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WELL-POSEDNESS OF A NONLINEAR SHALLOW WATER MODEL FOR

AN OSCILLATING WATER COLUMN WITH TIME-DEPENDENT AIR

PRESSURE

EDOARDO BOCCHI, JIAO HE, AND GASTÓN VERGARA-HERMOSILLA

Abstract. We propose in this paper a new nonlinear mathematical model of an oscillating
water column (OWC). The one-dimensional shallow water equations in the presence of this
device is reformulated as a transmission problem related to the interaction between waves
and a fixed partially-immersed structure. By imposing the conservation of the total fluid-
OWC energy in the non-damped scenario, we are able to derive a transmission condition
that involves a time-dependent air pressure inside the chamber of the device, instead of a
constant atmospheric pressure as in [8]. We then show that the transmission problem can
be reduced to a quasilinear hyperbolic initial boundary value problem with a semi-linear
boundary condition determined by an ODE depending on the trace of the solution to the PDE
at the boundary. Local well-posedness for general problems of this type is established via
an iterative scheme by using linear estimates for the PDE and nonlinear estimates for the ODE.

1. Introduction

1.1. General settings. This article is devoted to the modelling and the mathematical analysis
of a particular wave energy converter (WEC) called oscillating water column (OWC). In this
device, incoming waves arrive from the offshore, collide against a partially-immersed fixed
structure. The incident wave rebounds but part of the water passes below the structure and
enters a partially-closed chamber, whose boundaries are the partially-immersed structure
at the left, a solid wall at the right and a solid wall with a hole at the top, see Figure 1.
The water volume inside the chamber increases and compresses air at the upper end of the
chamber, forcing it through the hole where a turbine is installed and creates electrical energy.
Viceversa, when the water volume decreases, the air outside the chamber enters, activates
the turbine and increases the air volume inside the chamber. The name OWC comes from
the fact that it behaves like an oscillating liquid piston, a water column, that compresses
air inside the chamber. Therefore, this device allows to convert the energy (both kinetic
and potential) associated with a moving wave into useful energy. For more details on the
transformation of wave energy to electric energy in this type of WEC we refer to [29]. OWCs
are one example of a large variety of WECs that can be found in hydrodynamical engineering.
For their classification and description, we refer the interested readers to [2].
Among all these devices, floating structures and their interaction with water waves have been
particularly studied in the last years. In [21] Lannes derived a model for the interaction between
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waves and floating structures taking into account nonlinear effects, which have been neglected
in previous analytical approaches in the literature (see for instance [19, 20] where floating
structures first were modelled). He derived the model in the general multidimensional case
considering a depth-averaged formulation of the water waves equations and then the shallow
water asymptotic models for the fluid motion given by the nonlinear shallow water equations
and the Boussinesq equations. In [18] Iguchi and Lannes proved the local well-posedness of the
one-dimensional nonlinear shallow water equations in the presence of a freely moving floating
structure with non-vertical side-walls. In [6] Bocchi showed the local well-posedness of the
nonlinear shallow water equations in the two-dimensional axisymmetric without swirl case for
a floating object moving only vertically and with vertical side-walls. In [9] Bresch, Lannes
and Métivier considered the case when the structure is fixed with vertical walls and the fluid
equations are governed by the one-dimensional Boussinesq equations. Local well-posedness was
obtained in the same time scale as in the absence of an object, that is O(ε−1) where ε is the
nonlinearity parameter. Recently, Beck and Lannes in [4] extended the previous analysis to the
case of a floating structure with vertical or non-vertical side-walls having only a vertical motion,
for which a shorter time scale O(ε−1/2) is obtained. In [26] Maity, San Mart́ın, Takahashi and
Tucsnak considered one-dimensional viscous shallow water equations and a solid with vertical
side-walls moving vertically. In this viscous case, they showed local well-posedness for every
initial data and global one if the initial data are close to an equilibrium state. Furthermore,
a particular configuration has been investigated, called the return to equilibrium, where the
floating structure is dropped from a non-equilibrium position with zero initial velocity into the
fluid initially at rest and let evolve towards its equilibrium state. This problem can be easily
done experimentally in wave tanks and is used to determine important characteristics of floating
objects. Engineers assume that the solid motion is governed by a linear integro-differential
equation, the Cummins equation, that was empirically derived by Cummins in [11] and the
experimental data coming from this configuration are used to determine the coefficients of
this equation. A nonlinear Cummins equation in the one-dimensional case was derived by
Lannes in [21] and a nonlinear integro-differential Cummins equation was derived in the two
dimensional axisymmetric without swirl case by Bocchi in [7]. Recently, Beck and Lannes
in [4] derived in the one-dimensional case an abstract Cummins-type equation that takes an
explicit simple form in the nonlinear non-dispersive and the linear dispersive cases. More
recently, Vergara-Hermosilla, Matignon and Tucsnak in [37] derived explicitly the asymptotic
behavior of a Cummins-type equation including viscous effect in the one-dimensional case.

In the last decades oscillating water columns have been widely investigated both experimen-
tally and numerically in the hydrodynamical engineering literature for the sake of understanding
how to increase the performance of these wave energy converters in order to facilitate a real
installation. For instance, we refer to [13, 16, 17, 25, 32, 33, 34] and references therein. All
these works were essentially based on the linear water wave theory introduced by Evans in
[14, 15], in which the wave motion is assumed time-harmonic. Motivated by the lack of a
nonlinear analysis for this type of wave energy converter, we modelled and simulated an OWC
in a first paper [8] taking into account the nonlinear effects following the series of works in
the case of floating structures presented before. As a first and simpler approach, a constant
air pressure was considered inside the chamber, although it does not seem realistic since the
variations of the fluid volume cause variations of the air volume inside the chamber. Moreover,
inspired by [32] we considered in the model of [8] a discontinuous topography by adding a step
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Figure 1. Configuration of the oscillating water column device.

in the sea bottom in front of the device. Recently, the exact boundary controllability of that
simplified OWC model was treated by Vergara-Hermosilla, Leugering and Wang in [36].

This article is a direct continuation of [8] and its aim is twofold:

(1) derive a nonlinear model that describes the interaction between waves and the OWC
by taking into account time-variations of the air pressure inside the chamber;

(2) establish a local well-posedness result for the transmission problem across the structure
side-walls in the Sobolev setting.

Since the interest of this new work lies only in the wave-structure interaction of the OWC,
we do not consider neither the open sea situation nor the step in front of the device, whose
rigourous mathematical analysis has already been treated in [18, Section 6.1]. Indeed, we work
with a bounded fluid domain with a flat bottom.

1.2. Main notations. The configuration of the wave energy device considering is presented
on Figure 1. Let us give several notations that will be used throughout the paper.

Notation of domains.

- We divide the spatial domain (−l, l) into the interior domain and the exterior domain
given respectively by

I := (−r, r) and E = E− ∪ E+ := (−l,−r) ∪ (r, l).

- We write the time-space domain ΩT := (0, T )× E+.

Functions and constants.

- ζ(t, x) Surface elevation
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- ζw Bottom of the partially-immersed structure
- h(t, x) Fluid height
- hw Fluid height under the structure
- q(t, x) Horizontal discharge
- qi(t) Horizontal discharge in I
- P (t, x) Surface pressure of the fluid
- Pair(t, x) Air pressure
- Pch(t) Time-dependent variation of Pair inside the OWC chamber
- Patm Constant atmospheric pressure
- h0 Fluid height at rest in E
- ḟ Time derivative of a function f depending only on t
- f (k) k-th time derivative of a function f depending only on t
- f(0) Evaluation of f at t = 0
- C(·) Generic function with number of arguments that may differ from line to line

Spaces and norms.

- For m ∈ N and X = E+ or ΩT , we denote the norms of Hm(X) and Wm,∞(X)
respectively by ‖ · ‖Hm(X) and ‖ · ‖Wm,∞(X).

- For m ∈ N, Wm(T ) is the function space defined by

(1.1) Wm(T ) :=
m⋂
j=0

Cj
(
[0, T ];Hm−j(E+)

)
endowed with the norm

‖u‖Wm(T ) := sup
t∈[0,T ]

|||u(t)|||m, where |||u(t)|||m =
m∑
k=0

‖∂kt u(t, ·)‖Hm−k(E+).

Note that Hm+1(ΩT ) ( Wm(T ) ( Hm(ΩT ).
- For m ∈ N, we denote the norms of Hm(0, T ) and Wm,∞(0, T ) respectively by |·|Hm(0,T )

and | · |Wm,∞(0,T ).
- The trace norm |u|x=r

|m,T is defined by

|u |x=r
|2m,T :=

m∑
k=0

|(∂kxu) |x=r
|2Hm−k(0,T ) =

∑
|α|≤m

| (∂αu) |x=r
|2L2(0,T ),

with ∂α := ∂α1
t ∂α2

x for α = (α1, α2) and |α| = α1 + α2. Moreover, we use the notation

|u|x=r,l
|m,T := |u|x=r

|m,T + |u|x=l
|m,T .

- Given X a generic function space with norm ‖ · ‖X , the compact notation C(‖u, v‖X)
denotes C(‖u‖X , ‖v‖X).

1.3. Main techniques and novelties. We summarize here the equations studied in this
article, the techniques used in the analysis and the main results obtained.

• In our model, the fluid equations are given by 1d nonlinear shallow water equations
with a fixed partially-immersed structure and the air pressure is considered to be
time-dependent inside the chamber of the device. More precisely, we obtain the
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following transmission problem related to the fixed partially-immersed structure with
vertical-side walls at x = ±r:

(1.2)


∂tζ + ∂xq = 0

∂tq + ∂x

(
q2

h0 + ζ

)
+ g(h0 + ζ)∂xζ = 0

in (0, T )× E

with boundary conditions

ζ|x=−l
= ζent, q|x=l

= 0,

and transmission conditions

(1.3) JqK = 0, 〈q〉 = qi,

where qi, Pch satisfy

(1.4)


dqi
dt

= − 1

α

s
gζ +

q2

2(h0 + ζ)2

{
− 1

αρ
Pch,

dPch

dt
= −γ1Pch + γ2qi.

The initial conditions are

(1.5) ζ(0, x) = ζ0(x), q(0, x) = q0(x) in E , and qi(0) = qi,0, Pch(0) = Pch,0.

The boundary datum ζent is a given time-dependent entry function, γ1, γ2 are some
positive constants, ρ is the constant fluid density and α = 2r

hw
with hw = h0 + ζw. The

notations JqK and 〈q〉 denote respectively the jump and the average of q at x = ±r,
namely

JqK := q|x=r
− q|x=−r

and 〈q〉 := 1
2

(
q|x=−r

+ q|x=r

)
.

The first novelty is that, to the authors’ knowledge, this is the first nonlinear model for
the interaction between shallow water waves and an OWC involving a time-dependent
air pressure inside the chamber of the device. Adapting the argument used in our
previous work [8], we obtain a transmission condition imposing conservation of the total
fluid-OWC energy in the non-damped scenario (see Subsection 3.2). The OWC energy
is mathematically derived from the structure of the ODE governing the dynamics
of the air pressure perturbation inside the chamber. This derivation improves and
generalises the previous nonlinear model derived in [8], as one can recover the same
transmission condition in the case of a constant air pressure inside the chamber.

• The second contribution of this article is the following local well-posedness result for
the previous transmission problem in the Sobolev setting.

Theorem 1.1. Let m ≥ 2 be an integer and (ζ0, q0) ∈ Hm(E) be such that Assumption
4.14 holds. Suppose that (ζ0, q0), (qi,0, Pch,0) ∈ R2 and ζent ∈ Hm(0, T ) satisfy the
compatibility conditions up to order m− 1. Then there exists 0 < T1 ≤ T and a unique
solution (ζ, q, qi, Pch) to (1.2)-(1.5) with (ζ, q) ∈Wm(T1) and (qi, Pch) ∈ Hm+1(0, T1),
where Wm(T1) denotes the same space as in (1.1) but defined in the spatial domain E.
Moreover, |(ζ, q)|x=±r,±l

|m,T1 is finite.



6 E. BOCCHI, J. HE, AND G. VERGARA-HERMOSILLA

To the best of our knowledge, this represents the first well-posedness result in
the Sobolev setting of a nonlinear model for the interaction between waves and the
OWC. It is achieved by reformulating (1.2)-(1.3) as a one-dimensional 4× 4 hyperbolic
quasilinear initial boundary value problem with a semilinear boundary condition, i.e.

(1.6)



∂tu+A(u)∂xu = 0 in (0, T )× E+,

u(0) = u0(x) on E+,

Mru|x=r
= V (G(t)) on (0, T ),

Mlu|x=l
= g(t) on (0, T ),

where u, u0 are R4-valued functions, A(u), Mr and Ml are respectively 4× 4, 2× 4
and 2× 4 real-valued matrices, V and g are R2-valued functions and G is a R2-valued
function satisfying the following equation

(1.7)

{
Ġ = Θ(G, u|x=r

) in (0, T ),

G(0) = G0,

with Θ : R2×R4 → R2. See Section 3 for their explicit expressions. We take advantage
of the one-dimensional setting to construct an explicit Kreiss symmetrizer. This is
done by adding two weight functions, one larger enough than the other one at x = r
and viceversa at x = l, in the expression of the symmetrizers in [6, 18]. This new
adjustment permits to handle the two boundaries of the domain (contrarily to only
one boundary in the half-line case in [6, 18]). Then, the assumption of an equivalent

version of the so-called uniform Kreiss-Lopatinskĭi condition makes the two boundary
conditions dissipative. Roughly speaking, this property allows us to control the traces
u|x=r,l

at the same regularity as u, without loss of derivatives. We notice that the
minimal regularity index obtained in Theorem 1.1, that is m = 2, corresponds to the
standard minimal regularity integer index m > d/2 + 1 for one-dimensional quasilinear
initial value problems.
The proof is based on the study of the linearized “PDE system” and an iterative
scheme for the coupled “PDE-ODE system”. As usually done for initial boundary
value problems, we prove the boundedness of a sequence of approximated solutions
in some “high norm” and its convergence in some “low norm” (see [5, 10]) by using
linear high order Sobolev estimates for the PDE together with nonlinear high order
Sobolev estimates for the ODE. While PDE’s estimates were already derived in [18],
the difficulty of our proof arises from the fact that the boundary data is not given
but determined by an evolution equation depending on the trace of the solution at
the boundary. To handle this, we derive estimates for the iterative ODE involving the
norm of u|x=r

controlled via the linear estimates and, moreover, with a time factor
that goes to zero as the existence-time T goes to zero. Indeed, this time-dependence
together with the choice of a small T , is crucial to close the iterative argument that
gives both boundedness and convergence. The limit of the sequence is then the solution
(u,G) to (1.6)-(1.7) and its uniqueness and regularity follow by standard arguments.
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1.4. Organization of the paper. The outline of the article is as follows. We present in
Section 2 the nonlinear mathematical model of an oscillating water column in the shallow
water regime. In Subsection 2.1 we first introduce the different domains involved in the
model and present the one-dimensional nonlinear shallow water equations in the presence
of a partially-immersed structure. After showing the duality property of constraints and
unknowns, we split the equations into two different systems corresponding respectively to the
region where the fluid surface is free and the region under the structure where the surface
is constrained. Moreover, boundary conditions are given to complete the model. Subsection
2.2 is devoted to the air pressure dynamics. We assume that the air pressure is equal to the
constant atmospheric pressure outside the chamber and we consider it as a time-dependent
variation of the atmospheric pressure inside the chamber. We explicitly give the evolution
equation of the air pressure variation and rewrite it in terms of the horizontal discharge under
the partially-immersed structure.
In Section 3 we reformulate the model as a transmission problem. In Subsection 3.1 we
distinguish the equations in the region before the structure, and after the structure, which is
the domain inside the chamber. The continuity of the horizontal discharge at the side-walls
gives one transmission condition. However, due to the lack of continuity for the surface elevation
at the side-walls, one additional condition is necessary to close the system and guarantee the
well-posedness of this problem. Therefore in Subsection 3.2 we derive a second transmission
condition imposing the conservation of the total fluid-OWC energy in the non-damped scenario.
The new transmission condition takes into account the time-dependent variation of the air
pressure inside the chamber. We show in Subsection 3.3 that the transmission problem can be
recast as a 4 × 4 initial boundary value problem with a semilinear boundary condition. In
Section 4 we investigate the well-posedness for general quasilinear hyperbolic IBVPs with a
semilinear boundary condition. In Subsection 4.1, we first present the well-posedness theory
of Kreiss-symmetrizable linear hyperbolic IBVP with variable coefficients and given boundary
data. This was treated in [18] in the half-line case and here we adapt it to the bounded
interval case. More precisely, we construct a Kreiss symmetrizer adding two weights functions
in the expression of the symmetrizers of [6, 18] in order to handle both boundaries of the

domain. Afterwards, we introduce the notions of uniform Kreiss-Lopatinskĭi and compatibility
conditions, which are necessary for higher order a priori estimates and the well-posedness
of the linear IBVP stated in Theorem 4.5. In Subsection 4.2 we present some Moser-type
nonlinear estimates that we repetitively use in the proof of the well-posedness theorem for the
quasilinear IBVP. In Subsection 4.3, we establish some required nonlinear estimates for the
ODE that determines the boundary condition in the IBVP. Using linear estimates for PDE
and nonlinear estimates for ODE, in Subsection 4.4 we construct a solution to the quasilinear
hyperbolic IBVP with a semilinear boundary condition by an iterative argument. In fact,
the obtained solution is the limit of the sequence of approximated solutions to the coupled
PDE-ODE system. In Subsection 4.5 the well-posedness of the original problem is finally
obtained as an application of the general theory.

2. Derivation of the model

2.1. Fluid equations. We consider an incompressible, irrotational, inviscid and homogeneous
fluid that interacts with an on-shore oscillating water column device in a shallow water regime.
This means that characteristic fluid height is small with respect to the characteristic horizontal
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scale in the longitudinal direction. Let us denote by ζ(t, x) the surface elevation, which is
assumed to be a graph, and by −h0 (with h0 > 0) the parametrization of the flat bottom. The
two-dimensional fluid domain is

Ω(t) = {(x, z) ∈ (−l, l)× R : −h0 < z < ζ(t, x)}.
The partially-immersed structure is centered at x = 0, with horizontal length 2r and vertical
walls located at x = ±r. Its presence permits to divide the horizontal projection of the fluid
domain into two domains: the exterior domain (−l,−r) ∪ (r, l), where the water surface is
not in contact with the structure, and the interior domain (−r, r), where the contact occurs.
We denote them by E and I, respectively. Furthermore, later in the analysis we will need to
distinguish the part of E outside the chamber and inside the chamber. Hence we denote by E−
and E+ the subsets (−l,−r) and (r, l), respectively.
The horizontal discharge q(t, x) is defined by

q(t, x) =

ˆ ζ(t,x)

−h0
u(t, x, z)dz for (t, x) ∈ (0, T )× (−l, l),

where u(t, x, z) is the horizontal component of the fluid velocity. It follows that q = hu where
u(t, x) is the vertically averaged horizontal fluid velocity and h(t, x) = h0 + ζ(t, x) is the
fluid height. After integrating over the fluid height the horizontal component of the free
surface Euler equations, adimensionalizing the equations and truncating at precision O(µ),
where µ is the shallowness parameter, one can obtain the nonlinear shallow water equations
in the presence of a structure. We refer to [21, 22] for the derivation of the equations in
the multi-dimensional case and [6] in the two-dimensional axisymmetric with no swirl case.
Here we consider the one-dimensional nonlinear shallow water equations in the presence of a
partially-immersed structure:

(2.1)


∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −h

ρ
∂xP ,

in (0, T )× (−l, l),

where P (t, x) is the surface pressure of the fluid, g is the gravitational constant and ρ is the
constant fluid density. In this paper viscous effects are not taken into account. However, some
numerical-based models considered in the wave-energy community (for instance [38]) showed
that viscosity effects should be included to have a good agreement with experimental data.
We also refer to [26] for more about viscous shallow water model for a floating solid where the
authors were able to obtain a global well-posedness result due to the viscosity term. Moreover,
we do not include capillary effects since in the characteristic scale of the problem they are
negligible. Indeed, we assume continuity of the surface pressure with the air pressure outside
the fluid domain. In general, the air pressure is taken equal to the constant (both in time
and space) atmospheric pressure. In a first and simpler approach, the authors modelled the
oscillating water column device in [8] with a constant air pressure, both outside and inside
the chamber. A novelty of this work is that we consider an air pressure function which is not
constant through all the domain. Indeed, while outside the chamber it is reasonable to consider
a constant air pressure, inside the chamber the motion of the waves produce variations of
the air pressure and this fact must be taken into consideration to describe more precisely the
behaviour of a wave energy converter of this type.
Let us now talk about the partially-immersed structure. We assume that the bottom of the
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structure can be parametrized as graph of a function ζw and for the sake of simplicity we
consider a solid with a flat bottom, yielding ζw = ζw(t). We remark that the same theory
holds in the case of objects with non-flat bottom. The fact that in an oscillating water column
device the partially-immersed structure is fixed implies that ζw is a constant of the problem
both in space and time. Dealing with floating structures leads to consider a time-dependent
function ζw related to the velocity of the moving object (see [6, 21] for nonlinear shallow water
equations, [4] for Boussinesq equations).

Constraints and unknowns. The interaction between floating or fixed structures and water
waves, inherits a duality property. On the one hand, in the exterior domain, the surface
pressure is constrained to be equal the air pressure while the surface elevation is free, i.e.

(2.2)

{
P (t, x) = Pair(t, x),

ζ(t, x) is unknown,
for (t, x) ∈ (0, T )× E ,

where Pair(t, x) is the known air pressure function. On the other hand, in the interior domain,
the surface elevation matches the bottom of the solid while the surface pressure is free, i.e.

(2.3)

{
ζ(t, x) = ζw,

P (t, x) is unknown,
for (t, x) ∈ (0, T )× I.

It has been shown in [21] that the pressure P in the interior domain can be seen as a Lagrange
multiplier associated with the contact constraint ζ(t, x) = ζw (it holds also for the water waves
equations in the presence of a floating structure). Injecting (2.2)-(2.3) into (2.1), we obtain
the following two systems

(2.4)


∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h0 + ζ

)
+ g(h0 + ζ)∂xζ = −h0 + ζ

ρ
∂xPair,

in (0, T )× E ,

and

(2.5)


q = qi(t),

dqi
dt

= −hw
ρ
∂xP ,

in (0, T )× I,

where qi is a time-dependent function that coincides with the horizontal discharge in the
interior domain. Notice that the first equation in (2.5) comes from the continuity equation
∂tζ + ∂xq = 0 together with constraint (2.3) in the interior domain.

Boundary conditions. Let us discuss here the boundary conditions that couple with (2.4)-
(2.5). As in [8, 23] we deal with a left boundary at x = −l and the boundary condition
reads

ζ|x=−l
= ζent,

where ζent = ζent(t) is a given time-dependent entry function. This is necessary when dealing
with numerical applications and ζent can be determined from experimental data. Indeed,
during experiments in wave tanks it is usual to create waves with a lateral piston that permits
to know the exact entry value of the surface elevation at any given time. Moreover, in [23] the
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authors showed that the knowledge of the entry value of the surface elevation allows to get the
entry value of the horizontal discharge using the existence of Riemann invariants for the 1d
nonlinear shallow water equations.
At the vertical walls of the partially-immersed structure we consider the slip condition for
the fluid velocity. Moreover, since the fluid is irrotational, we know that the fluid velocity
is continuous in the interior of Ω(t) from the elliptic regularity of the velocity potential.
Combining these two facts, the continuity of the horizontal discharge at the walls follows (see
more details in [21]). Of course, since the structure have vertical walls, the continuity of the
surface elevation at the solid walls and of the surface pressure fails (this would not be the case
for instance in the case of a boat, see [18, 21]). Thus, we have

(2.6) q|x=(±r)+
= q|x=(±r)−

.

We will see in the next section how to supply the lack of continuity for both the pressure and
the surface elevation at the structure walls and derive a condition which will close the system.
Finally, at the end of the chamber we consider a solid wall condition, that is

(2.7) q|x=l
= 0.

2.2. Air pressure dynamics. In this subsection we focus on the air pressure, which is not
in general a constant function. In particular, we distinguish the cases of the air outside the
chamber and inside the chamber. On the one hand, in E− the variations of the air pressure
are negligible and it can be considered equal to the constant atmospheric pressure, i.e.

(2.8) Pair(t, x) = Patm for (t, x) ∈ (0, T )× E−.

On the other hand, in E+, where the air is partially trapped inside the chamber and pushed
by the waves motion, a constant air pressure is no more realistic. We can reasonably assume
that the air pressure inside the chamber is uniform in space. Therefore we deal with a time-
dependent air pressure function and in particular we write it as a variation of the atmospheric
pressure, i.e.

(2.9) Pair(t, x) = Patm + Pch(t) for (t, x) ∈ (0, T )× E+,

where Pch(t) is the time-dependent variation. With this type of hypothesis on the air pressure
inside the chamber, it is possible to find in ocean engineering literature an evolution equation
governing the dynamics of the pressure variation Pch(t). For instance, we refer to [13, 17]. It
is derived for oscillating water column with Wells turbines [30], for which the relation between
the pressure drop and the velocity of the air in the resistance layer is linear. Assuming this
characteristics of the device, we have that Pch satisfies the following linear ODE:

(2.10)
dPch

dt
+
γPatm

hchK
Pch =

γPatm

hch

dζ

dt
,

where γ is the polytropic expansion index of the air (γ = 1.4), hch is the height of the chamber
and K is a resistance parameter. Despite these known parameters of the device, the spatially
averaged free surface elevation ζ over E+ remains unknown. In general in ocean engineering
and marine energy literature, authors determine this value from experimental data calculated
by gauges located inside the chamber. In our analytic approach, we rewrite it in terms of
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the horizontal discharge at the entrance of the chamber, that is at x = r+. Indeed, using the
continuity equation in (2.4) we have

dζ

dt
=

d

dt

(
1

|E+|

ˆ
E+
ζ(t, x)dx

)
=

1

|E+|

ˆ
E+
∂tζ(t, x)dx =

q|x=r+

|E+|
=

qi
|E+|

,

where in the last two equalities we have used the wall condition (2.7) and the continuity
condition (2.6) for the horizontal discharge. Therefore (2.10) reads

(2.11)
dPch

dt
+ γ1Pch = γ2qi,

where γ1 and γ2 are constants depending on the device parameters as in (2.10). Note that
γ2 > 0 ensures transmission while γ1 > 0 tends to zero as the height of the chamber or
some resistance of the device increases. For later purpose, let us define the non-damped
scenario when γ1 is negligible. The previous equation (2.11) shows that the dynamics of the
air pressure variation inside the chamber is determined by the horizontal discharge qi under
the partially-immersed structure.

3. Reformulation of the model as a transmission problem

This section is devoted to the reformulation of the model that we have previously derived.
More precisely, we show that (2.4)-(2.5) can be written as a transmission problem across the
structure side-walls and we recast it as a 4× 4 initial boundary value problem (IBVP).

3.1. Transmission problem across the structure side-walls. The transmission problem
we derive here is associated with the wave-structure interaction at the vertical side-walls of
the partially-immersed object. From (2.8)-(2.9) the air pressure is independent of the spatial
variable both inside and outside the chamber. Therefore, (2.4) can be written as

(3.1)


∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h0 + ζ

)
+ g(h0 + ζ)∂xζ = 0,

in (0, T )× E ,

with transmission condition
q|x=−r

= q|x=r
,

and boundary conditions

(3.2) ζ|x=−l
= ζent, q|x=l

= 0.

Moreover, in the interior domain one has

(3.3)
dqi
dt

= −hw
ρ
∂xP in (0, T )× I.

Remark 3.1. In (3.3) we have implicitly used the fact that the bottom of the partially-immersed
structure is flat, yielding that ζw is constant in space as well. More generally, for a solid with
non-flat bottom parametrization ζw(x) the evolution equation for qi would read

dqi
dt
− q2

i

∂xζw
h2
w

+ ghw∂xζw = −hw
ρ
∂xP ,

with hw(x) = h0 + ζw(x).
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We will see later that, after making a change of variables, the 2× 2 transmission problem
(3.1)-(3.2) can be recast as a 4 × 4 hyperbolic quasilinear initial boundary value problem
(IBVP). It is known that a necessary condition to ensure the well-posedness of this type of
problems is that the number of boundary conditions must be equal to the number of positive
eigenvalues of the system (see [3, Section 1.1], [5]). In our case we will have two positive
eigenvalues, the positive eigenvalue of A(U) in E+ and the opposite of the negative eigenvalue
of A(U) in E−. Unfortunately, the continuity of q across the side-walls only gives us one
transmission condition and an additional transmission condition is indispensable. This will be
derived in the next subsection.

3.2. Derivation of the second transmission condition. In the case of a boat, as in [18],
the partially-immersed structure has non-vertical lateral walls and the second transmission is
determined by the continuity of the surface elevation at the contact points where the waves,
the air and the solid meet. Contrarily, in the presence of vertical side-walls, which is the case
considered in this paper, the continuity of the surface elevation ceases to hold. However, from
(3.3) we know that the horizontal discharge q in the interior domain is equal to qi that depends
only on time. Therefore the second transmission condition reads q|x=±r

= qi or equivalently

〈q〉 = qi with 〈q〉 := 1
2(q|x=−r

+ q|x=r
).

When the air pressure is assumed to be constant both outside and inside the chamber, the
fluid-structure system can be assumed to be isolated, yielding that the total fluid-structure
energy is a conserved quantity. Then, using local conservation of energy derived from the
equations, one obtains an evolution equation on qi depending on the traces of the ζ and q at
both side walls. This has been done in [8] for the nonlinear shallow water equations and in
[9] for the Boussinesq system. Following the same approach, we want to derive an evolution
equation for qi that completely determines it and permits to close the system. Let us recall
for the sake of clarity the fluid equations we are studying:

(3.4)


∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h0 + ζ

)
+ g(h0 + ζ)∂xζ = −h0 + ζ

ρ
∂xPair,

in (0, T )× E .

Notice that the source term in the second equation of (3.4) vanishes since Pair does not depend
on the spatial variable, but for our analysis it is crucial to keep that term explicit. Multiplying
the first equation in (3.4) by ρgζ and the second equation by ρ q

h0+ζ we obtain

∂teext + ∂xfext = Pair∂xq in (0, T )× E ,

where eext and fext are the local fluid energy and the local flux in the exterior domain respectively
defined by

eext = ρ
q2

2h
+ gρ

ζ2

2
and fext = q

(
ρ
q2

2h2
+ gρζ + Pair

)
.

Next, in the interior domain the equations read

(3.5)
dqi
dt

= −hw
ρ
∂xP in (0, T )× I.
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Multiplying the equation above by ρ
qi
hw

, we obtain the local conservation of energy in the

interior domain

∂teint + ∂xfint = 0,

where eint and fint are the local fluid energy and the local flux in the interior domain respectively
defined by

eint = ρ
q2
i

2hw
+ ρg

ζ2
w

2
and fint = qiP .

Notice that we have used the fact that ∂tζw = 0 since the structure is fixed. Let us define the
global fluid energy by

Efluid =

ˆ
I
eint +

ˆ
E
eext.

Therefore, denoting the jump JfK := f|x=r+
− f|x=(−r)−

, we compute that

(3.6)

d

dt
Efluid =

ˆ
I
∂teint +

ˆ
E
∂teext

= −JfintK + JfextK− (fext)|x=l
+ (fext)|x=−l

+ (Pairq)|x=l
− (Pairq)|x=−l

− JPairqK

= −JfintK + JfextK + ρ
(
q
( q2

2h2
+ gζ

))
|x=−l

− Pchqi,

where in the second equality we have used that Pair is constant in space and in the third
equality we have used the wall boundary condition q|x=l

= 0, the fact that q|x=±r
= qi and

JPairK = Pch by definition of Pair in E− and in E+. Notice that in the right-hand side of the
equation above there is a term involving the air pressure variation Pch inside the chamber of
the OWC, whose information cannot be obtained from the fluid equations but is determined
by (2.11). One can see that this ODE has an intrinsic energy 1

2P
2
ch. The second term in the

left hand side of (2.11) can be interpreted as a damping. Our goal is to derive a transmission
condition for the transmission problem by imposing the conservation of a certain characteristic
energy of the fluid-OWC coupled problem. This way of coupling physical subsystems using a
power conserving interconnection can be also thought as the formulation of port-Hamiltonian
systems. We refer the interested reader to [31] for the general formulation and to [35] for its
approach to PDEs.
Let us consider the case when no dissipation occurs in the OWC chamber and the damping
term in (2.11) is negligible. In this non-damped scenario, it is reasonable to ask for conservation
of the total fluid-OWC energy. We then consider the non-damped version of (2.11), namely,

(3.7)
dPch

dt
= γ2qi,

and multiplying by Pch yields

1

2γ2

dP 2
ch

dt
= Pchqi.
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Injecting the previous equality into (3.6) and defining the OWC energy∗ EOWC by

EOWC =
1

2γ2
P 2

ch,

we obtain
d

dt
(Efluid + EOWC) = −JfintK + JfextK + ρ

(
q
( q2

2h2
+ gζ

))
|x=−l

.

Now we impose that total energy Efluid +EOWC is a conserved quantity of the problem, which
is defined in a bounded domain. Hence we assume that

(3.8)
d

dt
(Efluid + EOWC) = ρ

(
q
( q2

2h2
+ gζ

))
|x=−l

.

This is an adaptation of the conservation of total fluid-OWC energy to a bounded domain
case, where the term in the right-hand side is the fluid flux at the entrance of the domain
(equal to the one in [8]). The wall boundary condition makes the fluid flux vanish at the end
of the domain.
With this assumption, we get

JfintK = JfextK.
By definition of the fluxes it follows

JqiP K =

s
q(ρ

q2

2h2
+ gρζ + Pair)

{
.

Then, using again that q|±r
= qi, JPairK = Pch, we derive from (3.5) the following ODE for qi:

(3.9) − αdqi
dt

=

s
gζ +

q2

2(h0 + ζ)2

{
+
Pch

ρ

with α = 2r
hw

, where 2r = |I| is the width of the partially-immersed structure.

Remark 3.2. As previously explained, our goal is to derive a transmission condition that
allows to close the system in the case of a partially-immersed structure with vertical side-walls.
The ODE for qi was derived by considering the non-damped version (3.7) of the original ODE
(2.11) and by assuming the existence of a reasonable conserved quantity in that particular
case. However, the derivation of the transmission condition is independent of the effective
conservation of the total fluid-OWC energy in the real scenario, where damping occurs. Indeed,
after having obtained the condition JfintK = JfextK, one should consider the original ODE (2.11).
Then, instead of (3.8), it would yield

d

dt
(Efluid + EOWC) = −γ1

γ2
P 2

ch + ρ
(
q
( q2

2h2
+ gζ

))
|x=−l

,

which shows dissipation of the considered energy. The dissipated energy is crucial for the good
implementation of the wave energy converter as it is captured by the device and transformed
via the turbine into electric energy.

Remark 3.3. The ODE (3.9) is a generalization of the one derived in [8] by the authors.
Indeed, considering the air pressure equal to the constant atmospheric pressure also inside the
chamber, one has Pch ≡ 0 and the same equation as in [8] is recovered.

∗Using the definition of the physical parameter γ2, it is easy to check that the introduced quantity EOWC is
indeed homogeneous to an energy.
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Then the transmission problem (3.1)-(3.2) reads

(3.10)


∂tζ + ∂xq = 0

∂tq + ∂x

(
q2

h0 + ζ

)
+ g(h0 + ζ)∂xζ = 0

in (0, T )× E ,

with boundary conditions

ζ|x=−l
= ζent(t), q|x=l

= 0

and transmission conditions

JqK = 0, 〈q〉 = qi,

where qi, Pch satisfy

(3.11)


dqi
dt

= − 1

α

s
gζ +

q2

2(h0 + ζ)2

{
− Pch

αρ
,

dPch

dt
= −γ1Pch + γ2qi.

The initial conditions of the problem are

(3.12) ζ(0, x) = ζ0(x), q(0, x) = q0(x) in E , and qi(0) = qi,0, Pch(0) = Pch,0.

3.3. Reduction of the transmission problem across the structure to an IBVP. In
this subsection we show how the 2× 2 transmission problem (3.10)-(3.12) can be reduced to
a 4 × 4 one-dimensional quasilinear IBVP with a semilinear boundary condition. First, we
rewrite (3.10)-(3.12) in the compact form

(3.13)



∂tU +A(U)∂xU = 0 in (0, T )× E ,

U(0, x) = U0(x) in E ,

M+U|x=r
−M−U|x=−r

= V (G(t)) in (0, T ),

e1 · U|x=−l
= g(1)(t), e2 · U|x=l

= g(2)(t) in (0, T ),

with U(t, x) = (ζ(t, x), q(t, x))T , the matrices

A(U) =

 0 1

g(h0 + ζ)− q2

(h0 + ζ)2

2q

h0 + ζ

 , M± =

(
0 1
0 ±1

2

)
,

the boundary data g(t) = (g(1)(t), g(2)(t)) = (ζent(t), 0)T and G(t) = (qi(t), Pch(t))T that
satisfies the evolution equation

(3.14)

{
Ġ = Θ

(
G,U|x=±r

)
,

G(0) = G0.

The initial data are

U0(x) = (ζ0(x), q0(x))T , G0 = (qi,0, Pch,0)T .
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For U = (U (1), U (2))T , G = (G(1), G(2))T and Θ = (Θ(1),Θ(2))T , we have V (G) = (0, G(1))T

and

Θ(1)(G,U|x=±r
) = − 1

α

[
(gU (1) +

(U (2))2

2(h0 + U (1))2
)∣∣

x=r

− (gU (1) +
(U (2))2

2(h0 + U (1))2
)∣∣

x=−r

]
− G(2)

αρ
,

and

Θ(2)
(
G,U|x=±r

)
= −γ1G

(2) + γ2G
(1).

Equation (3.14) has the same form of the kinematic-type evolution equation considered in
[18] where the authors dealt with a free boundary transmission problem. Here, although we
consider a fixed boundary transmission problem, the same situation occurs: the derivative
of G has the same regularity as the trace of the solution at the boundary. The boundary
condition is semilinear, in the sense that the evolution equation (3.14) is nonlinear only on the
trace of the solution at the boundary and not on its derivatives. This would be the case when
considering a boat-type structure, which turns out to be a free boundary hyperbolic problem.
A kinematic-type evolution equation for the moving contact points x±(t) can be derived after
time-differentiating the boundary condition U(t, x±(t)) = Ui(t, x±(t)), where Ui is a known
function. In the nonlinear equation obtained, there are terms involving traces of derivatives
∂U|x=±r

and the boundary condition is fully nonlinear because there is a loss of one derivative
in the estimates (see[18]). Here we deal with a less singular evolution equation.

Let us now recast (3.13)-(3.14) as an IBVP by introducing a change of variable x′ = −x on
the spatial space (−l,−r) and writing

u+(t, x) = U(t, x), u−(t, x) = U(t,−x),

u+
0 (x) = U0(x), u−0 (x) = U0(−x).

Thus, the system (3.13) is equivalent to the following 4× 4 quasilinear hyperbolic system in
ΩT := (0, T )× E+, where E+ = (r, l),

(3.15)



∂tu+A(u)∂xu = 0 in ΩT ,

u(0) = u0(x) in E+,

Mru|x=r
= V (G(t)) in (0, T ),

Mlu|x=l
= g(t) in (0, T ),

where u = (u−, u+)T , u0 = (u−0 , u
+
0 )T are R4-valued functions and

A(u) = diag
(
−A(u−), A(u+)

)
, Mr =

(
−M− M+

)
, Ml =

(
1 0 0 0
0 0 0 1

)
,

are respectively one 4× 4 matrix and two 2× 4 matrices. Moreover, the ODE (3.14) reads

(3.16)

{
Ġ = Θ(G, u|x=r

),

G(0) = G0.

In the next section we will study this IBVP with semilinear boundary condition in a general
setting and we will investigate its local well-posedness.
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4. 1d Kreiss-symmetrizable hyperbolic IBVPs

In this section we study general one-dimensional quasilinear hyperbolic IBVP with a
semilinear boundary condition as (3.15)-(3.16). In general, one-dimensional hyperbolic initial
boundary value problems are treated by using the method of characteristics and local well-
posedness in C1 (see [24], and references therein). In the Sobolev setting, multi-dimensional
results are employed at the cost of high regularity requirements for initial data and derivatives
loss with respect to the boundary and initial data. These drawbacks were recently removed
in [6, 18] by taking advantage of the specificities of the one-dimensional case. Following the
argument in [6, 18] we establish local-in-time well-posedness for Kreiss symmetrizable systems,
that is Friedrichs symmetrizable systems whose symmetrizer yields maximal dissipativity on
the boundary. This property permits us to gain one derivative on the control of the trace of
the solution at the boundary and it will be crucial to close the energy estimates needed to
apply an iterative scheme argument to get a local well-posedness result.
In order to study quasilinear hyperbolic IBVP with a boundary data determined by an
evolution equation, we need first to consider linear hyperbolic IBVP with a given boundary
data. We will then use the estimates derived from the linear theory for the “PDE part” and
nonlinear estimates for the “ODE part” to show that the sequence of approximated solutions
defined by the iterative scheme is bounded and convergent in some proper spaces. The limit
of the sequence will be then the unique solution of the quasilinear problem.

4.1. Variable-coefficients linear hyperbolic IBVPs. In this subsection we deal with
linear hyperbolic IBVP with variable coefficients. Let us present some linear energy estimates
together with a well-posedness result for a Kreiss-symmetrizable system, whose definition will
be given in the sequel. To do this, we consider the following linear hyperbolic initial boundary
value problem

(4.1)



∂tu+A(ũ)∂xu = f in ΩT ,

u(0) = u0(x) in E+,

Mru|x=r
= V (t) in (0, T ),

Mlu|x=l
= g(t) in (0, T ),

where u = u(t, x), u0, ũ = ũ(t, x) and f = f(t, x) are given R4-valued functions, A(ũ) ∈M4(R),
Mr, Ml ∈M2,4(R) are given constant matrices, V and g are given R2-valued functions. Let
us introduce the definition of Kreiss symmetrizer for a system.

Definition 4.1. The hyperbolic initial boundary value problem (4.1) is Kreiss symmetrizable
if there exists a symmetric matrix S(x, ũ) ∈ M4(R), called Kreiss symmetrizer, such that
S(x, ũ)A(ũ) is symmetric and the following properties hold:

(1) There exist constants c1, C1 > 0 such that

c1|v|2 ≤ vTS(x, ũ)v ≤ C1|v|2

for any v ∈ R4 and x ∈ E+.
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(2) There exist constants c2, c3, C2, C3 > 0 such that the boundary conditions are maximal
dissipative, i.e.

vT (S(r, ũ|x=r
)A(ũ|x=r

))v ≤ −c2|v|2 + C2|Mrv|2,

−vT (S(l, ũ|x=l
)A(ũ|x=l

))v ≤ −c3|v|2 + C3|Mlv|2,

for any v ∈ R4.
(3) There exists a constant β > 0 such that

‖∂tS + ∂x(SA)‖L∞(ΩT ) ≤ β.

A Kreiss symmetrizer is therefore a Friderichs symmetrizer, used in the Cauchy problem
theory for hyperbolic systems (see [5]), yielding maximal dissipativity on the boundaries. In
order to construct this symmetrizer, we need the following assumptions on the matrix A, the
boundary matrices Mr and Ml and matrices called Lopatinskĭi matrices (see [18]).

Assumption 4.2. Let ũ = (ũ−, ũ+)T take values in U = U−×U+ with U−, U+ two open sets
in R2. There exists a constant κ0 > 0 such that the following properties are satisfied:

(1) A ∈ C∞(U), det(MrMT
r ) ≥ κ0 and det(MlMT

l ) ≥ κ0.

(2) A(ũ) = diag(−A−(ũ−), A+(ũ+)) where A−(ũ−) and A+(ũ+) have eigenvalues ±λ±(ũ−)
and ±λ±(ũ+) respectively. Furthermore, ũ takes values in a compact and convex set
K0 ( U and

λ±(ũ−) ≥ κ0, λ±(ũ+) ≥ κ0.

(3) Let us define the 2× 2 Lopatinskĭi matrices Lr(ũ|x=r
) and Ll(ũ|x=l

) respectively by

Lr(ũ|x=r
) =MrE(ũ|x=r

) with E(ũ|x=r
) =

(
e−(ũ− |x=r

) 02×1

02×1 e+(ũ+
|x=r

)

)
,

Ll(ũ|x=l
) =MlE(ũ|x=l

) with E(ũ|x=l
) =

(
e+(ũ− |x=l

) 02×1

02×1 e−(ũ+
|x=l

)

)
,

where e±(ũ− |x=r,l
) are the unit eigenvectors of A−(ũ− |x=r,l

) associated with the eigenval-

ues ±λ±(ũ− |x=r,l
) and e±(ũ+

|x=r,l
) are the unit eigenvectors of A+(ũ+

|x=r,l
) associated

with the eigenvalues ±λ±(ũ+
|x=r,l

). Then, Lr(ũ|x=r
) and Ll(ũ|x=l

) are invertible and

‖Lr(ũ|x=r
)−1‖R2→R2 ≤

1

κ0
, ‖Ll(ũ|x=l

)−1‖R2→R2 ≤
1

κ0
.

Notice that the positivity of the determinants in condition (1) means that the rank of both
matrices is 2. This means that we have exactly two boundary conditions at x = r and two
boundary conditions at x = l. The condition (3) of Assumption 4.2 is a reformulation of the

uniform Kreiss-Lopatinskiĭ condition, which can be derived as a stability condition on the
normal mode solutions for the (4.1) with fixed coefficients. We refer to [5] for more details on
this type of condition. In the general multi-dimensional theory the construction of a Kreiss
symmetrizer from the uniform Kreiss-Lopatinskĭi condition is delicate and involved. Indeed,
it requires refined paradifferential calculus and the symmetrizer obtained is a matrix-valued
function depending homogeneously on space-time frequencies, hence a symbol. Instead, the
problem that we are considering in this article is one-dimensional and we can take advantage
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of the specificities of the one-dimensional setting to construct a Kreiss symmetrizer in the
sense of Definition 4.1. In the case of a problem on the half-line, the argument of [6, 18] gives
explicitly the symmetrizer. However, one cannot apply directly the theory in the half-line case
to the bounded interval case, and the latter is not trivial. We therefore develop an adapted
theory below.

Lemma 4.3. Assume that Assumption 4.2 holds for some κ0 > 0. Then, there exist a matrix
S(x, ũ) and positive constants c1, C1, c2, C2, β such that (1)-(3) in Definition 4.1 are satisfied.

Proof. From property (2) of Assumption 4.2, we know that A(ũ) is diagonalizable. We denote
its positive eigenvalues by λ+,j(ũ) and its negative eigenvalues by −λ−,j(ũ) for j = 1, 2. Then,
Π±,j(ũ) are the eigenprojectors associated with the eigenvalues ±λ±,j(ũ). We construct the
symmetrizer as

S(x, ũ) := W+(x)
2∑
j=1

Π+,j(ũ)Π+,j(ũ)T +W−(x)
2∑
j=1

Π−,j(ũ)TΠ−,j(ũ),

where W± are some positive smooth functions such that

W−(r)�W+(r) and W+(l)�W−(l).

Using the same decomposition of A as in [18], we have

S(x, ũ)A(ũ)

= W+(x)
2∑
j=1

λ+,j(ũ)Π+,j(ũ)TΠ+,j(ũ)−W−(x)
2∑
j=1

λ−,j(ũ)Π−,j(ũ)TΠ−,j(ũ).

We start by proving that, for v ∈ KerMr,

(4.2) |v|2 ≤ −CvTS(r, ũ|x=r
)A(ũ|x=r

)v,

and for v ∈ KerMl,

(4.3) |v|2 ≤ CvTS(l, ũ|x=l
)A(ũ|x=l

)v.

Let us decompose v as

v =
2∑
j=1

Π−,j(ũ)v +
2∑
j=1

Π+,j(ũ)v.

On the one hand, we compute that

− vTS(r, ũ|x=r
)A(ũ|x=r

)v

= −W+(r)

2∑
j=1

λ+,j(ũ|x=r
)|Π+,j(ũ|x=r

)v|2 +W−(r)

2∑
j=1

λ−,j(ũ|x=r
)|Π−,j(ũ|x=r

)v|2.

For v ∈ KerMr and using the invertibility assumption of the Lopatinskĭi matrix Lr, we know
from [18] that

(4.4)

2∑
j=1

|Π+,j(ũ|x=r
)v|2 ≤ C

2∑
j=1

|Π−,j(ũ|x=r
)v|2,
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for some constant C depending on ‖Mr‖R4→R2 and 1
κ0
. Using the uniform lower bound of λ−,j

it follows

W−(r)κ0

2∑
j=1

|Π−,j(ũ|x=r
)v|2

≤ −vTS(r, ũ|x=r
)A(ũ|x=r

)v +W+(r) max
j∈{1,2}

sup
t∈(0,T )

(λ+,j(ũ|x=r
))

2∑
j=1

|Π+,j(ũ|x=r
)v|2

≤ −vTS(r, ũ|x=r
)A(ũ|x=r

)v + CW+(r) max
j∈{1,2}

sup
t∈(0,T )

(λ+,j(ũ|x=r
))

2∑
j=1

|Π−,j(ũ|x=r
)v|2,

where in the second inequality we have used (4.4). Then, since W−(r) is sufficiently larger
than W+(r), there exists c > 0 such that

2∑
j=1

|Π−,j(ũ|x=r
)v|2 ≤ −c vTS(r, ũ|x=r

)A(ũ|x=r
)v.(4.5)

From the decomposition of v and using again (4.4) we get

|v|2 =
2∑
j=1

|Π−,j(ũ|x=r
)v|2 +

2∑
j=1

|Π+,j(ũ|x=r
)v|2 ≤ (C + 1)

2∑
j=1

|Π−,j(ũ|x=r
)v|2,

and the desired estimate follows from (4.5). On the other hand, we compute

vTS(l, ũ|x=l
)A(ũ|x=l

)v

= W+(l)
2∑
j=1

λ+,j(ũ|x=l
)|Π+,j(ũ|x=l

)v|2 −W−(l)
2∑
j=1

λ−,j(ũ|x=l
)|Π−,j(ũ|x=l

)v|2.

For v ∈ KerMl and using the invertibility assumption of the Lopatinskĭi matrix Ll from [18]
we know that

(4.6)
2∑
j=1

|Π−,j(ũ|x=l
)v|2 ≤ C

2∑
j=1

|Π+,j(ũ|x=l
)v|2,

for some constant C depending on ‖Ml‖R4→R2 and 1
κ0
. Using the uniform lower bound of λ+,j ,

it follows

W+(l)κ0

2∑
j=1

|Π+,j(ũ|x=l
)v|2

≤ vTS(l, ũ|x=l
)A(ũ|x=l

)v +W−(l) max
j∈{1,2}

sup
t∈(0,T )

(λ−,j(ũ|x=l
))

2∑
j=1

|Π−,j(ũ|x=l
)v|2

≤ vTS(l, ũ|x=l
)A(ũ|x=l

)v + CW−(l) max
j∈{1,2}

sup
t∈(0,T )

(λ−,j(ũ|x=l
))

2∑
j=1

|Π+,j(ũ|x=l
)v|2,



WELL-POSEDNESS OF AN OWC IN SHALLOW WATER 21

where in the second inequality we have used (4.6). Then, since W+(l) is sufficiently larger
than W−(l), there exists c > 0 such that

2∑
j=1

|Π+,j(ũ|x=l
)v|2 ≤ c vTS(l, ũ|x=l

)A(ũ|x=l
)v.(4.7)

From the decomposition of v and using again (4.6), we get

|v|2 =
2∑
j=1

|Π−,j(ũ|x=l
)v|2 +

2∑
j=1

|Π+,j(ũ|x=l
)v|2 ≤ (C + 1)

2∑
j=1

|Π+,j(ũ|x=l
)v|2,

and the desired estimate follows from (4.7). Finally, one can repeat the same argument used
in [18] and exploit (4.2)-(4.3) to obtain both estimates in property (2) of Definition 4.1 for
any v ∈ R4. �

Therefore, in the well-posedness theorem for the linear initial boundary value problem (4.1)
we will only assume Assumption 4.2. Before stating the result, we shall introduce the notion
of compatibility conditions for the data of (4.1).

Compatibility conditions. In order to have continuous solutions in time and space, the
boundary data at initial time must match the boundary conditions at initial time. That is,
on the edges (t, x) = (0, r) and (t, x) = (0, l) the initial data u0 and boundary data V, g must
satisfy

(4.8) Mru0|x=r
= V0, Mlu0|x=l

= g0,

with V0 = V (0) and g0 = g(0). Analogously, defining u1 = ∂tu(0, x), V1 = V̇ (0) and g1 = ġ(0),
C1-solutions must satisfy (4.8) together with

Mru1|x=r
= V1, Mlu1|x=l

= g1.

More generally, let us define uk = ∂kt u(0, x), Vk = V (k)(0) and gk = g(k)(0)for k ≥ 0. Then,
smooth enough solutions must satisfy

(4.9) Mruk |x=r
= Vk, Mluk |x=l

= gk.

Let us now define fk = ∂kt f(0, x). Using the evolution equation in (4.1) and applying an
inductive argument, we can write uk as a function only in terms of the initial data u0 and the
source term f , namely

uk = Cũ0,...,k−1
(u0, f0, ..., fk−1) for k ≥ 1,

where Cũ0,...,k−1
(u0, f0, ..., fk−1) is a smooth function of ∂j+1

x u0, ∂k−1−j
x fj for j=0, ..., k− 1 and

its coefficients depend on ũ0, ∂k−1−j
x ũj for j=0, ..., k−1. The function Cũ0,...,k−1

(u0, f0, ..., fk−1)
can be written in an explicit way by repeatedly using Faá di Bruno’s formula. As it is not
relevant to our analysis, we only give its explicit expression for k = 1, 2 and we refer the reader
to [12] for more details. They read

Cũ0(u0, f0) = −A(ũ0)∂xu0 + f0,

Cũ0,1(u0, f0, f1)=(−DA(ũ0)·ũ1 +A(ũ0)DA(ũ0)·∂xũ0)∂xu0 +A2(ũ0)∂xxu0 −A(ũ0)∂xf0 + f1.

The compatibility conditions above permit us to introduce the following definition.
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Definition 4.4. Let m ≥ 1 be an integer. The data u0 ∈ Hm(r, l), f ∈ Hm(ΩT ) and
V, g ∈ Hm(0, T ) of the linear initial boundary value problem (4.1) satisfy the compatibility
conditions up to order m− 1 if (4.9) holds for k = 0, 1, ...,m− 1.

We can now state the well-posedness theorem for the linear IBVP (4.1) with given boundary
data.

Theorem 4.5. Let m ≥ 1 be an integer and T > 0. Assume that Assumption 4.2 holds for
some κ0 > 0 and that there exist constants 0 < K0 ≤ K such that

1

κ0
, ‖A‖L∞(K0), ‖Mr‖R4→R2 , ‖Ml‖R4→R2 ≤ K0, ‖A‖Wm,∞(K0), ‖ũ‖W 1,∞(ΩT )∩Wm(T ) ≤ K.

Then, for any data u0 ∈ Hm(E+), V, g ∈ Hm(0, T ), and f ∈ Hm(ΩT ) satisfying the compatibil-
ity conditions up to order m− 1 in the sense of Definition 4.4, there exists a unique solution
u ∈ Wm(T ) to the initial boundary value problem (4.1). Moreover, the following inequality
holds for any t ∈ [0, T ]:

(4.10)

|||u(t)|||m + |u|x=r,l
|m,t

≤ C(K0)eC(K)t

(
|||u(0)|||m + |(V, g)|Hm(0,t) + |f|x=r,l

|m−1,t +

ˆ t

0

∣∣∣∣∣∣f(t′)
∣∣∣∣∣∣
m
dt′
)
.

We will apply Theorem 4.5 later in order to prove the well-posedness result for the quasilinear
IBVP (3.15)-(3.16). Although the interest of this article does not lie in the well-posedness
of the linear IBVP (4.1), it is worth to briefly sketch the proof and refer the reader to [18]
for more details. The first step is to prove an a priori L2 estimate taking advantage of the
existence of a Kreiss symmetrizer provided in Lemma 4.3. As we explained in the previous
sections, this yields dissipativity on the boundary conditions and thanks to the good signs in
the energy estimate we can get a control not only for ‖u(t)‖L2(E+) itself but also for the trace

term |u|x=r,l
|L2(0,t). Next, one needs to generalise L2 estimates to higher-order Sobolev spaces

by employing commutator and Moser-type estimates. Finally, following classical arguments
(see for instance [5, 27, 28]) the existence and uniqueness of the solution u ∈Wm(T ) is obtained
from the a priori estimates and the compatibility conditions.

4.2. Nonlinear estimates. Let us state here some Moser-type nonlinear estimates (see for
instance [1]) that we will use later in the analysis of Subsection 4.4. We denote by [k] the
integer part of k ∈ R+.

Lemma 4.6. Let U be an open set in RN and let F ∈ C∞(U) be a function such that F (0) = 0.
For m ∈ N, if u ∈ Hm(0, T ) takes values in a compact and convex set K ( U , then

|F (u)|Hm(0,T ) ≤ CF (|u|W [m/2],∞(0,T ))|u|Hm(0,T ).

Moreover, if u ∈ Hm(0, T ) and v ∈ Hm(0, T ) with m ≥ 1 take values in K, we have

|F (u)− F (v)|Hm(0,T ) ≤ CF (|u, v|Hm(0,T ))|u− v|Hm(0,T ).

Lemma 4.7 (see [18, 28]). Let U be an open set in RN and let F ∈ C∞(U) be a function such
that F (0) = 0. For m ∈ N, if u ∈ Wm(T ) takes values in a compact and convex set K ( U ,
then for all t ∈ [0, T ]:

|||F (u)(t)|||m ≤ CF (‖u‖W [m/2],∞(ΩT ))|||u(t)|||m.
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Moreover, if u ∈Wm(T ) and v ∈Wm(T ) with m ≥ 1 take values in K, we have

|||(F (u)− F (v))(t)|||m ≤ CF (|||u(t), v(t)|||m)|||(u− v)(t)|||m.

Remark 4.8. We use these nonlinear estimates because in the standard Moser nonlinear
estimates

‖F (u)‖Hm(D) ≤ CF (‖u‖L∞(D))‖u‖Hm(D) with D = ΩT or (0, T ),

the constant CF is time-dependent and blows-up as T → 0. Since our goal is to use a contraction
argument for the existence of the solution in which we will consider a small existence time T ,
we need nonlinear estimates with time-independent constants as the ones derived in Lemma
4.6 and Lemma 4.7. We refer to [9, 27] for sharp nonlinear estimates that provide blow-up
criteria, in which the interest of this work does not lie.

4.3. Estimates for the ODE. We remark the fact that the boundary condition in the
initial boundary value problem (3.15)–(3.16) is not a given information but it is a semi-linear
boundary condition given by an ODE. This subsection is devoted to establish Sobolev estimates
for the solution to

(4.11) Ġ(t) = Θ(G(t), u|x=r
(t)), G(0) = G0,

where G(t) = (G1(t), · · · , GN (t))T is a N -dimensional function, u|x=r
(t) = ((u1)|x=r

(t),

· · · , (uM )|x=r
(t))T is a given M -dimensional function and Θ = (Θ1, · · · ,ΘN )T is a nonlinear

smooth function. We construct a successive sequence of approximation solution {Gn}n∈N to
the Cauchy problem (4.11) defined by

(4.12) Ġn+1(t) = Θ(Gn(t), un|x=r
(t)), Gn+1(0) = G0.

Some high-order estimates on the sequence {Gn}n∈N are stated in the following proposition.

Proposition 4.9. Let G×Ur be an open set in RN×RM , representing a phase space of (G, u|x=r
)

and let Θ ∈ C∞(G × Ur). Given m ≥ 1 and T > 0, assume that {Gn}n∈N ∈ Hm+1(0, T ) and
{un|x=r

}n∈N ∈ Hm(0, T ) satisfy (4.12) and that they take values in compact and convex sets

of G and Ur respectively. Moreover, assume that (Gn)(k)(0) for k = 0, ...,m and (∂kt u
n)(0, r)

for k = 0, ...,m− 1 are independent of n and that there exists K0 > 0 such that

m∑
k=0

|(Gn)(k)(0)|,
m−1∑
k=0

|(∂kt un)(0, r)| ≤ K0.

Then, we have

|Gn+1|Hm(0,T ) ≤
√
TC(K0) + TCΘ(K0, |Gn, un|x=r

|Hm(0,T )),(4.13)

|Gn+1|Hm+1(0,T ) ≤
√
TC(K0) + (T + 1)CΘ(K0, |Gn, un|x=r

|Hm(0,T )),(4.14)

and

(4.15)
|Gn+1 −Gn|Hm(0,T ) ≤ TCΘ(|Gn, Gn−1|Hm(0,T ), |un|x=r

, un−1
|x=r
|Hm(0,T ))

× (|Gn −Gn−1|Hm(0,T ) + |(un − un−1)|x=r
|Hm(0,T )).
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Proof. We divide the proof into two steps, one for each estimate.
Step 1: Let us first write the derivative of Gn+1(t) of order 0 ≤ k ≤ m as

(4.16)

(Gn+1)(k)(t) = (Gn+1)(k)(0) +

ˆ t

0
(Ġn+1)(k)(s) ds

= (Gn+1)(k)(0) +

ˆ t

0
∂ksΘ(Gn(s), un|x=r

(s)) ds,

where we have used the iterative ODE (4.11). Taking the sum over k and using (4.12) yield

(4.17)

|Gn+1|2Hm+1(0,T ) = |Gn+1|2Hm(0,T ) + |(Ġn+1)(m)|2L2(0,T )

=
m∑
k=0

∣∣∣∣(Gn+1)(k)(0) +

ˆ t

0
∂ksΘ(Gn(s), un|x=r

(s))ds

∣∣∣∣2
L2(0,T )

+ |∂mt Θ(Gn, un|x=r
)|2L2(0,T )

≤ 2T
m∑
k=0

|(Gn+1)(k)(0)|2+2
m∑
k=0

∣∣∣√t |∂ksΘ(Gn, un|x=r
)|L2(0,t)

∣∣∣2
L2(0,T )

+ |Θ(Gn, un|x=r
)|2Hm(0,T )

≤ TC(K0) + (T 2 + 1)
∣∣Θ(Gn, un|x=r

)
∣∣2
Hm(0,T )

.

Let us take any point (G∗, u∗) ∈ G × Ur and define

Θ0(G, u|x=r
) = Θ(G+G∗, u|x=r

+ u∗)−Θ(G∗, u∗).

Then, Θ0 ∈ C∞(G × Ur) with Θ0(0, 0) = 0 and we have

|Θ(Gn, un|x=r
)|Hm(0,T ) = |Θ0(Gn −G∗, un|x=r

− u∗) + Θ(G∗, u∗)|Hm(0,T )

≤ |Θ0(Gn −G∗, un|x=r
− u∗)|Hm(0,T ) + |Θ(G∗, u∗)|

√
T .

The first estimate in Lemma 4.6 gives∣∣Θ0(Gn −G∗, un|x=r
− u∗)

∣∣
Hm(0,T )

≤ CΘ(|Gn −G∗, un|x=r
− u∗|W [m/2],∞(0,T ))(|G

n −G∗|Hm(0,T ) + |un|x=r
− u∗|Hm(0,T )).

By means of (4.16) and using that [m/2] + 1 ≤ m, we obtain

(4.18)
|Gn −G∗|W [m/2],∞(0,T ) ≤

[m/2]∑
k=0

|(Gn −G∗)(k)(0)|+
√
T |Gn −G∗|H[m/2]+1(0,T )

≤ C(K0) +
√
T |Gn −G∗|Hm(0,T ),

and, analogously,

|un|x=r
− u∗|W [m/2],∞(0,T ) ≤

[m/2]∑
k=0

|(∂kt (un|x=r
− u∗))(0, r)|+

√
T |un|x=r

− u∗|H[m/2]+1(0,T ),

≤ C(K0) +
√
T |un|x=r

− u∗|Hm(0,T ).
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Gathering all these estimates together yields

(4.19)

∣∣Θ(Gn, un|x=r
)
∣∣
Hm(0,T )

≤ CΘ(K0, |Gn −G∗, un|x=r
− u∗|Hm(0,T ))

≤ CΘ(K0, |Gn, un|x=r
|Hm(0,T )),

which, together with (4.17), implies (4.14). The Hm-estimate (4.13) is then straightforward.
Step 2: Using again (4.12) and the fact that the initial conditions of Gn and its derivatives
are independent of n, we have for 0 ≤ k ≤ m

(Gn+1)(k)(t)− (Gn)(k)(t) =

ˆ t

0

(
∂ksΘ(Gn(s), un|x=r

(s))− ∂ksΘ(Gn−1(s), un−1
|x=r

(s))
)
ds.

Doing the same computation as in (4.17), we obtain

(4.20)

|Gn+1 −Gn|2Hm(0,T )

≤
m∑
k=0

∣∣∣√t |(∂ksΘ(Gn, un|x=r
−∂ksΘ(Gn−1, un−1

|x=r
)|L2(0,t)

∣∣∣2
L2(0,T )

≤ T 2

2

∣∣Θ(Gn, un|x=r
)−Θ(Gn−1, un−1

|x=r
)
∣∣2
Hm(0,T )

.

The second estimate in Lemma 4.6 yields

(4.21)

∣∣Θ(Gn, un|x=r
)−Θ(Gn−1, un−1

|x=r
)
∣∣
Hm(0,T )

≤ CΘ(K0, |Gn−1, un−1
|x=r
|Hm(0,T ), |Gn, un|x=r

|Hm(0,T ))

× (|Gn −Gn−1|Hm(0,T ) + |(un − un−1)|x=r
|Hm(0,T ))

and, by substituting this into (4.20), we obtain (4.15). �

Remark 4.10. In Proposition 4.9 we derived both Hm and Hm+1-bounds (4.13)-(4.14) al-
though one would look for the solution G to (4.11) in the natural space Hm+1(0, T ). However,
in the proof of the uniform boundedness of approximated solutions in Step 2 of Theorem
4.13, while both Gn and un|x=0

will belong to Hm(0, T ) by inductive hypothesis, the estimate

(4.14) cannot directly guarantee the uniform bound of Gn+1 in Hm+1(0, T ) even for a small
existence-time T . It is therefore crucial in our analysis to use first (4.13), with a time-factor
that allows to get the uniform bound in the Hm-regularity and, only afterwards, the expected
Hm+1-regularity will be obtained using (4.14).

4.4. Quasilinear hyperbolic IBVPs with semilinear boundary condition. We now
turn to consider the quasilinear hyperbolic initial boundary value problem

(4.22)



∂tu+A(u)∂xu = f(t, x) in ΩT ,

u(0) = u0(x) in E+,

Mru|x=r
= V (G(t)) in (0, T ),

Mlu|x=l
= g(t) in (0, T ),
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coupled with the evolution equation

(4.23)

{
Ġ = Θ(G, u|x=r

),

G(0) = G0.

We require the following assumption:

Assumption 4.11. Let U− and U+ be two open sets in R2 such that U = U−×U+ represents
a phase space of u. Let U−r,l ⊆ U

− and U+
r,l ⊆ U

+ be open sets such that Ur,l = U−r,l × U
+
r,l

represents a phase space of u|x=r,l
. Let G be an open set in R2 representing a phase space of G.

The following properties are satisfied:

(i) A ∈ C∞(U), V ∈ C∞(G), Θ ∈ C∞(G × Ur), det(MrMT
r ) > 0, and det(MlMT

l ) > 0.

(ii) Given u = (u−, u+)T ∈ U , A(u) = diag(−A−(u−), A+(u+)) where A−(u−) and A+(u+)
have eigenvalues ±λ±(u−) and ±λ±(u+) respectively, with λ±(u−), λ±(u+) > 0.

(iii) For any u|x=r,l
∈ Ur,l, the 2× 2 Lopatinskiĭ matrices Lr(u|x=r

) and Ll(u|x=l
), defined

as in Assumption 4.2, are invertible.

Compatibility conditions. We write here the nonlinear version of the compatibility con-
ditions already defined in Subsection 4.1 for the linear problem. In order to guarantee the
continuity of the solutions, on the edges (t, x) = (0, r) and (t, x) = (0, l) the initial data u0,
G0 and the boundary data g must satisfy

(4.24) Mru0|x=r
= V (G0), Mlu0|x=l

= g0,

with g(0) = g0. Analogously, defining u1 = ∂tu(0, x), G1 = Ġ(0) and g1 = ġ(0), C1-solutions
must satisfy (4.24) together with

(4.25) Mru1|x=r
= DV (G0)G1, Mlu1|x=l

= g1,

where DV is the Jacobian matrix of V . We remark that G1 can be written as well in terms of
u0 and G0 using the ODE (4.23), namely

G1 = Θ(G0, u0|x=r
).

Hence, we can write (4.25) under the form

Mru1|x=r
= F1(G0, u0|x=r

),

where F1(G0, u0|x=r
) = DV (G0)Θ(G0, u0|x=r

). More generally, let us define uk = ∂kt u(0, x),

Gk = G(k)(0) and gk = g(k)(0) for k ≥ 1. Then, smooth enough solutions must satisfy (4.24)
together with

Mruk |x=r
= Fk(G0, ..., Gk−1, u0|x=r

, ..., uk−1|x=r
), Mluk |x=l

= gk,

where Fk is a smooth function of its arguments.
Let us now define fk = ∂kt f(0, x). On the one hand, using the evolution equation in (4.22) and
applying an inductive argument, we can write uk as a function of the initial data u0 and the
source term f only, namely

(4.26) uk = Ck(u0, f0, ..., fk−1) for k ≥ 1,
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where Ck(u0, f0,..., fk−1) is a smooth function of u0, ∂j+1
x u0, and ∂k−1−j

x fj for j=0, ..., k − 1.
On the other hand, using the ODE (4.23), (4.26) and an inductive argument, we can write Gk
as a function of the data G0, u0 and f only, that is

(4.27) G1 = B1(G0, u0), Gk = Bk(G0, u0, f0, ..., fk−2) for k ≥ 2,

where B1(G0, u0) is a smooth function of G0, u0|x=r
and Bk(G0, u0, f0, ..., fk−2) is a smooth

function of G0, u0|x=r
, (∂j+1

x u0)|x=r
, (∂k−2−j

x fj)|x=r
for j = 0, ..., k − 2. This permits us to

introduce the next definition.

Definition 4.12. Let m ≥ 1 be an integer. The data u0 ∈ Hm(E+), f ∈ Hm(ΩT ),
g ∈ Hm(0, T ) and G0 ∈ R of the initial boundary value problem (4.22)-(4.23) satisfy the
compatibility conditions up to order m− 1 if

Mru0|x=r
= V (G0),

Mruk |x=r
= Fk(G0, ..., Gk−1, u0|x=r

, ..., uk−1|x=r
) for k = 1, ...,m− 1,

and
Mluk |x=l

= gk for k = 1, ...,m− 1.

We are now able to state a well-posedness result for an initial boundary value problem with
a semi-linear boundary condition.

Theorem 4.13. Let m ≥ 2 be an integer. Assume that Assumption 4.11 holds and that
u0 ∈ Hm(E+) takes values in K−0 ×K

+
0 with K−0 ( U− and K+

0 ( U+ compact and convex sets,
u0|x=r,l

∈ Ur,l and G0 ∈ G. Moreover, suppose that u0, f ∈ Hm(ΩT ), g ∈ Hm(0, T ) and G0

satisfy the compatibility conditions up to order m− 1 in the sense of Definition 4.12. Then,
there exist 0 < T1 ≤ T and a unique solution (u,G) to (4.22)-(4.23) with u ∈ Wm(T1) and
G ∈ Hm+1(0, T1). Moreover |u|x=r,l

|m,T1 is finite.

Proof. Step 1: Choice of the iterative scheme. Let K−1 ,K
+
1 be two compact and convex

sets in R2 such that K−0 ×K
+
0 b K

−
1 ×K

+
1 b U−×U+ (compactly contained) and let K−r,l,1×K

+
r,l,1

be a compact set in Ur,l. Let G1 be a compact set in G. Then, there exists a constant c0 > 0

such that, for any u = (u−, u+)T ∈ K−1 ×K
+
1 and u|x=r,l

∈ K−r,l,1 ×K
+
r,l,1,

λ±(u−) ≥ c0, λ±(u+) ≥ c0, ‖Lr(u|x=r
)−1‖R2→R2 ≤

1

c0
, ‖Ll(u|x=l

)−1‖R2→R2 ≤
1

c0
.

We construct a solution (u,G), where u takes values in K−1 × K
+
1 , their traces u|x=r,l

take

values in K−r,l,1 × K
+
r,l,1 and G takes values in G1. Indeed, there exists κ0 > 0 such that,

if ‖u − u0‖L∞(E+) ≤ κ0, we have u(x) ∈ K−1 × K
+
1 for all x ∈ E+. To do this, we use an

iterative scheme argument. More precisely, we look for the solution as a limit of the sequence
(un, Gn)n∈N, which solves

(4.28)



∂tu
n+1 +A(un)∂xu

n+1 = f(t, x) in ΩT ,

un+1(0) = u0(x) on E+,

Mru
n+1
|x=r

= V (Gn+1(t)) on (0, T ),

Mlu
n+1
|x=l

= g(t) on (0, T ),
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coupled with

(4.29)

{
Ġn+1 = Θ(Gn, un|x=r

),

Gn+1(0) = G0.

We choose the first iterate (u0, G0) with a function u0 ∈ Hm+1(R×E+) such that (∂kt u
0)(0, x) =

uk for 0 ≤ k ≤ m with uk defined by (4.26) and a function G0 ∈ Hm+1(0, T ) such that

(G0)(k)(0) = Gk with Gk defined by (4.27). The compatibility conditions are then satisfied by
the data u0 and G0 for the linear initial boundary value problem for the unknown (un+1, Gn+1).
By construction, both quantities

|||un(0)|||m =

m∑
j=0

‖(∂jt un)(0, ·)‖Hm−j(E+) =

m∑
j=0

‖uj‖Hm−j(E+),

m∑
j=0

|(Gn)(j)(0)| =
m∑
j=0

|Gj |,

are independent of n. Moreover, there exists K0 > 0 such that

1

c0
, |||un(0)|||m + |g|Hm(0,T ) + |f|x=r,l

|m−1,T +

ˆ T

0
|||f(t)|||mdt,

‖A‖L∞(K−1 ×K
+
1 ), ‖Mr‖R4→R2 , ‖Ml‖R4→R2 ,

m∑
j=0

|(Gn)(j)(0)| ≤ K0.

Step 2: High-norm boundedness. We want to show that the sequence (un, Gn)n∈N is
bounded in Wm(T1) × Hm+1(0, T1). We claim that for M > 0 sufficiently large (to be
determined later) and 0 < T1 ≤ T sufficently small we have for all n ∈ N:

(4.30)

{
‖un‖Wm(T1) + |un|x=r,l

|m,T1 + |Gn|Hm+1(0,T1) ≤M,

‖un(t, ·)− u0‖L∞(E+) ≤ κ0 for 0 ≤ t ≤ T1.

Let us first prove by an induction argument that for all n ∈ N

(4.31)

{
‖un‖Wm(T1) + |un|x=r,l

|m,T1 + |Gn|Hm(0,T1) ≤ M̃,

‖un(t, ·)− u0‖L∞(E+) ≤ κ0 for 0 ≤ t ≤ T1.

For the first iterate n = 0 we have

‖u0‖Wm(T1) + |u0
|x=r,l
|m,T1 + |G0|Hm(0,T1) ≤ C(K0),

for some constant C(K0) > 0 depending on K0. Hence the first bound in (4.31) holds choosing

M̃ ≥ C(K0). Moreover,

‖u0(t, ·)− u0‖L∞(E+) ≤ T1C‖u0‖W2(T1) ≤ T1CM̃,

and the second bound in (4.31) holds for T1 ≤ κ0
CM̃

. We show now that (4.31) holds at step

n+ 1 if it holds at step n. By interpolation, we have

‖un‖2W 1,∞(ΩT1
) ≤ C‖u

n‖Wm−1(T1)‖un‖Wm(T1) ≤ C(M̃),

for some constant C(M̃) > 0. By Theorem 4.5, there exists a unique solution un+1 ∈Wm(T1)
to the initial boundary value problem (4.28). In addition, taking the supremum of (4.10) over
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[0, T1], the following estimate holds

(4.32) ‖un+1‖Wm(T1) + |un+1
|x=r,l
|m,T1 ≤ C(K0)eC(M̃)T1

(
1 + |V (Gn+1)|Hm(0,T1)

)
.

Arguing as in Step 1 of the proof of Proposition 4.9 and using the first estimate in Lemma 4.6
yield

|V (Gn+1)|Hm(0,T1) ≤ CV (K0,
√
T1|Gn+1|Hm(0,T1))|Gn+1|Hm(0,T1)

while the bound (4.13) together with the inductive hypothesis (4.31) at step n gives

|V (Gn+1)|Hm(0,T1) ≤
√
T1CV,Θ(K0, T1, M̃).

Then, by choosing T1 sufficiently small, we obtain

‖un+1‖Wm(T1) + |un+1
|x=r,l
|m,T1 + |Gn+1|Hm(0,T1) ≤ 2C(K0)

and the first uniform bound in (4.31) is proved for all n ∈ N after setting M̃ = 2C(K0).
Moreover,

‖un+1(t, ·)− u0‖L∞(E+) ≤ T1 C‖un+1‖W2(T1) ≤ T1CM̃ ≤ κ0,

and the second uniform bound in (4.31) is proved for all n ∈ N.
Now, in order to improve the regularity for Gn to Hm+1 and prove the uniform bound (4.30),
we resort to (4.14). Indeed, using (4.31) yields

|Gn+1|Hm+1(0,T1) ≤
√
T1C(K0) + (T1 + 1)CΘ(K0, |Gn, un|x=r

|Hm(0,T1))

≤
√
T1C(K0) + (T1 + 1)CΘ(K0, M̃)

and, for T1 sufficiently small,

|Gn+1|Hm+1(0,T1) ≤ CΘ(K0, M̃).

Thus, we obtain

‖un‖Wm(T1) + |un|x=r,l
|m,T1 + |Gn|Hm+1(0,T1) ≤ M̃ + CΘ(K0, M̃),

which proves (4.30) for all n ∈ N with M = M̃ + CΘ(K0, M̃).

Step 3: Low-norm convergence. We show that (un, Gn) is a convergent sequence in
the Wm−1(T1) ×Hm−1(0, T1)-norm. The initial boundary value problem for the difference
un+1 − un reads

(4.33)



∂t(u
n+1 − un) +A(un)∂x(un+1 − un) = fn in ΩT ,

(un+1 − un)(0) = 0 on E+,

Mr(u
n+1 − un)|x=r

= V (Gn+1(t))− V (Gn(t)) on (0, T ),

Ml(u
n+1 − un)|x=l

= 0 on (0, T ),

with source term fn = −
(
A(un)−A(un−1)

)
∂xu

n. Applying Theorem 4.5 to (4.33) and taking
the supremum over [0, T1], we get

‖un+1 − un‖Wm−1(T1) + |(un+1 − un)|x=r,l
|m−1,T1

≤ C(K0)eC(M)T1
(
|V (Gn+1)− V (Gn)|Hm−1(0,T1) + |fn|x=r,l

|m−2,T1 + T1‖fn‖Wm−1(T1)

)
.
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We estimate the right-hand side using Lemma A.1 in Appendix and we get

‖un+1 − un‖Wm−1(T1) + |(un+1 − un)|x=r,l
|m−1,T1 ≤ CV,Θ(K0,M)eC(M)T1T1

×
(
‖un − un−1‖Wm−1(T1) + |(un − un−1)|x=r,l

|m−1,T1 + |Gn −Gn−1|Hm−1(0,T1)

)
.

Using (4.15) yields

|Gn+1 −Gn|Hm−1(0,T1) ≤ T1CΘ(M)
(
|Gn −Gn−1|Hm−1(0,T1) + |(un − un−1)|x=r

|m−1,T1

)
,

thus we obtain

‖un+1 − un‖Wm−1(T1) + |(un+1 − un)|x=r,l
|m−1,T1 + |Gn+1 −Gn|Hm−1(0,T1)

≤ C(K0,M)eC(M)T1T1

×
(
‖un − un−1‖Wm−1(T1) + |(un − un−1)|x=r,l

|m−1,T1 + |Gn −Gn−1|Hm−1(0,T1)

)
.

Hence, by taking T1 sufficiently small, we get

‖un+1 − un‖Wm−1(T1) + |(un+1 − un)|x=r,l
|m−1,T1 + |Gn+1 −Gn|Hm−1(0,T1)

≤ 1

2

(
‖un − un−1‖Wm−1(T1) + |(un − un−1)|x=r,l

|m−1,T1 + |Gn −Gn−1|Hm−1(0,T1)

)
.

Thus, (un, Gn) is a Cauchy sequence and converges in Wm−1(T1) × Hm−1(0, T1) to a limit
(u,G).
Step 4: Regularity and uniqueness. We have the following two interpolation inequalities

‖un+1 − un‖2W 1,∞(ΩT1
) ≤ C‖u

n+1 − un‖Wm−1(T1)‖un+1 − un‖Wm(T1),

and

|Gn+1 −Gn|2Hm(0,T1) ≤ C|G
n+1 −Gn|Hm−1(0,T1)|Gn+1 −Gn|Hm+1(0,T1).

From the uniform boundedness of (un, Gn) in Wm(T1)×Hm+1(0, T1) and the convergence of
(un, Gn) in Wm−1(T1) ×Hm−1(0, T1), we can conclude that (un, Gn) converges to (u,G) in(
Wm−1(T1) ∩W 1,∞(ΩT1)

)
×Hm(0, T1) and (u,G) is a solution to (4.22)-(4.23). By standard

compactness arguments we have

‖u‖Wm(T1) + |u|x=r,l
|m,T1 + |G|Hm+1(0,T1) ≤M,

and the uniqueness of the solution is obtained via a standard energy estimate argument applied
to the initial boundary value problem satisfied by the difference of two solutions. �

4.5. Well-posedness of the transmission problem across the structure side-walls.
As a direct consequence of Theorem 4.13, we can now prove Theorem 1.1, which states the
well-posedness result of the transmission problem (3.10)-(3.12) describing the interaction
between the waves and the partially-immersed structure in the OWC device. Let us recall the
statement below in Theorem 4.15 to be more complete. Before giving its proof, we need to
introduce the following assumption on the initial data.

Assumption 4.14. There exists c0 > 0 such that the initial data (ζ0, q0) satisfy:

g(h0 + ζ0(x))− q2
0(x)

(h0 + ζ0(x))2
≥ c0 ∀x ∈ E .



WELL-POSEDNESS OF AN OWC IN SHALLOW WATER 31

Theorem 4.15. Let m ≥ 2 be an integer and (ζ0, q0) ∈ Hm(E) be such that Assumption
4.14 holds. Moreover, suppose that (ζ0, q0), (qi,0, Pch,0) ∈ R2 and ζent ∈ Hm(0, T ) satisfy the
compatibility conditions in Definition 4.12 up to order m−1. Then there exists 0 < T1 ≤ T and
unique solution (ζ, q, qi, Pch) to (3.10)-(3.12) with (ζ, q) ∈Wm(T1) and (qi, Pch) ∈ Hm+1(0, T1),
where Wm(T1) denotes the same space as in (1.1) but defined in the spatial domain E. Moreover,
|(ζ, q)|x=±r,±l

|m,T1 is finite.

Proof. In order to apply Theorem 4.13, we need to show that the conditions (i)-(iii) in
Assumption 4.11 are satisfied. The condition (i) holds from the definition of A, V , Θ in
(3.15)-(3.16) and the boundary matrices

Mr =

(
0 −1 0 1

0 1
2 0 1

2

)
, Ml =

(
1 0 0 0

0 0 0 1

)
.

After remarking that the eigenvalues of A(u) in (3.13) are

±λ±(u) =
q

h0 + ζ
±
√
g(h0 + ζ),

Assumption 4.14 implies the condition (ii). Therefore we only need to verify the condition
(iii). Let us recall that the unit eigenvectors of A(u) associated with the eigenvalues ±λ±(u)
are respectively

e±(u) =
1√

1 + |λ±(u)|2
(1,±λ±(u))T .

From the definition of the Lopatinskĭi matrices and writing u as u− in E− and as u+ in E+, we
obtain that the Lopatinskĭi matrices for the 4× 4 system (3.15) associated with (3.10)-(3.11)
are

Lr(u|x=r
) =


λ−(u−|x=r)√

1+|λ−(u−|x=r)|2
λ+(u+|x=r)√

1+|λ+(u+|x=r)|2

−λ−(u−|x=r)

2
√

1+|λ−(u−|x=r)|2
λ+(u+|x=r)

2
√

1+|λ+(u+|x=r)|2


and

Ll(u|x=l
) =


1√

1+|λ+(u−|x=l
)|2

0

0
−λ−(u+|x=l

)√
1+|λ−(u+|x=l

)|2

 .

From Assumption 4.14 we know that Lr(u|x=r
) and Ll(u|x=l

) are invertible, yielding the
condition (iii). Then, the well-posedness result follows from Theorem 4.13. �

Appendix A. Some technical estimates

In this appendix, we prove some technical estimates that we have omitted in the proof of
Theorem 4.13 for the sake of readability.
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Lemma A.1. Let m ≥ 2 be an integer and assume that un, un|x=r
and Gn take values in

compact and convex sets respectively in U , Ur and G for all n ∈ N. Suppose that Assumption
4.11 and the uniform bound (4.30) hold. Then:

|
(
A(un)−A(un−1))∂xu

n
)
|x=r,l

|m−2,T1 ≤ T1C(M)|(un − un−1)|x=r,l
|m−1,T1 ,(A.1)

‖A(un)−A(un−1))∂xu
n‖Wm−1(T1) ≤ C(M)‖un − un−1‖Wm−1(T1),(A.2)

|V (Gn+1)− V (Gn)|Hm−1(0,T1)

≤ T1CV,Θ(M)(|Gn −Gn−1|Hm−1(0,T1) + |(un − un−1)|x=r
|m−1,T1).(A.3)

Proof. First, from Assumption 4.11 we have A ∈ C∞(U), then the second estimate in Lemma
4.6 and (4.30) give

|((A(un)−A(un−1))∂xu
n)|x=r,l

|m−2,T1

≤ C
∑

|α|+|β|≤m−2

|∂α(A(un)−A(un−1))|x=r,l
|L2(0,T1)‖(∂β∂xun)|x=r,l

‖L∞(0,T1)

≤ C
∑

|α|+|β|≤m−2

|∂α(A(un)−A(un−1))|x=r,l
|L2(0,T1)‖∂βun‖L∞(0,T1;H2(E+))

≤ C(M)
∑

|α|≤m−2

|∂α(un − un−1)|x=r,l
|L2(0,T1)‖un‖Wm(T1)

≤ C(M)|(un − un−1)|x=r,l
|m−2,T1 ≤ T1C(M)|(un − un−1)|x=r,l

|m−1,T1 .

Moreover, we have∣∣∣∣∣∣((A(un)−A(un−1))∂xu
n)(t)

∣∣∣∣∣∣
m−1

≤ C
∣∣∣∣∣∣(A(un)−A(un−1)

)
(t)
∣∣∣∣∣∣
m−1
|||∂xun(t)|||m−1 ≤ C

∣∣∣∣∣∣(un − un−1)(t)
∣∣∣∣∣∣
m−1
|||un(t)|||m,

where in the last inequality we have used the second estimate in Lemma 4.7. Taking the
supremum over [0, T1] and using (4.30) we get (A.2).
From Assumption 4.11, we know that V ∈ C∞(G) and Θ ∈ C∞(G × Ur). Hence the second
estimate in Lemma 4.6 and (4.15) yield

|V (Gn+1)−V (Gn)|Hm−1(0,T1)

≤ CV (|Gn+1, Gn|
W [m−1

2 ],∞(0,T1)
)|Gn+1 −Gn|Hm−1(0,T1)

≤ T1CV,Θ(|Gn, un|x=r
|
W [m−1

2 ],∞(0,T1)
, |Gn+1, un+1

|x=r
|
W [m−1

2 ],∞(0,T1)
)

× (|Gn −Gn−1|Hm−1(0,T1) + |(un − un−1)|x=r
|m−1,T1).

Using again (4.30), we then prove (A.3). �
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[4] G. Beck and D. Lannes, Freely floating objects on a fluid governed by the Boussinesq equations, Annales
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