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Introduction

When facing choices to invest in various funds (whether mutual or hedge funds), it is quite common to compare their Sharpe ratio in order to rank funds. This indicator aims at measuring performance for a given risk. This eponymous ratio established by [START_REF] Sharpe | Mutual fund performance[END_REF] is a simple number easy to understand. It makes a lot of sense as a high Sharpe ratio over time can not just be the result of some luck of the asset manager Benhamou, Saltiel, Guez, and Paris (2019c). As it uses the first two moment, it intuitively relates to the normal distribution whose properties are remarkable Benhamou, Guez, and Paris (2020a) and can even be related to the operator norm of sub Gaussian tailed random matrices Benhamou, Atif, and Laraki (2019a). In case of non normal distribution, it can be shown that there are tight connection between sharpe and omega ratio Benhamou, Guez, and Paris1 (2019b). Moreover, one can also find some properties of the denominator of the sharpe ratio as sample variance distribution can be derived in a more general setting Benhamou (2018a) thanks to its Gram Charlier and Edgeworth expansion Benhamou (2018b) or looking at the T-statistics of an autoregressive process as presented in Benhamou (2018c).

The Sharpe ratio computes the ratio of the excess return over the strategy standard deviation. However, the elements to compute the Sharpe ratio, namely, the expected returns and the volatilities are unknown numbers and need to be estimated statistically. This means that the Sharpe ratio used by funds is subject to be error prone because of statistical estimation error. In a seminal paper, [START_REF] Lo | The statistics of sharpe ratios[END_REF] derive explicit expressions for the statistical distribution of the Sharpe ratio using standard asymptotic theory under several sets of assumptions (independent normally distributed -and identically distributed returns). This is interesting as it provides intuition of potential bias and correction to apply to get an unbiased estimator. However, the results are provided as asymptotic results. It could be interested to derive or extend result to the non asymptotic distribution. This is precisely the contribution of this paper. First, we extend provide the exact distribution of the Sharpe ratio for independent normally distributed return. We show that under these conditions, the Sharpe ratio statistic is a non centered Student distribution whose characteristics have been widely studied by statisticians, up to a rescaling factor. Results of [START_REF] Lo | The statistics of sharpe ratios[END_REF] are easily derived as the limit of our results when the sample size tends to be large. We also study the asymptotic efficiency of the Sharpe ratio statistics and provide exact distribution under AR(1) normal process conditions. We examine finally the impact of compounding effect for computing the Sharpe ratio. The standard square root rule is questionable as soon as there is autocorrelation or homoscedasticity.

Primer on Student distribution

Historical anecdote: why Student?

The Student t-distribution has been widely studied in statistics. Originally derived as a posterior distribution in 1876 by [START_REF] Helmert | Uber die wahrscheinlichkeit der potenzsummen der beobachtungsfehler und uber einige damit in zusammenhang stehende fragen[END_REF] and [START_REF] Luroth | Vergleichung von zwei werten des wahrscheinlichen fehlers[END_REF] as well as in a more general form as Pearson Type IV distribution in [START_REF] Pearson | Contributions to the mathematical theory of evolution, ii: Skew variation in homogeneous material[END_REF], the Student distribution was really popularized by William Sealy Gosset in Student alias W. S. [START_REF] Student | The probable error of a mean[END_REF]. There is various interpretations why this distribution has been published under the pseudonym 'Student'.

Gosset, an Oxford graduate, worked at the Guinness Brewery in Dublin, Ireland. He was interested in testing small samples -for instance, he wanted to test the chemical properties of barley where sample sizes might be as few as 3. The main version of the origin of the pseudonym is that Gosset's employer, Guiness, preferred staff to use pen names to keep secret their inventions. So when publishing scientific papers, instead of their real name, scientist used different names to hide their identity. Gosset chose the name "Student". Posterity kept this name for the distribution. Another version is that Guinness was reluctant to make public to their competitors their usage of the t-test to determine the quality of raw materials. All in all, Gosset's most noteworthy achievement is now called Student's, rather than Gosset's, t-distribution.

Assumptions

If X, ..., X n are independent and identically distributed as a normal distribution with mean µ and variance σ 2 , then the empirical average

X = 1 n n i=1 X i follows also a normal distribution. The empirical (Bessel-corrected) variance σ2 = 1 n -1 n i=1 (X i -X) 2
follows (up to the renormalizing term n -1) a Chi Square distribution with n -1 degree of freedom. It can be shown that Chi Square distributions plays a fundamental role in statistics and are for instance the bread and butter to prove the Pearson Chi-squared independence test [START_REF] Benhamou | Seven proofs of the pearson chi-squared independence test and its graphical interpretation[END_REF]. The t-statistic defined as

X -µ 0 σ/ √ n = √ n X -μ0 σ (1)
has a Student's t-distribution with n -1 degrees of freedom. If the variables (X i ) i=1..n have a mean µ different from µ 0 , the distribution is referred to as a non-central t-distribution with non centrality parameter given by

η = √ n µ -µ 0 σ (2)
It is simply the expectation of the estimator. The centered and non centered Student distribution are very well known. Extension to weaker condition for the t-statistics has been widely studied. [START_REF] Mauldon | Characterizing properties of statistical distributions[END_REF] raised the question for which pdfs the t-statistic as defined by 1 is t-distributed with n-1 degrees of freedom. This characterization problem can be generalized to the one of finding all the pdfs for which a certain statistic possesses the property which is a characteristic for these pdfs. [START_REF] Kagan | Characterization problems in mathematical statistics[END_REF], [START_REF] Bondesson | Characterizations of probability laws through constant regression[END_REF] and [START_REF] Bondesson | When is the t-statistic t-distributed[END_REF] to cite a few tackled Mauldon's problem. [START_REF] Bondesson | When is the t-statistic t-distributed[END_REF] proved the necessary and sufficient condition for a t-statistic to have Student's t-distribution with n -1 degrees of freedom for all sample sizes is the normality of the underlying distribution. It is not necessary that X 1 , ..., X n is an independent sample. Indeed consider X 1 , ..., X n as a random vector X n = (X 1 , ..., X n ) T each component of which having the same marginal distribution function, F (). [START_REF] Efron | Student's t-test under symmetry conditions[END_REF] has pointed out that the weaker condition of symmetry can replace the normality assumption. Later, [START_REF] Fang | Generation of multivariate distributions by vertical density representation[END_REF] showed that if the vector X n has a spherical distribution, then the t-statistic has a t-distribution. A possible extension of Mauldon's problem is to find all F () for which the Student's t-statistic has the t-distribution with n -1 degrees of freedom. Another extension is to determine the distribution of the t-statistic under weaker conditions.

A few properties

Its cumulative distribution function can be expressed in closed form (see for instance [START_REF] Lenth | Algorithm as 243: Cumulative distribution function of the non-central t distribution[END_REF]) as follows:

F n-1,η (x) =    Fn-1,η (x), if x ≥ 0; 1 -Fn-1,-η (x), if x < 0, (3) 
where Fn-1,η

(x) = Φ(-η) + 1 2 ∞ j=0 p j I y j + 1 2 , n-1 2 + q j I y j + 1, n-1 2 , I y (a, b) is the regularized incomplete beta function, y = x 2 x 2 +n-1 , p j = 1 j! exp -η 2 2 η 2 2 j , q j = η √ 2Γ(j+3/2) exp -η 2 2 η 2 2 j ,
and Φ is the cumulative distribution function of the standard normal distribution.

Its probability density function can be expressed in several forms. The most common form (as implemented in R) is the following:

f (x) =    n-1 x F n+1,η x 1 + 2 n-1 -F n-1,η (x) , if x = 0; Γ( n 2 ) √ πn-1Γ( n-1 2 ) exp -η 2 2 , if x = 0. ( 4 
)
In general, the kth raw moment of the non-central t-distribution is

E T k =    n-1 2 k 2 Γ( n-1-k 2 ) Γ( n-1 2 ) exp -η 2 2 d k dη k exp η 2 2 , if n -1 > k; Does not exist, if n -1 ≤ k.
(5)

Lower moments

In particular, for n > 3, the mean and variance of the non-central t-distribution are defined and given by

E [T ] = η n -1 2 Γ( n-2 2 ) Γ( n-1 2 ) = η k n V ar [T ] = (n -1)(1 + η 2 ) n -3 -E [T ] 2 (6) 
where we have defined the constant [START_REF] Gallagher | Digital library of mathematical functions[END_REF]). More on the Wallis ratio and multiple approximations can be for instance found in [START_REF] Mortici | New approximation formulas for evaluating the ratio of gamma functions[END_REF], [START_REF] Guo | Some exact constants for the approximation of the quantity in the wallis' formula[END_REF], [START_REF] Qi | Some best approximation formulas and inequalities for the wallis ratio[END_REF], [START_REF] Lin | Pade approximant related to the wallis formula[END_REF]). Another good approximation is

k n = n-1 2 Γ( n-2 2 ) Γ( n-1 2 ) . A good approximation for k n (related to the Wallis ratio 1 √ π Γ(n+1/2) Γ(n+1) ) is 1 + 3 4n + 25 32n 2 + O(n -3 ) (see
1 1-3 4n-5
. Instead of the constant k n , it is quite common in statistical control litterature (see [START_REF] Duncan | Quality control and industrial statistics[END_REF] for instance) to use another constant called c 4 (n) (since there exists table for it) defined as follows

c 4 (n) = 2 n -1 Γ( n 2 ) Γ( n-1 2 ) (7)
Using the traditional property of the Gamma function Γ

(n + 1) = nΓ(n), it is immediate to see that k n = n-1 n-2 c 4 (n).

Asymptotic distribution

When n tends to infinity, the t-distribution denoted by t tends to a normal distribution denoted by N (η, σ) whose parameters are the first two moment of the non centered Student distribution. A better approximation is provided by [START_REF] Walck | Hand-book on Statistical distribution for experimentalists[END_REF] which states that

t(1 -1 4(n-1) ) -η 1 + t 2 2(n-1) → N (0, 1) (8)
3. Application to the Sharpe ratio

Non central distribution

Let us apply these result to the eponymous Sharpe ratio denoted in the sequel (SR). Recall that it is defined as the ratio of expected excess return ( R -R f ) over the risk free rate R f to its standard deviation, σ:

SR = R -R f σ (9)
The Sharpe ratio is simply the t-statistic divided by √ n. In other terms, √ nSR follows a (centered or not) Student distribution under the explicit assumption that the returns are normally distributed according to a normal distribution with mean µ R = R, variance σ 2 and are i.i.d.. Because R and σ are unobservable, they are estimated using historical data as the population moments of the returns' distribution. Hence, given historical returns (R 1 , R 2 , ..., R n ), the standard estimator for the Sharpe ratio (SR) is given by

SR = R -R f σ (10) where R = n i=1 R i n (11) σ = n i=1 R i -R 2 n -1 or equivalently σ = n i=1 R 2 i -R2 n -1 (12)
Precomputing R avoids a double summation in the definition of the volatility estimator. The n -1 divisor is for the estimator to be unbiased. Hence, the formula for SR in terms of the individual returns (R i ) i=1..n is given by:

SR = √ n -1 n i=1 (R i -R f ) n n i=1 R i -R 2 (13)
An immediate application of the results of section 2 shows that √ nSR follows a noncentral t-distribution with degree of freedom n -1. The non-centrality parameter µ is given by

η = √ n µ R -R f σ = √ n SR ∞ ( 14 
)
where the theoretical Sharpe ratio SR ∞ is defined as

SR ∞ = µ R -R f σ
. Section 2 provides the exact distribution of the SR. This result that is quite basic is surprisingly almost absents in the financial literature although it was alluded in [START_REF] Miller | Sample size bias and sharpe s performance measure: A note[END_REF]. It is not for instance mentioned or noted in [START_REF] Lo | The statistics of sharpe ratios[END_REF]. This result although simple is powerful yet as it provides various results for the Sharpe ratio.

First, it provides the real distribution (and leads obviously to the asymptotic distribution as the asymptotic distribution of the non-central t-distribution). Second, all results for the t-statistic are directly transposable to SR, meaning we get for free any results about test, moments, cumulative distribution and cumulative density functions. Third, as we are able to compute moments, we can immediately see that SR is biased estimator

Moments

We have in particular that the moments of the Sharpe ratio estimator are immediately provided by

E [SR] = SR ∞ n -1 2 Γ((n -2)/2) Γ(n -1/2) (15) = SR ∞ k n (16) and V ar [SR] = (n -1)(1 + SR 2 ∞ ) n -3 -E [SR] 2 (17) 
Equation 15 implies in particular that the empirical SR is biased with a bias term given by k n , which is a result already noted in [START_REF] Miller | Sample size bias and sharpe s performance measure: A note[END_REF] and [START_REF] Jobson | Performance hypothesis testing with the sharpe and treynor measures[END_REF]. As the constant k n is larger than one and multiplicative, the empirical Sharpe ratio will overestimate SR ∞ when positive, and underestimate when negative. For one year of data and monthly data point, the bias k 1 2 is about 1.08, indicating an overestimation of 8 percents. We provide below in table 1 the computation of bias for various value of n. The bias decreases rapidly as n increases and is below 2 percents after roughly 3 years. 

A few results

Using previous results 3.2, we have the following result that extends the result of [START_REF] Lo | The statistics of sharpe ratios[END_REF] Proposition 1. SR under normal i.i.d. returns assumption is asymptotically normal in n with standard deviation σ IID,1 given by

σ IID,1 = 1 + SR 2 ∞ 2 (18) 
Another asymptotic approximation for the standard deviation (that is better for small n) is given by

σ IID,2 = 1 + SR 2 ∞ 2 1 -1/n (19)
Last but not least, a more precise estimation of the standard deviation is given by

σ IID,3 = 1 + SR 2 ∞ 2(1-1/n) 1 -1 4(n-1) (20) 
The proposition means from a distribution point of view the following

√ n( ŜR -SR ∞ ) → N (0, σ IID,i ) (21) 
for i = 1 to 3 depending on which version of the asymptotic standard deviation is used, where in the equation (21) the normal distribution is parametrized in terms of the standard deviation.

Proof. Immediate using previous results and given in A.0.1 Proposition 1 provides tighter bound for the asymptotic distribution than the one provided in [START_REF] Lo | The statistics of sharpe ratios[END_REF]. In particular, it states that the 1-α confidence interval for the empirical Sharpe ratio ŜR is given by ŜR ± q α/2 σ IID,i

for i = 1 to 3 where q α/2 is the α/2 quantile of the normal distribution in the asymptotic case.

In the non asymptotic case, one needs to use the quantile of the non centered distribution. It is enlightening to compare the various estimator of the variance of SR. We provide in table 2 the computation of these volatilities for various values of SR and n according to formula σ IID,3 For reference, we have also provided in appendix computation according to formula σ IID,1 respectivly σ IID,2 in table 3 and 4 as well as the difference with our best estimator of the variance of the Sharpe ratio. An interesting feature of SR variance is that it decreases asymptotically as 1 n or equivalently as 1 n . SR variance is quite large as for instance for an empirical Sharpe ratio of 1 and 12 month of data, the variance represents almost .36 or 36% of it. If we take a quantile of 97.5% whose student quantile is 2.201 (for 11 degree of freedom) as opposed to the normal well known quantile of 1.96, this implies that our Sharpe ratio lies between 1 ± 2.201 × 0.359 which provides as boundaries that the empirical Sharpe lies between [0.210, 1.790]. This is very wide range and shows the imprecision of the Sharpe. Even for longer maturities like 5 years, the range is still wide: 1 ± 2.00 × 0.159 = [0.682, 1.318].

Efficiency of the empirical Sharpe ratio

Using the Frechet Darmois Cramer Rao inequality, we can prove the following result that shows that the empirical SR is asymptotically efficient in the sense that it achieves the Cramer Rao bound Proposition 2. under normal i.i.d. returns assumption, the estimator resulting from the empirical SR and the empirical variance is asymptotically efficient, meaning that it achieves the lower bound in terms of Cramer Rao bound given by

CRB = 1 n 1 + SR 2 ∞ /2 -SR ∞ σ 2 -SR ∞ σ 2 2σ 4 (23) 
Proof. Given in A.0.2

Weaker conditions

Lo (2002), [START_REF] Mertens | Comments on variance of the iid estimator in lo[END_REF] and later [START_REF] Christie | Is the sharpe ratio useful in asset allocation[END_REF] derived the asymptotic distribution of the Sharpe ratio under the more relaxed assumption of stationarity and ergodicity. [START_REF] Opdyke | Comparing sharpe ratios: so where are the p-values?[END_REF] interestingly showed that the derivation provided by [START_REF] Christie | Is the sharpe ratio useful in asset allocation[END_REF] under the non-IID returns condition was in fact identical to the one provided by [START_REF] Mertens | Comments on variance of the iid estimator in lo[END_REF]. [START_REF] Liu | Inference for the sharpe ratio using a likelihood-based approach[END_REF] and [START_REF] Qi | Highly accurate inference on the sharpe ratio for autocorrelated return data[END_REF] improved approximation accuracy to order O(n -3/2 ) .

Sample SR under AR(1) assumptions

Exact distribution for normal AR(1)

The i.i.d. normal assumption for the return is far from being verified in practice. A more realistic set-up is to assume that the returns follow an AR(1) process defined as follows:

R t = µ + t t ≥ 1; t = ρ t-1 + σv t t ≥ 2; ( 24 
)
where v t is an independent white noise processes (i.i.d. variables with zero mean and unit constant variance). To assume a stationary process, we impose

|ρ| ≤ 1 (25)
It is easy to check that equation 24 is equivalent to

R t = µ + ρ(R t-1 -µ) + σv t t ≥ 2; ( 26 
)
We can also easily check that the variance and covariance of the returns are given by

V (R t ) = σ 2 1-ρ 2 for t ≥ 1 Cov(R t , R u ) = σ 2 ρ |t-u| 1-ρ 2 for t, u ≥ 1 (27)
Both expressions in 27 are independent of time t and the covariance only depends on |t -u| implying that R t is a stationary process. If we now look at the empirical SR under these assumptions, it should converge to

E[R t ] -R f var(R t ) = µ -R f σ 2 1-ρ 2 (28)

Impact of sub-sampling

Another interesting feature that was first mentioned in [START_REF] Lo | The statistics of sharpe ratios[END_REF], is the impact of computing annual Sharpe using monthly data. This can be formalized as follows: Let us define the q period return as

R t (q) ≡ R t + R t-1 + . . . + R t-q+1 (29) 
where in our definition, we have ignored the effects of compounding for computational efficiency1 . We are interested in measuring effect of auto correlation and heteroscedasticity of returns on the Sharpe ratio and the impact of using for instance monthly return for computing annual Sharpe. Let us denote by SR(q) the SR computed with q period returns. Its limit is defined as follows:

SR(q) = E[R t (q)] -R f V ar[R t (q)] ( 30 
)
Let us denote the returns mean by µ, the auto correlation by

ρ u,v = Corr(R u , R v ) and the returns variance by σ 2 ∞ = lim t→∞ V ar[R t ].
It is interesting to see the linkage between the q period SR denoted by SR(q) and the regular SR denoted by SR = µ-R f σ∞ . This is the subject of the following proposition Proposition 3. The ratio between the q period returns SR(q) and the regular SR is the following:

SR(q) SR = qσ ∞ q-1 i=0 σ 2 t-i + 2 q-1 k=1 q-1-k i=0 ρ t-i,t-i-k σ t-i σ t-i-k (31) 
If the return process is stationary with a constant variance

σ 2 = V ar[R t ] = σ 2 ∞ and stationary correlation denoted by ρ v-u = Corr(R u , R v ), this relationship simplifies to SR(q) SR = q 1 + 2 q-1 k=1 (q -k)ρ k (32)
If in addition, the returns follow an AR(1) process ρ k = ρ k , equation 32 becomes

SR(q) SR = q 1 + 2ρ 1-ρ 1 -1-ρ q q(1-ρ) (33) 
If the returns are non correlated (ρ k = 0), equation 33 becomes

SR(q) SR = √ q (34)
The last equation is the so called square root rule that states that the annual Sharpe is equal to √ 12 the monthly Sharpe.

The results found sofar are very interesting as they provide a real understanding of the Sharpe ratio that can be used as a reward function in deep reinforcement learning as presented in Benhamou, Saltiel, Ungari, and Mukhopadhyay (2020b), Benhamou, Saltiel, Ungari, and Abhishek Mukhopadhyay (2021c), Benhamou, Saltiel, Ohana, Atif, and Laraki (2021b), Benhamou, Saltiel, Ohana, and Atif (2021a) and Benhamou, Saltiel, Ungari, and Mukhopadhyay (2020c).

Proof. Given in A.0.3 A numerical result is provided in table 7. Proposition 3 is important as it shows that the compounding effect (computing annual Sharpe with monthly return) can have some large impact when using the square root rule to convert the monthly Sharpe to the annual Sharpe in presence of autocorrelation and heteroscedasticity.

Conclusion

Even if Sharpe ratio is the norm of funds financial analysis, we have shown that its empirical estimate has various bias that makes its usage for ranking questionable. Generally, there is well reported literature that Sharpe ratios are skewed to the left, fat tailed and very sensitive to small samples (see [START_REF] Goetzmann | Sharpening sharpe ratios[END_REF]). Not surprisingly, the bias are highly influenced by the statistical properties of the returns time series (and in particular auto-correlation and heteroscedasticy). Our work extends previous results in terms of the real distribution of the empirical Sharpe ratio and give as a by-product standards results obtained in the Sharpe ratio financial literature. This work advocates for more substantial analysis when ever comparing funds and in particular a good understanding of investment style to identify potential skew and autocorrelation in fund presented performance monthly returns. This also encourages to use various other performance ratios to analyze deeply funds performance.

given by s

= n i=1 (R i -R f ) n v 1/2 (41) v = n i=1 (R i -R f -sv 1/2 ) 2 n ( 42 
)
Straight computation using 41 leads to

∂ 2 L(s, v) ∂ 2 s = -n (43) ∂ 2 L(s, v) ∂v∂s = - s 2v (44) ∂ 2 L(s, v) ∂ 2 v = - 2 + s 2 4v 2 (45)
This implies that the Fisher information is given by

I(s, v) = n 1 s 2v s 2v 2+s 2 4v 2 (46)
Inverting is trivial and leads to the Cramer Rao bound as follows:

CRB = I -1 (s, v) = 1 n 1 + s 2 /2 -sσ 2 -sσ 2 2σ 4 (47) 
Now if we consider the estimator given by the empirical Sharpe ratio and the variance ŜR, v T . It is an unbiased estimator of [s, v] T . Equations 17 and 15 state that the variance of ŜR is given by

V ar [SR] = (n -1)(1 + SR 2 ∞ ) n -3 -(SR ∞ k n ) 2 (48)
whose asymptotic limit is (see 18) 1+s 2 /2 n . The variance of the empirical variance is well known and given by 2σ 4 n-1 that is asymptotically equivalent to 2σ 4 n . The covariance term between the empirical SR and the variance is more involved and can be found in [START_REF] Mertens | Comments on variance of the iid estimator in lo[END_REF] or [START_REF] Pav | Notes on the sharpe ratio[END_REF] and is asymptomatically equivalent to by -sσ 2 n which concludes the proof as the estimator given by the empirical Sharpe ratio and the variance achieves the Cramer-Rao lower bound asymptotically.
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B.2. Compounding effect

Table 8: This table provides the ratio of the correct compounding effect and the usual square root constant. More precisely, we compute 1 + 2ρ 1-ρ 1 -1-ρ q q(1-ρ) .000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 -10% 0.949 0.935 0.927 0.920 0.912 0.908 0.907 0.906 0.905 0.905 -20% 0.894 0.872 0.858 0.844 0.831 0.824 0.821 0.820 0.818 0.817 -30% 0.837 0.812 0.792 0.773 0.754 0.744 0.740 0.739 0.736 0.735 -40% 0.775 0.757 0.727 0.704 0.680 0.668 0.663 0.661 0.657 0.656 -50% 0.707 0.707 0.661 0.637 0.609 0.593 0.588 0.585 0.580 0.579 -60% 0.632 0.663 0.593 0.570 0.538 0.519 0.513 0.510 0.504 0.502 -70% 0.548 0.627 0.518 0.498 0.465 0.443 0.436 0.432 0.425 0.422 -80% 0.447 0.600 0.429 0.415 0.387 0.363 0.353 0.348 0.339 0.336 -90% 0.316 0.583 0.309 0.303 0.287 0.268 0.257 0.251 0.238 0.234

Table 1 :

 1 Sharpe ratio biais

	n	3	6	12	24	36	48	60	120
	bias 1.772 1.189 1.075 1.034 1.022 1.016 1.013 1.006

Table 2 :

 2 Asymptotic variance for SR according to formula σ IID,3

	SR	12	24	36	48	60	125	250	500
	0.5 0.308 0.217 0.177 0.153 0.137 0.095 0.067 0.047
	0.75 0.330 0.232 0.189 0.164 0.146 0.101 0.072 0.051
	1 0.359 0.252 0.205 0.177 0.159 0.110 0.078 0.055
	1.25 0.393 0.275 0.224 0.194 0.173 0.120 0.084 0.060
	1.5 0.431 0.301 0.245 0.212 0.189 0.131 0.092 0.065
	1.75 0.472 0.329 0.267 0.231 0.206 0.143 0.101 0.071
	2 0.515 0.359 0.291 0.252 0.225 0.155 0.110 0.078
	2.25 0.560 0.390 0.316 0.273 0.244 0.169 0.119 0.084
	2.5 0.606 0.421 0.342 0.296 0.264 0.182 0.129 0.091
	2.75 0.654 0.454 0.369 0.318 0.284 0.196 0.139 0.098
	3 0.702 0.487 0.395 0.341 0.305 0.210 0.149 0.105

Table 4 :

 4 Asymptotic variance for SR according to formula σ IID,2

	SR	12	24	36	48	60	125	250	500
	0.5 0.320 0.221 0.179 0.155 0.138 0.095 0.067 0.047
	0.75 0.341 0.236 0.191 0.165 0.147 0.102 0.072 0.051
	1 0.369 0.255 0.207 0.179 0.159 0.110 0.078 0.055
	1.25 0.402 0.278 0.226 0.195 0.174 0.120 0.085 0.060
	1.5 0.440 0.304 0.246 0.213 0.190 0.131 0.092 0.065
	1.75 0.480 0.332 0.269 0.232 0.207 0.143 0.101 0.071
	2 0.522 0.361 0.293 0.253 0.225 0.156 0.110 0.078
	2.25 0.567 0.392 0.318 0.274 0.245 0.169 0.119 0.084
	2.5 0.612 0.423 0.343 0.296 0.264 0.182 0.129 0.091
	2.75 0.659 0.456 0.370 0.319 0.285 0.196 0.139 0.098
	3 0.707 0.489 0.396 0.342 0.305 0.211 0.149 0.105

Table 5 :

 5 Difference between asymptotic variance for SR according to formula σ IID,1 and σ IID,3

	SR	12	24	36	48	60	125	250	500

Table 6 :

 6 Difference between asymptotic variance for SR according to formula σ IID,2 and σ IID,3

	SR	12	24	36	48	60	125	250	500

Table 7 :

 7 Compounding effect for AR(1) process for the Sharpe .073 2.879 4.035 4.928 5.682 9.144 12.921 10% 1.348 1.622 1.857 2.254 3.160 4.450 5.442 6.280 10.121 14.308 0% 1.414 1.732 2.000 2.449 3.464 4.899 6.000 6.928 11.180 15.811 -10% 1.491 1.853 2.157 2.664 3.798 5.393 6.615 7.643 12.350 17.473 -20% 1.581 1.987 2.331 2.901 4.171 5.949 7.306 8.449 13.670 19.349 -30% 1.690 2.132 2.527 3.169 4.596 6.586 8.103 9.377 15.196 21.519 -40% 1.826 2.287 2.752 3.477 5.093 7.339 9.046 10.480 17.014 24.106 -50% 2.000 2.449 3.024 3.

	ρ \ q	2	3	4	6	12	24	36	48	125	250
	90% 1.026 1.046 1.065 1.102 1.207 1.408 1.597 1.773 2.668 3.698
	80% 1.054 1.097 1.137 1.213 1.427 1.808 2.136 2.424 3.795 5.318
	70% 1.085 1.152 1.215 1.333 1.654 2.187 2.622 2.997 4.749 6.679
	60% 1.118 1.213 1.300 1.462 1.885 2.551 3.081 3.534 5.633 7.936
	50% 1.155 1.279 1.393 1.600 2.121 2.910 3.530 4.057 6.490 9.153
	40% 1.195 1.353 1.494 1.748 2.364 3.273 3.981 4.581 7.347 10.371
	30% 1.240 1.433 1.605 1.905 2.615 3.645 4.444 5.119 8.226 11.618
	20% 1.291 1.523 1.725 2							

Of course, the exact expression for compounding returns is R t (q) ≡ q-1 i=0 (1 + R t-j ) -1. But the sake of clarity, we can ignore the compounding effect in our section as this will be second order effect. Equally, we could use log or continuously compounded returns defined as log(P t /P t-1 ) in which case, our definition would be exact

Appendix A. Various Proofs

A.0.1. Proof of Proposition 1 Section 2.5 states that √ n SR tends asymptotically to a normal distribution whose first two moments are given by the asymptotic limit of 15 and 17. 17 provided the exact formula for the standard deviation of √ nSR. Denoting by σ 2 IID the variance of the random variable √ nSR, and using the expression for the variance of SR thanks to equation ( 17), we get using a Taylor expansion in power of 1 n :

This is the result obtained by [START_REF] Lo | The statistics of sharpe ratios[END_REF]. It is obviously equivalent asymptotically to σ IID,2 . If we use the result provided by 8, we have another approximation for the standard deviation given by

The log-likelihood of i.i.d. returns with normal distribution with unknown Sharpe ratio s and variance v is given by

The Fisher information for the estimator resulting from the empirical SR and the empirical variance is computed as the expected opposite of the second order derivative of the log likelihood with respect to the parameters denoted by θ = (s, v)

This log-likelihood is computed for the parameters that maximizes the log likelihood and asset manager. Indeed as financial markets are quite noisy and unpredictable as emphasized in ? or ?, it is quite challenging to get a good performance with a low volatility making the Sharpe ratio a very useful indicator.

A.0.3. Proof of Proposition 3

The numerator of the empirical SR converges to q(µ -R f ) where µ denotes the returns mean. The denominator can be expanded to measure the impact of (auto)correlation between returns as follows:

Using the change of variable, k = j -i, denoting by ρ u,v = Corr(R u , R v ) and by σ 2 u = V ar(V ar(R u ), we get the following expression:

Computed the fraction SR(q) SR leads to the result of equation 31. This is the most general formula that extends the one of [START_REF] Lo | The statistics of sharpe ratios[END_REF].

If the return process is stationary with a constant variance, then σ u does not depend on u and can be denoted by σ, ρ u,v only depends on the absolute difference between u and v and is written for v ≥ u

Then equation 51 becomes

Again, computing the fraction SR(q) SR leads to the result of equation 32. For AR(1) process, we have ρ k = ρ k and equation 52 becomes

where we have used q-2 k=0 ρ k = 1-ρ q-1 1-ρ and q-1 k=0 kρ k-1 = 1-ρ q 1-ρ -qρ q-1 (1-ρ)

. Equation 34 is immediate.

Appendix B. Numerical applications

B.1. Variance computation

We provide here values of the variance of the Sharpe ratio according to formula σ IID,1 respectivly σ IID,2 in table 4 and 2 as well as the difference with our best estimator of the variance of the Sharpe ratio.