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Abstract: The landscape taxonomy has a complex structure and hierarchical classification with indicators of their 

recognition, which is based on a variety of heterogeneous geographic territorial and expert knowledge. This 

inevitably leads to difficulties in the interpretation of remote sensing data and image analysis in landscape 

research in the field of classification and mapping. This article examines an approach to the analysis of intra-

season Landsat 8 OLI images and modeling of ASTER GDEM data for mapping of mountain permafrost 

landscapes of Northern Siberia at the scale of 1: 500,000 as well as its methods of classification and 

geographical recognition. This approach suggests implementing the recognition of terrain types and 

vegetation types of landscape types. The 8 types of the landscape have been identified by using the 

classification of the relief applying Jenness's algorithm and the assessment of the geomorphological 

parameters of the valley. The 6 vegetation types have been identified in mountain tundra, mountain woodlands, 

and valley complexes of the Adycha river valley in the Verkhoyansk mountain range. The results of mapping 

and the proposed method for the interpretation of remote sensing data used at regional and local levels of 

studying the characteristics of the permafrost distribution. The work contributes to the understanding of the 

landscape organization of remote mountainous permafrost areas and to the improvement of methods for 

mapping the permafrost landscapes for territorial development and rational environmental management. 

1 INTRODUCTION 

The development of knowledge-based approaches 

to object recognition is one of the most relevant 

research areas in machine learning and artificial 

intelligence algorithms for image processing and 

interpreting of the Earth observation data (Arvor et al, 

2019). Landscape classification and mapping in 

geography are traditionally represented by the 

classification of the landscape types and categories 

according to the characteristics of the vegetation 

cover, soil, relief, geomorphology, lithology, etc. 
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Permafrost landscapes are a complex geographic 

object in the zone of permafrost distribution and the 

development of cryogenic processes. They have a 

complex hierarchical classification structure 

(Fedorov, 2018). Recognition and mapping of 

permafrost landscapes objects are based on the multi-

fusion data modeling on the territorial and 

geographical features of landscape components. It 

makes them a multidimensional object for their 

recognition using remote sensing data processing 

(Boike et al, 2015). Given the lack of geospatial data 

of environmental parameters, remote sensing 
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modeling becomes one of the main available tools for 

understanding the spatial organization of mountain 

permafrost landscapes in the Arctic region 

(Witharana et al, 2021). Accurate mapping of 

landscapes is particularly important in view of the 

richness of the territory in mineral resources, as well 

as in assessing the possibilities of territorial 

development and taking effective measures for 

environmental management (Kalinicheva et al. 

2019). In addition, permafrost landscape types are 

used to account for agrobiological resources, such as 

reindeer pastures. Landscape taxonomy has a 

complex structure, being a heterogeneous knowledge, 

so there are obvious difficulties in interpreting land 

use/ land cover classes for landscapes and 

geographical processes. The classification of 

permafrost landscapes used for the territory of Siberia 

and Central Asia is based on Milkov's theory of 

landscape taxonomy and fractional hierarchical 

classification of landscapes, represented on the 

Permafrost-Landscape map of the Republic of Sakha 

(Yakutia) in scale 1: 1 500,000 (Fedorov et al, 1989). 

Classification and Geographic Information System 

(GIS) mapping of permafrost landscapes of the 

Republic of Sakha (Yakutia) implemented is based on 

superimposed analysis of climate-geomorphological, 

geological, biotic, and soil factors (Fedorov, 2018). 

This methodology allows using the cryoindication 

approach to apply remote sensing data and techniques 

in the interpretation of vegetation cover. In addition, 

remote sensing data are used as a tool for drawing 

boundaries in the designation of permafrost 

parameters (such as the type of distribution, depth of 

occurrence, cryogenic processes), extracted from the 

database of the geocryological observatory, and the 

collection of field data. Data from multispectral 

images are widely used in the analysis and modeling 

of vegetation cover and their succession stages, as 

well as the thermal regime of permafrost (Shestakova, 

2011) from thermal images (Kalinicheva et al. 2019). 

These examples allow us to see that remote sensing 

data is a relevant and rapidly developing tool in the 

study of the permafrost landscape. Machine learning 

and artificial intelligence algorithms (including deep 

learning), such as Support Vector Machine, (Pal, and 

Mather, 2005) and Random Forest (Eisavi, 2015), 

have shown significant performance in analyzing 

large data sets when modeling mountain permafrost 

landscapes on the example of Orulgan ridge in 

Verkhoyansk Mountains system (Gadal et al, 2020). 

The ability to perform complex hierarchical 

classifications has become the main tool for analyzing 

changes in the environment. At the same time, the 

capabilities of remote sensing data in the paradigm of 

geographic processes and complex geosystems 

(landscapes), including a set of heterogeneous 

knowledge, represent a significant gap in the 

representation of geographic knowledge in image 

analysis. Research on the development of a 

methodology for mapping and recognizing 

permafrost landscapes is increasingly combining 

machine learning and artificial intelligence methods 

in the analysis and the interpretation of remote 

sensing data with geographic knowledge and 

geographic classification (Huang, 2020). In this 

study, we aim to develop a mapping methodology of 

permafrost landscapes at an average scale of 1: 

500,000 through modeling of intra-seasonal Landsat 

8 OLI images and digital elevation model (DEM), 

while building a knowledge-based approach to image 

analysis and considering two main principles. The 

first principle is a classification of permafrost 

landscape types, made according to the approach of 

permafrost-landscape classification and using the 

criteria for their recognition for the possibilities of 

correlation with another research. The second 

principle is the application of multi fusion model for 

integrating the results of image classification into a 

spatial database that should be based on determining 

the relationship between the ontological status of 

image objects and objects of permafrost landscape. 

2 METHODS AND MATERIALS 

2.1 Study area 

The study area has a size of 60x80 km, and it is 

located between 66°26' - 65°53' North latitude and 

136°27' - 138°13' East longitude. This is the basin of 

the Adycha river, which is the largest tributary of the 

Yana River. Mountains belong to the Chersky range 

(Adyche-Elginsky plateau) in North-Eastern Siberia. 

According to the permafrost landscape map of the 

Republic of Sakha (Yakutia) (Fedorov, 2018), this 

Arctic region consists of mountain deserts, mountain 

tundras, and mountain woodlands, as well as 

intrazonal valley landscapes of mountain taiga and 

mountain tundra. Medium-high mountains of the 

study area are characterized by significant dissection. 

The height above the sea level of the watersheds 

ranges from 289 to 1715 m. Permafrost type is mainly 

a continuous area of frozen strata from 80-100%. The 

thickness of the permafrost ranges from 200-400 

meters. In addition, according to the permafrost 

landscape map, 7 types of landscape vegetation and 



10 types of mountain-slope and valley areas are 

distinguished in the study area (Figure 1). 

2.2. Data and Methods 
In this study, we used hybrid data fusion modeling for 

landscape recognition based on the classification of 

multispectral images based on differences in 

photosynthetic activity of different vegetation types 

during the growing season, classification of 

landforms using TPI (Topographical Position Index) 

and methods for mapping the permafrost landscape. 

This allowed us to synthesize methods for classifying 

objects (classes) of the Earth's surface, which are 

closely related to the characteristics of data (mainly 

spectral, spatial, radiometric, and temporal 

resolution) with categories of permafrost landscapes. 

The Landsat 8 OLI images and DEM data with a 

spatial resolution of 30 m we used. This kind of 

remote sensing is suitable for landscape mapping on 

a scale of 1: 500,000 to 1: 100,000. These local scales 

are intended to reveal in maps the spatial organization 

of the landscape in scales of the types of landscapes, 

and the types of terrain. At the same time, we follow 

the criteria for selecting terrain types and landscape 

types used in the permafrost-landscape mapping.  

Terrain types are recognized by the correlation of 

stratigraphic-genetic structure and geomorphological 

structure of territory. In landscape types, the 

recognition criteria are classes of vegetation 

associations (vegetation unit). In previous studies 

(Gadal et al, 2020) we have based analysis on the 

reclassification of a series of multi-time land covers 

for vegetation association recognition. In this study, 

we conduct a combined classification for three 

vegetation indices. This method has increased the 

level of automation for selecting vegetation types in 

permafrost landscapes (Figure 2). Landsat 8 OLI 

images acquired on 15 June 2018, 31 July 2018, and 

August 27, 2018, were used in this study. A 

preprocessing procedure was performed with 

multispectral channels (radiometric calibration, 

atmospheric correction using the DOS method (Dark 

Object Subtraction)).  

 
Figure 2. Modeling workflow of the permafrost 

landscape approach 

 

Relief data are collected by merging the ASTER 

GDEM scenes into a mosaic. The ASTER GDEM 

Figure 1. The study area and fragment from the Permafrost Landscape Map of the Republic of Sakha (Yakutia) on Scale 

1:1 500 000 (7 vegetation types and 10 terrain types) 

 



(Global Digital Elevation Model) product developed 

by METI (Ministry of Economy, Trade, and Industry 

of Japan) and NASA is based on data from the 

ASTER sensor of the Terra satellite. ASTER GDEM 

is the most improved DEM dataset that has been 

GDEM3, released in 2019 available at 30 meters’ 

resolution (Abrams et al 2020). It covers an area up 

to 83 latitudes and has high detail for mountainous 

areas.   

3 RESULTS 

3.1. Terrain types by landform 

classification using Topographic 

Position Index 

The main factor in determining the types of terrain is 

the topography, geomorphological and lithological 

features of the rocks. This means that the 

stratigraphic-genetic complex, namely the nature of 

surface deposits determines the type of terrain. There 

are 10 types of the accumulative valley and mountain-

slope areas on the territory of the study (Fedorov, 

2018). The boundaries of the slope types of terrain are 

determined by its "upper" contact with the flat surface 

of the watershed, and on the other side - by the 

"lower" junction with the floodplain or above-flood-

terrace types of terrain. The transition of slopes to 

accumulative valley areas is carried out using a well-

defined bend along the rear edge of the valley floor. 

An exception to the recognition principle is the type 

of inter-alas terrain, which is distinguished in flat-

plain territories with the development of thermokarst 

formations (Savvinov, 2002). 

TPI is often used for automatic calculation of 

geomorphometric properties of the earth's surface 

(Weiss, 2001, Jenness, 2006, Ratajczak et al, 2009). 

Terrain types are determined according to their 

comparison with landforms determined by comparing 

TPI values. GRASS GIS (neighborhood analysis) and 

QGIS software for TPI and slope position are 

implemented for the processing with ASTER GDEM. 

Positive TPI (>1) values represent locations that 

are above the average for their surroundings, as 

defined by the neighborhoods. Negative TPI (<-1) 

values represent locations that are lower than their 

surroundings. TPI values close to zero (1>TPI>-1) are 

either flat areas or areas of constant slope (where the 

slope of the point is significantly greater than zero). 

By defining thresholds for continuous TPI values at a 

given scale and checking the slope for values close to 

zero, terrain types can be classified into discrete slope 

position classes (Jenness, 2006). Through 

neighborhood analysis, TPI's are generated in scales 

300 m (Figure 3, c) and 1000 m (Figure 3, d).  

Using the GIS-based Jenness landform 

classification algorithm (Jenness, 2006), we were 

able to identify 5 types of terrain: eluvial (rocky and 

mountain top), colluvial (steep mountain slopes), 

diluvial-colluvial (foothills and lower parts of slopes), 

river valleys and glacial valleys (the bottom of the 

trough valleys) (Figure 4). We had to combine inter-

alas and outwash and mid-terrace.  

 
Figure 3. a) RGB (2-3-4 bands) Landsat 8, 27 august 

2018; b) DEM 30m, mosaic of ASTER GDEM scenes; c) 

300m Neighborhood TPI; d) 1000m Neighborhood TPI. 

Determining the moraine type of terrain based on 

slope analysis is difficult. When solving this issue, we 

used the color composite of 2-3-4 bands of Landsat 8 

of a summer image that can determine the side 

moraines designed when the glacier melts into the 

valley slopes in the form of ramparts or moraine 

terraces. 

 

Figure 4. Hisometric profile with terrain types of Adycha 

river valley 

The low-terrace type of terrain is determined by the 

height of the valley section with a threshold of 500 m. 

According to the criteria for identifying low terraces, 

only the Adycha river valley is located below 500 

meters. The valley of Adycha River of a large 

tributary belongs to well-drained low-terraced terrain 

types.  



The map of terrain types (Figure 5) shows a 

significant difference in the spatial distribution of 

terrain types, in comparison with the permafrost-

landscape map, while the general pattern remains. 

The Adycha river basin in the study area is 

characterized by a strongly dissected and well-

drained accumulative plain and by the presence of 

many trough glacial valleys.  

3.2. Vegetation unit of permafrost 

landscape recognition 

For the interpretation of the vegetation types, we 

applied the method of using the series of intra-season 

multispectral satellite images. The processes of 

accumulation and destruction of chlorophyll and 

changes in the water content in them are associated 

with phenological cycles and cause variations in the 

spectral-reflective characteristics of vegetation 

(Stytsenko, 2018). The seasonality of the behavior of 

vegetation is the result of micro and macroclimatic 

aspects, as well as the activities of other living 

organisms (Dyah et al, 2012). While for permafrost 

landscapes, a significant impact is made by cryogenic 

processes and seasonal dynamics of the thawed 

permafrost layer. Since the dependence of the spectral 

brightness coefficients on the wavelength varies not 

only for different objects but also for the same objects 

depending on the chlorophyll state and humidity, 

first, it depends on the vegetation phase (Stytsenko, 

2018). This method based on phenological patterns is 

actively used to classify cropland and pastures by 

vegetation indices of time-series images from 

Sentinel-2 (Belgiu and Csillik, 2018) and MODIS. 

This method is particularly applicable to woodlands 

and valley complexes, where the sparsity of the tree 

layer allows satellite images to capture the spectral 

reflections of shrubs, bushes, and grass, underlying 

forest surface, playing a leading role in the 

typification of classes of vegetation associations. This 

feature and advantage allow us to increase the quality 

of differentiation of objects depending on the type of 

shrubs or herbage of larch woodlands (Elovskaya, 

1989). 

Figure 5. Permafrost landscape terrain type map by ASTER GDEM/ Scale 1:500 000 
 



 
Figure 6. a) NDVI on 15 June 2018; b) NDVI on 31 

July 2018; c) NDVI on 27 August 2018 

The classes of plant associations for training the 

algorithm for the classification of vegetation 

associations are based on geobotanical studies of the 

Chersky ridge, as well as on the types of vegetation 

identified on the agricultural map of the Yakut ASSR. 

A detailed geobotanical description of the study area 

is presented in the works of Nikolin E.G. (Nikolin, 

2009) Kuvaev V.B. (Kuvaev, 1960), and others. 

Within the Chersky ridge, 5 main landscape-

phytocenotic structures are distinguished, represented 

by 4 altitudinal belts and a complex of valley 

vegetation. In terms of floristic zoning, the study area 

belongs to the Western Verkhoyansk. Woodland and 

sparse forest represent the arboreal layer from Larix 

cajanderi. The shrubs are dominated by Pinus pumila, 

Betula divaricata, Betula exilis, while the layer of 

dwarf shrubs is dominated by Ledum palustre, 

Vaccinium uliginosum, and Vaccinium vitis-idaea. 

The moss-lichen cover is represented by sphagnum 

(Sphagnum warnstorfii, Sphagnum fuscum, etc.), 

green mosses, and lichens (Cladonia stellaris, 

Cladonia arbuscula, Cladonia rangiferina, Cetraria 

islandica, Cetraria laevigata, Cetraria cucullata, 

Cetraria nivalis, species genera Umbilicaria, 

Parmelia, Hypogimnia, etc.) In addition, steppe 

communities are formed on the slopes of the southern 

exposure. In the valley landscapes, small Ivanchay 

meadows are formed, adjacent to floodplain forb 

meadows. The vegetation of the valley complexes is 

dominated by dwarf birch-shrub and forest 

communities, including poplar-chasonian forests 

(Isaev et al, 2017).  

The dataset compiled from the input images 

generated by the Normalized Difference Vegetation 

Index (NDVI) (Crippen, 1990) is a typical Vegetation 

Index for Remote Sensing Vegetation Analysis. This 

method is a local application of phenology-based 

image classification (Son et al, 2014). The proposed 

automated method of vegetation cover mapping, 

based on the analysis of short time series, allows 

circumventing the restrictions imposed by a single 

classification date.  

The maximum likelihood (ML) classification 

algorithm based on calculating the probability 

distribution for the classes, let us evaluate whether a 

pixel belongs to the land cover class by Bayes' 

theorem. This algorithm requires enough pixels for 

each learning area to compute the covariance matrix 

(Congedo, 2018). This algorithm is known for its high 

efficiency and gives the greatest advantage to the 

dominant classes of the study area. In addition, 

among the class pairs that overlap in the spectrum, 

ML favors the dominant class pair. Thus, ML causes 

the retooling of most of the dominant classes in the 

study area (Shivakumara et al, 2018). Training 

samples for vegetation classes and water are 

determined by the color composite (4-5-3), (2-3-4) 

using the vegetation map of the Yakutian ASSR 

(Elovskaya, 1989) to determine the spatial 

distribution of vegetation communities and features 

of their species by the analysis of NDVI during the 

vegetation season. 

 
Figure 7. Yandex color composite image (CNES 

2018, Distribution Airbus DS), the fragment of random 

point a), g), Larch woodlands lichen; b), l) Complex of 

mountain-tundra vegetation of trough valleys; c) Larch 

woodlands lingonberry green moss-lichen; k) Larch sparse 

green moss-sphagnum with bogs; d), e) epilithic-lichen 

stony deserts with areas of mountain tundra and debris of 

the slopes of valleys with areas of steppe vegetation; f) 

Larch woodlands and sparse forests with green moss shrub 

birches 
 

Data from late June shows low NDVI (Figure 6, 

a) responses in mountainous areas, in some areas 

covered with snow from heights of more than 1600 

meters. High NDVI values are observed in low-



terraced areas with open larch forests covered with 

dwarf birches and green moss. In July (peak of the 

green season) the spectral response of the valley 

vegetation complexes is almost the same with a 

resolution of 30 m, and the high NDVI values (Figure 

6, b) are the reason for the classification for dark and 

light wood cover. As expected, only areas with 

epilithic-lichen vegetation and areas exposed to forest 

fires remain with zero NVDI values. In August, it is 

possible to separate the areas of valley larch 

vegetation in sphagnum bogs and in humid areas by a 

drop in NDVI values (Figure 6, c). In the valley areas, 

it is possible to clearly distinguish the areas of larch 

open spaces with lichens by the permanence of the 

average NDVI values. 

When there is a real lack of ground check data at 

the appropriate scale, the only acceptable method for 

assessing accuracy is the method of generating 

random points and correlating the classification 

results with the available higher resolution data 

Yandex Satellite, Google Earth (Figure 7). Overall 

accuracy was 78% and Kappa coefficient 0,71 with 

500 random points. Based on the classification 

obtained, a vegetation map of permafrost landscapes 

was created, showing 6 types of vegetation cover with 

an acceptable level of classification accuracy. The 

resulting map (Figure 8) reliably, at the present level 

of exploration of the territory, conveys the spatial 

organization of plant associations. 

4 DISCUSSION 

In the context of climate change and permafrost 

degradation, qualitative modeling is of particular 

importance (Fedorov, 2019). The quality of remote 

sensing data modeling depends on basic landscape 

and geographic knowledge, geobotanical descriptions 

of the territory, and the availability of a variety of 

Figure 8. Permafrost landscape vegetation unit map by Landsat 8 OLI image series 2018-2020. Scale 1:500 000 

 



cartographic materials in geology, geomorphology, 

and soil distribution. The obtained maps and the 

described method are intended to contribute to the 

development of mapping of permafrost landscapes, 

including by modeling remote sensing data. The 

results obtained can be used to create maps on a local 

scale that are suitable for considering the 

agrobiological resources of areas, but also for 

understanding the local cryogenic conditions of 

mountain territories.  

By comparing maps of vegetation and terrain 

types, one can obtain the following information about 

the mountainous permafrost landscapes of the 

Adycha valley. The spatial distribution of classes of 

plant associations is uneven (Figure 8). The most 

widespread types are Larch woodlands lingonberry 

green moss-lichen with areas of cedar elfin in 

mountain sparse forests (47.41%), Larch sparse 

forests and dwarf green moss sparse forests with 

dwarf birch forests in mountain light forests (3%), 

Green moss-sphagnum larch sparse forests with 

marsh terraces on accumulative valleys (8.54 %), 

Larch woodlands lichen (6%), and a complex of 

mountain-tundra vegetation in trough valleys (4.5%). 

In total, 4 plant types make up 67% of the total land 

cover, 29.38% are epilithic-lichen stony deserts with 

areas of mountain tundra and talus of valley slopes 

with areas of steppe vegetation. In Adycha river 

valley, in low-terraced terrain types, because of the 

warming effect of the river, three classes of plant 

associations are formed, which are traced in the 

dynamics of the green moss index - sphagnum larch 

woodlands with marsh, larch woodlands, and dwarf 

green moss woodlands with dwarf birch forests in 

mountain woodlands and lichen larch forests. 

Epilithic-lichen is distributed on the steep slopes of 

the mountains of colluvial, near-watershed eluvial, 

and rocky terrain types. 

5 CONCLUSIONS 

The proposed method for recognizing permafrost 

landscapes formulates an approach to using 

algorithms for processing remote sensing data in 

landscape research. The criteria for combining the 

results of remote sensing and the geographical 

components of the permafrost landscape have been 

established. The maps obtained using remote sensing 

modeling are a compilation of geographical studies of 

a given territory used in the interpretation of 

processing results. Therefore, the quality of modeling 

directly depends on the level of conceptualization of 

geographical knowledge about permafrost landscapes 

and the study area. This approach can be implemented 

using spatial ontology in the future.  

The method used is proposed for mapping at the 

local level at scales from 1:500,000, 1: 200,000 to 1: 

100,000, when mapping vegetation and mesorelief of 

individual territories of mountain permafrost 

landscapes that are still difficult to access and labor-

intensive for field research. The lack of opportunities 

to interpret cryogenic parameters (such as freezing 

depth, rock temperature) can be considered an 

obvious shortage of this study. The data obtained on 

the spatial distribution of vegetation and terrain types 

can be considered a contribution to understanding the 

landscape organization of mountain ranges in North-

Eastern Siberia. It can also be used to study the 

cryogenic conditions of mountain regions. 

The development of methods for mapping and 

classification of the permafrost landscapes and other 

geographic objects of the landscape is directly 

dependent on the level of accumulated geographic 

knowledge about the territory and the geographic 

processes. Remote sensing can be used for 

developing the knowledge-based approach for image 

processing and image analysis. This study proposes 

one of the possible approaches to remote sensing 

modeling for mountain permafrost landscapes. 
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