s ≤ 1 it holds ||v -I hp v|| t,Ω ≤ C h µ-t p s-t ||v|| s,v ∀ v ∈ V ∩ H s (Ω) (3.2)
Where µ = min{p + 1, s} and t = 0, 1.

We define the projection operator π h p as follows :

∀ v ∈ V, find π h p v ∈ S p (T , Ω) such that A(π h p v -v, v hp ) = 0, ∀ v hp ∈ S p (T , Ω)
where A is a v-elliptic, continuous bilinear form.

Lemma 3.4. Let π h

p : V ∩ H s (Ω) -→ S p (T , Ω) such that for any 0 ≤ t ≤ s ||u -π h p u|| t,Ω ≤ C h µ-t p s-t ||u|| s,Ω ∀ u ∈ V ∩ H s (Ω)
, where µ = min{p + 1, s} (3.3) Lemma 3.5. Let (u, y, p, λ) be the optimal solution of optimality conditions (OCP -OP T ), (y hp (u), p hp (u)) be the solution of the auxiliary system, there holds

||y -y hp (u)|| 1,Ω + ||p -p hp (u)|| 1,Ω ≤ C h µ-1 p m-1 (||y|| m,Ω + ||p|| m,Ω ) (3.4)
Where µ = min{p + 1, m} Proof 3.6. In the light of the auxiliary system and optimality conditions (OCP -OP T ), we obtain A(y -y hp (u), v hp ) = 0 (3.5)

A(q hp , p -p hp (u)) = 0 (3.6) 

Using
(u)|| 1,Ω ≤ C inf ∀w hp ∈S p (T ,Ω) ||y -w hp || 1,Ω ≤ C||y -π h p y|| 1,Ω ≤ C h µ-1 p m-1 ||y|| m,Ω
Similarly, using (3.6) with Poincaré inequality and Céa lemma, we have ∀ q hp ∈ S p (T , Ω) 

c||p -p hp (u)|| 2 1,Ω ≤ A(p -p hp (u), p -p hp (u)) ≤ A(p -q hp , p -p hp (u)) + A(q hp -p hp , p -p hp (u)) ≤ A(p -q hp , p -p hp (u)) ≤ M ||p -p hp (u)|| 1,Ω ||p -q hp || 1,Ω ≤ M ||p -p hp (u)|| 1,Ω inf ∀q hp ∈S p (T ,Ω) ||p -q hp || 1,Ω Thus we have, ||p -p hp (u)|| 1,Ω ≤ C inf ∀q hp ∈S p (T ,Ω) ||p -q hp || 1,Ω From (3.3), we have ||p -p hp (u)|| 1,Ω ≤ C inf ∀q hp ∈S p (T ,Ω) ||p -q hp || 1,Ω ≤ C||p -π h p p|| 1,Ω ≤ C h µ-1 p m-
A(y hp -y hp (u), v hp ) = (α(u hp -u), v hp ) 0,∂Ω (3.8) 
A(q hp , p hp -p hp (u)) = (y hp -y, q hp ) 0,Ω (3.9) Then,

Letting v hp =
||p hp -p hp (u)|| 1,Ω ≤ C||y hp -y|| 0,Ω ≤ C(||y hp -y hp (u)|| 0,Ω + ||y -y hp (u)|| 0,Ω ) ≤ C(||y hp -y hp (u)|| 1,Ω + ||y -y hp (u)|| 0,Ω ) ≤ C(||u hp -u|| 0,∂Ω + ||y -y hp (u)|| 0,Ω )
This completes the proof. Lemma 3.9. Let (u, y, p, λ) and (u hp , y hp , p hp , λ hp ) the optimal solution of optimality conditions (OCP -OP T ) and (OCP -OP T ) hp respectively. There holds

||u -u hp || 0,∂Ω ≤ C h µ-1 p m-1 (||y|| m,Ω + ||p|| m,Ω ) (3.11) Proof 3.10. (p -p hp , q hp ) 0,∂Ω = (-(λ + ε)u + (λ hp + ε)u hp , q hp ) 0,∂Ω = (-(λ + ε)u + (λ + ε)u hp -(λ + ε)u hp + (λ hp + ε)u hp , q hp ) 0,∂Ω = (λ hp -λ)(u hp , q hp ) 0,∂Ω + (λ + ε)(u hp -u, q hp ) 0,∂Ω (3.12) Let q hp = ζ 2 α(u -u hp ) -Ru hp = ζ 2 α(u -u hp ) -(α(u -u hp ), u hp ) 0,∂Ω .u hp such that (u h p, q hp ) = 0 (u hp , q hp ) 0,∂Ω = (u hp , ζ 2 α(u -u hp ) -(α(u -u hp ), u hp )u hp ) 0,∂Ω = ζ 2 (u hp , α(u -u hp )) 0,∂Ω -(u hp , (α(u -u hp ), u hp )u hp ) 0,∂Ω = ζ 2 (u hp , α(u -u hp )) 0,∂Ω -(u hp , u hp )(α(u -u hp ), u hp ) 0,∂Ω = 0
Where

||u hp || 2 0,∂Ω = ζ 2 R = (α(u -u hp ), u hp ) 0,∂Ω = -1 λ hp + ε (α(u -u hp ), -(λ hp + ε)u hp ) 0,∂Ω = -1 λ hp + ε (α(u -u hp ), p hp ) 0,∂Ω , using (3.8) = 1 λ hp + ε [(a∇(y hp -y hp (u)), ∇p hp ) 0,Ω + (α(y hp -y hp (u)), p hp ) 0,∂Ω ] |R| = 1 λ hp + ε |(a∇(y hp -u hp (u)), ∇p hp ) 0,Ω + (α(y hp -y hp (u)), p hp ) 0,∂Ω | ≤ 1 λ hp + ε [|(a∇(y hp -u hp (u)), ∇p hp ) 0,Ω | + |(α(y hp -y hp (u)), p hp ) 0,∂Ω |] ≤ C||y hp -y hp (u)|| 0,Ω λ hp ((u -u hp ), q hp ) 0,∂Ω = λ hp ((u -u hp ), ζ 2 α(u -u hp ) -(α(u -u hp ), u hp ) 0,∂Ω .u hp ) 0,∂Ω = λ hp ζ 2 ((u -u hp ), α(u -u hp )) 0,∂Ω -λ hp ((u -u hp ), (α(u -u hp ), u hp ) 0,∂Ω .u hp ) 0,∂Ω
Then, using (4.18), we have

λ hp ζ 2 ((u -u hp ), α(u -u hp )) 0,∂Ω = λ hp ((u -u hp ), q hp ) 0,∂Ω + λ hp ((u -u hp ), (α(u -u hp ), u hp ) 0,∂Ω .u hp ) 0,∂Ω = λ hp λ + ε (p hp -p, q hp ) 0,∂Ω + λ hp ((u -u hp ), Ru hp ) 0,∂Ω
Assuming that there exists δ such that α(x) ≥ δ a.e on ∂Ω. Thus

((u -u hp ), α(u -u hp )) 0,∂Ω ≥ δ||u -u hp || 2 Then λ hp ζ 2 δ||u -u hp || 2 0,∂Ω ≤ λ hp λ + ε |(p hp -p, q hp ) 0,∂Ω + λ hp ((u -u hp ), Ru hp ) 0,∂Ω |
which can be rewritten as

||u -u hp || 0,∂Ω ≤ c(ι)(||p -p hp || 0,Ω + |R|) + ι||u -u hp || 0,∂Ω therefore ||u -u hp || 0,∂Ω ≤ C(||p -p hp || 0,Ω + ||y hp -y hp (u)|| 0,Ω )
Finally, we can arrive at

||u -u hp || 0,∂Ω ≤ C h µ-1 p m-1 (||y|| m,Ω + ||p|| m,Ω ) (3.13)
This complete the proof.

Theorem 3.11 (Convergence). Let (u, y, p) and (u hp , y hp , p hp ) be the solutions of (OCP -OP T ) and (OCP -OP T ) hp , respectively. Assuming that (y, p) ∈ H m (Ω) × H m (Ω)(m ≥ 1), h and p lager enough, we obtain the following a priori error estimates

||u -u hp || 0,∂Ω + ||y -y hp || 1,Ω + ||p -p hp || 1,Ω ≤ C h µ-1 p m-1 (||y|| m,Ω + ||p|| m,Ω ) (3.14)
where µ = min{p + 1, m} Proof 3.12.

||y -

y hp || 1,Ω ≤ ||y -y hp (u)|| 1,Ω + ||y hp (u) -y hp || 1,Ω ||p -p hp || 1,Ω ≤ ||p -p hp (u)|| 1,Ω + ||p hp (u) -p hp || 1,Ω
Then using (3.4) and (3.7), we have

||y -y hp || 1,Ω + ||p -p hp || 1,Ω ≤ C 1 h µ-1 p m-1 (||y|| m,Ω + ||p|| m,Ω ) + C 2 {||u -u hp || 0,∂Ω + ||y -y hp (u)|| 0,Ω }
which can be rewritten using (3.13) as

||u -u hp || 0,∂Ω + ||y -y hp || 1,Ω + ||p -p hp || 1,Ω ≤ C 1 h µ-1 p m-1 ||p|| m,Ω + C 3 h µ-1 p m-1 ||y|| m,Ω + C 4 h µ-1 p m-1 (||y|| m,Ω + ||p|| m,Ω ) ≤ C h µ-1 p m-1 (||y|| m,Ω + ||p|| m,Ω )
This completes the proof.

A posteriori error estimates

In this section, a posteriori error estimates for the hp finite element approximation for the optimal control problems. we introduce two lemmas which generalize the well-known Clément-type interpolation operators and also two lemmas which generalize the polynomial inverse inequalities.

Lemma 4.1 ([23]). Let T be a χ-shape regular triangulation of a domain Ω ∈ R, and let p be a polynomial degree distribution which is comparable. Then there exists a bounded linear operator I hp : L 2 (Ω) → S p (T , Ω) and there exists a constant C > 0, which depends only on χ, such that for every u ∈ H 1 (Ω) and all elements τ ∈ T and all edges e ∈ ε(T ) where h e is the length of the edge e and p e = max{p τ , p τ }, where τ , τ are element sharing the edge e, and w τ , w e are patches covering τ and e with a few layers, respectively. Lemma 4.2 (Scott-Zhang-type quasi interpolation [START_REF] Melenk | hp-interpolation of nonsmooth functions and an application to hp-a posteriori error estimation[END_REF]). . Let T be a γ-shape regular triangulation of a domain Ω ⊂ R 2 and let p be a polynomial degree distribution which is comparable. Then there exists a linear operator π hp : H 1 (Ω) → S p (T , Ω) such that

||u -I hp u|| 0,τ + h τ p τ ||∇(u -I hp u)|| 0,τ ≤ C h τ p τ ||∇u|| 0,w 1 τ , ( 4 

Scott-Zhang-type approximation

π hp u |b = u|b ∀ b ∈ B
Furthermore, there exists a constant C > 0 depending only on γ and q such that for all elements τ ∈ T and all edges e ∈ ε(T )

||u -π hp u|| 0,τ + h τ p τ ||∇(u -π hp u)|| 0,τ ≤ C h τ p τ ||∇u|| 0,w 4 τ , (4.6) ||u -π hp u|| 0,e ≤ C h τ p τ ||∇u|| 0,w 4 e (4.7) 
Analysis of the error indicators requires polynomial inverse estimates in weighted Sobolev spaces in multi-dimensions. Under this consideration, the weight functions: Φ τ (x) := dist(x, ∂ τ ) on the reference element τ should be introduced (see [START_REF] Markus | On residual-based a posteriori error estimation in hp-fem[END_REF] for more details). For an arbitrary

element τ ∈ T , set Φ τ = c τ Φ τ • F -1
τ , where is c τ a scaling factor which is chosen such that τ Φ τ dxdy = meas(τ ). ).

We have following lemmas reads as follows:

Lemma 4.3. Let τ be the reference square as defined previously , let the weight function Φ τ be defined above. Let γ, β ∈ R, satisfying -1 < γ < β and δ ∈ [0, 1]. Then for all polynomial

ψ p ∈ Q p τ Φ τ |∇ψ p | 2 dxdy ≤ C 1 p 2 τ |ψ p | 2 dxdy, (4.8) 
τ (Φ τ ) γ ψ 2 p dxdy ≤ C 2 p 2(β-γ) τ (Φ τ ) β ψ 2 p dxdy, (4.9) 
τ (Φ τ ) 2δ |∇ψ p | 2 dxdy ≤ C 3 p 2(2-δ) τ (Φ τ ) δ ψ 2 p dxdy, ( 4.10) 
where C i , i = 1, 2, 3, are constants, C 2 is dependent on β and γ, and C 3 is dependent on δ Lemma 4.4. Let τ be the reference square defined as previously , θ ∈ (1/2, 1]. Set ê = (0, 1)×{0}.

Then there exists a constant C θ > 0, which is dependent on θ, such that the followings hold. For every univariate polynomial ψ ∈ Q p and every ∈ (0, 1] there exists an extension

v ê ∈ H 1 (τ ) such that (i) v ê| ê = ψ.Φ θ ê and v ê| ∂ τ -ê = 0 ; (ii) ||v ê|| 2 0,τ ≤ C θ ||ψ.Φ θ/2 ê || 2 0,ê ; (iii) ||∇v ê|| 2 0,τ ≤ C θ ( p 2(2-θ) + -1 )||ψ.Φ θ/2 ê || 2 0,ê
where Φ ê is the weight function defined above, and τ is the reference element such that ê ⊂ ∂ τ .

A posteriori upper error estimates

To derive a posteriori upper error estimates for the optimal control problem, we need to introduce the auxiliary system : find (y(u hp ), p(u hp ))) such that

A(y(u hp ), v) = (αu hp , v) 0,∂Ω + (f, v) 0,Ω , ∀ v ∈ V A(q, p(u hp )) = (y(u hp ) -y d , q) 0,Ω , ∀ q ∈ V (4.11)
Using the above auxiliary system, we now prove the following lemmas to obtain a posteriori error estimates of the optimal control problem. Lemma 4.5. Let (y, u, p, λ) and (y hp , u hp , p hp , λ hp ) be the solution of optimality conditions (OCP -OP T ) and (OCP -OP T ) hp , respectively. Let (y(u hp ), p(u hp )) be the solution of auxiliary system. Then we have q ||y(u hp ) -y|| 1,Ω ≤ C||u hp -u|| 0,∂Ω (4.12)

and ||p -p(u hp )|| 1,Ω ≤ C||y hp -y(u hp )|| 1,Ω (4.13) 
Proof 4.6. It follows from the continuous optimality conditions and the auxiliary system that

A(y(u hp ) -y, v) = (α(u hp -u)), v) 0,∂Ω (4.14) 
A(q, p(u hp ) -y) = (y(u hp ) -y, q) 0,Ω (4.15)

Letting v = y(u hp ) -y in (4.14), we have

A(y(u hp ) -y, y(u hp ) -y) = (α(u hp -u)), y(u hp ) -y) 0,∂Ω
The above expression implies that

c||y(u hp ) -y|| 2 1,Ω ≤ A(y(u hp ) -y, y(u hp ) -y) = (α(u hp -u)), y(u hp ) -y) 0,∂Ω ≤ δ||u hp -u|| 0,∂Ω ||y(u hp ) -y|| 0,∂Ω ≤ δ||u hp -u|| 0,∂Ω ||y(u hp ) -y|| 0,Ω which implies ||y(u hp ) -y|| 1,Ω ≤ C||u hp -u|| 0,∂Ω (4.16) 
Letting q = p(u hp ) -p in (4.15), we have

A(p(u hp ) -p, p(u hp ) -p) = (y(u hp ) -y, p(u hp ) -p) 0,Ω
The above expression implies that

c||p(u hp ) -p|| 2 1,Ω ≤ A(p(u hp ) -p, p(u hp ) -p) = (y(u hp ) -y, p(u hp ) -p) 0,Ω ≤ C||y(u hp ) -y|| 0,Ω ||p(u hp ) -p|| 0,Ω Which implies that ||p(u hp ) -p|| 1,Ω ≤ C||y(u hp ) -y|| 1,Ω (4.17) 
Lemma 4.7. Let (u, y, p, λ) and (u hp , y hp , p hp , λ hp ) be the solution of optimality conditions (OCP -OP T ) and (OCP -OP T ) hp respectively. Let (y(u hp ), p(u hp )) be the solution of auxiliary system. Then we have :

||u -u hp || 0,∂Ω ≤ C||y(u hp ) -y hp || 0,Ω Proof 4.8. 
(p -p hp , q) 0,∂Ω = (-

(λ + ε)u + (λ hp + ε)u hp , q) 0,∂Ω = (-(λ + ε)u + (λ hp + ε)u -(λ hp + ε)u + (λ hp + ε)u hp , q) 0,∂Ω = (λ hp -λ)(u, q) 0,∂Ω + (λ hp + ε)(u hp -u, q) 0,∂Ω (4.18 
)

Let q = ζ 2 α(u -u hp ) -Cu = ζ 2 α(u -u hp ) -(α(u -u hp ), u) 0,∂Ω .u such that (u, q) = 0 (u, q) 0,∂Ω = (u, ζ 2 α(u -u hp ) -(α(u -u hp ), u)u) 0,∂Ω = ζ 2 (u, α(u -u hp )) 0,∂Ω -(u, (α(u -u hp ), u)u) 0,∂Ω = ζ 2 (u, α(u -u hp )) 0,∂Ω -(u, u)(α(u -u hp ), u) 0,∂Ω = 0 Where ||u|| 2 0,∂Ω = ζ 2 C = (α(u -u hp ), u) 0,∂Ω = -1 λ + ε (α(u -u hp ), -(λ + ε)u) 0,∂Ω = -1 λ + ε (α(u -u hp ), p) 0,∂Ω , using (4.14) = 1 λ + ε [(a∇(y(u hp ) -y), ∇p) 0,Ω + (α(y(u hp ) -y)), p) 0,∂Ω ] |C| = 1 λ + ε |(a∇(y(u hp ) -y), ∇p) 0,Ω + (α(y(u hp ) -y)), p) 0,∂Ω | ≤ 1 λ + ε [||(a∇(y(u hp ) -y), ∇p) 0,Ω | + |(α(y(u hp ) -y)), p) 0,∂Ω |] ≤ C||y(u hp ) -y|| 0,Ω λ hp ((u -u hp ), q) 0,∂Ω = λ hp ((u -u hp ), ζ 2 α(u -u hp ) -(α(u -u hp ), u) 0,∂Ω .u) 0,∂Ω = λ hp ζ 2 ((u -u hp ), α(u -u hp )) 0,∂Ω -λ hp ((u -u hp ), (α(u -u hp ), u) 0,∂Ω .u) 0,∂Ω
Then, using (4.18), we have

λ hp ζ 2 ((u -u hp ), α(u -u hp )) 0,∂Ω = λ hp ((u -u hp ), q) 0,∂Ω + λ hp ((u -u hp ), (α(u -u hp ), u) 0,∂Ω .u) 0,∂Ω = λ hp λ hp + ε (p hp -p, q) 0,∂Ω + λ hp ((u -u hp ), Cu) 0,∂Ω
Assuming that there exists δ such that α(x) ≥ δ a.e on ∂Ω. Thus

((u -u hp ), α(u -u hp )) 0,∂Ω ≥ δ||u -u hp || 2 Then λ hp ζ 2 δ||u -u hp || 2 0,∂Ω ≤ λ hp λ hp + ε |(p hp -p, q) 0,∂Ω + λ hp ((u -u hp ), Cu) 0,∂Ω |
which can be rewritten as where we denote the jump of v across the edges by [v] and n e by the unit outer normal on e.

||u -u hp || 0,∂Ω ≤ c(ι)(||p -p hp || 0,Ω + |C|) + ι||u -u hp || 0,∂Ω
Proof 4.10. It follows from the discrete optimality conditions (OCP -OP T ) hp and the auxiliary system, we have

A(y(u hp ) -y hp , v hp ) = 0 ∀v hp ∈ S p (T , Ω) (4.26) A(q hp , p(u hp ) -p hp ) = (y(u hp ) -y hp , q hp ) ∀q hp ∈ S p (T , Ω) (4.27) 
Let e p = p(u hp ) -p hp and let e p I = π hp e p , where π hp is the Scott-Zhang type interpolator defined in Lemma (4.9). Applying the standard residual techniques (see, e.g., [START_REF] Verfürth | A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques[END_REF]). Then it follows from the projection equation, Green ' Similarly, let e y = y(u hp ) -y hp , and let e y I = π hp e y , where π hp is the Scott-Zhang type interpolator defined in Lemma(4.9). Applying the standard residual techniques (see, e.g. [START_REF] Verfürth | A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques[END_REF]). Then it follows from the projection equation, Green's formula, and Holder's inequality that : 

A posteriori lower error estimates

In this part, I will discuss lower a posteriori bounds, that means the efficiency of the error estimates established in the Theorem4.11.

Lemma 4.13. Let (y, p, u, λ) and (y hp , p hp , u hp , λ hp ) be the solution of the optimality conditions (OCP -OP T ) and (OCP -OP T ) hp respectively.

η 2 1 ≤ C τ ∈T p 2 τ ||y -y hp || 2 1,τ + C τ ∈T p 2β τ h 2 τ p 2 τ ||π τ f -f || 2 0,τ (4.33) η 2 4 ≤ C τ ∈T p 2β τ h 2 τ p 2 τ ||y hp -y|| 2 1,τ + ||π τ (y hp ) -π τ (y d ) -y hp + y d || 2 1,τ +C τ ∈T p 2 τ ||p -p hp || 2 1,τ (4 

.34)

Where π τ is the L 2 -project operator on the space of polynomials of degree p τ , 1 < β ≤ 1 and the constant C depends on α. Proof 4.14. let Φ τ be the weight function defined before lemma4.8. Define w Similarly, define v τ = (π τ f + div(a∇y hp ))Φ α τ . Then we have : 

τ = (π τ (y hp ) - π τ (y d ) + div(a * ∇p hp ))Φ α τ , 1 2 < α ≤ 1. ||w τ Φ -α 2 τ || 2 
|v τ | 2 1,τ ≤ Cp 2(1-α)

  , denote the usual Sobolev spaces. For u ∈ H k (Ω) we denote by ||u|| k,Ω and |•| k,Ω the usual norm and semi-norm respectively. If I is an interval or a segment, then we define H k (I), || • || k,I analogously.

  Let a set B ⊂ ε(T ) of boundary edges of the triangulation T be given, i.e,B ⊂ ε(T ) and b ∈ ∂Ω, ∀ b ∈ B(4.3)Next, we define for q ∈ (1, ∞) the spaceW 1,q B,p := {u ∈ W 1,q(Ω) : u| b • F b ∈ P p b for all b ∈ B and (1.1) holds} (4.4) where the continuity condition (1.1) is for alla b, b and V ∈ Λ(b) ∩ Λ(b ) there holds lim x→V x∈b u(x) = lim x→V x∈b u(x). (4.5)

  c||y(u hp ) -y hp || 2 ≤ A(e y , e y ) = A(e y , e y -e y I ) + A(e y , e y ) = A(y(u hp ) -y hp , e y -e y I ) = A(y(u hp ), e y -e y I ) -A(y hp , e y -e y I ) = τ ∈T τ (f + div(a∇y hp ))(e y -e y I ) -

2 τ 2 τ 2 τ 2 τ 2 + 2 τ 2 ≤ 2 = 2 τ 2 τ 2 τ 2 τ 2 τ

 2222222222222 0,τ = τ (π τ (y hp ) -π τ (y d ) + div(a * ∇p hp ))w τ = τ (y -y d + div(a * ∇p hp ))w τ + τ (y hp -y)w τ + τ(π τ (y hp ) -π τ (y d ) -y hp + y d )w τ = A(w τ , p)τ (a * ∇p hp )w τ + ∂τ αp hp w τ + τ (y hp -y)w τ + τ (π τ (y hp ) -π τ (y d ) -y hp + y d )w τ = A(w τ , p -p hp ) + τ (y hp -y)w τ + τ (π τ (y hp ) -π τ (y d ) -y hp + y d )w τ ≤ C||p -p hp || 1,τ |w| 1,τ + ||(y hp -y)Φ α || 0,τ ||w τ Φ -α || 0,τ + ||(π τ (y hp ) -π τ (y d ) -y hp + y d )Φ α || 0,τ ||w τ Φ -α || 0,τ (4.35)Then we should estimate w τ with the H 1 semi-norm. Using the inverse estimates (4.9)-(4.10) with β = α, γ = 2(α -1)(note that we have α = 2(α -1) > -1 when α > 1 2 ), δ = α, and the affine transformation F τ , we have :|w τ | 2 1,Ω ≤ 2 τ Φ 2α τ |∇(π τ (y hp ) -π τ (y d ) + div(a * ∇p hp ))| (π τ (y hp ) -π τ (y d ) + div(a * ∇p hp )) 2 |Φ α τ | τ (y hp ) -π τ (y d ) + div(a * ∇p hp )) (y hp ) -π τ (y d ) + div(a * ∇p hp )) τ (y hp ) -π τ (y d ) + div(a * ∇p hp )) Cp 2(1-α) follows from(4.35) and (4.36) that :||w τ Φ -α || 0,τ ≤ C p 1-α τ p τ h τ ||p -p hp || 1,τ + ||(y hp -y)Φ -α || 0,τ + ||(π τ (y hp ) -π τ (y d ) -y hp + y d )Φ α || hp ||1,τ + ||y hp -y|| 0,τ + ||π τ (y hp ) -π τ (y d ) -y hp + y d || 0,τ Furthermore, it follows from (4.37) and (4.9) with α = β and γ = 0 ||π τ (y hp ) -π τ (y d ) + div(a * ∇p hp )|| 0,τ ≤ Cp β τ ||π τ (y hp ) -π τ (y d ) + div(a * ∇p hp )Φ β || 0,τ = Cp β τ ||w τ Φ -β || 0,τ ≤ Cp β τ p 2-β τ h τ ||p -p hp || 1,τ + ||y hp -y|| 0,τ + ||π τ (y hp ) -π τ (y d ) -y hp + y d || 0,τ

2 = 2 τ 2 τ || 0,τ and hence ||v τ Φ -α 2 τ 2 τ 2 τ 2 τ p 2 τ 2 τ p 2 τ 2 Lemma 4 . 15 . 1 2 < α ≤ 1 .

 2222222222241511 τ f + div(a∇y hp )) Cp f + div(a∇y hp ))v τ = τ (f + div(a∇y hp ))v τ + τ (π τ f -f )v τ = τ f w τ + ∂τ αuv tτ (a∇y hp )∇v τ + ∂τ αy hp + τ (π τ f -f )v τ = A(y -y hp , v τ ) + τ (π τ f -f )v τ ≤ ||y -y hp || 1,τ |v τ | 1,τ + ||(π τ f -f )Φ α || 0,τ ||v τ Φ -α || 0,τ ≤ C p 2-α τ h τ ||y -y hp || 1,τ + ||π τ f -f || 0,τ (4.37)where, it follows from (4.37) and (4.9) with α = β and γ = 0||π τ f + div(a∇y hp )|| 0,τ ≤ Cp β τ ||(π τ f + div(a∇y hp ))Φ β || 0,τ = Cp β τ ||w τ Φ -β || 0,τ ≤ Cp β τ p 2-β τ h τ ||y -y hp || 1,τ + ||π τ f -f || 0,τusing similar techniques h ||f + div(a∇y hp )|| 2 0,τ ≤ C h ||π τ f + div(a∇y hp )|| 2 obtain a local upper bound for the edge contribution η 2 , η 3 , η 5 and η 6 we introduce the set w τ = {∪τ : τ and τ share at least one edge} We again set e = τ 1 ∩ τ 2 and τ = τ 1 ∪ τ Let Φ α e the weight function. Define w e = π τ (αy hp ) + π τ (u hp ) -[(a∇y hp ).n e ] Φ α e , αy hp ) + π τ (u hp ) -[(a∇y hp ).n e ] w e = τe π τ (αy hp ) + π τ (u hp )τe (a∇y hp )∇w eτe div(a∇y hp )w e

Theorem 2.4 (

  

	Theorem 2.5 (Trace [1] page 25). Let Ω be an open bounded subset of R 2 , with Lipschitz contin-
	uous boundary ∂Ω. One defines the trace function γ 1

Regularity [15] page 112). Let Ω be an open bounded subset of R 2 , with Lipschitz continuous boundary ∂Ω. Let f ∈ L 2 (Ω) and g ∈ L 2 (∂Ω). Using the initial hypotheses then, the solution of the boundary control problem (1.2)-(1.3) y ∈ H 2 (Ω).

the Theorem 2.18 in [27]page 54. Lemma 2.10. Let the initial assumptions on U ad be satisfied, Then the quadratic Hilbert space optimization min u∈U ad

  

	and S is linear and continuous operator where E
	denotes the compact injection operator from H 1 (Ω) -→ L 2 (Ω). So S is well defined. In fact,
	since Ω is an open bounded subset of R 2 , with Lipschitz continuous boundary ∂Ω, from the
	theorem (2.8), E is a compact injection operator from H 1 (Ω) -→ L 2 (Ω)
	We obtain the next result from

  We use the variational formulations of the above two boundary value problems. Inserting p ∈ H 1 (Ω) in the equation for y, we find that

	Then						
	Ω	a Ω y +	∂Ω	a ∂Ω y =	∂Ω	β ∂Ω pw	(2.34)
	Proof 2.18.						

be given, where α ≥ 0 and c 0 ≥ 0 almost everywhere. Moreover, let y and p denote the weak solutions the elliptic boundary value problems -div(a∇y) = 0 in Ω (a∇y).n + αy = β ∂Ω w on ∂Ω -div(a * ∇p) = a Ω in Ω (a * ∇p).n + αp = a ∂Ω on ∂Ω

(2.33

)

Ω (a∇y)∇p + ∂Ω αyp = β ∂Ω wp. (

2

.35) and insertion of y ∈ H 1 (Ω) in the equation for p yields Ω (a * ∇p)∇y + ∂Ω αpy = Ω a Ω y + Ω a ∂Ω y. (2.36) which can be express as : Ω (a∇y)∇p + ∂Ω αyp = Ω a Ω y + Ω a ∂Ω y. (2.37) It follows that : Ω a Ω y + ∂Ω a ∂Ω y = ∂Ω β ∂Ω pw (2.38) Using the previous Lemma, we find Ω (ȳ -y d )y = ∂Ω αp(u -ū) ∀u ∈ L 2 (∂Ω) (2.39) Substituting this into the variational inequality (2.30) yields the following result Theorem 2.19. Suppose the initial assumptions hold, and let ū be a locally optimal control for the boundary control problem (1.1)-(1.3), with associated adjoint state p defined as the solution to the boundary value problem (2.43)

  τ, y d ) ||u hp || 0,∂Ω ≤ C and ||y hp -y d || 0,∂Ω ≤ C It well known that for all y ∈ V, u ∈ U ad , ||y|| 1,Ω ≤ C(||f || 0,Ω + ||u|| 0,∂Ω ) Since U hp ∈ U ad and S p (T , Ω) ∈ V , we have ||y hp || 1,Ω ≤ C(||f || 0,Ω + ||u hp || 0,∂Ω ) Therefore ||y hp || 1,Ω ≤ C

	finally we have			
	According to (2.44)(ii) and (iii), we obtain	
	Which implies that	ε 2	||u hp ||2 2 0,∂Ω ≤ C(e, τ, y d )
	and can be rewritten	||u hp || 2 0,∂Ω ≤	2 ε	C(e, τ, y d )

  hp ) ≤ M ||y -y hp (u)|| 1,Ω ||y -w hp || 1,Ω ≤ M ||y -y hp (u)|| 1,Ω inf

(3.5) 

with Poincaré inequality and Céa lemma, ∀ w hp ∈ S p (T , Ω)

c||y -y hp (u)|| 2 1,Ω ≤ A(y -y hp (u), y -y hp (u)) ≤ A(y -y hp (u), y -w hp ) + A(y -y hp (u), w hp -y hp ) ≤ A(y -y hp (u), y -w ∀w hp ∈S p (T ,Ω) ||y -w hp || 1,Ω

Thus we have, ||y -y hp (u)|| 1,Ω ≤ C inf ∀w hp ∈S p (T ,Ω) ||y -w hp || 1,Ω From (3.4), we have ||y -y hp

  OP T ) hp , (y hp , p hp (u)) be the solution of the auxiliary system, there holds the following estimates||p hp -p hp (u)|| 1,Ω + ||y hp -y hp (u)|| 1,Ω ≤ C{||u -u hp || 0,∂Ω + ||y -y hp (u)|| 0,Ω } (3.7)Combining the auxiliary and the discrete systems, we obtain

	Proof 3.8.

1 

||p|| m,Ω Lemma 3.7. Let (u hp , y hp , p hp , λ hp ) be the optimal solution of the optimality conditions (OCP -

  y hp -y hp (u),(3.8) becomesA(y hp -y hp (u), y hp -y hp (u)) = (α(u hp -u), y hp -y hp (u)) 0,∂Ω

	by coercivity, we have
	c||y hp -y hp (u)|| 2 1,Ω ≤ A(y

hp -y hp (u), y hp -y hp (u)) = (α(u hp -u), y hp -y hp (u)) 0,∂Ω ≤ ||u hp -u|| 0,∂Ω ||y hp -y hp (u)|| 0,∂Ω which implies ||y hp -y hp (u)|| 1,Ω ≤ C||u hp -u|| 0,∂Ω (3.10) Letting q hp = p hp -p hp (u), (4.18) becomes A(p hp -p hp (u), p hp -p hp (u)) = (y hp -y, p hp -p hp (u)) 0,Ω by coercivity, we obtain c||p hp -p hp (u)|| 2 1,Ω ≤ A(p hp -p hp (u), p hp -p hp (u)) = (y hp -y, p hp -p hp (u)) 0,Ω ≤ ||y hp -y|| 0,Ω ||p hp -p hp (u)|| 0,Ω

  Finally, applying the above expressions, we can get ||u -u hp || 0,∂Ω ≤ C||y(u hp ) -y hp || 0,Ω Lemma 4.9. Let (u hp , y hp , p hp , λ hp ) and (y(u hp ), p(u hp ) be the solution of the optimality conditions (OCP -OP T ) hp and the auxiliary system. Then ||y(u hp ) -y hp || 2 1,Ω + ||p(u hp ) -p hp || 2

	where η 2 1 , η 2 2 , η 2 3 , η 2 4 , η 2 5 and η 2 6 are defined as follows :
	η 2 1 =	τ ∈T	h 2 τ τ p 2	||f + div(a∇y hp )|| 2 0,τ	(4.20)
	η 2 2 =	τ ∈T e∈µ(τ )-µ 0 (τ )	h τ 2p τ	||[(a∇y hp ).n e ]|| 2 0,e	(4.21)
	η 2 3 =	τ ∈T e∈µ 0 (τ )	h τ 2p τ	||α(y hp + u hp ) -[(a∇y hp ).n e ]|| 2 0,e	(4.22)
	η 2 4 =	τ ∈T	h 2 τ τ p 2	||y hp -y d + div(a * ∇p hp )|| 2 0,τ	(4.23)
	η 2 5 =	τ ∈T e∈µ(τ )-µ 0 (τ )	h τ 2p τ	||[(a * ∇p hp ).n e ]|| 2 0,e	(4.24)
	η 2 6 =	τ ∈T e∈µ(τ )-µ 0 (τ )	h τ 2p τ	||αp hp + [(a * ∇p hp ).n e ]|| 2 0,e	(4.25)
						1,Ω ≤ C(η 2 1 + η 2 2 + η 2 3 + η 2 4 + η 2 5 + η 2 6 )	(4.19)

  s formula, and Holder's inequality that c||p(u hp ) -p hp || 2 1,Ω ≤ A(e p , e p ) = A(p(u hp ), e p ) -A(p hp , e p ) = A(p(u hp ), e p ) -A(p hp , e p -e p I ) -A(p hp , e p I ) = (y(u hp ) -y d , e p ) 0,Ω -A(p hp , e p -e p I ) -(y hp -y d , e p I ) 0,Ω = (y(u hp ) -y hp , e p ) 0,Ω -A(p hp , e p -e p I ) + (y hp -y d , e p -e p I ) 0,Ω = (y(u hp ) -y hp , e p ) 0,Ω + (y hp -y d , e p -e p I ) 0,Ω -(y hp -y d + div(a * ∇p hp )(e p -e p I ) -(αp hp + [a * ∇p hp .n e ])(e p -e p I ) + (y(u hp ) -y hp , e p ) 0,Ω ||(αp hp + [a * ∇p hp .n e ]|| 0,e ||(e p -e p I )|| 0,e + ||y(u hp ) -y hp || 0,Ω ||e p || 0,Ω (4.28) hp -y d + div(a * ∇p hp )|| 0,τ ||∇e p || 0,w 4 ∇p hp ).n e ]|| 0,e ||∇e p || 0,w 4 ||(αp hp + [a * ∇p hp .n e ]|| 0,e ||∇e p || 0,w 4 τ + C||y(u hp ) -y hp || 0,Ω ||e p || 0,Ω

	c||p(u hp ) -p hp || 2 1,Ω = Thus, we have : -||p(u hp ) -p hp || 2 τ ∈T τ 1,Ω ≤ C(η 2 4 + η 2 5 + η 2 6 ) + C||y(u hp ) -y hp || 2 e∈µ(τ )-µ 0 (τ ) 0,Ω e	[(a * ∇p hp ).n e ](e p -e p I ) (4.30)
				e∈µ 0 (τ )		e
	where we used (4.37) and (4.27), we have
	c||p(u hp ) -p hp || 2 1,Ω ≤	||(y hp -y d + div(a * ∇p hp )|| 0,τ ||(e p -e p I )|| 0,τ
						τ ∈T
						+	||[(a * ∇p hp ).n e ]|| 0,e ||(e p -e p I )|| 0,e
						e∈µ(τ )-µ 0 (τ )
						+
						e∈µ 0 (τ )
	And using the Theorem(4.9), we have
	c||p(u hp ) -p hp || 2 1,Ω ≤ C	τ ∈T	h τ p τ	||(y τ
						+ C	e∈µ(τ )-µ 0 (τ )	h τ p τ	||[(a τ
						+ C	e∈µ 0 (τ )	h τ p τ
						≤ C(σ)	   τ ∈T	h τ p τ	2	||(y hp -y d + div(a * ∇p hp )|| 2 0,τ
						+	e∈µ(τ )-µ 0 (τ )	h τ p τ	||[(a * ∇p hp ).n e ]|| 2 0,e
						+	e∈µ 0 (τ )	h τ p τ	||(αp hp + [a * ∇p hp .n e ]|| 2 0,e
						+ ||y(u hp ) -y hp || 2 0,Ω + σ||e p || 2 1,Ω	(4.29)
	Setting σ =	c 2	, we can obtain	Ω	(a * ∇p hp ).∇(e p -e p I )
	-= ||p(u hp ) -p hp || 2 ∂Ω αp hp (e p -e p I ) τ ∈T τ div(a * ∇p hp )(e p -e p I ) -1,Ω ≤ C τ ∈T h 2 τ ||y hp -y d + div(a * ∇p hp )|| 2 ∂τ (a * ∇p hp ).n τ (e p -e p I ) -0,τ p 2 τ + (y(u hp ) -y hp , e p ) 0,Ω + (y hp -y d , e p -e p I ) 0,Ω + C τ ∈T e∈µ(τ )-µ 0 (τ ) h τ 2p τ ||[(a * ∇p hp ).n e ]|| 2 0,e	∂Ω	αp hp (e p -e p I )
			=	τ ∈T	τ	(y hp -y d + div(a * ∇p hp )) (e p -e p I ) -+ C h τ 2p τ ||αp hp + [(a * ∇p hp ).n e ]|| 2 ∂τ (a * ∇p hp ).n τ (e p -e p I ) 0,e
			-	e∈µ 0 (τ )		e	αp hp (e p -e p I ) + (y(u hp ) -y hp , e p ) 0,Ω + C||y(u hp ) -y hp || 2 0,Ω

* τ ∈T e∈µ(τ )-µ 0 (τ )

  hp + u hp ) -[a∇y.n e ]|| 0,e ||∇e y || 0,e hp ) -y hp || 2 ≤ C Let (u, y, p, λ) and (u hp , y hp , p hp , λ hp ) be the solution of optimality conditions (OCP -OP T ) and (OCP -OP T ) hp respectively. Then we have that

	τ ∈T ∂τ e∈µ(τ )-µ 0 (τ ) [(a∇y hp ).n τ ](e y -e y I ) e [(a∇y hp ).n e ](e y -e y I ) ||f + div(a∇y hp )|| 0,τ ||∇e y || 0,w e (α(y hp + u hp ))(e y -e y I ) (f + div(a∇y hp ))(e y -e y e∈µ 0 (τ ) e τ ∈T τ I ) -e∈µ 0 (τ ) e τ ∈T h τ p τ τ + C e∈µ(τ )-µ 0 (τ ) h τ p τ ||[(a∇y hp ).n e ]|| 0,e ||∇e y || 0,e + C e∈µ 0 (τ ) h τ p τ ||α(y ≤ C(σ) τ ∈T h 2 τ p 2 τ ||f + div(a∇y hp )|| 2 0,τ + C(σ) e∈µ(τ )-µ 0 (τ ) h τ p τ ||[(a∇y hp ).n e ]|| 2 0,e + C(σ) e∈µ 0 (τ ) h τ p τ , we can obtain + = + ||y(u τ ∈T h 2 τ p 2 τ ||f + div(a∇y hp )|| 2 0,τ + C τ ∈T e∈µ(τ )-µ 0 (τ ) h τ 2p τ ||[(a∇y hp ).n e ]|| 2 0,e + C τ ∈T e∈µ 0 (τ ) h τ 2p τ ||α(y hp + u hp ) -[a∇y.n e ]|| 2 0,e (4.31) Theorem 4.11. ||u -u hp || 2 c 2 0,∂Ω + ||y -y hp || 2 1,Ω + ||p -p hp || 2 1,Ω ≤ C(η 2 1 + η 2 2 + η 2 3 + η 2 4 + η 2 5 + η 2 6 ) (4.32) ||α(y Setting σ = Where η 2 = η 2 1 + η 2 2 + η 2 3 + η 2 4 + η 2 5 + η 2 6

(α(y hp + u hp ) -[a∇y.n e ])(e y -e y I )

where we used

(4.37

) and

(4.26)

, we have

c||y(u hp ) -y hp || 2 ≤ C τ ∈T ||f + div(a∇y hp )||

0,τ ||e y -e y I || 0,τ + C e∈µ(τ )-µ 0 (τ ) ||[(a∇y hp ).n e ]|| 0,e ||e y -e y I || 0,e + C e∈µ 0 (τ ) ||α(y hp + u hp ) -[a∇y.n e ]|| 0,e ||e y -e y I || 0,e And using the Theorem(4.9), we have c||y(u hp ) -y hp || 2 ≤ C hp + u hp ) -[a∇y.n e ]|| 2 0,e + σ||e y || 2 1,Ω Proof 4.12. Applying the lemmas(4.5)-(4.9), in summary we have the following estimate of u-u hp : ||u -u hp || 0,∂Ω ≤ ||y(u hp ) -y hp || 0,Ω ≤ Cη The next step of the proof is to estimate y -y hp : ||y -y hp || 1,Ω ≤ ||y -y(u hp )|| Ω + ||y(u hp ) -y hp || Ω ≤ C||u -u hp || 0,∂Ω + ||y(u hp ) -y hp || ≤ Cη The final step of the proof is to estimate error p -p hp : ||p -p hp || 1,Ω ≤ ||p -p(u hp )|| 1,Ω + ||p(u hp ) -p hp || 1,Ω ≤ C||y -y(u hp )|| 0,∂Ω + ||p(u hp ) -p hp || ≤ Cη

  ||y hp -y d + div(a * ∇p hp )|| 2 ||π τ (y hp ) -π τ (y d ) + div(a * ∇p hp )|| 2 0,τ + C ||π τ (y hp ) -π τ (y d ) -y hp + y d || 2 + ||π τ (y hp ) -π τ (y d ) -y hp + y d || 2 + ||π τ (y hp ) -π τ (y d ) -y hp + y d || 2 ||y hp -y d + div(a * ∇p hp )||2 ||y hp -y|| 2 1,τ + ||π τ (y hp ) -π τ (y d ) -y hp + y d || 2

	Thus,						
		h 2 τ			
		τ p 2				0,τ
	≤ C	h 2 τ p 2 τ			h 2 τ τ p 2	0,τ
	≤ Cp 2 τ ||p -p hp || 2 1,τ + Cp 2β τ	h 2 τ τ p 2	||y hp -y|| 2 0,τ 0,τ
	≤ Cp 2 τ ||p -p hp || 2 1,τ + Cp 2β τ	h 2 τ τ p 2	||y hp -y|| 2 1,τ 0,τ
	η 2 4 =	τ ∈T	h 2 τ τ p 2		0,τ
	≤ C	τ ∈T	p 2 τ ||p -p hp || 2 1,τ + C	τ ∈T	p 2β τ	h 2 τ τ p 2	1,τ