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This article provides an analysis of the impact of asymmetrical assemblies homogenization and reflector 
modeling methods over the fission distribution, based on the first startup of the BEAVRS benchmark 
v2.0.2, in Hot Zero Power state (HZP). We use a classical two-step simulation with the deterministic codes 
DRAGON5 and DONJON5. First a transport calculation is performed with DRAGON5 on fuel assemblies, 
based on previous work conducted at the Polytechnique Montréal. Then, the complete core calculation 
is done with DONJON5 using a two-group energy mesh, in diffusion theory. The fission rates are calcu- 
lated using DONJON5 and compared to the in-core detectors data provided in the BEAVRS benchmark. 
Discrepancies between the simulation and radial adjusted measurements present a Root Mean Square 
error (RMS) discrepancy of ' 4.5% (with relative errors lower than 10%). The results show the necessity 
to consider heterogeneity when it comes to model assemblies without central symmetry.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Whether in the context of safety studies or design, numerical 
simulations make it possible to predict the neutronic behavior of 
a reactor over a comprehensive range of configurations. Depending 
on the intended objective, different numerical methods are avail- 
able. Stochastic or Monte Carlo methods can provide, with suffi- 
cient sampling, very accurate results (only errors related to 
nuclear data and statistical uncertainties remain) but this accuracy 
is associated with prohibitive calculation costs for industrial pur- 
poses. Deterministic methods, on the contrary, make it possible 
to produce fast results, subject to simplifying assumptions which 
can degrade the results.

For industrial type of analysis, the deterministic approach was 
chosen for its celerity. Although complete core calculation is possi­
ble in transport theory (Park et al., 2020), the associated computa­
tion costs remain substantial for industrial-type calculations (can 
be up to tens of hours for a multi-thread calculation Frohlicher, 
2019; Vidal et al., 2020). A two-step approach, modeling an assem- 
bly in an infinite medium, in transport theory, followed by a core 
calculation using the diffusion approximation (Darnowski and 
Pawluczyk, 2019; Bahadir, 2020; Leppanen et al., 2014; Taforeau
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and Salino, 2016), therefore remains the preferential method for 
such applications. The goal of the lattice step (transport calcula­
tion) is to produce homogenized and condensed few energy groups 
cross section libraries in order to characterize the modeled media 
in the core calculation.

The following study relates to the validation of the capabilities 
of the DRAGON5 and DONJON5 codes (Marleau et al., 2018; Hébert 
et al., 2019) to produce satisfactory results for the fission rates 
within the reactor core. The DRAGON5 code provides several sol- 
vers for the neutron transport equation in forms of modules. It 
allows the solving of neutron transport problems over a one- or 
two-dimension geometry with different boundary conditions 
available. As for the DONJON5 code, it is based on TRIVAC’s diffu­
sion and SPn solvers (Hébert, 1987), and allows the modeling of 
more complex core problems thanks to additional modules such 
as THM: for simplified thermal-hydraulics simulation. The lattice 
calculations used in this study are based on the computational 
schemes of Canbakan and Hébert (2015) and are similar to the 
REL2005 schemes of (Vidal et al., 2007). A Bi leakage model as well 
as an homogenization and condensation procedure have been 
added to the pre-existing double level scheme, in order to create 
efficient multi-group cross section libraries for core calculation. 
The two-step flux calculation in this phase takes advantage of 
the accuracy of the Method of Characteristics (MOC) on a refined
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geometry for an affordable calculation cost over the collision prob- 
ability method (Hébert, 2020).

In order to validate the calculation scheme on an industrial 
reactor geometry with asymmetrical assemblies, the modeling 
was applied to the reactor described in the BEAVRS benchmark 
(Horelik et al., 2013). The results presented relate to the fission dis­
tribution of the Hot Zero Power (HZP) configuration of the first 
operating cycle. The comparison of the differences between the 
response of the detectors modeled in DONJON5 and the data avail- 
able in the benchmark was made for different reflector models as 
well as for several different homogenization of asymmetrical 
assemblies. The module idet recently developed in DONJON5, 
and further described in Section 5.3, allows the calculation of fis­
sion rates at precise points in the core, for a cartesian 
configuration.

The results were compared with the detector responses given in 
the BEAVRS benchmark, as well as with the corrected data (remov- 
ing the azimuthal tilt) presented in version 2.0.2 of the benchmark, 
released on April 11, 2018, by the Massachusetts Institute of Tech­
nology (MIT). The calculated fission rates allowed the construction 
of two-dimensional radial maps of the DONJON5/BEAVRS devia- 
tions and two-dimensional mean values for the same deviations.

2. Benchmark for évaluation and validation of reactor 
simulations

The benchmark presents full description of the materials, geom­
etry, core loading and detectors data for the first two cycles of 
operation of a four-loop Westinghouse nuclear reactor core.

This core has different types of fuel assemblies. Some assem- 
blies bear burnable absorbers of Pyrex located in guide tubes spot. 
Throughout the rest of this article, the assemblies will be referred 
to according to their burnable absorber configuration. For example, 
the assembly with 6 Pyrex rods will be named “6BA” whereas an 
assembly without Pyrex will be named ‘‘0BA”.

This work is about studying the impact of the homogenization 
of asymmetrical assemblies over the fission distribution, which 
makes the BEAVRS reactor particularly adapted for this type of 
study since it presents several configurations with no central sym- 
metry. This is the case for assemblies 6BA and 15BA as depicted in 
Fig. 1. These assemblies are not splittable into identical eighth of an

assembly and require a special processing for flux calculation and 
homogenization as described later in this paper.

The modeled configuration is the HZP case of the first cycle. The 
core has six different assembly geometries and three enrichments 
of 235U. Its baffle width is about 2.22 cm. For the fission map com­
putation, only the ‘‘All Rods Out” (ARO) case is studied. The phys- 
ical state corresponding to this setup presents a thermal power of 
25 MWth, an inlet coolant temperature of 560 °F (566.5 K) and a 
critical boron concentration of 975 ppm.

For more details about the benchmark data, the reader can con- 
sult the BEAVRS specifications.

3. Initial two-level lattice calculation

In this section the lattice calculation options from the work of 
Canbakan and Hébert (2015) will be used.

3.1. Self-shielding

Self-shielding is performed using the Subgroup Projection 
Method (SPM) developed by Hébert (2009) and implemented in 
the DRAGON5 code. This method is based on CALENDF-type math- 
ematical probatility tables, as proposed by Hébert and Coste 
(2002). This preferred method for DRAGON5 lattice calculation 
requires an energy mesh fine enough between 22.5 eV and 
11.14 keV to get rid of the use of the slowing-down correlation 
effect inherent to the subgroup method. To this purpose, the 
SHEM361 (361 groups in energy) (Hébert and Santamarina, 
2008) or the SHEM295 (295 groups in energy) are recommended. 
In this calculation scheme, the SHEM295 has been used.

The self-shielding step has been performed on an eighth of the 
assembly (see Fig. 2a), except for 6BA and 15BA assemblies which 
require to model the assembly in half. The water strip has been 
included in the outer cells. One can notice that the cladding/fuel 
pellet gap has been diluted inside the cladding to avoid numerical 
problems that could arise when treating a small area, and the four 
annular zones in the fuel pellet on Fig. 2b, following the recom­
mendations of Santamarina et al. (2004) to compensate for the 
rim effect. In order to predict the plutonium buildup inside fuel 
pellets with more accuracy, 238U is self-shielded both over the spa­
tial and the energy domains. Whereas for the other isotopes, the

Fig. 1. Second level flux calculation geometries for 6BA and 15BA assemblies. A splittable-in-two discretization has been adopted for the middle pins to allow several-area 
homogenization (cf. Fig. 4).
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(a) Eighth of a OBA assembly (b) Fuel pin. Blue : moderator, gray : cladding
and diluted cladding/pellet gap, red : fuel.

Fig. 2. Geometry for self-shielding calculation.

self-shielding is performed only over the energy domain and aver- 
aged over space in a fuel pin.

The following isotopes are self-shielded for energies above 
4.63 eV: 235U and 238U for fuel, 90Zr, 91Zr, 92Zr, 94Zr, 96Zr, 56Fe and 
52Cr for structural materials such as burnable absorber cladding. 
The nuclear data used are from the JEFF-3.1.1 evaluation 
(Santamarina et al., 2009).

3.2. Flux computation

The flux calculation is performed in two steps on an eighth of an 
assembly, except for 6BA and 15BA assemblies which were mod- 
eled in half.

The first step is the flux computation using the interface current 
collision probability method (Sanchez and McCormick, 1982) with 
a zeroth order (P0) development of scattering cross sections, and a 
double first order (double-P1) decomposition of the angular flux at 
the interfaces (first order for the flux component following the nor­
mal vector to the interface, and first order for the flux component 
perpendicular to the normal vector to the interface). It is per- 
formed over a geometry quite similar to the one used for self- 
shielding, except for an additional annular region in the moderator 
around fuel pins, to account for better thermalization of neutrons 
(see Fig. 3a), and the separate modeling of the water strip for the 
outer pins of the assembly. This calculation is done over the 295 
energy groups of the SHEM295 mesh with consideration of upscat- 
tering. The leakage coefficients are computed during this stage 
using a homogeneous B1 leakage model, yielding one single homo- 
geneous leakage rate per energy group, as detailed by Hébert 
(2020).

The second step consists in solving a k-eigenvalue problem for 
the neutron flux with a fixed leakage rate (as computed in the first 
stage), using the Method Of Characteristics (MOC) (Askew, 1972). 
Before operating the calculation, the cross sections are retrieved 
from the first step and condensed from 295 groups in energy to 
26 groups. A superhomogénéisation (SPH) correction (Hébert, 
1980) is applied to preserve reaction rates between the first flux 
calculation and the second to come. Regarding the spatial treat- 
ment of the cross sections, each volume is processed with its 
own local flux.

The computation is then carried out over a refined geometry 
(“windmill”-type mesh, see Fig. 3b). During this stage, the leakage 
coefficient is imposed and not recomputed due to the lack of pre- 
cision of the energy mesh. It is retrieved from the first step and 
condensed over the 26 energy groups.

Following the second level calculation, a flux/volume type 
homogenization/condensation is implemented in order to obtain 
two energy groups cross sections for the core calculation. Since 
most assemblies have a central symmetry, the assembly is usually 
completely homogenized. In the case of assemblies 6BA and 15BA, 
the assembly can be homogenized by quarters in order to maintain 
a certain heterogeneity due to the arrangement of the Pyrex burn- 
able absorber pins.

4. Modifications added to the lattice scheme

4.1. Homogenization, condensation

The homogenization step allows obtaining homogenized cross 
sections on full assemblies or on assembly quarters. Whichever 
option is chosen, we systematically represent the assemblies with 
homogeneous quarters in the core calculation, in order to compare 
homogenization methods, while all other things being equal. For 
most assemblies, these quarters are the same. However, in order 
to take into account the heterogeneity due to the different num- 
bers of burnable absorbers between quarters, for assemblies 6BA 
and 15BA, those quarters can be homogenized differently. Conse- 
quently, three cases will be distinguished:

(A) half assembly lattice (Fig. 1) followed by several quarters
homogenization (Fig. 4),
(B) half assembly lattice (Fig. 1) followed by complete
homogenization,
(C) independent quarters (Fig. 5), homogenized independently.

Case A will be considered as the reference calculation given that 
it involves the fewest simplifying assumptions. This case will be 
the one studied for the majority of this paper, while cases B and 
C will be studied only in Section 6.3.

For those three cases, the homogenized cross sections were con- 
densed to two energy groups, the energy cut-off being made at

3
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(a) First level flux calculation

Fig. 3. Geometries of an eighth of a 0BA assembly for flux computation. Boundary conditions are symmetry for the diagonal and lower side, and reflection for the right side of 
the figures.

Fig. 4. Homogenization areas for 6BA and 15BA assemblies (lighter, dashed area: water gap).

0.625 eV. In order to preserve the flux at the assembly boundaries 
during the core calculation, a Selengut type equivalence (Hébert, 
2020) is implemented during this step. The homogenized cross 
sections are corrected by a multiplicative factor equal to the ratio 
of the surface flux in the water gap (hatched area on the Fig. 4)) 
to the average flux in the assembly.

4.2. Detectors model

edi. The microscopie cross section for reaction x and isotope i is 
written as

r x.i =
1

Ni/V
dV dEN/r) aXJ(r, E) /(r, E)

Vi Emerg
(1)

where Emerg is the macro-group in energy over which the condensa­
tion is performed and V is the integrated volume, i.e., the value of 
the volume after homogenization, defined as

The detectors used in BEAVRS are mobile fission chambers 
highly enriched in 235U passed through empty guide tubes placed 
in the center of fuel assemblies. In DRAGON5 and DONJON5 codes, 
we modeled the detectors by a negligible concentration (using 
10-10 atom ■ barn-1 ■ cm-1 ) of 235U in the water of those instrumen­
tation tubes. The concentration must be low in order not to change 
the flux shape behavior. During the lattice calculation in DRA- 
GON5, the cross sections of the detector isotope are then con- 
densed and homogenized. Through this homogenization, we take 
into account the flux shape within the assembly (i.e., the flux in 
the guide tube) as proposed by Marleau et al. (2018) in module

V = dV (2)
Vmerg

where Vmerg is the macro-volume over which the homogenization is 
performed.

The volume Vi is a subset of Vmerg containing the isotope i and Ni 
is the number density for isotope i defined as

N = 1 dVNi(r) (3)
V Vi

where / is the integrated flux over Emerg and Vmerg, written as

4
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Fig. 5. DRAGON5 geometries for the three quarters calculations of assembly 15BA (second level of flux computation) for homogenization case C. Top right and bottom left 
quarter are modeled by an eighth of an assembly due to diagonal symmetry.

/ = V dV dE/(r, E) (4)

V Vmerg Emerg

where axi, Ni(r) and /(~, E) are respectively the microscopic cross 
section, the number density of nuclei i and the scalar flux before 
homogenization and condensation.

5. Full-core calculation

5.1. Geometry

The whole core is modeled in the second step, with two energy 
groups, using the DONJON5 code. The assemblies are represented 
by homogeneous quarters. The four quarters are identical for 
assemblies with central symmetry but different for cases 6BA 
and 15BA, see Section 4.1. There are 31 planes defined along the 
z axis, two of them are composed solely of reflector materials 
(top and bottom). The remaining 29 are identical in height and 
content. The radial reflector shown on Fig. 6a is defined in the 
numerical model by a peripheral layer of assemblies as shown in 
Fig. 6b. The cross sections defining the reflector material are calcu- 
lated according to different methods presented below. We 
neglected (i.e., not modeled) the grid spacers.

5.2. Reflector model

The equivalence methods used for the fuel are not applicable to 
the reflector, as these typically seek to preserve reaction rates and 
diffusion behavior. For an equivalent reflector, one rather wishes to 
preserve its reflective properties against an external neutron 
source. Various methods have been developed for this purpose. 
In this paper, we will compare the following methods:

• from Koebke et al. (1986) and
• from Lefebvre-Lebigot, as reported by Marguet (2018) and

Richebois (1999).

Given the similarities between these two methods, their deriva- 
tions are first developed jointly in 5.2.1, while the remainder are 
derived separately in 5.2.2 and 5.2.3. An alternative reflector model 
based on generalized perturbation theory (GPT) and mathematical 
programming was proposed by (Hébert and Leroyer, 2014).

5.2.1. Common approach
Both Koebke and Lefebvre-Lebigot methods are based on an 

equivalence between:

5
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Equivalent
reflector

Fig. 6. Quarter core geometry.

(1) several hundred energy groups 1D transport carried out on a 
geometry representative of the interface between the core and 
the reflector (see Fig. 7a), and
(2) two energy groups analytical 1D diffusion on an equivalent 
homogeneous reflector (see Fig. 7b).

For the transport problem pointed in (1) on such a geometry 
(Cartesian, low dimensionality, deep), the discrete ordinates 
method is particularly efficient, with its mesh-to-mesh propaga­
tion. We use a high angular order (S16) to capture the very anisotro- 
pic effects. It is necessary to choose a precise limit between the 
core and the reflector. To some extent, however, this choice is arbi-

trary. We may select a limit at the surface of the last fuel pin, a fic- 
titious boundary in the water, or the inner surface of the steel 
baffle. We have chosen this latter solution, but this choice is open 
to debate and most often unmentioned.

The diffusion equations for the problem pointed in (2), i.e., on a 
1D slab, with two groups, neglecting the upscattering, for a homo- 
geneous and non-multiplying system, are written as

-01^ + (Ra1 + Ï1!2)/1(x)= 0
2 , (5)

—D2~dX2r + Ra2/2(x) = R1!2/1(x).

(a) Representative 1D model of a real reflector geometry. The fuel zone depth is the width of an assembly. 
The fuel properties are obtained by a classical homogenization (see 4.1) of any PWR assembly but without 
condensation.

ê S
! «

§1
ro 2

■o
o i

m *-

Homogeneous reflector cross sections 
and diffusion coefficients

<0v
J=W’c
CD
>
X

oc
(b) Equivalent reflector model. The cross sections and diffusion coefficients of this area are unknowns that 
shall be determined through a reflector équivalence method.

Fig. 7. Representation of the reflector 1D radial models.
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As a matter of fact, both Koebke and Lefebvre-Lebigot neglected 
reflector upscattering in their original methods. However, this 
approximation could be lifted without significant difficulty. The 
solution for the set of Eqs. 5 can be found analytically, considering 
an arbitrary flux on the left and a flux vanishing at infinity on the 
right. From this, an analytical expression of the current can also be 
derived. However the flux or current behavior within the equiva- 
lent reflector is irrelevant: we are only interested in the interface 
between the core and the reflector. At this location (x = 0) and for 
our case, one finds

J1 — /1v/ D1 (Ra1 + R1—2)

J2 — fcVD2Ra2 - /1 R1!2
Ra2D1 +\/ (Ra1+R1—2)D2

(6)

where J and / are respectively the current and flux at the interface 
between the core and the reflector. We have dropped the signs indi- 
cating x — 0 to lighten the notation. All that remains is to define 
what exactly equivalent reflectors are.

5.2.2. Koebke’s method
Koebke considers two reflectors as equivalent once they share 

the same R matrix as in

/g— Rgg'Jg' (7)

because it was noticed that this matrix was invariant for a given 
reflector, regardless of the fuel in front of it (for any fuel tempera- 
ture, burnup, etc.). Two independent transport calculations are nec- 
essary and sufficient to calculate the elements of this matrix, since 
Eq. (7) becomes, for g — 2,

/A = R21JA + R22JA 

1 /B — R2JB+R22JB

R21
/AJ2-/2JA
JAJ2JA

R22
JA/2-JB/A
JAJ2-J?JA

(8)

For g — 1, Eq. (7) turns into

/1 — R11J1 (9)

so we could compute Ru with any of the two previous transport cal­
culations (A or B) and obtain very similar results. To avoid a small 
variation due to the order of A and B, we use the average

R11
1
2

'/A,

J J
(10)

As can be seen with Eq. (8) by taking A — B, the two cases must 
be sufficiently different to avoid degeneracies. The exact choice of 
the neutron source does not matter: the only requirement is that 
two different spectra, representative of a PWR, are used to differen- 
tiate, in the reflector response, the thermal neutrons coming from 
the slowdown in the reflector (R21) from those already emitted as 
thermal neutrons (R22). As suggested by Marguet (2018), we use 
water in the fuel zone to have a large spectrum change. The water 
densities and the boron massic concentrations are, respectively,

(A) PH2o — 0.55 g/cm3 with 500 ppm of boron, and
(B) Ph,o — 0.7 g/cm3 without boron.

Only the fuel change is considered while the reflector being 
characterized remains constant. In particular, the boron concentra­
tion in the reflector water is kept constant. These three known ele- 
ments of R can be related to the five unknowns of the equivalent 
reflector cross sections (Ea1,Sa2,E1—2) and diffusion coefficients 
(Di,D2) through comparisons between Eqs. (6) and (7). Further- 
more, Koebke chooses to add a sixth unknown, i.e., a discontinuity 
factor for thermal neutrons only, through the introduction of

heterogeneous fluxes with f2 — /2et//2 and J2 — JÏ)et. So we have 
three equations (from R) and six unknowns. To address this issue, 
Koebke proposes a flux-volume homogenization of the reflector 
region to set Ea1, Sa2 and E1—2. Expressing the last three unknowns, 
one finds

D1

f 2

D2

1
R11 (Ra1+R1—2 )
-b±V'b2-4ac 

2a
f 2

R2hRa2

with

(11)

, _ V(Ra1+ R1—2) R21 (Ra1 +R1 —>2) R1 !2R22

22
b — R1—2 D1Ra2

c — — R21Ea2D1y/(Ra1 + R1—2)Ra2-

(12)

Up to now we have not found a situation in which b2 - 4ac < 0 
and we have always had two solutions. But curiously, the
+%/b2 - 4ac solution of f 2 is never mentioned in the literature 
(Koebke et al., 1986; Müller, 1991), even though it is a mathemat- 
ically and physically viable solution (e.g. f 2 > 0). In practice, how- 
ever, it leads to unreal power distributions. To our knowledge, this 
is the only reason to eliminate it. Finally, as suggested by Müller 
(1989), we incorporate f2 discontinuity factor into cross sections 
and diffusion coefficients in a manner similar to a SPH equivalence 
with

1
I2 — f f2

Ra2 — 12Ra2 D2 — 12D2. (13)

5.2.3. Lefebvre-Lebigot’s method
Through numerical transport experiments (see 5.2.1 point (1)), 

Lefebvre and Lebigot noticed that the ratio J1//1 (see Eq. (6)) is 
practically constant for a given reflector, whatever the fuel it faces. 
This parameter, computable by a transport calculation, is named

R1 /1. (14)

As for the ratio J2//1 (see again Eq. (6)), it varies for different 
fuels in an almost linear fashion as a function of /2//1

J2 /2 
— R2 - R3 (15)

where R2 and R3 are respectively its slope and y-intercept opposite. 
Obviously, two distinct points (see Fig. 8) are necessary and suffi- 
cient to determine

R2 —
AB /1 J2

AB /1 /2

BA /1 J2
BA /1 /2

(16)

and

h

0 - 

-Rs '

Case B
•

Case A X 

--"1 Slope = R2
<t> 1

Fig. 8. Lefebvre-Lebigot's R2 and R3 can be determined from two points A and B by 
plotting J2//1 as a function of /2//1-

7



Kévin Frohlicher, V. Salino and A. Hébert Annals of Nuclear Energy 157 (2021) 108221

r3
[A B B A J2 $2 ~~ J2 $ 2 
AB B A $1 $2 u $1 $2

(17)

We use the same transport calculations (A and B) for Koebke 
and Lefebvre-Lebigot methods. Just like in Koebke’s approach, 
these three known elements (R1, R2 and R3 ) can be related to the 
five unknowns. For the last two unknowns, Lefebvre and Lebigot 
chose to set the reflector’s diffusion coefficients to values close to 
those of the fuel in order to avoid large flux gradient discontinu­
ités that could ruin the diffusion discretization. It is a common 
practice, as proposed by Lefebvre and Lebigot, to take

Dlefl = 1.3 cm D2efl = 0.4 cm (18)

because, for a PWR, we have

DÎuel « 1.3 cm D2uel « 0.4 cm. (19)

At first sight, this choice may seem arbitrary. It is in fact as arbi- 
trary as the homogenization proposed by Koebke to obtain Ea1, Sa2 
and E1!2. With the Eqs. (6), (14) and (15), we can express the other 
three unknowns as

in DONJON5 is used. The positions of the detectors are provided 
to the module, and we perform an evaluation of fission chamber 
response by integrating the fission rate over the detector positions, 
as proposed by Hébert et al. (2019) in module idet. In our case, 
each detector is located at the intersection of four assembly quar- 
ters. The flux is interpolated at the interface of each assembly quar- 
ter and then reaction rates are computed. However, the Raviart- 
Thomas polynomial solution is discontinuous at interfaces: there 
are actually four different reaction rates at the detector location 
(one for each quarter). To overcome this problem, the module idet 
allows the user to define an area over which the calculated reaction 
rates are integrated. In this case the chosen area corresponds to the 
real detector area described in the benchmark specifications. The 
flux shape obtained in the lattice calculation is taken into account 
during the homogenization as described by the Eq. (1) in associ- 
ated Section 4.2. This means that the exact position and volume 
of the detector are taken into account in spite of the homogeniza- 
tion applied to the whole (or quarter) assembly.

6. Numerical results

Ra2
D2

R1! = R3
(Di +^)

Ra1
D1

R1!2. (20)

5.2.4. Discussion
While the two approaches may seem quite different in their 

forms, a closer look at the Koebke and Lefebvre-Lebigot equations 
reveals that

We strive to participate in reproducible research, so we’ve 
released our reflector, assemblies and full-core datasets in Salino 
(2020) and Frohlicher (2020). Our results were obtained with ver­
sion 5.0.5 (beta, revision 1761) of DRAGON5 and DONJON5 avail- 
able from Marleau et al. (2018).

In this section we present the axially integrated fission rates 
obtained for the core calculation. In particular, we will compare:

/ = RkJ 
J = Rll/ 

and

Rk = Ru1 

with

• the minimal relative error,
(21) • the maximum relative error,

• the Root Mean Square error (RMS2D),
• DONJON5/BEAVRS relative error radial maps.

22 We focus on the root mean square discrepancy RMS2D, defined 
as

J

>1 

, $2 

V 
J2 /

Rk = 

Rll =

R11 0

R21 R22

R1 0

uR3 R2

(23)

As can be seen, the two, Koebke and Lefebvre-Lebigot, methods 
lead to heterogeneous-homogeneous conservations. While Koebke 
method conserves the RK matrix, the Lefebvre-Lebigot method con­
serves the inverse of RK matrix, which is strictly equivalent. Their 
very few differences are exhaustively presented in Table 1. 
Although this would require further research, we suspect that 
almost all of the differences between the results of these two 
methods stem from the introduction of f2.

5.3. Detectors response with module idet

In order to compute the response of the modeled detectors 
described in Section 4.2, the module idet recently implemented

RMS2D

N Nz 2

E RBEAVRS,iRdet,2D
i=1 z=1

N
(24)

V /
where R™5-1' is the detector response at height z (integrated over 
all Nz axial positions) and radial position i (N being the number of 
measurements available radially). RBEAVR?-’ is the axially integrated 
detector response published in the BEAVRS documentation.

The relative response error is defined as such:

e =

Nz
rDONJON5J RBEAVRS,iRdet,z Rdet,2D

rBEAVRSJRdet,2D
x 100 (25)

Table 1
Differences between the Koebke and Lefebvre-Lebigot methods; from the point of view of the former since it introduces an additional degree of freedom (DoF), namely f2.

Method Unknowns Fixed parameters Value of the fixed parameters Rationale

Koebke D1 Ra1 Reflector region flux-volume homogenization Conservation of reaction rates in the reflector region
D2 Ra2
f 2 R1!2

Lefebvre Lebigot Ra1 D1 1.3 cm Avoid flux gradient discontinuities
Ra2 D2 0.4 cm

R1!2 f2 1 Unintroduced DoF

8
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6.1. Numerical quadrature effects

The diffusion solver is based on a mixed dual finite elements 
method. The geometry is discretized by the discretization module 
(trivat module in DONJON5) and values are interpolated 
between the node by a polynomial function. The mass matrices 
used by the solver are computed by the same discretization mod­
ule using either a Gauss-Lobatto quadrature (nodal type colloca­
tion) or a Gauss-Legendre quadrature (superconvergent finite 
elements). Here the impact on results is studied for these two 
quadratures and for two types of polynomials, quadratic and cubic. 
The reflector cross sections are computed with the Lefebvre- 
Lebigot method.

We notice on the Fig. 9 that the errors follow a checkerboard 
pattern. There is also a tilt between the center, where the discrep- 
ancies are negative, and the periphery of the core, where the dis- 
crepancies are positive. These effects appear in all the 
comparisons presented in this paper.

The results presented in Table 2 show better results when cubic 
polynomials are used. The use of parabolic polynomials does not 
allow satisfactory results as illustrated by RMS2D of 7.39% and 
7.98%.

Despite a theoretical decrease of precision due to a hollower 
matrix in the case of a Gauss-Lobatto quadrature, we obtain more 
satisfactory results with a RMS2D lower than the one achieved for a

Gauss-Legendre quadrature for both parabolic and cubic polyno- 
mials (see Table 2). This phenomenon is probably due to an error 
compensation that may occur in the calculation. As expected, cubic 
polynomials allow for better results. The checkerboard error pat­
tern is less pronounced for the Gauss-Lobatto quadrature when 
used in conjunction with cubic polynomials, as illustrated in 
Fig. 9b.

6.2. Reflector model effects over errors

According to Table 3, the RMS2D is lower, though of the same 
order, when the reflector is modeled by the Koebke method. The 
Koebke seems to be slightly better than the Lefebvre-Lebigot 
method as seen in Fig. 10a for which results are better than those 
presented on Fig. 9b. Nonetheless, the errors being of the same 
order of magnitude, this shows that both methods are suitable 
for this type of calculation.

While the results seemed improved by using a Gauss-Legendre 
quadrature with a Koebke reflector as seen in Table 3, Fig. 10b 
shows a degradation of the results, for which the checkerboard 
pattern is amplified compared to the results obtained with a Koe- 
bke reflector with a Gauss-Lobatto quadrature.

For the remainder of this article, the Koebke reflector with a 
Gauss-Lobatto quadrature and cubic polynomials are used.
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Fig. 9. Fission rates relative discrepancies (%) between DONJON5 and BEAVRS measurements for Lefebvre-Lebigot reflector type.

Table 2
Numerical quadrature effects results.

Quadrature Polynomials Min (%) Max (%) RMS2D (%)

Gauss-Lobatto parabolic -12.76 +12.46 7.39
Gauss-Legendre parabolic -15.52 +11.47 7.98
Gauss-Legendre cubic -10.11 +10.86 5.47
Gauss-Lobatto cubic -9.54 +10.16 5.22

Table 3
Reflector model and quadrature effects over global results (cubic polynomials).

Reflector method Quadrature Min (%) Max (%) RMS2D (%)

Lefebvre-Lebigot Gauss-Legendre -10.11 +10.86 5.47
Lefebvre-Lebigot Gauss-Lobatto -9.54 +10.16 5.22
Koebke Gauss-Legendre -8.47 +8.37 4.46
Koebke Gauss-Lobatto -8.78 +8.49 4.66
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(a) Koebke reflector, Gauss-Lobatto quadrature (b) Koebke reflector, Gauss-Legendre quadrature 
(DUAL 3 2) (DUAL 3 3)

Fig. 10. Fission rates relative discrepancies (%) between DONJON5 and BEAVRS measurements for Koebke reflector type (cubic polynomials).

6.3. Homogenization for asymmetric assembliesTable 4
Quarter homogenization influence results.

Case Min (%) Max (%) RMSzd (%)

Homogenization case A (Ref.) -8.78 +8.49 4.66
Homogenization case B -14.28 +15.30 8.22
Homogenization case C -8.51 +7.56 4.50

In this section, the comparison between the calculations per- 
formed with different cross section homogenization (cases A, B 
and C described in Section 4.1) is presented. As a reminder, results 
presented previously were obtained with case A homogenization.
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Fig. 11. Fission rates relative discrepancies (%) for different assembly homogenization.
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Fig. 12. Fission rates relative discrepancies (%) for different assembly homogenization with CASMO5/SIMULATE5 code sequence (retrieved from Bahadir, 2020).

Table 4 reports the differences observed on the radial fission 
rate map. Taking the heterogeneities into account makes it possible 
to improve the modeling significantly, -3.56% on the RMS2D for 
homogenization case A compared to the homogenization case B 
with homogeneous assemblies, as well as an absolute decrease in 
the minimum and maximum deviations. In a recent paper 
(Bahadir, 2020), Bahadir obtains lower differences for the RMS 
obtained comparing calculation results to data provided in BEAVRS 
(-1.38% between cases A and B, and -1.45% between cases C and 
B) with CASMO5/SIMULATE5 code sequence. Fig. 11a shows that 
the maximum errors are located on the sides, whereas for the 
heterogeneous quarters case, the maximum error is located in 
the corner at the 15BA assembly location (see Fig. 10a). Fig. 11b 
shows the difference between several-area homogenization (case 
A) and complete homogenization (case B). One should note that 
the former method does not add computing time, hence leads to 
a significant improvement. The independent quarter modeling 
(case C) does not present so much difference with our reference 
(case A) as shown on Figs. 11c and 11d, respectively. The results 
obtained with CASMO5/SIMULATE5 show the same behavior 
between case A and case B (see Fig. 12a). As for the comparison 
between case A and case C, maximum discrepancies are still for 
6BA and 15BA assemblies, but where DRAGON5/DONJON5 overes- 
timates case C fission rates compared to case A, CASMO5/SIMU- 
LATE5 seems to underestimate them and vice versa. These 
conclusions come from Fig. 12b, which was reconstructed from 
data provided in Bahadir (2020).

6.4. Effective multiplicative factor

In this work, we chose to focus on the radial fission map. 
Nonetheless, the keff computed for the different reflector models 
and homogenization configurations were compared, and found to 
be relatively coherent. The maximum discrepancy is obtained 
between the homogenization cases B and C with +155 pcm for 
case B. Considering quarters in an infinite medium or inside their 
assembly environment (case C and A) only counts for 7 pcm. 
Finally, the reflector model did not change the result for more than 
20 pcm.

7. Conclusion

The work described in this paper aims at presenting a full-core 
industrial-type calculation scheme for a PWR based on a transport/ 
diffusion computation with the Canbakan and Hébert lattice

scheme. It has been shown that DRAGON5/DONJON5 codes can 
perform HZP full-core calculation with less than 10% relative dis- 
crepancies over the radial fission map, corresponding to a radial 
RMS discrepancy of ' 4.5%. Results in the Section 6.3 assess the 
effect of quarter homogenization for asymmetrical assemblies (like 
6BA and 15BA for BEAVRS) on a full-core calculation. The orders of 
magnitude of the discrepancies observed in this article match the 
one calculated with CASMO5 and SIMULATE5 in Bahadir (2020). 
One should recall that taking into account those heterogeneities 
up to a certain extent (here quarter assembly scale) can signifi- 
cantly improve results over the whole assembly.

The best results were obtained using Koebke method for reflec- 
tor treatment, a Selengut equivalence for the assemblies homoge- 
nization, as well as a Gauss-Laubato or Gauss-Legendre quadrature 
and cubic polynomials for the finite elements.

Finally, this work opens the path towards a more complex mod- 
eling of BEAVRS with DRAGON5 and DONJON5. It was not intent of 
this paper to model feedbacks and depletion mechanisms. How- 
ever, modules are available in DONJON5 code to simulate those 
effects for future work on industrial PWR. It has also been shown 
that the flux tilt and fission map are significantly sensitive to the 
reflector model used. Improving those models, based on compar- 
isons with Monte Carlo calculations, or using hybrid methods, 
could improve the results of the core calculation.
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