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Abstract

The Fourier modal method (FMM) is certainly one of the most popular and general methods for the modeling of diffraction

gratings. However for non-lamellar gratings it is associated with a staircase approximation of the profile leading to poor

convergence rate for metallic gratings in TM polarization. One way to overcome the above weakness of the FMM is the use

of the fast Fourier factorization (FFF) first derived for the differential method. That approach relies on the definition of normal

and tangential vectors to the profile. Instead, we introduce a coordinate system that matches laterally the profile and solve the

covariant Maxwell’s equations in the new coordinate system, hence the name matched coordinate method (MCM). Comparison

of efficiencies computed with MCM with other data from the literature validates the method.

Keywords Computational electromagnetic. 1D Diffraction gratings. Curvilinear coordinates. Pseudo-spectral

method. Matched coordinates.

I. Introduction

Nowadays, many methods exist to solve the problem

of diffraction by a grating. Among them, differential
methods equipped with Fourier series like the RCWA

[1], the differential method [2][3] and the C-method

[4] [5] are probably the most widespread in that field.
Each of them was born in the eighties, has its own area

of excellence, and has been greatly improved since the

beginnings. In all three methods, both the field com-
ponents and the coefficients of Maxwell’s equation are

expanded into Fourier series. These expansions are
at the root of most of the problems and limitations of

the above methods although the so-called factorization

rules are applied. Indeed, it is well known that the con-
vergence of Fourier series is linked with smoothness of

the function to be represented. In the C method, the
coefficient of Maxwell’s equation which is expanded

into Fourier series is the derivative of the profile func-

tion. Consequently, C-method limitations concern pro-
files with discontinuous derivatives like echelette grat-

∗Corresponding author

ings, trapezoidal gratings and more generally deep

gratings. The remedy is adaptive spatial resolution
and parametrization of the profile function [6] [7]. In

the RCWA, and the differential method which stay
in Cartesian coordinates the coefficients of Maxwell’s

equations to be Fourier expanded are the permittivity

and the permeability functions of the grating. As such,
the factorization rules do not take into account the ge-

ometry of the grating. In the frame work of the differ-
ential method, Popov and Neviere introduced what

they called the Fast Fourier Factorization [8]. The fac-

torization rules are implemented after a normal and
a tangential vector field has been introduced. In that

way, the profile shape is introduced in the algorithm

leading to efficient codes. In this paper, following the
ideas of C-method, we propose to use matched coor-

dinates to formulate the grating problem. We restrict
ourselves to the case where a one dimensional grating

is embedded between two planes. Hence the most sim-

ple grating is described by two curves separating two
different media. The change of coordinates is chosen

such that these two curves coincide with coordinates
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lines, hence the name matched coordinates. Unfortu-

nately, in this formulation, the coefficients of the differ-
ential system of Maxwell’s equations are not constant

which means that the solution in the grating region
cannot be obtained thanks to a modal method. Instead,

in a manner similar to what was done in [9], we intro-

duce a pseudo-spectral approach to solve the longitu-
dinal dependence of the field along the grooves. In the

case of deep gratings the modulated region may be di-

vided into thin enough layers in order to work with
smaller matrices. Accurate and fast electromagnetic

simulation methods gained considerable importance
with the rise of modern technology. Particularly semi-

conductor manufacturing and metrology play a sig-

nificant role in pushing the limits. Famous examples
are optical scatterometry, a.k.a. as optical CD (OCD)

where electromagnetic modeling paved the way for
the fast and non-destructive measurement of techni-

cal structures in the nano-meter range [10]. However,

OCD is just the tip of iceberg. Model based metrology
methods are quickly evolving everywhere in dimen-

sional metrology [11]. Other examples are laser focus
scanning and white light interferometry [12]. Many

technical surfaces either consist of metals or are coated

with it. In addition, the profiles are steep or even over-
hanging. While the RCWA exhibits convergence is-

sues for metallic materials both related to the required
stair-case approximation of the profile as well as to

the Gibb’s phenomenon related to the Fourier expan-

sion, the C-method struggles with multiple materials
and very deep profiles. Here, the matched coordinates

method may bring relief. We will demonstrate this
with some practical examples.

II. Matched coordinates

i. New coordinates

Any method aimed at solving Maxwell’s equations

works all the more that boundary conditions are
properly enforced. Using Matched coordinates helps

achieve this requirement. Consider the elementary cell

of a planar volume grating as shown in Fig.1. Curves
x = f1(y) and x = f2(y) separate three domains in

which the permittivity is assumed constant with val-
ues equal to ǫ1 and ǫ2. Now, denoting the period of

the grating by d, let us introduce the following change

of coordinates from the Cartesian system (x, y, z) to

(x1, x2, x3) :

x(x1, x2) =






















( f1(x2)− 0)h1(x1) if x1 ≤ u1

f1(x2) + ( f2(x2)− f1(x2))h2(x1)
if u1 ≤ x1

< u2

f2(x2) + (d − f2(x2))h3(x1) if u2 ≤ x1
< d

y = x2

z = x3

(1)

h1(x1), h2(x1), h3(x1) should be monotonous increas-

ing functions between 0 and 1. In the new coordinate
system, f1(y) and f2(y) correspond to coordinate sur-

faces x1 = u1 and x1 = u2 respectively. These surfaces
delimit domains in which ǫ is now a function of x1

alone. We have achieved: ǫ(x, y) → ǫ(x1).

ǫ(x1) =















ǫ1 if x1 ≤ u1

ǫ2 if u1 ≤ x1 ≤ u2

ǫ1 if u2 ≤ x1
< d

(2)

The choice of x1 = u1 and x1 = u2 on the one hand

and of functions h1(x1), h2(x1), h3(x1) is quite arbi-
trary. It determines spatial resolution along x axis.

One possible choice is to define the transition points
u1 and u2 at mid-height of the profile that is:

u1 = f1(ym)

u2 = f2(ym)
(3)

where ym is the ordinate at mid-height of the volume

grating. In addition, we can also stretch coordinates
lines along x in the neighborhood of the transition

points as was done in [6], we may take:

h1(x1) =
x1

u1
+ η

x1
1

π
sin

πx1

u1

h2(x1) =
x1 − u1

u2 − u1
+ η

x1 − u1

2π
sin

2π(x1 − u1)

u2 − u1

h3(x1) =
x1 − u2

d − u2
+ η

d − u2

π
sin

π(x1 − u2)

d − u2

(4)

where η is a parameter between 0 and 1. Please note

that input medium and output medium are also af-
fected by the change of coordinate. Indeed, above and

below the grating, the x1 coordinates lines should nec-
essarily coincide with those of the upper face and of

the lower face of the grating. They are only Cartesian

coordinates with a metric coefficient along x. Above
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Figure 1: notation for the new coordinates. a1 = f1(y1), a2 =
f1(y2), b1 = f2(y1), b2 = f2(y2), u1 = f1(ym), u2 =
f2(ym), ym = 0.5(y1 + y2)

the grating x(x1, x2) = x(x1, x2 = y2):

x(x1) = a2h1(x1) if x1 ≤ u1

x(x1) = a2 + (b2 − a2)h2(x1) if u1 < x1
< u2

x(x1) = b2 + (d − b2)h3(x1) if u2 ≤ x1 ≤ d

(5)

and below the grating, x(x1, x2) = x(x1, x2 = y1):

x(x1) = a1h1(x1) if x1 ≤ u1

x(x1) = a1 + (b1 − a1)h2(x1) if u1 < x1
< u2

x(x1) = b1 + (d − b1)h3(x1) if u2 ≤ x1 ≤ d

(6)

where y = y2 and y = y1 are the positions of the

upper face and the lower face of the grating layer re-

spectively.

ii. Metric tensor

Denoting xi, i = 1, 2, 3 the new coordinates and xi′ , i′ =
1, 2, 3 the Cartesian coordinates x, y, z, the elements gij

of the fundamental metric tensor are given by:

gij =
∂xi′(xi)

∂xi

∂x j′(x j)

∂x j
δi′ j′ (7)

δi′ j′ is the Kronecker symbol. However when using

Maxwell’s equation under the covariant form, the use-
ful quantities are the

√
ggij where g is the determinant

of gij and gij the inverse of the matrix formed by the

gij. Denoting
∂x

∂x1
by ∂1x and

∂x

∂x2
by ∂2x, the metric

tensor writes:

√
g
[

gij
]

=









1 + (∂2x)2

∂1x
−∂2x 0

−∂2x ∂1x 0

0 0 ∂1x









(8)

In input and output regions, the metric tensor is sim-

plified and reduces to a diagonal since ∂2x is null.

iii. 2D Maxwell’s equations

Assuming a time dependence of the form

exp(iωt),and renormalizing H by Z0H where Z0

is the vacuum impedance, Maxwell’s equation under
the covariant form write:

ξ ijk∂jEk = −ikµij Hj,

ξ ijk∂j Hk = +ikǫijEj, 1 ≤ i, j ≤ 3.
(9)

where:

• the ǫij and µij are given by:

ǫij(x1, x2) = ǫ(x1)
√

g(x1, x2)gij(x1, x2)

µij(x1, x2) =
√

g(x1, x2)gij(x1, x2)
(10)

• ξ ijk is the Levi-Civita indicator whose the only
non-zero elements are: ξ123 = ξ231 = ξ312 =
1, ξ132 = ξ213 = ξ321 = −1.

• ∂i represent the partial derivative
(

∂/∂xi
)

versus

xi

• g is the determinant of the fundamental metric
tensor

The constitutive relations are such that ǫi3 and µi3 are
null. In the case of classical incidence, the general sys-

tem of differential equations 9 separates into two in-

dependent subsystems corresponding to TM and TE
polarisations. We get:

∂2

[

F
G

]

=











−χ12

χ22
∂1 −ik

(

χ11 − χ12 1

χ22
χ21

)

ikχ33 − i

k
∂1

1

χ22
∂1 −∂1

χ21

χ22











[

F
G

]

(11)

with :

[

F
G

]

=



















[

H3

E1

]

for TM polarization

[

E3

H1

]

for TE polarization

(12)
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and





χ11 χ12 0

χ21 χ22 0
0 0 χ33



 =







































−ǫ11 −ǫ12 0

−ǫ21 −ǫ22 0
0 0 µ33



 for TM polarization





µ11 µ12 0

µ21 µ22 0
0 0 −ǫ33



 for TE polarization

(13)

In homogeneous regions 1 and 3, the TE and TM

solution can be obtained from the same scalar propa-
gation equation:

(

∂2
2 +

1√
g

∂1
1√
g

∂1 + k2ǫ

)

F = 0 (14)

It has to be noted that the metric factor
√

g is different

in region 1 and region 3. Matching the field at surfaces
x2 = constant requires the knowledge of G which is

deduced from F by:

G =











=
−i

k

√
g

ǫ
∂2F for TM polarization

=
i

k

√
g∂2F for TE polarization

(15)

III. Method of Solution

In this section, we give the lines which lead to the solu-
tion of the problem using matched coordinates. From

the physicist’s view point, the grating problem con-

sists of some grating region embedded between two
homogeneous media and enlightened from one side

by a plane wave. The problem is to calculate the com-
plex amplitude and the phase of the outgoing waves

from the grating and then the reflected and eventually

transmitted diffracted orders. We have seen that for
the one-dimensional case Maxwell’s equations reduce

to:

∂2

[

F(x1, x2)
G(x1, x2)

]

= L(x1, x2)

[

F(x1, x2)
G(x1, x2)

]

(16)

In the input and output regions, the operator L is par-

ticular in that it does not depend on x2. So we will
derive the solution separately in the input and output

regions and in the grating region itself. However, re-

garding the x1 dependence, in every region, we may

expand the field onto the same basis Um and write:

Fp(x1, x2) = ∑m Fp mUm(x1)Vp(x2)

Gp(x1, x2) = ∑m Gp mUm(x1)Vp(x2)
(17)

where the subscript letter p refers to the region. At

this stage, Um(x1) may be quite arbitrary. In particu-

lar, it could be a sub-domain basis as those who were
implemented for the modal analysis of lamellar grat-

ings. However in this paper we will restrict ourselves
to Um being pseudo-periodic functions:

Um(x1) = exp
(

−ikαmx1
)

(18)

with

αm = α0 + m
λ

d
(19)

where α0 is the pseudo periodic coefficient. When the
incident wave vector is inclined at an angle θ with re-

spect to the vertical axis, α0 = n sin(θ) with n the opti-
cal index of the input medium. In the next paragraphs,

we derive the solution in homogeneous regions and in

the grating region respectively.

i. In homogeneous regions

In input and out regions, since the operator L is inde-

pendent of x2 we have solutions of the form:

F (x1, x2) = ∑
q

A±
q exp(∓iβqx2)F±

q (x1) (20)

where F±
q (x1) and βq are respectively an eigen vec-

tor and an eigen value of the eigen equation deduced
from Eq(14):

β2
qF±

q (x1) =

(

1√
g

∂1
1√
g

∂1 + k2ǫ

)

F±
q (x1) (21)

The exponents + and − refer to forward and back-

ward waves respectively. The eigenvalues βq are ob-
tained from their square number and are the same for

both polarisations:

βq =



















√

β2
q if ǫ is real and β2

q ≥ 0

−i
√

β2
q if ǫ is real and β2

q ≤ 0
√

β2
q ℑ(βq) < 0 if ǫ is complex

(22)

Of course a similar expression holds for G. Please note
that F+(x1) = F−(x1). We have introduced the super-

script ± to emphasize that we have forward and back-

ward waves. In Fourier space, the partial derivative ∂1

4
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Figure 2: Illustration of the partition of the problem in three re-

gions. We only have modal expansions in the upper

and lower regions.

is associated to the diagonal matrix formed by the αm

and 1/
√

g is associated to the inverse of the toeplitz
matrix built with the Fourier coefficients of the deriva-

tive of x(x1). The details of the derivation may be

found in [6]. Finally, in every homogeneous region
which is referred to by the subscript p,p = u, l:

Fp(x1, x2) =

∑
mq

F+
p,mqA+

p,qUm(x1) exp(−iβp,q(x2 − x2
p))+

∑
mq

F−
p,mqA−

p,qUm(x1) exp(iβp,q(x2 − x2
p))

(23)

Gp(x1, x2) =

∑
mq

G+
p,mqA+

p,qUm(x1) exp(−iβp,q(x2 − x2
p))+

∑
mq

G−
p,mqA−

p,qUm(x1) exp(iβp,q(x2 − x2
p))

(24)

Fig.2 illustrates the vertical domain decomposition.

Our goal is to determine the S matrix which links the

complex amplitude of the modes on each side of the
grating and which we define as:

[

A+
u

A−
l

]

= [S]

[

A−
u

A+
l

]

(25)

The introduction of S matrices allows to deal with
any multi-layer structures in which all the layers share

the same periodicity and whose borders are described
by the same coordinate system. In that way, the

present method can easily be hybridized with the

FMM.

ii. In the grating region

ii.1 Pseudo spectral approach

In this approach, the function V(x2) is approximated
by the of a set of suitable Lagrange-interpolating func-

tions Cn and unknown grid point values V(x2
n) at col-

location points x2
n as follows:

V(x2) = ∑
n

Cn(x2)V(x2
n) (26)

Considering Tchebycheff polynomials Tn and Gauss-
Lobatto points x2

n as basis functions and collocation

points respectively, the explicit form of Cn is:

Cn(v(x2)) =
2

Nσn

N

∑
m=0

1

σm
Tm(vn)Tm(v(x2)) (27)

with σ0 = σN and σn = 1 for 1 ≤ n ≤ N − 1. Func-
tion v(x2) maps the physical domain [x2

l , x2
u] onto the

interval [−1, 1] where Tchebycheff polynomials are de-
fined:

v(x2) = 2
x2 − x2

l

x2
u − x2

l

− 1 (28)

On the interval [−1, 1], the grid points are

vn = cos
(πn

N

)

, n = 0 · · · , N (29)

which corresponds to collocation points x2
n in the grat-

ing region:

x2
n = x2

l +
x2

u − x2
l

2
(1 + vn) (30)

The Tchebycheff pseudo spectral method approxi-

mates the first-order derivative by a differentiation ma-

trix D Denoting by V′
n and Vn the values of the deriva-

tive of V(x2) with respect to x2 and of V(x2) respec-

tively at collocation points x2
n the differentiation ma-

trix is such that:

∂2











V0

V1
...

VN











=











V′
0

V′
1
...

V′
N











= D











V0

V1
...

VN











(31)

The entries of D are:

Dij =
2

x2
u − x2

l















(1 + 2N2)/6 i = j = 0

−(1 + 2N2)/6 i = j = N

−0.5vj/(1 − v2
j ) i = j; 0 < j < N

(−1)i+jσi/σj(vi − vj)
(32)
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Let us write down D as:





d1 d2 d3

d4 d5 d6

d7 d8 d9



 (33)

where d1, d3, d7, d9 are the four corner entries of D,

d2, d8 are row vectors of length N, d4, d6 are column
vector of length N, finally d5 is a N by N matrix. Note

that the differentiation matrix is given by buit-in mat-

lab function cheb. So, finally, in the grating region the
field is written as:

F (x1, x2) = ∑mn FmnUm(x1)⊗ V(x2
n)

G(x1, x2)) = ∑mn GmnUm(x1)⊗ V(x2
n)

(34)

which means that F and G are sampled along x2 and
expanded onto another basis along x1. As already

mentioned, in the present study Um(x1) are pseudo-
periodic functions. Actually, since the variation of the

field along x2 is sampled at the Gauss-Lobatto points,

we have as many operators depending on x1 as we
have collocation points along x2:

∂2

[

F (x1, x2
n)

G(x1, x2
n)

]

=

[

L11(x1, x2
n) L12(x1, x2

n)
L21(x1, x2

n) L21(x1, x2
n)

] [

F (x1, x2
n)

G(x1, x2
n)

]

(35)

ii.2 Matrix operator

We are now ready to transform Eq(35) into a matrix

equation. Firstly a matrix [L]n, n = 0, 1, · · · , N − 1
is associated to each L(x1, x2

n) by using the Galerkin

method with the Um as basis and test functions. Then,

it is possible to associate in (x1, x2) space a matrix to
operators ∂2 and L(x1, x2).

∂2 −→ D ⊗ I (36)

where ⊗ denotes the Kronecker product and I the
identity matrix.

[

L11 L12

L21 L22

]

−→
[

L11 L12

L21 L22

]

(37)

Lpq are block diagonal matrices such that:

Lpq =

diag([Lpq]n) n ∈ 0, 1, · · · , N − 1 p, q = 12 (38)

that is:

Lpq =
















[

Lpq

]

N−1
0 0 0 0

0
[

Lpq

]

N−2
0 0 0

0 0
. . . 0 0

0 0 0
[

Lpq

]

1
0

0 0 0 0
[

Lpq

]

O

















(39)

Since the chosen Um(x1) are complex exponentials,

the derivation of the coefficients of matrices [Lpq] fol-

lows the rules of any Fourier based methods. Let us
introduce F and G the column vectors formed by the

concatenation of the Fmn and the Gmn respectively:

F = [FN−1, FN−2, · · · , F1, F0]
T

G = [GN−1, GN−2, · · · , G1, G0]
T

and let us denote F and G the restriction of the above

vectors to the N − 2 interior points

F = [FN−2, · · · , F1, ]T

G = [GN−2, · · · , G1]
T

The matrix form of Eq.(35) writes:

[

D ⊗ I · · ·
· · · D ⊗ I

] [

F

G

]

=

[

L11 L12

L21 L22

] [

F

G

]

(40)

Eq(40) is a matrix equation of the size N × M. The N
parameter is more or less equivalent to the number of

layers in the MMFE.

At the end points of the inhomogeneous region x2
0

and x2
N−1 the tangential components of the field are

represented by vectors F0 G0 (output) and FN−1 GN−1

(input). They also correspond to modal expansions

of the field in the homogeneous upper and lower re-
gions. It is seen that the size of the matrix necessary to

solve the problem is N × M. Using Gauss elimination

as such to solve the problem makes the complexity of
the algorithm O((N × M)3). The latter could be signif-

icantly diminished by using iterative algorithms.

iii. Matching field expansion at the border
of the three regions

The remaining task is to match the transverse compo-

nents of the field at the upper and lower face of the

grating in order to compute the modal coefficients of

6
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the reflected and transmitted waves. At the upper face

x2 = x2
u, we have:

F (x1, x2
u) = Fu(x1, x2

u) G(x1, x2
u) = Gu(x1, x2

u) (41)

and at the lower one x2 = x2
l , we have:

F (x1, x2
l ) = Fu(x1, x2

l ) G(x1, x2
l ) = Gu(x1, x2

l ) (42)

When projected onto the basis of Um functions the
above relations have the matrix form:

FN−1 = F+
u A+

u + F+
u A−

u

GN−1 = G+
u A+

u + G−
u A−

u

F0 = F+
l A+

l + F−
l A−

l
G0 = G+

l A+
l + G−

l A−
l

(43)

According to Eq(40) we have an homogeneous sys-

tem with 2 × N × M unknonws and equations. In this

system 4× M lines correspond to the upper and lower
faces of the grating. For F, these lines are:

d1FN−1 + [d2 ⊗ I] F + d3F0 =

[L11]N−1FN−1 + [L12]N−1GN−1

(44)

d7FN−1 + [d8 ⊗ I] F + d9F0 =

[L11]0F0 + [L12]0G0 (45)

In the above lines, we substitute FN−1 and F0 with
their expressions in terms of the modal amplitudes of

the field in the homogeneous regions. Moreover, we

do not take into account the lines corresponding to
GN−1 and G0. Hence, finally, the system to be solved

is now of size 2 × (N − 1)× M. It writes :









Z5 0 Z+
4 Z−

6

0 Y5 Y+
4 Y−

6

Z2 0 Z+
1 Z−

3

Z8 0 Z+
7 Z−

9



















F

G

A+
u

A−
l











=









Z−
4 Z+

6

Y−
4 Y+

6

Z−
1 Z+

3

Z−
7 Z+

9









[

A−
u

A+
l

]

(46)

[

Z5 0

0 Y5

]

=

[

d5 ⊗ I 0

0 d5 ⊗ I

]

− L (47)

Z2 = d2 ⊗ I (48)

Z8 = d8 ⊗ I (49)

Z±
4 = d4 ⊗ F±(1) (50)

Z±
6 = d6 ⊗ F±(3) (51)

Figure 3: Illustration of a trapezoidal grating

Y±
4 = d4 ⊗ G±(1) (52)

Y±
6 = d6 ⊗ G±(3) (53)

Z+
1 = (d1I − [L11]N−1) F+(1) − [L12]N−1G+(1)

Z−
1 = (−d1I + [L11]N−1) F−(1) + [L12]N−1G−(1)

Z−
3 = d3F−(3)

Z+
3 = −d3F+(3)

(54)

Z+
9 = (−d9I + [L11]0) F+(3) + [L12]0G+(3)

Z−
9 = (d9I − [L11]0) F−(3) − [L12]0G−(3)

Z+
7 = d7F+(1)

Z−
7 = −d7F−(1)

(55)

It is seen that the solution of the system Eq46 gives
simultaneously the sought S matrix and the field at

the collocation points.

IV. Results

i. Comparison with published data

In this section, we validate our code by comparing

our results with already published data obtained with

C-method combined with adaptive spatial resolution
[7]. The first examples are for trapezoidal gratings il-

lustrated on Fig.3 and whose parameters are: h = 1,
d = 1, w = .65, sidewallangle(swa) = .005 rad, ε1 = 1,

θ = π/4, λ = 1. We consider both a dielectric grat-

ing with ε2 = εs = 1.52, and a metallic grating with

7



draft 1

Figure 4: Illustraion of a slanted grating

ε2 = εs = (0.3 − i7)2 respectively. εs designates the

permittivity of the substrate. The truncation parame-

ters for the Matched Coordinates Method are M = 40,
N = 20 and the adaptive spatial resolution parameter

η is set to one. Efficiences are reported in table1 and
table 2 respectively. It is seen that both methods are in

very good accordance.

TE polarisation TM polarisation

ASR-C MCM ASR-C MCM

R−3 0.0060 0.0060 0.0067 0.0067

R−2 0.009 0.009 0.0004 0.004
R−1 0.0016 0.0016 0.0003 0.0003

R0 0.055 0.055 0.0071 0.0071
T−4 0.0835 0.0835 0.045 0.045

T−2 0.5223 0.5224 0.3770 0.3769

T−1 0.1319 0.1319 0.2122 0.2122
T0 0.1148 0.1147 0.2222 0.2222

T1 0.0045 0.0045 0.0841 0.0842
T2 0.0790 0.0791 0.0451 0.0450

Table 1: Efficiencies of a dielectric trapezoidal grating (ASR-C =

C-Method with adaptive resolution, MCM = Matched

Coordinate Method)

A second class of gratings concerns dielectric or

metallic slanted gratings represented on Fig.4. The

parameters are: h = .2, d = 1, w = .5, swa = 10◦,
ε1 = 1.52 (dielectric case)or ε1 = (.22 − i6.71)2 (metal-

lic case), ε2 = 1, εs = 1.452, θ = 30◦, λ = 1. The trunca-
tion parameters for the Matched Coordinates Method

are M = 16, N = 10 and the adaptive spatial reso-

lution parameter η is set to one. Here the reference

TE polarisation TM polarisation

ASR-C MCM ASR-C MCM

R−3 0.0092 0.0092 0.5054 0.5053

R−2 0.0040 0.0040 0.0772 0.0773

R−1 0.0718 0.0716 0.1484 0.1487
R0 0.8870 0.8878 0.08630 0.0855

Table 2: Reflected efficiences of a metallic trapezoidal grating.

method is the polynomial modal method [13]. Results

are tabulated in table3 for the dielectric case and in ta-

ble 4 for the metallic case respectively. Once more, the
comparison of the computed efficiencies with the two

methods is more than satisfactory.

TE polarisation TM polarisation

PMM MCM PMM MCM

R−1 0.0179 0.0179 0.0231 0.0231

R0 0.0137 0.0137 0.0011 0.0011
T−1 0.0399 0.0399 0.0227 0.0227

T0 0.9286 0.9286 0.9531 0.9531

Table 3: Efficiencies of a slanted dielectric grating (PMM = Poly-

nomial Modal Method)

ii. Comparison of convergence with FMM

The FMM is very popular and versatile, but its sim-
plicity comes from the approximation of the grating

profile by a staircase profile. This approximation is all
the more penalizing when the index contrast is high

and the sides of the grating deviate from the vertical.

In the case of a metallic grating, convergence is even
impossible. In order to illustrate the improvement in

term of convergence of MCM compared to FMM we
consider the zeroth transmitted order of a dielectric

trapezoidal grating with a sidewall angle SWA = 20◦

deposited on a glass substrate with ǫs = 1.52. The
other parameters are: ǫ1 = 1, ǫ2 = 3.52, θ = 0, λ = .65,

d = 1, w = 0.8640. The reference values are ob-
tained thanks to the ASR C-method with truncation

TE polarisation TM polarisation

PMM MCM PMM MCM

R−1 0.2358 0.2359 0.2245 0.2248

R0 0.4268 0.4267 0.3113 0.3113

T−1 0.1646 0.1646 0.2067 0.2066
T0 0.1557 0.1557 0.2381 0.2381

Table 4: Efficiencie of a slanted metallic grating

8
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order M = 250. We got Te0ref = 0.508523257 and

Tm0ref = 0.127159134. We define an error function in
the following way:

err = log(|Tcomputed − Tref|) (56)

Convergence plots are shown in Fig6 and Fig7 for TE
polarization and on Fig8 and Fig9 for TM polarization.

Unquestionably, numerical convergence is faster with
MCM than with FMM even in the case of TE polariza-

tion.

iii. Exemple of application

Lastly, in order to illustrate the possibilities of the

new algorithm we investigate a grating designed for
metrology applications, see Fig.5. In that grating, alu-

minum is deposited at the bottom and at the top of the
grooves etched in fused silica which makes the grating

a three layer stack. In the present implementation of

our code, a S matrix is computed for each layer. The
upper layer is a simple lamellar grating. Although

we did not do it that way, its S matrix could be ob-
tained with the Fourier Modal Method. Indeed, our

method can be hybridized with the FMM every time

local translation invariance makes it possible. Table5

Figure 5: Grating for metrology applications

shows the specular and minus one reflected orders
for a grating enlightened under normal incidence at

λ = 650 nm for different groove depth. In every case,
the thickness of aluminium is 100 nm, its optical in-

dex is n = 1.488 − i7.821. Fused silica optical index is

n = 1.456 . The parameters are d = 20 µm, w1 = d/3,
w2 = 2d/3. The vertical sampling parameter in layers

1, 2 and 3 is N = 20, N = 26, N = 20 respectively. The

truncation number M is M = 100. For comparison
purpose, we have also analysed that grating with the

FMM and the same truncation parameters M and N
(except in layer 1 where N = 1. Results are reported

in Table 6. The discrepancy between FMM and MCM

is observable but remains acceptable probably because

TE polarisation TM polarisation

Depth R0 R−1 R0 R−1

0.65 0.6662 0.0009 0.6721 0.0009

0.48 0.0205 0.3363 0.0195 0.3372

0.325 0.6991 0.0004 0.7090 0.0004
0.16 0.0047 0.3621 0.0036 0.3632

Table 5: Efficiencies of a grating dedicated to metrology applica-

tions

FMM MCM

Depth R0 R−1 R0 R−1

0.65 0.6669 0.0009 0.6721 0.0009

0.48 0.0201 0.3360 0.0195 0.3372
0.325 0.7059 0.0004 0.7090 0.0004

0.16 0.0004 0.3621 0.0036 0.3632

Table 6: Comparison of efficiencies in TM polarization for a grat-

ing dedicated to metrology applications (FMM = Fourier

Modal Method)

on the one hand, the index contrast in layer 2 is rather
small, and on the other hand, layer 1 and layer 3 which

comprise metal are thin compared to the wavelength.

Figure 6: Convergence of the zeroth TE transmission order com-

puted with MMFE.

V. Conclusion

In this paper, a formulation based on matched co-
ordinates has been proposed. In this formulation,

the coefficients of Maxwell’s equations depend on the

axial direction which makes impossible the solution

9
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Figure 7: Convergence of the zeroth TE transmission order com-

puted with MCM.

Figure 8: Convergence of the zeroth TM transmission order com-

puted with MMFE.

of the problem with a modal technique. Instead a
pseudo-spectral approach was implemented whereas

a Fourier expansion along the transverse direction was

kept on. Hence the hybridization with the Fourier
Modal Method is straightforward. As all others meth-

ods, the matched coordinates method that we have

just presented has its pros and its cons. However, its
definitive advantage is that it does not introduce any

approximation in the profile. Many improvements are
now possible: for example the use of polynomial bases

in the transverse direction or the iterative resolution of

the final algebraic system.

Figure 9: Convergence of the zeroth TM transmission order com-

puted with MCM.
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