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Asymptotic analysis of different covariance matrices estimation

for minimum variance portfolio∗

Linda Chamakh† Emmanuel Gobet‡ Jean-Philippe Lemor§

April 23, 2021

Abstract

In dynamic minimum variance portfolio, we study the impact of the sequence of covariance
matrices taken in inputs, on the realized variance of the portfolio computed along a sample
market path. The allocation of the portfolio is adjusted on a regular basis (every H days) using
an updated covariance matrix estimator. In a modelling framework where the covariance matrix
of the asset returns evolves as an ergodic process, we quantify the probability of observing an
underperformance of the optimal dynamic covariance matrix compared to any other choice.
The bounds depend on the tails of the returns, on the adjustment period H, and on the total
number of rebalancing times N . These results provide asset managers with new insights into
the optimality of their choice of covariance matrix estimators, depending on the depth of the
backtest NH and the investment period H. Experiments based on GARCH modelling support
our theoretical results.

Keywords: covariance matrix estimation, portfolio theory, deviation inequality, ergodic
process.

MSC2010: 62M10, 91G10, 37Axx, 62G05

1 Introduction

The mean-variance efficient portfolio theory by Markowitz [Mar59] has had a profound impact on
modern finance. The Markowitz portfolio selection requires estimates of the covariance matrix
and of the average expected returns. The covariance matrix can be either estimated in a non-
parametric way, using sample-based empirical estimation, or in a parametric way, using factor
models for example. In both cases, we may require sliding moving averages on the historical data.

Yet, the selected allocations are very sensitive to the values of the covariance matrix and expected
returns used for its computation, and small changes in the inputs can lead to large changes in the
allocations [Mic89].

∗Acknowledgements. This research is supported by the Chair Stress Test, RISK Management and Financial
Steering of the Foundation Ecole Polytechnique and by the Association Nationale de la Recherche Technique. This
work is part of the first author’s doctoral thesis (funded by BNP Paribas), under the supervision of the other authors.
†Global Markets Quantitative Research – BNP Paribas, France. Email: linda.chamakh@bnpparibas.com
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1. Introduction

On the other hand, it is well known that financial data exhibit heteroscedasticity, that is to say
time dependent conditional covariance. This statistical property, referred to as stylized fact in the
financial data setting, has been largely documented in the literature ([Con01], [EP07]). This implies
that the expected covariance matrix in the near future can be very different from the average of the
expected covariance matrix over a long time horizon. In this work, we aim to address the problem
of the covariance matrix choice only.

In this work, we are interested in the forecast of the realized covariance for a specific time and
period of investment. The minimum variance portfolio is the portfolio taking as input a covariance
matrix and giving as output the allocation minimizing the associated variance. The key quantity
is then the realized covariance over the period of investment. We consider a model for the returns
of type

rt|Ft−1
∼ N (0, Vt),

denoting t the time of investment and H the period of investment, the realized covariance cor-
responds to the future matrix 1

H

∑H
k=1 rt+kr

>
t+k. Its best estimation at time t is the conditional

realized covariance:

1

H
E

[
H∑
k=1

rt+kr
>
t+k|Ft

]
=

1

H

H∑
k=1

E [Vt+k|Ft] .

For H = 1, it coincides with the conditional covariance Vt+1; when the period of investment exceeds
the period of observation of the returns (H > 1), this quantity can still be estimated at time t.
In practice, t and H are measured in days and H = 21 would correspond to an investment over a
month (in business days) for example.

Usually, the asset manager might also consider a historical based covariance 1
T

∑T
k=1 rt−kr

>
t−k

based on the past returns. When the backtest size T goes to infinity, this estimator converges to
the stationary covariance matrix V∞.

The purpose of this work is to study the impact of the choice of the covariance matrix on the
performance of the strategy.

In particular, we would like to give optimality guarantees under the form of concentration of measure
inequalities of the outperformance of the portfolio based on the conditional realized covariance,
versus any other covariance estimate Vref. In the context of minimum variance investment, the
natural portfolio metric is the realized variance, also called out-of-sample variance of the portfolio.
Our result takes the form of a high probability event over the sums of the realized variance (RV)
for N rebalancing dates of the portfolios:

P

(
N∑
n=1

RV

(
1

H
E

[
H∑
k=1

rtn+kr
>
t+k|Ftn

])
≤

N∑
n=1

RV (Vref)

)
≈ 1− c

(
H

N

)q
where c > 0 is a constant independent from H and N and q is a positive constant depending on
the integrability of the process.

It means that the realized variance of the portfolio based on the conditional realized covariance
will on the long term be lower than with other covariance with a high probability. The probability
is even higher as the number N of times the portfolio is rebalanced grows, and decreases with the
period of investment H, with a convergence rate increasing with the integrability of the process.
The fact that the probability decreases with H is due to the fact that as H goes to infinity, the
conditional realized covariance tends to the stationary covariance, which becomes optimal. But as
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1.1 Literature Background

we may illustrate later, the half-life time associated to financial returns is often larger than the
usual order of magnitude for H used by practitioners. Hence, considering non infinite H as we do
is meaningful.

1.1 Literature Background

Our article falls within the line of the sensitivity analysis for Markowitz allocation articles.

In Guigues [Gui11] and Kan et al [KZ07], the authors give bounds on the portfolio risk as function of
the variation of the input. In their approach, the metric is the mean-variance utility: U(w,µ,Σ) =
tw′µ − 1

2w
>Σw. Using perturbation analysis results from Bonnans and Shapiro [BS00], Guigues

shows that for two pairs of inputs (µ1,Σ1) and (µ2,Σ2), the optimal utilities difference can be
bounded by the norm of the inputs differences:

|U(w∗2,µ2,Σ2)− U(w∗1,µ1,Σ1)| ≤ 1

2
|Σ2 − Σ1|∞ + k|µ2 − µ1|∞

where w∗ is the portfolio which maximizes the mean-variance utility in w. In Kan and Zhou’s
article, the authors assume a multivariate Gaussian model for the returns and provide bounds
on the expected difference between the utility of the mean variance portfolio with sample based
estimates for µ and Σ versus the optimal utility with the true parameters µ and Σ (also called
population parameters). The bound is linear in the number of assets and proportional to the inverse
of the time of estimation.

Their bound holds on the expected value of the risk whereas in our approach, it is on the empirical
risk, which is closer to practitioners needs.

A first attempt could be to use concentration of measures results for matrices (Tropp [Tro12], El
Karoui [EK18]), and combine them with the aforementioned sensitivity results. But usually, this
approach relies on independence properties between the matrices, which we don’t have since Vt is
a stochastic process, and on high order integrability (like sub-Gaussian tails) which we don’t have
since usually, asset returns have heavy tails.

The optimal horizon-adapted covariance matrix is similar to the one proposed in De Nard et al
[DNLW18]. In this article, the authors compare empirically the performance of the minimum
variance portfolio with different dynamic and static covariance estimation methods, including the
GARCH-Dynamic Conditional Correlation (GARCH-DCC) models for returns or for residuals of a
static factor models. Their experiments show that these two models outperform 10 other parametric
estimation models in term of realized out-of-sample variance, which is in line with the theoretical
results we have obtained in this work.

1.2 Contribution and outline of this work

In this work:

• We give guarantees of the optimality of the conditional realized covariance in the minimum
variance portfolio setting in the form of a large deviation inequality, with a convergence rate
polynomially decreasing in the number of rebalancing times of the portfolio;
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2. Formulation of the problem

• We give a scheme for estimating this covariance matrix in the specific GARCH-Constant
Conditional Correlation (GARCH-CCC) model;

• We display results of numerical experiments to illustrate our statements.

Section 2 provides a presentation of the problem, introduces the notations and states the main
result of this work. In Section 3, the proof of the main result is given. In Section 4, we introduce
the GARCH-CCC model and verify that it satisfies the conditions of Section 2. Section 5 presents
the result of the numerical experiments.

2 Formulation of the problem

2.1 Problem Setup

The model

Consider a pool of d assets, with daily centered returns processes r1,t, . . . , rd,t. Denote by rt the
vector of the returns processes from day t−1 and t. Let {ηt}t≥0 i.i.d., ηt ∼ N (0, Id) the innovations
process and Ft = σ{ηs, 0 ≤ s ≤ t} the associated filtration. We assume that rt is given by:

rt = V
1/2
t ηt, ηt ∼ N (0, Id), t ≥ 1, (2.1)

where Vt ∈ Rdxd is a Ft−1 measurable, positive definite matrix. It means that rt|Ft−1
∼ N (0, Vt).

The initial condition V1 is deterministic.

We assume that {Vt}t>1 is square integrable, and we denote pmax ≥ 2 s.t. E [|Vt|pmax ] is finite for
t > 1.

Covariance notation

A given portfolio with the allocation vector w at time Treb and a holding period of H has the
realized variance:

w>

(
H∑
k=1

rTreb+kr
>
Treb+k

)
w = w>RCH,Trebw (2.2)

with RCH,Treb denoting the realized covariance over the period of investment. We seek for the
portfolio which minimizes this realized variance.

At the time of the investment, the best estimation of RCH,Treb is:

cRCH,Treb := E [RCH,Treb |FTreb ] =

H∑
k=1

E [VTreb+k|FTreb ]

which we call the conditional realized covariance. Given a covariance matrix C which we assume
to be definite positive, we will consider the following risk optimization under constraints

mv(C) := arg min
w∈W

w>Cw,
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2.1 Problem Setup

t = 0

(V1)

t = 1

(r1, V2)

t=t1
=H

(rH , VH+1)

t=t1+H−1
=2H−1

(r2H−1, V2H)

t=t1+H
=2H

(r2H , V2H+1)

t

Figure 1: Ilustration of quantities time-dependence in our setting: since rt and Vt+1 are Ft mea-
surables, they are the known quantities at each time t. The red dots dates correspond to the
rebalancing times.

where W is the set of constraints containing at least the budget constraint and a maximal allocation

constraint:
{
w = {wi}i∈{1,...,d} ∈ Rd :

∑d
i=1wi = 1, and |wi| ≤ cw, i ∈ {1, . . . , d}

}
⊂ W, cw > 0.

We assume that W is closed and convex, which ensures the existence and uniqueness of mv(C).
We aim at showing that mv(cRCH,Treb) is a good FTreb-measurable allocation for minimizing the
realized variance (2.2).

We will consider multiple rebalancing times of the portfolio: Treb = t1, . . . , tN , tn+1 − tn = H,
t0 = 0.

Let us introduce the following processes:

RN,H :=
N∑
n=1

mv(cRCH,tn)>RCH,tn mv(cRCH,tn),

cRVN,H :=
N∑
n=1

mv(cRCH,tn)>cRCH,tn mv(cRCH,tn),

Rref
N,H :=

N∑
n=1

mv(Vref)
>RCH,tn mv(Vref),

cRV ref
N,H :=

N∑
n=1

mv(Vref)
>cRCH,tn mv(Vref),

(2.3)

with Vref is a deterministic, positive definite covariance matrix which we take as the benchmark
covariance the asset manager considers for his optimization.

• RN,H (resp. Rref
N,H) is the realized variance of the cRCH,tn-based portfolios (resp. the Vref-

based portfolio);

• cRVN,H (resp. cRV ref
N,H) denotes the sum of conditional realized variances of the cRCH,tn-

based portfolios (resp. the Vref-based based portfolio).

For pmax ≥ 2, our main result Theorem 2.2 takes the form:

P
(
RN,H < Rref

N,H

)
≥ 1− C

(
H

N

) pmax
2

.

This inequality is of the form of the probability of the realized variance being lower (e.g. better) for
the conditional realized covariance-based portfolio than for the reference covariance-based portfolio.

The probability bound is polynomially decreasing in N , the number of rebalancing times of the
portfolio and polynomially increasing in H, the investment horizon, with an exponent pmax

2 equal
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2.2 Model assumptions

to a quarter of the maximum finite moment of the returns. This relatively slow convergence
(polynomial rather than exponential) stems from the low integrability on the process rt.

The main message of this result is that, on the long-run (N going to infinity), the conditional
realized covariance-based portfolio is outperforming with high probability. For very large H though,

this bound might become loose, since the infinite-horizon estimate of
RCH,Treb

H coincides with the
stationary covariance V∞.

2.2 Model assumptions

We recall that we are under the model (2.1) for the returns. We are now going to specify the
assumptions on the conditional covariance matrix Vt.

We denote S ⊂ Sd+ the state space on which Vt takes its values, where Sd+ is the set of symmetric
positive definite matrices.

Hstat. {Vt}t∈N∗ possesses a strictly stationary and ergodic distribution µ with at least L2 moment
and V∞ :=

∫
S vµ(dv).

HS . {Vt}t∈N is a time homogeneous, aperiodic Lebesgue-irreducible Markov chain1 on the state-
space S.

HL. There exist some constant δ ∈ (0, 1), b ∈ R and a measurable function L : S → [1,+∞) s.t.
lim
|x|→∞

L(x) = +∞, and an accessible small set C ⊂ B(S), such that for all V1 ∈ S,

E
[
L(V2)

∣∣V1

]
≤ δL(V1) + b1C(V1).

Hpmax. Under HL, the growth of L at infinity is polynomial of order pmax: ∃cL, CL > 0, cL|x|pmax ≤
L(x) ≤ CL(1 + |x|pmax).

Hx. {xt}t∈N∗ denotes a portfolio allocation process, e.g. a Ft-measurable process with values in W,
hence bounded: P (|xi,t| > cw) = 0 for i ∈ {1, . . . , d}.

As will be shown later in the proof, these assumptions are compatible with the existence of moment
pmax <∞.

2.3 Main results

We will call performance gap the quantity `H defined by the expected value of
cRV ref

N,H−cRVN,H
N under

the stationary law:

`H := E

[
cRV ref

N,H − cRVN,H
N

∣∣∣∣V1 ∼ µ

]
.

It is a key quantity since it can be interpreted as a performance gap between the benchmark and
the estimated conditional realized covariance portfolio.

Let us first state a result on the sign of `H .

1We refer the reader to paragraph 3.2.1 for reminders on Markov chains elements of language.
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2.3 Main results

Proposition 2.1 (Non-negativity of the performance gap). Assume Hstat, HS , HL and Hpmax.
Then, `H is finite, deterministic, and non-negative.

Our main result is the following:

Theorem 2.2. Assume that {Vt, t ∈ N∗} satisfies assumptions Hstat, HS , HL and Hpmax. Assume

that `H is strictly positive, then for any N,H ∈ N∗, the processes RN,H , R
ref
N,H defined in (2.3)

satisfy:

P
(
RN,H > Rref

N,H

)
≤ C

`pmax

H

H
pmax

2

N
pmax

2

,

where C > 0 depends on H, pmax, d and L.

Comments:

• This inequality is of the form of an upper bound on the probability that the realized variance
is higher (e.g. worse) for the conditional covariance-based portfolio than for the reference
covariance-based portfolio. It is a probability bound on the underperformance of the estimated
covariance based-portfolio versus the reference portfolio.

• It is polynomially decreasing in N , the number of rebalancing times of the portfolio, and in
`H , the performance gap, and at least polynomially increasing in H, the investment horizon.

As we show in the proof of Theorem 2.2, the constant C is linear in a quantity C
(H)
FM on which

we provide a bound in Proposition 3.6 which has an exponential growth in H and pmax.

Interpretations:

• As mentioned before, `H can be interpreted as a performance gap between the benchmark
and the estimated conditional realized covariance portfolio. The higher the `H , the more
discriminant the impact of using the estimated realized covariance.

• When CH/(N`2H) is large, the bound is uninformative. If N � CH/`2H , there is not enough
observations to statistically distinguish which covariance matrix brings the best performance.

As we show in Lemma 2.3, the average performance gap `H/H, when using the estimated
realized covariance versus the stationary covariance V∞, goes to zero when H goes to infinity.

It means that in the (NH)� C(H/`H)2 regime, the asset manager should not bother much
using a sophisticated estimation for Vt: a good approximation of V∞ is enough.

• When N tends to infinity, the probability goes to zero: this is a concentration of measure
effect, and since the expected realized variance difference `H is non-negative (see Proposition
2.1,) the probability of having a negative empirical difference goes quickly towards zero. It
is coherent with the intuition than with more data, the historical measure of the realized
variance difference will be more likely to be of the same sign than its expected value.

When H goes to infinity, the average conditional realized covariance converges towards the mean-

value of the process:
cRCH,Treb

H → V∞. If Vref = V∞, we expect that lim
H→∞

`H
H = 0. This is what is

stated in the next Lemma.
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3. Proofs and auxiliary results

Lemma 2.3 (Convergence of
`∞H
H to zero). Assume that {Vt, t ∈ N∗} satisfies assumptions Hstat,

HS , HL and Hpmax, and let Vref = V∞. In that case, denote `∞H the performance gap. Then

lim
H→∞

`∞H
H

= 0.

3 Proofs and auxiliary results

3.1 Proof of Theorem 2.2

To show this concentration of measures result, we will need the following auxiliary results (whose
proofs are postponed to Subsections 3.2, 3.3 and 3.4).

Let us first give a hint of the result by rewriting the realized variance difference Rref
N,H − RN,H .

From (2.3), the realized variance difference breaks down into:

Rref
N,H −RN,H = Rref

N,H − cRV ref
N,H︸ ︷︷ ︸

Dref
N,H

−(RN,H − cRVN,H︸ ︷︷ ︸
DN,H

) + cRV ref
N,H − cRVN,H︸ ︷︷ ︸
EN,H

. (3.1)

From the processes definition, it is easy to see that:

• by the definition of mv(.):
(
mv(Vref)

>cRCH,tn mv(Vref)
)
≥
(
mv(cRCH,tn)>cRCH,tn mv(cRCH,tn)

)
so EN,H = cRV ref

N,H − cRVN,H ≥ 0 almost surely,

• by the definition of cRCH,tn , E [RCH,tn |Ftn ] = cRCH,tn , so Dref
N,H = Rref

N,H − cRV ref
N,H and

DN,H = RN,H − cRVN,H are Ftn-centered martingales which concentrate around zero.

The following result gives a concentration of measure result on EN,H :

Proposition 3.1 (Concentration of measure for the ergodic conditional realized variance). Assume
that {Vt, t ∈ N∗} satisfies assumptions Hstat, HS , HL and Hpmax. Then, for any 2 ≤ q ≤ pmax, there
exists Cq,L,H,d > 0 such that:

E [|EN,H −N`H |q] ≤ Cq,L,H,d(NH)q/2.

A direct application via the Markov inequality gives, for any a > 0:

P
(
EN,H
N
− `H > a

)
≤ Cq,L,H,d

(
H

Na2

) q
2

and

P
(
EN,H
N
− `H < −a

)
≤ Cq,L,H,d

(
H

Na2

) q
2

. (3.2)

We can also show that `H is non-negative and finite, and as a consequence of the previous Propo-
sition,

EN,H
N can be shown to converge towards `H :

8



3.1 Proof of Theorem 2.2

Proposition 3.2 (Convergence of the average conditional realized variance). Assume Hstat, HS ,

HL and Hpmax. Then, for `H = E
[
cRV ref

N,H−cRVN,H
N

∣∣∣∣V1 ∼ µ
]

,

• cRV ref
N,H−cRVN,H

N converges in Lpmax norm towards `H :

cRV ref
N,H − cRVN,H

N

Lpmax−→
N→∞

`H .

• if pmax > 2,
cRV ref

N,H−cRVN,H
N converges almost surely towards `H :

cRV ref
N,H − cRVN,H

N

a.s.−→
N→∞

`H .

We now state the concentration of measure results for the martingale processes of type DN,H and
Dref
N,H .

Lemma 3.3. Assume that {Vt, t ∈ N∗} satisfies (2.1), Hstat, HS , HL and Hpmax. Let {xtn} n∈N∗,
tn+1−tn=H

be a portfolio allocation satisfying Hx and DN,H(x) :=
∑N

n=1 x
>
tn (RCH,tn − cRCH,tn)xtn.

Then, there exists Cpmax,d,L > 0 such that:

E [|DN,H(x)|pmax ] ≤ Cpmax,d,L(NH)
pmax

2 .

A direct application of the Markov inequality gives, for any a > 0:

P
(
DN,H(x)

N
> a

)
≤ Cpmax,d,L

(
H

Na2

) pmax
2

, (3.3)

and

P
(
DN,H(x)

N
< −a

)
≤ Cpmax,d,L

(
H

Na2

) pmax
2

. (3.4)

We can now move to the proof of our main result.

Proof of Theorem 2.2. We aim at showing that RN,H < Rref
N,H with high probability.

From equation (3.1), we see that the realized variance difference Rref
N,H − RN,H boils down to the

sum of the martingales Dref
N,H = Rref

N,H − cRV ref
N,H and −DN,H = cRVN,H − RN,H and and of the

ergodic term EN,H = cRV ref
N,H − cRVN,H :

Rref
N,H −RN,H = Dref

N,H −DN,H + EN,H

= N

(
Dref
N,H

N
−
DN,H

N
+

(
EN,H
N
− `H

)
+ `H

)
.

9



3.1 Proof of Theorem 2.2

From this equality, we see that if each of the three first terms is higher than − `H
3 , then the sum

plus `H is non-negative:

Dref
N,H

N ≥ − `H
3

−DN,H
N ≥ − `H

3
EN,H
N − `H ≥ − `H

3 ,

⇒ Rref
N,H −RN,H ≥ 0.

This translates into the following inclusion of events:{{
DN,H

N
≤ `H

3

}
∩

{
−
Dref
N,H

N
≤ `H

3

}
∩
{
−
(
EN,H
N
− `H

)
≤ `H

3

}}
⊂
{
RN,H ≤ Rref

N,H

}
.

Taking the complementary, we see that the event
{
RN,H > Rref

N,H

}
is included in an union of low

probability events:

{
RN,H > Rref

N,H

}
⊂

{{
DN,H

N
>
`H
3

}
∪

{
Dref
N,H

N
< −`H

3

}
∪
{(
EN,H
N
− `H

)
< −`H

3

}}
.

Hence we can bound the probability of
{
RN,H > Rref

N,H

}
by the sum of the probability of the three

events, on which we know explicit bounds via Lemma 3.3 and Proposition 3.1.

Bound on the long horizon martingale term

By Lemma 3.3, taking a = `H
3 (which is positive by assumption) in equation (3.3), with xtn =

mv (cRCH,tn), we have:

P
(
DN,H

N
>
`H
3

)
≤ Cpmax,d,L

(
9H

N`2H

) pmax
2

.

From equation (3.4), with xtn = mv (Vref),

P

(
Dref
N,H

N
< −`H

3

)
≤ Cpmax,d,L

(
9H

N`2H

) pmax
2

.

Bound on the long horizon ergodic term

From Proposition 3.1, replacing a by `H
3 in equation (3.2) we have:

P
(
EN,H
N
− `H < −`H

3

)
≤ Cpmax,L,H,d

(
9H

N`2H

) pmax
2

.

By union bound, we conclude:

P
(
RN,H > Rref

N,H

)
≤ 3pmax(2Cpmax,d,L + Cpmax,L,H,d)

(
H

N`2H

) pmax
2

.
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3.2 Proof of Proposition 3.1

3.2 Proof of Proposition 3.1

The non-trivial part of our Proposition 3.1 lies in the fact that we want to highlight both the N and
H dependence. From the conditional realized variance definition, there is a nested concentration
effect, both in N , the number of rebalacing times, and H, the number of days on which the variance
is measured, that we can exploit.

3.2.1 Preparatory results

In this paragraph, we state the concentration of measure result for ergodic Markov process that we
will adapt to show our Proposition. We recall also some Markov chain elements of vocabulary.

Concentration of measure for irreducible aperiodic Markov chain

We recall here the concentration of measure result for irreducible aperiodic Markov chain as stated
in Fort and Moulines article [FM03, Proposition 2].

Proposition 3.4 ( [FM03][Proposition 2] ). Let {Vt}t∈N∗ be a φ-irreducible aperiodic Markov chain
on S, and let C ∈ B(S) be an accessible petite set. Assume that there exist some constants δ ∈ (0, 1),
b <∞ and a measurable L : S → [1,+∞), bounded on C, such that

E [L(V2)|V1] ≤ δL(V1) + b1C(V1), ∀V1 ∈ S. (3.5)

Let q ≥ 2. Choose M > supC L∨b/
(
1− δ1/q

)q
. Then the set {L ≤M} is νm-small with minorizing

constant ε > 0 and for any Borel function g : S → Rd′, |g| ≤ L
1
q , it holds that for all V1 ∈ S,

H ≥ 1,

E

[∣∣∣∣ H∑
k=1

(g(Vk+1)− µ(g))

∣∣∣∣q∣∣∣∣V1

]
≤ CFM L(V1)Hq/2,

where CFM = C
(
m+1
ε

)q+1 M2

A2q , A = (1− δ)1/q − (b/M)1/q and C is a constant which depends only
on q, and µ is the invariant measure associated to {Vt}t∈N∗.

Remark 3.1. A few remarks on this Proposition and how we will apply it:

• For simplicity, we have denoted CFM the constant C
(
m+1
ε

)q+1 M2

A2q . This constant depends
on the Lyapunov condition (3.5) (so on L, δ, b), on the petite set C, on q and on νm and ε and
on the dynamic of {Vt}t∈N. It is hard to quantify it explicitly.

• The proposition is stated for functions g such that |g| ≤ L
1
q . It can be extended to functions

which are bounded in L1/q norm, e.g. such that:
(

supV ∈S
|g(V )|q
L(V )

)1/q
< ∞. Indeed, denoting

g̃ = g/
(

supV ∈S
|g(V )|q
L(V )

)1/q
, then for any V ′ ∈ S,

|g̃(V ′)|q

L(V ′)
=

|g(V ′)|q/L(V ′)

supV ∈S |g(V )|q/L(V )
≤ 1

so |g̃| ≤ L
1
q . We can apply the proposition on g̃ and express it in terms of g:

E

[∣∣∣∣ H∑
k=1

(g(Vk+1)− µ(g))

∣∣∣∣q∣∣∣∣V1

]
≤ CFM

(
sup
V ∈S

|g(V )|q

L(V )

)
L(V1)Hq/2.

11



3.2 Proof of Proposition 3.1

Markov chain: elements of vocabulary

We recall the definition of time of first return, irreducibility, petite set, small set, aperiodicity and
accessibilitiy, which can be found in the Meyn and Tweedie’s Book [MT09, pages 71, 82, 117, 102,
114 and 86]:

Let {Xn, n ∈ N} be a Markov chain on a state space S, P its transition probability. Let A ⊂ B(S).
We denote τA := min{n ≥ 1 : Xn ∈ A} the first return time on A and for x ∈ S, L(x,A) :=
P (τA <∞|X0 = x) the probability to access A from a specific x. Given φ a Borelian measure, we
say that Xn is φ-irreducible if φ(A) > 0⇒ L(y,A) > 0 for any y ∈ S.

A petite set is a set C ∈ B(S) such that there is a probability distribution a on N and a non-trivial
measure νa such that ∀x ∈ C, ∀A ⊂ B(S),

∑∞
n=0 a(n)Pn(x,A) ≥ νa(A).

A small set is a particular case of a petite set in which a only charges a specific m ∈ N: the
definition becomes: Pm(x,A) ≥ νm(A). When there exists a small set with m = 1 and ν1(C) > 0,
then the chain is called strongly aperiodic.

A set A ⊂ B(S) is said accessible if it can be accessed from any x ∈ S: L(x,A) > 0, ∀x ∈ S.

Concentration of measure for function of lagged Markov chain: motivation

Notice that since {Vt+1, t ∈ N∗} is Markovian, the random variable cRCH,t = E
[∑H

k=1 Vt+k
∣∣Ft] can

be seen as a function of the Ft-measurable Vt+1: cRCH,t = φ(Vt+1). Hence EN,H can be identically
written:

EN,H =
N∑
n=1

mv(Vref)
>cRCH,tn mv(Vref)−mv(cRCH,tn)>cRCH,tn mv(cRCH,tn)

=
N∑
n=1

[mv(Vref)−mv(cRCH,tn)]>cRCH,tn [mv(Vref) + mv(cRCH,tn)]

=
N∑
n=1

x>tnφ(Vtn+1)ytn

(3.6)

where

xtn = mv(Vref)−mv(cRCH,tn), (3.7)

ytn = mv(Vref) + mv(cRCH,tn).

In the following result, we show that the concentration of measure result Proposition 3.4 remains
valid for function of the lagged chain: g(Vk)→ g(VkH).

Proposition 3.5. [Fort Moulines proposition extension to lagged-Markov chains]

Assume that {Vt+1, t ∈ N∗} satisfies assumptions Hstat, HS , HL and Hpmax.Then for any q ≥ 2, for
any Borel function g : S → Rd×d bounded in L1/q-norm, T ∈ N∗, H ∈ N∗, we have:

E

[∣∣∣∣∣
T∑
t=1

(g(VtH+1)− µ(g))

∣∣∣∣∣
q ∣∣∣∣V1

]
≤ C(H)

FM

(
sup
S

|g|q

L

)
L(V1)T q/2, (3.8)

where C
(H)
FM is a constant on which we provide a bound in H and q in Proposition 3.6.
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3.2 Proof of Proposition 3.1

Proof. Let H ∈ N∗. First, let us show that the lagged Markov chain {VtH+1}t∈N∗ satisfies the
assumptions of Proposition 3.4.

1. Irreducibility and aperiodicity of the lagged Markov chain

{VtH+1}t∈N∗ is a Lebesgue-irreducible aperiodic Markov chain on S by application of Proposi-
tion A.8 ([MT09, Proposition 5.4.5]: extension of irreducibility and aperiodicity of irreducible
and aperiod chains) to the chain {Vt+1}t∈N∗ which is Lebesgue-irreducible and aperiodic by
assumption Hstat.

2. Lyapunov condition on the lagged Markov chain

In Meyn and Tweedie’s book, Theorem A.6 ([MT09, Theorem 15.3.4]) states that if {Vt+1}t∈N∗
satisfies a drift condition HL with a Lyapunov function L and a petite set C, then {VtH+1}t∈N∗
also satisfies a drift condition with the same Lyapunov function L and some set C(H) which
is petite for the H-skeleton.

In our Proposition A.7, we give a quantitative assessment of the Lyapunov condition for
{VtH+1}t∈N∗ by giving explicitly the constants dH and bH s.t.:

E
[
L(VH+1)

∣∣V1

]
≤ dH L(V1) + bH1C(H)(V1).

Our computation yields:

dH =
1 + δH

2
, C(H) = C ∪ {x ∈ S

∣∣ |x| ≤ R(H)},

bH = sup
x∈C(H)

(
b
1− δH

1− δ
− 1− δH

2
L(x)

)
,

and R(H) > 0 s.t. for every x ∈ S s.t. |x| > R(H), 1−δH
2 L(x) ≥ b1−δH−1

1−δ .

3. Smallness of the set C(H)

By irreducibility and aperiodicity, petite sets are also small sets [MT09, Theorem 5.5.7] Since
C is included in the new one C(H) (whether in Meyn and Tweedie’s book [MT09, Lemma
14.2.8] and in our Proposition A.7), it will be enough to show that C is a small set for
{VtH+1}t∈N∗ . A key assumption to prove this result will be that we can consider a measure
associated to C for {Vt+1}t∈N∗ satisfying ν(C) > 0.

Indeed, let us denote νm and ε > 0 the measure and minorizing constant s.t. νm(C) > 0
(w.l.o.g. we can assume that νm(C) = 1) and Pm(x,A) ≥ ενm(A) for any x ∈ C and A ⊂ B(S).
They exist by application of [MT09, Proposition 5.2.4 - (iii)] (existence of a measure positive
on the small set for irreducible chains).

Let us show that C is a small set for {VtH+1}t∈N∗ . Indeed, we can show recursively that
Pmk(x,A) ≥ εkνm(A) for any k ∈ N∗. It is satisfied for k = 1. Let us assume the property
for k ∈ N∗. Then for k + 1:

P (k+1)m(x,A) =

∫
S
Pmk(x, dy)Pm(y,A) ≥ εk

∫
S
νm(dy)Pm(y,A)

≥ εk
∫
C
νm(dy)Pm(y,A)︸ ︷︷ ︸

≥ενm(A)
since y∈C

≥ εk+1 νm(C)︸ ︷︷ ︸
=1

νm(A) = εk+1νm(A).

(3.9)

13



3.2 Proof of Proposition 3.1

So for k = H, C is a small set for {VtH+1}t∈N∗ . To show that C(H) is a small set for

{VtH+1}t∈N∗ , it suffices to take ν
(H)
m = νm on C and ν

(H)
m = 0 on C(H)\C.

4. Accessibility of the set

Since {VtH+1}t∈N∗ is Lebesgue-irreducible and since λ(C(H)) > 0 (because we have {x ≤
R(H)} ⊂ C(H) with R(H) > 0 so λ(C(H)) ≥ λ({|x| ≤ R(H)) > 0) then by the irreducibility
definition, L(x, C(H)) > 0 for any x ∈ S so C(H) is accessible.

5. Boundedness of the Lyapunov function

L is bounded on C(H) because C(H) ( S is bounded and we have assumed L of polynomial
growth.

The assumptions of Proposition 3.4 are verified so by application of the Proposition to the lagged
chain {VtH+1}t∈N∗ the announced inequality (3.8) is true.

Parameters dependence in H

In this paragraph, we are going to exhibit the dependence of C
(H)
FM in H and q.

From Proposition 3.4,

C
(H)
FM = C

(
mH + 1

εH

)q+1 M2
H

A2q
H

where AH ,MH , mH and εH depend on the Lyapunov constants and set dH , bH and C(H).

Alternative choice of dH , bH and C(H) uniform in H

Let us show that we can find dmax, bmax and Cmax independent from H s.t.

E
[
L(VH+1)

∣∣V1 = x
]
≤ dmax L(x) + bmax1x∈Cmax .

From Proposition A.7’s proof, E
[
L(VH+1)

∣∣V1 = x
]

satisfies the inequality (A.9):

E
[
L(VH+1)

∣∣V1 = x
]
≤ δH L(x) + b

1− δH−1

1− δ
+ δH−1b1C(x).

We can bound this inequality uniformly in H:

E
[
L(VH+1)

∣∣V1 = x
]
≤ δL(x) +

b

1− δ
+ b1C(x)

=
1 + δ

2
L(x)− 1− δ

2
L(x) +

b

1− δ
+ b1C(x).

Taking Rmax s.t. b
1−δ + b < 1−δ

2 L(x) for |x| > Rmax and Cmax = C ∪ {x ∈ S
∣∣ |x| ≤ Rmax},

E
[
L(VH+1)

∣∣V1 = x
]
≤ 1 + δ

2︸ ︷︷ ︸
dmax

L(x) + sup
x∈Cmax

(
b

1− δ
+ b− 1− δ

2
L(x)

)
︸ ︷︷ ︸

bmax

1x∈Cmax .

Choice of MH and AH uniform in H

14



3.2 Proof of Proposition 3.1

By definition,

MH > sup
C(H)

L∨
(
bH
/(

1− d
1
q

H

)q)
,

AH = (1− dH)
1
q −

(
bH
MH

) 1
q

.

(3.10)

We can replace bH , dH and C(H) by bmax, dmax and Cmax in (3.10) to have MH and AH uniform in
H.

Behavior of mH and εH

By application of Proposition 3.4 to {Vt+1, t ∈ N}, {L ≤ M} is a νm-small set with minorizing
constant ε. W.l.o.g., we can assume that Mmax ≥ M . Then, as we have shown in the proof of
Proposition 3.5 equation (3.9), a νm-small set with minorizing constant ε for {Vt+1, t ∈ N} is a
νm-small set with minorizing constant εH := εH for {VtH+1, t ∈ N}. As we did in the proof of
Proposition 3.5, we can take νmH = νm on {L ≤ M} and null on {L ≤ Mmax}\{L ≤ M} so that
{L ≤Mmax} is a νmH small set for {Vt+1, t ∈ N} with minorizing constant εH .

We give our conclusion in the following proposition:

Proposition 3.6. Under the assumption of Proposition 3.5, the constant C
(H)
FM can be upper

bounded by:

C

(
m+ 1

εH

)q+1 Mmax(q)2

Amax(q)2q

where Mmax(q) > supC(max) L∨
(
bmax

/(
1− d

1
q
max

)q)
, and Amax(q) := (1− dmax)

1
q −

(
bmax

Mmax(q)

) 1
q
,

Rmax s.t. b
1−δ + b < 1−δ

2 L(x), Cmax = C ∪ {x ∈ S
∣∣ |x| ≤ Rmax}, dmax = 1+δ

2 ,

bmax = supx∈Cmax

(
b

1−δ + b− 1−δ
2 L(x)

)
and ε, m are given by the application of Proposition 3.4 on

{Vt+1, t ∈ N}, and C depends on q only.

Remark 3.2. This bound goes to infinity when H and q go to infinity, because

• ε ∈ (0, 1) so 1/εH goes to infinity when H goes to infinity,

•
(

1− d
1
q
max

)
goes to 0 when q goes to infinity, so Mmax(q) goes to infinity when q goes to

infinity.

It means that the control becomes loose when H and q are too large. However, this bound is a
uniform bound which can be far from the minimal constant one could get with a more refined
analysis.

3.2.2 Completion of Proof of Proposition 3.1

We can now prove our Proposition 3.1.
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3.2 Proof of Proposition 3.1

Proof. Let q ∈ [2, pmax], let EN,H be defined by (3.6):

EN,H =
N∑
n=1

x>tnφ(Vtn+1)ytn =
N∑
n=1

g(Vtn+1),

φ(Vtn+1) = E

[
H∑
k=1

Vtn+k|Ftn

]
, g(Vtn) = x>tnφ(Vtn+1)ytn ,

with xtn and ytn defined in (3.7) by xtn = mv(Vref) − mv(cRCH,tn) and ytn = mv(Vref) +

mv(cRCH,tn). We want to control E [|EN,H −N`H |q] in N and H, where `H = E
[
EN,H
N

∣∣∣∣V1 ∼ µ
]
.

In order to apply Proposition 3.4 on EN,H , we have to verify that g(.) is bounded in L1/q norm.
From Hpmax , a function is bounded in L1/q norm if it can be bounded by a polynomial function of
order pmax

q ≥ 1 (because L is larger than one and of polynomial growth of order pmax at infinity).

We are going to show that g(.) is sub-linear. Hence g(.) will be bounded in L1/q norm.

Sublinearity of g

By triangle inequality, using that |xi,t| ≤ 2cw and |yi,t| ≤ 2cw by their definition as sum and
difference of portfolios in W, for t ∈ N∗,

|g(Vt+1)| ≤ (2cw)2d
H∑
k=1

E
[
|Vt+k|

∣∣Ft] .
To show that g(.) is sub-linear, we will show that each E

[
|Vt+k|

∣∣Vt+1

]
is sub-linear (e.g. linearly

bounded with respect to |Vt+1|). By Markov property, E
[
|Vt+k|

∣∣Ft] = E
[
|Vt+k|

∣∣Vt+1

]
, the sub-

linearity of g(.) will ensue.

Let k ∈ N∗. By the Jensen inequality in (*) and Hpmax :

E
[
|Vt+k|

∣∣Vt+1

] (∗)
≤
(
E
[
|Vt+k|pmax

∣∣Vt+1

]) 1
pmax

Hpmax

≤
(

1

cL
E
[
L(Vt+k)

∣∣Vt+1

]) 1
pmax

.

By the extended Lyapunov condition (A.9) and Hpmax :

E
[
L(Vt+k)

∣∣Vt+1

]
≤ δk−1 L(Vt+1) + b

1− δk−2

1− δ
+ δk−2b︸ ︷︷ ︸

b(k)

≤ δk−1 (CL(1 + |Vt+1|pmax)) + b(k).

Combining these inequalities and applying the inequality (|x|+ |y|)
1

pmax ≤ |x|
1

pmax + |y|
1

pmax ,

E
[
|Vt+k|

∣∣Ft] ≤ ( 1

cL
(δk−1CL|Vt+1|pmax) + δk−1CL + b(k))

) 1
pmax

≤
(
δk−1CL
cL

) 1
pmax

|Vt+1|+

(
b(k) + δk−1CL

cL

) 1
pmax

.

Hence, E
[
|Vt+k|

∣∣∣∣Vt+1

]
is sub-linear, and by linear combination, so is g(.).
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3.2 Proof of Proposition 3.1

Proposition 3.5 application: dependence in N

Since g(.) is bounded in L1/q norm, we can apply the concentration of measure result for lagged
chain Proposition 3.5 on EN,H :

E
[
|EN,H −N`H |q

∣∣∣∣V1

]
≤ C(H)

FM

(
sup
S

|g − µ(g)|q

L

)
L(V1)N q/2. (3.11)

Bound on supS
|g−µ(g)|q
L in terms of H

Let v ∈ S. By g(.) definition:

g(v)− µ(g) = mv(Vref)
>φ(v) mv(Vref)− Eµ

[
mv(Vref)

>φ(V ) mv(Vref)
]

−
(

mv(φ(v))>φ(v) mv(φ(v))− Eµ
[
mv(V )>φ(V ) mv(V )

])
.

Let us denote a the first term:

a = mv(Vref)
> (φ(v)− Eµ [φ(V )]) mv(Vref).

Using that |mv(Vref)i| ≤ cw, i ∈ {1, . . . , d},

|a|q ≤ (cw
2d)q |φ(v)− Eµ [φ(V )]|q . (3.12)

We can write the second term as:

b = mv(φ(v))>φ(v) mv(φ(v))− Eµ
[
mv(φ(V ))>φ(V ) mv(φ(V ))

]
.

Notice that, by definition of mv, for any C, C̃ ∈ Sd+,

|mv(C)>C mv(C)−mv(C̃)>C̃ mv(C̃)| ≤ (cw
2d)q|C − C̃|. (3.13)

Let C, C̃ ∈ Sd+. Let us assume that mv(C)>C mv(C)−mv(C̃)>C̃ mv(C̃) ≥ 0. Then

mv(C)>C mv(C)−mv(C̃)>C̃ mv(C̃)

= mv(C)>C mv(C)−mv(C̃)>C mv(C̃)︸ ︷︷ ︸
≤0

+ mv(C̃)>C mv(C̃)−mv(C̃)>C̃ mv(C̃)︸ ︷︷ ︸
=mv(C̃)>(C−C̃) mv(C̃)

≤mv(C̃)>(C − C̃) mv(C̃) ≤ (cw
2d)q|C − C̃|.

Conversely, if mv(C̃)>C̃ mv(C̃)−mv(C)>C mv(C) ≥ 0, then we can do the same reasoning inverting
C and C̃:

mv(C̃)>C̃ mv(C̃)−mv(C)>C mv(C) ≤ mv(C)>(C̃ − C) mv(C) ≤ (cw
2d)q|C − C̃|.

Applying this inequality with C = φ(v) and C̃ = φ(V ), we can bound |b|q:

|b|q ≤ (cw
2d)q |φ(v)− Eµ [φ(V )]|q .
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3.2 Proof of Proposition 3.1

Hence we arrived at the same bound as (3.12).

By double conditionning, and invariance of the stationary law: Vt|V1 ∼ µ
(d)
= µ,

Eµ [φ(V )] = Eµ

[
E

[
H∑
k=1

Vt+k|Vt+1 = V

]]
= Eµ

[
H∑
k=1

Vt+k

]
= HV∞.

By the former remark and applying the Jensen inequality,

|φ(v)− Eµ [φ(V )]|q =

∣∣∣∣∣E
[
H∑
k=1

Vt+k −HV∞|Vt+1 = v

]∣∣∣∣∣
q

≤ E

[∣∣∣∣∣
H∑
k=1

Vt+k −HV∞

∣∣∣∣∣
q ∣∣∣∣Vt+1 = v

]
.

We can separate E
[∣∣∣∑H

k=1 Vt+k −HV∞
∣∣∣q ∣∣∣∣Vt+1 = v

]
between the Vt+1 measurable term and a term

of the form sum of function -here the identity function- of Vt+2, . . . , Vt+H conditioned on Vt+1, i.e.
in the right form to apply Proposition 3.4 :

E

[∣∣∣∣∣
H∑
k=1

(Vt+k − V∞)

∣∣∣∣∣
q ∣∣∣∣Vt+1 = v

]
≤ 2q−1

(
|v − V∞|q + E

[∣∣∣∣∣
H∑
k=2

(Vt+k − V∞)

∣∣∣∣∣
q ∣∣∣∣Vt+1 = v

])
.

To summarize, we obtain:

|g(v)− µ(g)|q ≤ 22q−1(cw
2d)q

(
|v − V∞|q + E

[∣∣∣∣∣
H∑
k=2

(Vt+k − V∞)

∣∣∣∣∣
q ∣∣∣∣Vt+1 = v

])
.

Proposition 3.4 application: dependence in H

Since L(x) ≥ cL|x|pmax for large x, and since L(x) > 1 for any x ∈ S, supx∈S
|x|q
L(x) is bounded.

We can then apply the concentration of measure result for standard chain Proposition 3.4 on the
function g̃(Vt+k) = Vt+k and µ(g̃) = Eµ [Vt+k] = V∞:

E

[∣∣∣∣∣
H∑
k=2

(Vt+k − V∞)

∣∣∣∣∣
q ∣∣∣∣Vt+1 = v

]
≤ CFM sup

v′∈S

|v′|q

L(v′)
L(v)(H − 1)q/2. (3.14)

Hence, there exists a constant cq,d depending on q, d and on the Lyapunov condition HL such that,
for any H ≥ 1:

|g(v)− µ(g)|q

L(v)
≤ 22q−1(cw

2d)q
(
CFM sup

v′∈S

|v′|q

L(v′)
(H − 1)q/2 +

|v − V∞|q

L(v)

)
≤ cq,dHq/2.

For example, cq,d = 22q(cw
2d)q

(
CFM supv′∈S

|v′|q
L(v′) + supv′∈S

|v′−V∞|q
L(v′)

)
.
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3.3 Proof of Propositions 2.1 and 3.2

Combining this upper bound with (3.11), we obtain:

E [|EN,H −N`H |q] ≤ Cq,L,H,d(NH)q/2.

3.3 Proof of Propositions 2.1 and 3.2

In this subsection, we are interested in the characterization of `H = Eµ
[
cRV ref

N,H−cRVN,H
N

]
and of the

limit value of
cRV ref

N,H−cRVN,H
N when N goes to infinity.

Proof. The proof goes as follows: first we show the finiteness and non-negativity of `H . The

convergence result will follow from the concentration of measure result on
cRV ref

N,H−cRVN,H
N =

EN,H
N .

• Finiteness

`H is defined as the expectation under the stationary law of a linear combination of quantities
of type mv(Vref)

>E [Vtn+k|Ftn ] mv(Vref) and mv(cRCH,tn)>E [Vtn+k|Ftn ] mv(cRCH,tn), for k ∈
{1, . . . ,H} and n ∈ {1, . . . , N}.
Since the mv(.) operator is bounded, and since the {Vt}t∈N∗ admit L1 moment by Hstat, `H
is well defined and finite.

• Non-negativity

By definition of the mv(.) mapping,

mv(Vref)
>cRCH,tn mv(Vref) ≥ mv(cRCH,tn)>cRCH,tn mv(cRCH,tn)] a.s.

Hence, summing on n from 1 to N , we have that cRV ref
N,H ≥ cRVN,H almost surely.

Taking the expectation: 0 ≤ Eµ
[
cRV ref

N,H−cRVN,H
N

]
:= `H .

• Convergence of
cRV ref

N,H−cRVN,H
N

From the moment inequality in Proposition 3.1,

E
[∣∣∣∣EN,HN − `H

∣∣∣∣pmax
]
≤ Cq,L,H,d

(
H

N

) pmax
2

.

Hence, E
[∣∣∣EN,HN − `H

∣∣∣pmax
]
−→

N→+∞
0 hence the convergence in Lpmax-norm.

From the Markov inequality in Proposition 3.1,

P
(∣∣∣∣EN,HN − `H

∣∣∣∣ > a

)
≤ 2CqH

pmax
2

N
pmax

2 apmax
. (3.15)

If pmax > 2, we can apply the Borel-Cantelli Lemma to show that
EN,H
N converges almost surely

towards `H . Indeed, since pmax > 2, for every a > 0, from (3.15),
∑∞

N=1 P
(∣∣∣EN,HN − `H

∣∣∣ > a
)
<

∞ hence
EN,H
N

a.s.−→
N→+∞

`H .
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3.4 Proof of Lemma 3.3

3.4 Proof of Lemma 3.3

Proof. Let DN,H(x) :=
∑N

n=1 x
>
tn (RCH,tn − cRCH,tn)xtn , where x satisfies Hx. To alleviate the

notations, we just write DN,H instead of DN,H(x). We want to control E [|DN,H |q] in N and H.
The difficulty stems from the fact that we want to exhibit the dependence both in N and H. We
are going to rely on a double arguments of martingale: DN,H can be seen as a nested martingale,
in the long time period N , and in the short time period H.

Dependence in N

Denote Xn := x>tn (RCH,tn − cRCH,tn)xtn . Then Xn is Ftn+1-measurable and DN,H :=
∑N

n=1Xn.
By cRCH,tn definition, E [RCH,tn |Ftn ] = cRCH,tn , hence since the xtn are Ftn-measurable, E [Xn|Ftn ] =
0, so DN,H is a martingale w.r.t. the filtration {Ftn}N+1

n=1 .

Let us apply the Burkholder inequality (A.10) on DN,H , martingale with increments Xn: denoting
CBpmax

the Burkholder constant (depending on pmax only), we have:

E [|DN,H |pmax ] ≤ CBpmax
E

∣∣∣∣∣
N∑
n=1

X2
n

∣∣∣∣∣
pmax/2

 .
By convexity inequality on

∣∣∣∑N
n=1X

2
n

∣∣∣pmax/2
,

E [|DN,H |pmax ] ≤ CBpmax
N

pmax
2
−1

N∑
n=1

E [|Xn|pmax ] .

Dependence in H

We can decompose Xn =
∑H

k=1 x
>
tn

(
rtn+kr

>
tn+k − E

[
Vtn+k

∣∣Ftn])xtn in a martingale part Yn =∑H
k=1 Y

tn
k and a remaining part Zn =

∑H
k=1 Z

tn
k , where:

Y tn
k := x>tn

(
rtn+kr

>
tn+k − Vtn+k

)
xtn ,

Ztnk := x>tn
(
Vtn+k − E

[
Vtn+k

∣∣Ftn])xtn , 1 ≤ k ≤ H.

Notice that Ztn1 = x>tn
(
Vtn+1 − E

[
Vtn+1

∣∣Ftn]︸ ︷︷ ︸
=Vtn+1

)
xtn = 0.

By convexity inequality

E [|Xn|pmax ] = E [|Yn + Zn|pmax ] ≤ 2pmax−1 (E [|Yn|pmax ] + E [|Zn|pmax ]) .
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3.4 Proof of Lemma 3.3

Bound on E [|Yn|pmax ]: By the the Burkholder inequality (A.10) on Yn and by convexity:

E [|Yn|pmax ] ≤ CBpmax
E

∣∣∣∣∣
H∑
k=1

(
Y tn
k

)2∣∣∣∣∣
pmax

2


≤ CBpmax

H
pmax

2
−1

H∑
k=1

E
[∣∣Y tn

k

∣∣pmax
]
.

Bound on E [|Zn|pmax ]: since the xtn components are bounded by cw from assumption Hx,

E [|Zn|pmax ] ≤ (cw
2d)pmaxE

[∣∣∣∣∣
H∑
k=2

Vtn+k − E
[
Vtn+k

∣∣Ftn]
∣∣∣∣∣
pmax]

.

Making appear Eµ [Vt] = E
[
Vtn+k

∣∣Vtn ∼ µ] = V∞, by convexity inequality:

E [|Zn|pmax ] ≤ 2pmax−1(cw
2d)pmax

(
E

[∣∣∣∣∣
H∑
k=2

(Vtn+k − V∞)

∣∣∣∣∣
pmax]

+ E

[∣∣∣∣∣
H∑
k=2

(V∞ − E
[
Vtn+k

∣∣Ftn])
∣∣∣∣∣
pmax])

.

Notice that the second term is bounded by the first one, since the conditional expectation is non-
expansive in Lpmax-norm,

E

[∣∣∣∣∣
H∑
k=2

(E
[
Vtn+k

∣∣Ftn]− V∞)

∣∣∣∣∣
pmax]

= E

[∣∣∣∣∣
H∑
k=2

(Vtn+k − V∞)

∣∣∣∣∣
pmax]

. (3.16)

Hence

E [|Zn|pmax ] ≤ 2pmax(cw
2d)pmaxE

[∣∣∣∣∣
H∑
k=2

(Vtn+k − V∞)

∣∣∣∣∣
pmax]

.

As we have done in (3.14), we can apply Fort-Moulines Proposition extension (Proposition 3.5)) to
get the dependence in H:

E

[∣∣∣∣∣
H∑
k=2

(Vtn+k − V∞)

∣∣∣∣∣
q ∣∣∣∣Vtn+1

]
≤ CFM sup

x∈S

|x|q

L(x)
L(Vtn+1)(H − 1)q/2.

So,

E [|Zn|pmax ] ≤ (2cw
2d)pmaxCFM sup

x∈S

|x|q

L(x)
E [L(Vtn+1)|V1]Hq/2.
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3.5 Auxiliary result

Combining the obtained bounds on Zn and Yn, we obtain:

E [|Xn|pmax ] ≤ 2pmax−1

CBpmax

∑H
k=1 E

[∣∣Y tn
k

∣∣pmax
]

H︸ ︷︷ ︸
mY,n

+(2cw
2d)pmaxCFM sup

x∈S

|x|q

L(x)
E [L(Vtn+1)|V1]︸ ︷︷ ︸

mL,n

H
pmax

2 ,

E [|DN,H |pmax ] ≤ 2pmax−1CBpmax

(
CBpmax

∑N
n=1mY,n

N
+ (2cw

2d)pmaxCFM sup
x∈S

|x|q

L(x)

∑N
n=1mL,n
N

)
︸ ︷︷ ︸

Cpmax,d,L

(NH)
pmax

2 .

3.5 Auxiliary result

In what follows, we prove the Lemma 2.3, e.g. that when Vref = V∞, lim
H→∞

`∞H
H = 0.

Proof. Let us first show that
cRCH,Treb

H converges to V∞. Let Treb ≥ 2.

As we did in Lemma 3.3 equation (3.16), by the non-expansivity of the conditional expectationin
Lp-norm,

E [|cRCH,Treb −HV∞|
pmax ] ≤ E

[∣∣∣∣∣
H∑
k=1

VTreb+k −HV∞

∣∣∣∣∣
pmax]

= E

[
E

[∣∣∣∣∣
H∑
k=1

VTreb+k −HV∞

∣∣∣∣∣
pmax ∣∣∣∣FTreb−1

]]
.

And as done in (3.14),

E

[∣∣∣∣∣
H∑
k=1

VTreb+k −HV∞

∣∣∣∣∣
pmax ∣∣∣∣VTreb

]
≤ CFM sup

x∈S

|x|pmax

L(x)
L(VTreb)H

pmax
2 .

Taking the expectation, E [L(VTreb)|V1] is finite by the Lyapunov condition drift HL.

So dividing by Hpmax :

E
[∣∣∣∣cRCH,TrebH

− V∞
∣∣∣∣pmax

∣∣∣∣VTreb] ≤ CFM sup
x∈S

|x|pmax

L(x)
E [L(VTreb)|V1]

1

H
pmax

2

. (3.17)

When H goes to infinity, the bound in (3.17) goes to zero so
cRCH,Treb

H

Lpmax−→
H→+∞

V∞. By homogeneity

and continuity of the mv operator which is Lipschitz from equation (3.13), and passage to the limit,

since
cRCH,Treb

H

Lpmax−→
H→+∞

V∞ with pmax ≥ 2, we have convergence in L1 norm and we can infer:

`∞H
H

= EV1∼µ

[
mv(V∞)>

cRCH,Treb
H

mv(V∞)−mv

(
cRCH,Treb

H

)> cRCH,Treb
H

mv

(
cRCH,Treb

H

)]
−→

H→+∞
0.
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4. Model specification

4 Model specification

We want to specify models satisfying the assumptions (2.1), Hstat, HS , HL and Hpmax .

4.1 Motivation: GARCH-CCC model

The GARCH-CCC model [Bol90] is one of the simplest extension of GARCH model to the mul-
tidimensional case. For an exhaustive review of multidimensional GARCH, see [BLR06]. In this
work, we elaborate our results with the simple GARCH-CCC, presented in [Car01].

This model assumes the following structure for the centered returns rt:

rt = DtΓ
1/2ηt = Dtη̃t,

η̃t = Γ1/2ηt,

Vt = DtΓDt, (4.1)

where

• Dt = Diag (σ1,t, . . . , σd,t),

• {σi,t}1≤i≤d are one-dimensional GARCH volatilities,

• Γ = {ρij}1≤i,j≤d is a positive definite matrix (the Constant Conditional Correlation matrix),

• ηt is a d-dimensional vector with independent components, E [ηi,tηj,t] = 0 ∀i 6= j, E
[
η2
i,t

]
= 1,

and ηt independent from Dt.

The original GARCH-CCC assumes a simple GARCH(1,1) volatility recursion for the σi,t:

σ2
i,t = wi + αir

2
i,t−1 + βiσ

2
i,t−1, i = 1, . . . , d, (4.2)

where wi, αi, βi ∈ R.

The advantages of the ”initial” GARCH-CCC model is its parsimony: it requires d(d+5)
2 parameters

versus d(5d+1)
2 for the interdependent GARCH-CCC with p = q = 1 (4.4). The disadvantage is the

strong assumption of constant conditional correlation.

In what follows, we will assume that {ηt}t∈N is a sequence of independent Gaussian vectors.

4.2 Stationarity, ergodicity and application of results

In this subsection, we show that the GARCH-CCC satisfies the general model equation (2.1) and
the model assumptions Hstat, HS , HL and Hpmax , under the following assumptions and definition
on the parameters:

Hparam. The GARCH-CCC parameters {wi, αi, βi}di=1 and Γ are deterministic and satisfy:

i. Γ ∈ Sd+ is a Correlation matrix.

ii. wi > 0, αi > 0 and βi > 0 for all i ∈ {1, . . . , d}.
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4.2 Stationarity, ergodicity and application of results

iii. 3α2
i + β2

i + 2αiβi < 1 for all i ∈ {1, . . . , d},

qmax ∈ R+ is defined as:

qmax := min
1≤i≤d

arg max
p∈R+

{
E
[
|αiη̃2

i + βi|p
]
< 1
}
, η̃ ∼ N (0,Γ). (4.3)

Remark 4.1. A few remarks on Hparam:

• The condition Hparam(iii) is equivalent to the condition E
[
|αiη̃2

i + βi|2
]
< 1 (using that

E
[
η̃4
i

]
= 3 and E

[
η̃2
i

]
= 1). Hence, it implies that qmax > 2. This condition ensures in

particular αi + βi < 1, hence the existence of a stationary and ergodic solution to the model,
as shown in the Appendix Subsection A.2.

• Continuity and evolution in p of E
[
|αiη̃2

i + βi|p
]
:

– By Lp norms growth in p, if q > 0 is s.t. |αiη̃2
i + βi|qq = E

[
|αiη̃2

i + βi|q
]
< 1, then for

0 ≤ p ≤ q,
|αiη̃2

i + βi|p ≤ |αiη̃2
i + βi|q < 1.

– The function g : p 7→ E
[
|αiη̃2

i + βi|p
]

is continuous (for example, by dominated conver-
gence, for any sequence pn converging to p, g(pn) converges to g(p)).

– The function g(.) goes to infinity when p goes to infinity (because αi > 0), hence we are
sure to have p s.t. g(p) ≥ 1.

• Since g(.) is continuous, the quantity maxp∈R+

{
E
[
|αiη̃2

i + βi|p
]

: E
[
|αiη̃2

i + βi|p
]
< 1
}

is
equal to 1. To prove the Lyapunov drift condition, we need a p s.t. E

[
|αiη̃2

i + βi|p
]
< 1.

We denote pmax such a p. From Hparam(iii) and the first remark, we can take pmax ≥ 2.

Theorem 4.1. Under Hparam, the GARCH-CCC variances process {σ2
t }t∈N satisfies the assumption

of Theorem 2.2. Hstat, HS , HL and Hpmax.

In what follows, we are going to prove the properties Hstat, HS , HL and Hpmax on the GARCH-

variances process σ2
t , on the stable state-space S =

∏d
i=1

(
wi

1−βi ,+∞
)

.

Proof. Let {σ2}t∈N be a GARCH-CCC variances process.

Hstat: Stationarity and ergodicity

From Theorem A.3 explicit condition (A.2), a sufficient condition for stationarity and ergodicity
for σ2

t is implied by our assumption Hparam(iii).

HS on σ2
t : By definition, {σ2

t }t∈N∗ is Markovian and time homogeneous. We show in our Corollary

A.5 that {σ2
t }t∈N∗ is Lebesgue-irreducible on S =

∏d
i=1

(
wi

1−βi ,+∞
)

. The aperiodicity will follow

from the existence of a small set of positive measure shown below.

HL and Hpmax on σ2
t : For x ∈ S, define

L(x) = 1 +

d∑
i=1

|xi − wi|pmax ,
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4.2 Stationarity, ergodicity and application of results

and ρ = max1≤i≤d E
[
|αiη̃2

i + βi|pmax
]

and δ = 1+ρ
2 .

Then, if σ2
t−1 = x, Ex L(σ2

t ) = 1 + E
∑d

i=1|
(
αiη̃

2
i + βi

)
xi|pmax ≤ 1 + ρ(

∑d
i=1|xi|pmax).

Since lim
|x|→∞

Ex L(σ2
t )

L(x) ≤ ρ, the drift condition Ex L(σ2
t ) ≤ δL(x) is verified for x large enough. Let

R > max1≤i≤d
wi

1−βi s.t. it is verified for |x| > R, C := {x ∈ S| |x| ≤ R} and b := supx∈C |Ex L(σ2
t )−

δL(x)|, then
Ex L(σ2

t ) ≤ δL(x) + b1x∈C , x ∈ S.

By definition, σ2
t |σ2

t−1 = x follows the same law as {wi + (αiη̃
2
i + βi)xi}, η̃ ∼ N(0,Γ). It admits a

density gx derived explicitly in Subsection A.4 equation (A.4).

Properties of gx

• v 7→ gx(v) is continuous in v for vi > wi + βixi ,

• For (x,v) ∈

(
B(0, R) ∪

d∏
i=1

[
wi

1− βi
,+∞

))
︸ ︷︷ ︸

C

×
(∏d

i=1

[wi+βiR
2 + R

2 ,+∞)
)

=: D, we have

vi − wi − βixi
αixi

≥
wi+βiR

2 + R
2 − wi − βiR
αiR

=
1

2αi

(
1− βi −

wi
R

)
︸ ︷︷ ︸
>0 by R choice

> 0.

This function restricted to D is hence continuous and positive.

In particular, infx∈C gx(v) > 0 for each v ∈
∏d
i=1

[wi+βiR
2 + R

2 ,+∞).

Let

ν(A) :=

∫
A

inf
x∈C

gx(v)1{
vi>

wi+βiR

2
+R

2

}d
i=1

dv, A ∈ B(S).

For any x ∈ C, P (x, A) =
∫
A gx(v)dv ≥ ν(A) with ν non-null measure with density, hence C is a

petite set.

Since wi+βiR
2 + R

2 < R (because R > wi
1−βi ),

∏d
i=1

[
wi+βiR

2 + R
2 , R

]
is non empty and has a positive

Lebesgue measure and is included in C. Hence:

ν(C) ≥
∫
{
wi+βiR

2
+R

2
<vi<R

}d
i=1

inf
x∈C

gx(v)dv > 0

so C is accessible and as a consequence of [MT09, Aperiodicity definition - page 114], the chain is
aperiodic. Hence the Lyapunov condition is satisfied, with L polynomial in pmax.

Hstat: Existence of L2-moment From the Lyapunov drift condition, we are ensured to have
finite pmax moments. Since we assumed pmax ≥ 2, it implies the square integrability of the process
{σ2

t }t∈N∗ for any initial condition and under the stationary law.
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4.3 Additional models

Bijection between {Vt}t∈N and σ2
t

Since σ2
i,t > 0 on S, there exists a function ΦΓ s.t.

(Vt)i,j =

{
ρijσi,tσj,t if i 6= j,
σ2
i,t else

=: ΦΓ(σ2
t ).

• ΦΓ is bijective,

• ΦΓ is sub-linear: |ΦΓ(σ2
t )| ≤ |Γ||σ2

t |.

By Theorem A.1, if σ2
t admits an ergodic and stationary solution, so is ΦΓ(σ2

t ) = Vt.

Results application

• By definition of the GARCH-CCC model (4.1), {Vt = ΦΓ(σ2
t )}t∈N∗ satisfies (2.1).

• If {σ2
t }t∈N∗ satisfies Hstat, HS , HL and Hpmax , then the ergodic concentration results (Propo-

sitions 3.5 and 3.4) apply to any function g
(
ΦΓ(σ2

t )
)
, g ◦ ΦΓ bounded in L1/q norm, q ≥ 2.

Since ΦΓ is sub-linear, our Proposition 3.1, Lemma 3.3 and main result Theorem 2.2 apply
without any adaptation.

Hence, under parameters condition Hparam, by Theorem 4.1 and these remarks, the main result
Theorem 2.2 is satisfied with pmax defined in equation (4.3).

4.3 Additional models

In this subsection, we list additional GARCH models on which it is possible to extend our study. We
first list one-dimensional GARCH models which can be extended to multidimensional model with
a constant correlation matrix. Then we refer to a multidimensional model with inter-dependence
between the GARCH volatilities.

4.3.1 One-dimensional GARCH models

The Threshold GARCH (T-GARCH) and the asymmetric power-GARCH are affine models, hence
we can directly apply our results on them:

• T-GARCH:

σt = w + [α+(ηt−1)+ − α−(ηt−1)− + β]σt−1,

where w,α+, α−, β > 0.

• Power GARCH:

σδt = w +
[
α(|ηt−1| − ζηt−1)δ + β

]
σδt−1,

where w,α, β, δ > 0, |ζ| ≤ 1.
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5. Numerical experiments

Indeed, we can adapt the assumptions verification taking the same Lyapunov function defined on
σt instead of σ2

t for the T-GARCH, and σδt for the power GARCH.

The following models are of the form σt ≤ a(ηt−1)σγt−1 with γ < 1 if α+ β < 1. We can adapt our
results on these models by taking a linear Lyapunov function.

• Exponential GARCH:

log σ2
t = w + αg(ηt−1) + β log σt−1,

g(ηt−1) = θηt−1 + ζ(|ηt−1| − E [|ηt−1|] ,
σ2
t = eweαg(ηt−1)(σ2

t−1)β,

with α, β > 0, β < 1 and −ζ < θ < ζ for g to be increasing in |ηt−1| (and θ < 0 for negative
innovation to have more impact than positive ones).

In this model, in the Gaussian innovation case, moments exist at any order [FZ19, p. 79].

• Log-GARCH: the recursion holds on the logarithm of variances:

log σ2
t = w + α log rt−1 + β log σt−1

= w + α log η2
t−1 + (α+ β) log σt−1,

σ2
t = ew (ηt−1)α σα+β

t−1 ,

where w,α, β ∈ R.

4.3.2 Multidimensional GARCH models

In Francq and Zakoian’s book [FZ19, page 280], the authors define the interdependent GARCH
volatilities model:

σ2
t = w +Art−1

2 +Bσ2
t−1, (4.4)

where A,B ∈ Rdxd, w ∈ Rd.

It is possible to adapt our results to this setting.

5 Numerical experiments

In this section, we confront our theoretical results to the real probabilities of better performance of
the realized covariance based portfolio. To do so, we base ourselves on GARCH fitted parameters
on real financial data to have realistic range of parameters (Subsection 5.1). Then we simulate
GARCH-CCC based returns and compute the corresponding cRCH,tn and mv matrices and port-

folio, as described in Subsection 5.2. Finally, we exhibit the evolution of P̂(RN,H < R∞N,H) for
multiple values of H and N .

5.1 Realistic GARCH values, fit procedure

We have fitted GARCH-CCC parameters on real financial time series, using a two steps procedure:
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5.1 Realistic GARCH values, fit procedure

1. fit of the one-dimensional GARCH(1,1) models by maximum likelihood (where the explicit
likelihood for one-dimensional GARCH can be found in [EB86] for example) on the recentered
returns (we assumed a fixed drift),

2. fit of the constant conditional correlation on the reconstructed residuals η̃i,t.

The financial time series consist in the 12 components of BNPP QIS Momentum Strategy, composed
of 4 indices consisting in index futures rolling (indices being EuroStoxx50, S&P 500, Nikkei, HSCEI),
3 indices of rolling of futures of bonds (German Bund, US government bond, Japanese government
bond) and 5 indices of rolling of commodity (on gold, brent, S&P GSCI excess return, Goldman
Sachs US industrial metal ER) fx hedged in euros, from 12/03/1993 until 02/02/2017 (6046 dates).

Minimum Maximum Average Standard-deviation

σ2
∞ 0.060 5.15 1.77 1.44

σ∞,an 4.04 36.02 18.91 9.47

w 0.00032 0.04320 0.0135 0.0137

α 0.0329 0.0955 0.0622 0.0242

β 0.885 0.966 0.931 0.0271

α+ β 0.981 0.998 0.993 0.00182

ρ -22% 82% 10% 22%

pmax 1.83 5.72 3.34 1.22

t1/2 36.2 437.2 135.8 98.52

Table 1: Summary of variance (σ2
∞), GARCH(1,1) parameters (α, β, w), constant conditional cor-

relation (ρ), highest moment (pmax) and half-life time (t1/2, as defined in (5.2)) fitted on the 12
components of BNPP QIS Momentum Strategy from 12/03/1993 until 02/02/2017 (6046 dates).
We give the minimum, maximum, average and standard-deviation of the calibrated parameters.
The variance and w parameters are expressed in basis points of daily variances, σ∞,an denotes
the annualized volatility and is expressed in percents, t1/2 is expressed in days. α, β and pmax

have no dimension. What we call standard-deviation is the standard-deviation over the estimated
quantities.

We give the minimum, maximum, average and standard-deviation of the obtained values in Ta-
ble 1. In the same Table, we also give the minimum, maximum, average and standard-deviation of
additional quantities computed on the parameters:

• the maximum moment pmax,i, computed on the parameters with formula (4.3)

pmax,i := arg max
p∈R+

{
E
[
|αiη̃2

i + βi|p
]
< 1
}
, (5.1)

• the half-life t1/2, defined as the average time for the gap between the variance level to its
long-term level to be reduced by one half:

t1/2,i := − log 2

log(αi + βi)
, (5.2)

• σ2
i,∞ the empirical variance measured on the data.
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5.2 Simulation procedure

We display in Figure 2 the obtained values for α, β and pmax.

Comments and interpretation

• The average α is relatively small (0.062) and the average β is relatively high (0.931), and the
sum α + β is very close to 1. According to Campbell [CLM97, page 483], the α parameter
measures how much a previous shock (high value of an innovation) will propagate to the
future.

• The half-life times are large (because the α+β are close to 1): this phenomena corresponds to
the persistence of shocks over time. The average half-life time is 135 days hence approximately
six months. It means that before this horizon, the instantaneous variance can be far from its
expectation under the stationary distribution.

• The wi values are very close to zero since by stationarity condition:

σ2
i,∞ = E

[
ε2i,t
]

= E
[
σ2
i,t

]
=

wi
1− αi − βi

,

they should be of the same order of magnitude than σ2
i,∞(1− αi − βi), and αi + βi ≈ 1.

• We notice that low values of α are associated to high values of β (as shown in Figure 2) and
conversely, in such a way that the stationary condition α+ β < 1 is always enforced.

• The average pmax is equal to 3.34, and the minimum is slightly smaller than 2. As shown in
Figure 2, most pmax values are higher than 2 which means that the time series have finite
kurtosis.

The estimated parameters show that our approach of considering portfolio with horizon H not too
large (for example: 21 days) and pmax ≥ 2 but of small order is relevant since the average half-time
is very large (more than a month) and the existence of order-2 moments is almost always verified.

5.2 Simulation procedure

In what follows, we describe how we choose the GARCH-CCC parameters and how we estimate
the benchmark covariance V∞ and the realized conditional covariance cRCH,Treb .

• {αi, βi,Γi,j}di,j=1 choice

The {αi, βi,Γi,j}di,j=1 are simulated uniformly in the ranges indicated in Table 1. The (αi, βi)
are sorted such that the smallest αi are associated to the largest βi. (We enforce Γ to be
definite positive by ensuring or capping its eigen-values to 10−2 and transforming the matrix
to retrieve a 1-diagonal.)

• V∞ estimation

We estimate V∞ as the empirical covariance of the returns over a long range of time, typically
three times the largest half-life time. It amounts to consider a backtest of three times the
largest half-life time. Given the half-life times observed range, the largest life-time is around
400 business days, hence 1.6 years: 3 times this period corresponds to a backtest size of 4.8
years.

29



5.2 Simulation procedure
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Figure 2: (α, β, pmax) parameters fitted on 12 financial time series. In orange, we draw the finite
variance area (condition Hparam(iii)), in yellow, we draw the stationary (condition (A.2)) but not
finite variance area. A dot corresponds to one (αi, βi) fitted parameter. Its color indicates its
associated pmax value (as defined in Hparam(pmax)). The color scale to the right corresponds to
ranges of observed values for pmax: lower than 2 values are in dark blue, pmax ∈ [2, 3] is in cyan,
higher values are in green, orange and brown. Most of our fitted parameters are colored in cyan,
i.e. are associated to pmax ∈ [2, 3] values.
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5.2 Simulation procedure

• cRCH,Treb
estimation

We evaluate the cRCH,Treb via Monte Carlo:

̂cRCH,Treb =
H∑
k=1

Ê [VTreb+k|FTreb ] =
1

Nmc

Nmc∑
n=1

H∑
k=1

V
(n)
Treb+k |FTreb

with

– V
(n)
Treb

= VTreb ,

– V
(n)
Treb+k

obtained by application of the recursion formula on V
(n)
Treb+k

and a generated

r
(n)
Treb+k

∼ N (0, V
(n)
Treb+k−1), for k = 1, . . . ,H.

We took Nmc = 100.

We consider the minimum variance portfolio without constraints: W =
{
w = {wi}di=1 ∈ Rd : 1>d w = 1

}
,

where 1d is the d-dimensional vector of ones. Then mv(.) is explicit: for C ∈ Rd×d positive definite

matrix, mv(C) = C−11d
1>d C

−11d
. Since we deal with a non-degenerate GARCH-CCC model, we know

that our allocation weights will be bounded during the length of the experiment. This is why we
did not enforce a bound on their norm.

We will place in the following settings:

• d ∈ {10, 50},

• H = 1 (daily rebalancing), H = 5 (weekly), H = 21 (monthly),

• N = 1, . . . , 6 ∗ 21/H.

For a daily rebalancing period, we will consider up to N = 126 rebalancing times of the portfolio,
and for monthly time period, up to N = 6 rebalancing times.

For one set of d-dimensional GARCH parameters, we reproduce the following experiment multiple
times (NMC = 104 times):

• We let the multidimensional GARCH evolve during 3 times the maximal half-life time asso-
ciated to the d sets of GARCH parameters. We do so in order to reach plausible GARCH
values beyond the burn-in phase of the process. We precise that our results are valid whatever
the starting point and that it is not necessary to reach the stationary regime for the results
to apply.

• Computation of the probabilities: trajectory approach (less independent) versus
by (H,N) approach (more independent).

To do our experiments, we first considered a trajectory approach, consisting in the following
steps:

We start the allocation procedure by initializing our daily, weekly and monthly portfolios:
mv(V1), mv(ĉRC5,1) and mv( ̂cRC21,1). Then for t = 1, . . . , 126,

– We update the daily realized variance Rt,1 and we update the portfolio mv(Vt), and the
realized variance.
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5.3 Empirical probability: impact of pmax and d

– If t modulo 5 is null, we update the weekly realized variance Rt,5 and portfolio with

ĉRC5,t.

– If t modulo 21 is null, we update the monthly realized variance Rt,21 and portfolio with
̂cRC21,t.

Another more independent (but more time consuming) approach consists in generating a new
GARCH trajectory for each (H,N) pair considered. This is the approach we have finally
taken in the following illustrations (except for the d = 50 experiment).

Hence, we can compute iteratively the empirical probabilities:

P̂(RN,H < R∞N,H) =
1

NMC

NMC∑
N=1

1RN,H<R∞N,H , H ∈ {1, 5, 21}, N = 1, . . . ,
126

H
.

5.3 Empirical probability: impact of pmax and d

We display in Figures 3 and 4 the evolution of the empirical P
(
RN,H>R

∞
N,H

)
with H and N , for

d = 10 and small versus large pmax (Figure 3), and in the other figures, we compare large dimension
(d = 50) versus small dimension (d = 10 ) (Figure 4). The time is in business days. We compare
daily (red dots), weekly (blue) and monthly (green) rebalancing times of the portfolios. On all the
experiments, the probabilities decreased towards 0.

5.3.1 Impact of pmax

(a) small pmax (b) large pmax

Figure 3: Empirical probabilities P̂(RN,H>R
∞
N,H), for H = 1 (red), H = 5 (blue) and H = 21

(green) as a function of the number of rebalancing times N , in log-log scale, for a set of GARCH
parameters such that d = 10, pmax = 2.8 (left) and pmax = 7 (right). In black dots, we plotted the
tendency line fitted on P̂(RN,H>R

∞
N,H) for H = 5 and N ≥ 5.

In Figure 3 we compare at fixed dimension d = 10 the impact of the integrability. For the figure
on the left, it requires more than 7 rebalancing of the monthly or weekly portfolio to reach a 1%
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5.3 Empirical probability: impact of pmax and d

probability level that the GARCH-covariance will outperform the benchmark, whereas in the large
pmax case, the 1% level is reached at the 5th rebalancing of the portfolio. Practically speaking,
it means that for a period of 5 weeks (weakly portfolio) or 5 months (monthly portfolio), we
have a 99% probability that the GARCH-based portfolio has a lowest realized variance than the
benchmark. Since a higher pmax implies lighter tails, the deviation are less important and it is
easier to see the performance gain. For N ≥ 4, the tendency lines have a slope of −3.4 (small pmax

case) versus −3.2 (large pmax case).

Link with Theorem 2.2: We observe as expected a decreasing shape of the probability P
(
RN,H > R∞N,H

)
,

but with a concave evolution and not the linear, with a −pmax

2 slope, expected shape. Our results are
not conclusive for N small (the rate of decline is lower than expected). For N large, we even observe
a faster convergence than expected in the small pmax case (slope of −3.4 instead of −pmax

2 = −1.4).
This is an indication that there can be several decay regimes depending on N value. This is hard to
give a clear, quantitative explanation of this phenomena. It can be argued that our model consists
in a vectorized version of multiple unidimensional GARCH processes, each of them being associated
to different tail thickness. Since we deal at the portfolio variance level, it is possible than GARCH
with lighter tails are associated to higher components in the minimum variance allocation, which
could explain this faster than expected convergence rate. Nonetheless, these results are not in
contradiction with our theoretical results. Indeed, our results can be interpreted as a ”worst-case”
bound on the probability, so it is not surprising to do better. And the probability levels are lower
for the large pmax case, which is coherent with the bound behavior.

5.3.2 Impact of the dimension

(a) large d (b) small d

Figure 4: Empirical probabilities P̂(RN,H>R
∞
N,H), for H = 1 (red), H = 5 (blue) and H = 21

(green) as a function of the number of rebalancing times N , in log-log scale, for a set of GARCH
parameters such that d = 50, pmax = 5.05 (left) and d = 10, pmax = 7.03 (right).

In Figure 4, we display the evolution of the empirical P
(
RN,H>R

∞
N,H

)
for large pmax and very

different dimensions: d = 50 (Figure 4 (a)) and d = 10 (Figure 4 (b)).

Comparing 4 (a) and (b), the dimension does not seem to have a strong impact, or might be
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5.3 Empirical probability: impact of pmax and d

compensated by the stronger impact of the large integrability.

In the large dimension case, the tendency line has a slope of −2.6 which is lower than the theoretical
minimum convergence rate of −pmax

2 = −2.025 (hence the convergence is faster than the theoretical
bound).

5.3.3 Impact of the number of rebalancing times

In Figure 5, we display the histogram of the realized variance difference for a monthly portfolio
with 10 assets and different N . We see that for N = 1, the realized variance difference is almost
centered around 0 but for N ≥ 4, all the distributions are significantly centered on positive values.
Indeed, in our setting (initial condition following approximately the stationary law), the average

realized variance difference is equal to the renormalized performance gap
`∞H
H which is positive and

deterministic as shown in Proposition 2.1.

0.0 0.1 0.2
(R∞

N,H−RN,H)/NH in bps

0

10

20

30

40
0.02
 N=1
 N=3
 N=6

Figure 5: Histograms of
{
R∞N,H−RN,H

NH

}
N∈{1,6,9,12}

with H = 21 for a set of GARCH parameters

such that d = 10, pmax = 2.8. Here the variance differences are expressed as the difference in the
realized variance over N rebalancing times of the portfolio, in basis points of daily variance. N = 6
corresponds to a variance difference over a six months, between the benchmark portfolio and a

monthly re-updated portfolio. In black dots, we plot the average of
R∞N,H−RN,H

NH for N = 6 and
H = 21.

The x scale is a daily variance measure in basis points. We see that in average, the monthly portfolio
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5.3 Empirical probability: impact of pmax and d

implies a drop of daily variance of 0.02 bps. This variance level has to be put in perspective: we
consider a range of daily variance of [0.06, 5.2] bps in our experiments.

In terms of associated annualized volatility, we can upper bound the volatility difference by the
square-root of the variance difference, which translates to a drop of

√
0.02 ∗ 252/104 = 2.2%.

5.3.4 Impact of the investment period

As mentioned in the comments and interpretations paragraph following our main result, if we are
in the (NH)� C(H/`H)2 regime, the asset manager should not bother much using a sophisticated
estimation for Vt: a good approximation of V∞ is enough. In this Subsubsection, we aim at
illustrating this comment. In particular, we aim at answering the question: starting from which
investment period H do we have RN,H > R∞N,H in half the cases? For this H threshold, we are
indifferent between the stationary and the conditional realized covariance matrices.

We are interested in the evolution of P
(
RN,H < R∞N,H

)
for increasing H values. For sake of

simplicity, we consider only one rebalancing of the portfolio (N = 1). For larger N , the probability
levels will be even lower according to the previous experiments and theoretical results, so N = 1
can be seen as a worst case-scenario.

In Figure 6, we display the evolution of P
(
R1,H < R∞1,H

)
with H in months and in log-log scale, for

a universe of 10 assets associated to an integrability of order pmax = 2.8 and a half-life of 39 days
hence approximately 2 months. As previously observed in Figure 3 (same set of parameters), for
H = 21 days (so one month) and N = 1, the probability is 90%. Then the probability is decreasing
with the number of months and it is approximately equal to 1

2 when H is equal to one-year and a
half (18 months). The investment period must therefore be as long as 9 times the half-life of the
process for the stationary covariance to be as efficient as the GARCH-based covariance.

1 2 4 10 12 18
Investment period in months (H)

52.00%

60.00%

71.00%

75.00%

87.00%
90.00% half-life

Figure 6: Empirical probabilities P̂(R1,H < R∞1,H) as a function of the investment period H for a
set of GARCH parameters such that d = 10, pmax = 2.8, t1/2 = 39 days.

For investment period lower than a year, the GARCH covariance is hence relevant and efficient.
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5.4 Tail exponent Hill estimation

5.4 Tail exponent Hill estimation

From (3.3), there is a C > 0 independent from N s.t.

FN,H(y) = P
(
DN,H√
NH

> y

)
≤ C

ypmax
.

In what follows, we are going to compare our estimation of pmax via numerical method on equation
(5.1) and the one obtained via estimation of the tail exponent of

DN,H√
NH

. To do so, we use the Hill
estimator.

Hill estimator

The Hill estimator estimates the distribution tail exponent, e.g. the exponent γ such that its
complementary cumulative distribution function F verifies:

F (x) =
`(x)

x1/γ

where lim
x→∞

`(tx)
`(x) = 1 for any t > 0.

For X1, . . . , Xn random variables of cumulative distribution function F , denoting X1,n < X2,n <
· · · < Xn,n the ordered variables, the Hill estimator of order k ∈ N is defined by:

γ̂(k) =
1

k

k−1∑
i=0

(logXn−i,n − logXn−k,n).

It converges in probability towards γ if k increases with n with k/n −→
n→∞

0 (cf [DHF06, Theorem

3.2.4]) and converges asymptotically under a second order condition, as detailed in Appendix A.5.

Reasonable choice of k

Assuming a Fréchet domain of attraction (this is the natural attraction domain for Pareto-like
distributions), we can get an explicit formulation of the asymptotic variance and minimize it in k.
It gives the following optimal k for γ 6= 1:

kopt(γ, n) = 2

(
γ

1− γ
n

) 2
3

. (5.3)

The details on how we get this result is postponed to Appendix A.5. If we expect a certain value
of γ, we can plug it in (5.3) to estimate kopt.

Experiment
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6. Conclusion, perspectives
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(a) Histogram of
DN,H√

N
for H = 1 and varying N ,

pmax = 2.8 and d = 10 assets.
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(b) Hill estimation on 104 simulations of
DN,H√

N
, for

H = 1 and N = 40, with pmax = 2.8 and d = 10
assets.

We display the histogram of
DN,1√
N

for multiple N and the Gaussian density (black dots) in Figure

7a and the Hill estimator γ̂(kopt(1/pmax, n)) in Figure 7b. We have computed the Hill estimator on

an increasing number of samples, n ∈ {100, 200, . . . , 10 000} of the renormalized martingale
DN,1√
N

,

N = 40.

Comments:

• From Figure 7a, we see that
√
N is a good renormalization for the DN,1 martingale. Since

we have finite variance, a Central Limit Theorem seems to be verified.

• From Figure 7b, the Hill estimator is overall close to 1/pmax. We plotted the confidence
interval associated to the Central Limit theorem for the Hill estimator (A.5). 1/pmax is inside
the confidence interval.

6 Conclusion, perspectives

In this work, assuming a time-dependent conditional model on the returns of the form rt|Ft−1
∼

N (0, Vt), we give the optimal covariance for a given period and time of investment for the minimum
variance problem. Using a decomposition between a martingale and a positive ergodic term, we can
show that our covariance-based portfolio has a lower realized variance than any other benchmark
covariance with a high probability, which is increasing with the number of rebalancing of the
portfolio.

We give an explicit recursion scheme for the computation of this covariance matrix for the specific
GARCH-CCC model. This recursion scheme could be adapted to many other models. We empiri-
cally illustrate our result by computing the empirical probability that the realized variance of our
optimal covariance portfolio is smaller than the one with the stationary covariance matrix. The
experiment results are not in contradiction with our theoretical analysis: we verify the convergence
of the GARCH superperformance probability with the number of rebalancing, at a rate at least
equal to pmax

2 in the large N regime.

The question the practitioner may ask is (when) is it relevant to use this more sophisticated covari-
ance matrix, rather than a simple empirical covariance? Under the assumption that the model is
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1. Appendix

GARCH with known parameters, we have shown that the performance gap goes to zero when the
investment period goes to infinity and the threshold of the investment period for both covariances
to perform equally well seems to be around 10 times the half-life of the process. But we do not
tackle in this work the fact that in practice, the models have to be fitted, leading to estimation
error on the parameters, not to mention model error. We can advocate that estimation error can
still be tackled by taking into account the Gaussian uncertainty on the parameters, stemming from
the central limit behavior of the parameters when the backtest size is large enough.

A Appendix

A.1 Ergodicity and stationarity

Theorem A.1 ([FZ19, Theorem A.1 page 367] ). If (Zt)t∈Z is an ergodic strictly stationary sequence
and if (Yt)t∈Z is defined by

Yt = f(. . . , Zt−1, Zt, Zt+1, . . . ),

where f is a measurable function from R∞ to R, then (Yt)t∈Z is also an ergodic strictly stationary
sequence.

Theorem A.2 (The ergodic theorem for stationary sequences [FZ19, Theorem A.2]). If (Zt)t∈Z is
strictly stationary and ergodic, if f is measurable and if

E [|f(. . . , Zt−1, Zt, Zt+1, . . . )|] <∞

then
1

n

n∑
t=1

f(. . . , Zt−1, Zt, Zt+1, . . . ) −→
n→∞

E [f(. . . , Zt−1, Zt, Zt+1, . . . )] a.s.

A.2 GARCH-CCC ergodicity

Before recalling Francq and Zakoian’s result on the GARCH-CCC stationarity, let us introduce the
definition of the top Lyapunov exponent.

The GARCH-CCC model (4.1) can be put under the following vector form.

Let zt =

(
r2
t

σ2
t

)
∈ R2d and let Et = Diag

(
η̃2
t

)
. Then zt satisfies the recursion:

zt = bt +Atzt−1,

where bt =

(
Etw
w

)
, At =

(
EtA EtB
A B

)
, (A.1)

w = {wi}di=1, A = Diag
(
{αi}di=1

)
, B = Diag

(
{βi}di=1

)
.

The top Lyapunov exponent is defined by [FZ19, Theorem 2.3]]:

γ := lim
t→∞

a.s.
1

t
log|AtAt−1 . . . A1|.

38



A.2 GARCH-CCC ergodicity

Theorem A.3 (Strict stationarity of the CCC model [FZ19, Theorem 10.6]). A necessary and
sufficient condition for the existence of a strict stationary and non-anticipative solution process for
the model (4.1) is γ < 0, where γ is the top Lyapunov exponent of the sequence {At, t ∈ Z} defined
in (A.1). This stationary and non-anticipative solution, when γ < 0, is unique and ergodic.

Explicit γ formulation and condition:

Notice that γ does not depend on the chosen matricial norm, because norms are equivalent on the
finite dimension space of matrices considered, and if 1

K |.|2 ≤ |.|1 ≤ K|.|2, K > 0,

− log(K)

t
+

1

t
log|AtAt−1 . . . A1|2 ≤

1

t
log|AtAt−1 . . . A1|1 ≤

log(K)

t
+

1

t
log|AtAt−1 . . . A1|2

and by passage to the limit, the term log(K)
t vanishes when t goes to infinity.

In what follows, we are going to specify an explicit sufficient condition s.t. γ < 0. W.l.o.g., we
consider as matricial norm the infinite norm: |A| = max1≤i,j≤d|Ai,j |, A ∈ Rd×d.

We can specify the top Lyapunov condition by noticing thatAt can be written as: At =

(
Et
Id

)(
A B

)
,

and for 1 ≤ s ≤ t,
(
A B

)(Es
Id

)
= Diag

({
αiη̃

2
s,i + βi)

}d
i=1

)
.

It follows, using the sub-additivity of the infinite norm, that:

log|AtAt−1 . . . A1| = log

∣∣∣∣∣
(
Et
Id

) t−1∏
s=1

Diag
({
αiη̃

2
i,s + βi)

}d
i=1

) (
A B

)∣∣∣∣∣
≤ log

∣∣∣∣(EtId
)∣∣∣∣+ log

∣∣(A B
)∣∣+

t−1∑
s=1

log
∣∣∣Diag

({
αiη̃

2
i,s + βi

}d
i=1

)∣∣∣ ,
and by the strong law of large numbers, γ ≤ E log

∣∣∣Diag
({
αiη̃

2
i + βi

}d
i=1

)∣∣∣, η̃ ∼ N (0,Γ).

Taking as matricial norm the infinite norm, the condition

E log max
1≤i≤d

(αiη̃
2
i + βi) < 0

is a sufficient condition for γ < 0.

It can be verified via numerical evaluation for example.

Easier to verify sufficient conditions

Since for fixed η̃2
i : log max1≤i≤d(αiη̃

2
i + βi) ≤

∑d
i=1 log

(
αiη̃

2
i + βi

)
, and taking the expectation:

γ ≤ E log max
1≤i≤d

(αiη̃
2
i + βi) ≤

d∑
i=1

E log
(
αiη̃

2
i + βi

)
≤ d max

1≤i≤d
E log

(
αiη̃

2
i + βi

)
,

the following condition is a sufficient condition for γ < 0:

max
1≤i≤d

E log
(
αiη̃

2
i + βi

)
< 0.

The following condition ensures also the ergodicity condition, as a consequence of the Jensen
inequality on E log

(
αiη̃

2
i + βi

)
:

αi + βi < 1, i ∈ {1, . . . , d}. (A.2)

39



A.3 Irreducibility and auxiliary results on the GARCH-CCC

A.3 Irreducibility and auxiliary results on the GARCH-CCC

We will give very explicit arguments which are the main adding of this study, compared to Chap-
ters 3 ”Mixing properties of univariate GARCH” and 10 ”Multivariate GARCH” of Francq and
Zakoian’s book [FZ19].

In this subsection, we assume Hparam.

The following lemma enables us to prove that S =
∏d
i=1

(
wi

1−βi ,+∞
)

is a stable state space, e.g.

that from any point x ∈ S, we can reach any point as close from wi
1−βi as wanted in a finite number

of steps.

Lemma A.4. Let x ∈ S =
∏d
i=1

(
wi

1−βi ,+∞
)

. For all c > 0, there exists a finite Nc ∈ N such that:

P
(
σ2
i,Nc <

wi
1− βi

+ c

∣∣∣∣σ2
0 = x

)
> 0, ∀i = 1, . . . d.

Proof. Applying recursively equation (4.2) on σ2
i,N , for σ2

0 = x ∈ S, N ∈ N∗, with η̃n ∼ N (0,Γ),
n = 1, . . . , N − 1,

σ2
i,N = wi + (αiη̃

2
i,N−1 + βi)

(
wi + (αiη̃

2
i,N−2 + βi)

(
wi + · · ·+ (αiη̃

2
i,0 + β)σ2

i,0

))
= wi

(
1 + (αiη̃

2
i,N−1 + βi) + · · ·+

N−2∏
n=0

(αiη̃
2
i,N−1−n + βi)

)

+
N−1∏
n=0

(αiη̃
2
i,N−1−n + βi)xi.

(A.3)

Case ∀i ∈ {1, . . . , d}, wi
1−βi + c > wi + βixi.

By definition, σ2
i,1 = wi + (αiη̃

2
i + βi)xi, η̃ ∼ N (0,Γ): σ2

i,1 can be seen as a function of η̃2
i ≥ 0. For

small values of η̃2
i , with non null probability, wi + βixi ≤ σ2

i,1 <
wi

1−βi + c: Nc = 1 works.

Case ∃i ∈ {1, . . . , d}, wi
1−βi + c < wi + βixi

Let ε > 0 s.t. αiε
2 + βi < 1. Let us consider the event {|η̃i,n| < ε, n = 0, . . . , N − 1, i = 1, . . . , d}.

From (A.3),

σ2
i,N ≤ wi

N−1∑
n=0

(αiε
2 + βi)

n + (αiε
2 + βi)

Nxi

= wi
1− (αiε

2 + βi)
N

1− (αiε2 + βi)
+ (αiε

2 + βi)
Nxi.

This quantity goes to wi
1−(αiε2+βi)

when N goes to infinity.

Given c > 0, let us choose ε such that wi
1−(αiε2+βi)

< wi
1−βi + c

2 .

We can take Nc finite such that (αiε
2 + βi)

Ncxi <
c
2 .

Then wi
1−(αiε

2+βi)
Nc

1−(αiε2+βi)
+ (αiε

2 + βi)
Ncxi <

wi
1−βi + c and then

Px

(
σ2
i,Nc ∈

(
wi

1− βi
,

wi
1− βi

+ c

))
≥ P (|η̃i,n| < ε, n = 1, . . . , Nc, i = 1, . . . , d) > 0.
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A.4 GARCH-CCC density

Corollary A.5 (Irreducibility). The Markov process {σ2
t }t∈Z taking values in S is Lebesgue-

irreducible [MT09, Proposition 4.2.1 (ii)], e.g. for any A ⊂ B(S) with strictly positive Lebesgue
measure, for any x ∈ S

Px[arg min{n ≥ 1
∣∣ σ2

n ∈ A} <∞] > 0.

Proof. Let A ⊂ B(S), λ(A) > 0 (where λ(.) denotes the Lebesgue measure) and x ∈ S.

We define τA := arg min{n ≥ 1
∣∣ σ2

n ∈ A}.

Let c > 0 such that λ
(
A ∩

∏d
i=1( wi

1−βi + c,+∞)
)
> 0. It exists since

• c 7→ λ
(
A ∩

∏d
i=1

(
wi

1−βi + c,+∞
))

is increasing when c decreases,

• lim
c→0

λ
(
A ∩

∏d
i=1

(
wi

1−βi + c,+∞
))

= λ(A) > 0.

Let ε and Nc defined in lemma A.4 s.t. Px

(
σ2
i,Nc
∈
(

wi
1−βi ,

wi
1−βi + c

))
> 0. Then we can show that

Px(τA = Nc + 1) > 0.

Indeed,

Px(σ2
Nc+1 ∈ A) ≥ Px

(
σ2
Nc+1 ∈ A ∩

d∏
i=1

(
wi

1− βi
+ c,+∞

)
,σ2

Nc ∈
d∏
i=1

(
wi

1− βi
,

wi
1− βi

+ c

))

=E
[

P

(
σ2
Nc+1 ∈ A ∩

d∏
i=1

(
wi

1− βi
+ c,+∞

) ∣∣σ2
Nc

)
︸ ︷︷ ︸

p(σ2
Nc

)

1
σ2
Nc
∈
∏d
i=1

(
wi

1−βi
,
wi

1−βi
+c
)]

where p
(
σ2
Nc

)
> 0 for any σ2

Nc
, and

{
σ2
Nc
∈
∏d
i=1

(
wi

1−βi ,
wi

1−βi + c
)}

is of non null probability.

Hence Px(τA = Nc + 1) > 0 and {σ2
t }t∈Z is Lebesgue-irreducible.

A.4 GARCH-CCC density

Let ψ be a test function. Let us denote gΓ the density of η̃ ∼ N (0,Γ). We want to compute the
density of the vector η̃2 = {η̃2

i }di=1:

Eψ
(
η̃2
)

=

∫
Rd
ψ
(
{x2

i }di=1

)
gΓ

(
{xi}di=1

)
dx1 . . . dxd

=
∑
si=±
1≤i≤d

∫
Rs1 ...Rsd

ψ
(
{x2

i }di=1

)
gΓ

(
{xi}di=1

)
dx1 . . . dxd.
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A.5 Hill estimator

We denote si = ± sign symbol denoting the part of R interval on which xi is integrated. We can
make a change of variable: denoting

zi =

{
xi if si = +,
−xi if si = −,

and φs s.t. x = φs(z), with s = (s1, . . . , sd) then

Eψ
(
η̃2
)

=
∑
si=±
1≤i≤d

∫
(R+)d

ψ
(
{z2
i }di=1

)
gΓ (φs(z)) dz1 . . . dzd.

Taking ui = zi
2, by change of variable, we retrieve η̃2 density:

Eψ
(
η̃2
)

=
∑
si=±
1≤i≤d

∫
(R+)d

ψ
(
{ui}di=1

)
gΓ

(
φs

(
{
√
ui}di=1

))( d∏
i=1

1

2
√
ui

)
du1 . . . dud.

Denoting p the density of η̃2,

p(u) =
∑
si=±
1≤i≤d

gΓ

(
φs

(
{
√
ui}di=1

))( d∏
i=1

1

2
√
ui

1ui>0

)
.

Properties: p is continuous and positive on (R∗+)d.

Let us derive the density of σ2
t |σ2

t−1 = x. By definition of σ2
t , it is equal to the density of

{wi + (αiη̃
2
i + βi)xi}di=1, for η̃ ∼ N (0,Γ).

Denoting φ a test function, by the change of variable vi = wi + (αiui + βi)xi,

E
[
φ(σ2

t )|σ2
t−1 = x

]
=

∫
Rd
φ({wi + (αiui + βi)xi}di=1)p(u)du1 . . . dud

=

∫
Rd
φ(v) p

({
vi − wi − βixi

αixi

}) d∏
i=1

1

αixi
1(wi+βixi,+∞)(vi)︸ ︷︷ ︸

gx(v)

dv1 . . . dvd.

Hence

gx(v) := p

({
vi − wi − βixi

αixi

}) d∏
i=1

1

αixi
1(wi+βixi,+∞)(vi). (A.4)

A.5 Hill estimator

Second order condition

Denoting U(y) = F
−1

(1/y), we say that U satisfies a second order condition if there exists γ > 0,
ρ ≤ 0 and A of constant sign, lim

t→∞
A(t) = 0 s.t.

1

A(t)

[
U(tx)

U(t)
− xγ

]
−→
t→∞

xγ
xρ − 1

ρ
∀x > 0.
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A.6 Additional properties

Under second order condition, if additionally
√
kA(n/k) −→

n→∞
λ < ∞, lim

n→∞
k
n = k(n)

n = 0 and

lim
n→∞

k = +∞, then the Hill estimator satisfies a Central Limit Theorem [DHF06, Theorem 3.2.5] :

√
k(γ̂n − γ)

(d)−→
n→∞

N (λ/(1− ρ), γ2). (A.5)

Choice of k to minimize the asymptotic MSE

From [DHF06, equation 3.2.13 p.77], the asymptotic mean-squared error is given by

asMSE =
γ2

k
+
A2(n/k)

(1− ρ)2
. (A.6)

Fraga Alves et al [FAGdHN07] propose an explicit function A and constant ρ in the case of Fréchet
attraction domain in their Example 4.3, for γ 6= 1:

A(t) = −1− γ
2t

and ρ = −1 (A.7)

Minimizing the asymptotic MSE for these functions, we get:

kopt = 2

(
γ

1− γ
n

) 2
3

. (A.8)

In particular, for k = kopt,
√
kA(n/k) = −

√
2γ <∞, so the Central Limit Theorem (A.5) holds.

Proof. Plugging (A.7) in the asymptotic MSE equation (A.6), we get:

asMSE =
γ2

k
+

1

4

(
1− γ
2n/k

)2

=
γ2

k
+

(
1− γ

4n

)2

k2.

Its derivative in k is:

∂asMSE

∂k
= −γ

2

k2
+ 2

(
1− γ

4n

)2

k = −γ
2

k2
+

1

23

(
1− γ
n

)2

k

which is positive for k ≥ kopt and negative k ≤ kopt, where kopt zero of ∂asMSE
∂k is given by (A.8).

A.6 Additional properties

Extension of the Lyapunov condition to the lagged chain

This paragraph is dedicated to the extension of the Lyapunov condition HL to lagged Markov
Chains, e.g. the fact that if we have a Lyapunov condition HL for {Vt}t≥1 then we have HL for
lagged chain {VtH}t≥1, H ∈ N∗.

In Meyn and Tweedie’s book, the statement that the extension is possible can be found in [MT09,
Theorem 15.3.4] page 383.
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A.6 Additional properties

First, let us notice that the notion of H-skeleton and H-lagged Markov chain coincide. Skeletons
are defined page 62 in [MT09] as the chain V (H) with transition law:

P (VtH+1 ∈ A|V1 = x) = P tH(x,A), A ⊂ B(S).

Hence it is the same Markov chain than {VtH+1}t∈N∗ .

Let us recall Meyn and Tweedie’s result:

Theorem A.6 (Extension of HL to lagged processes [MT09, Theorem 15.3.4]). Suppose that V is
a Φ-irreducible and aperiodic. If V satisfied HL with a petite set C then for any H-skeleton, the
function L also satisfies HL for some set C′ which is petite for the H-skeleton.

The Meyn and Tweedie’s result is a qualitative result. In what follows, we give a quantitative result
on the extension of the Lyapunov condition to lagged Markov chains, in which the Lyapunov drift
condition constants for the lagged process are explicit. In this way, we can quantify explicitly the
dependence of the constant in the lag period H.

Proposition A.7 (Lyapunov condition for lagged Markov chain). Assume that the Lyapunov drift
criteria HL is verified for {Vt, t ∈ N∗}. Then, for any H ∈ N∗, the H-lagged chain {VnH+1, n ∈ N∗}
also satisfies a drift condition:

E
[
L(VH+1)

∣∣V1 = x
]
≤ dH L(x) + bH1x∈C(H) .

where

dH =
1 + δH

2
, C(H) = C ∪ {x ∈ S

∣∣ |x| ≤ R(H)},

bH = sup
x∈C(H)

(
b
1− δH

1− δ
− 1− δH

2
L(x)

)
,

and R(H) > 0 s.t. for every x ∈ S s.t. |x| > R(H), 1−δH
2 L(x) ≥ b1−δH−1

1−δ .

Proof. Let H ∈ N∗ be fixed. Let P denotes the transition kernel associated to {Vt}: using standard
Markov chain notations, E

[
g(V2)

∣∣V1 = x
]

= Pg(x), E
[
g(VH+1)

∣∣V1 = x
]

= PHg(x). We want to

show that there is a dH ∈ (0, 1), a constant bH and a set C(H) s.t. for all x ∈ S:

PH L(x) ≤ dH L(x) + bH1C(H)(x).

Let’s apply recursively the initial drift criteria equation HL: P L(x) ≤ δL(x) + b1C(x). We get, for
x ∈ S:

P 2 L(x) ≤ P (δL(x) + b1C(x)) = δP L(x) + bP (x,C)

≤ δ2 L(x) + δb1C(x) + bP (x,C)

≤ δ2 L(x) + b+ δb1C(x),

P 3 L(x) ≤ δ3 L(x) + b+ δb+ δ2b1C(x),

...

PH L(x) ≤ δH L(x) + b

H−2∑
k=0

δk + δH−1b1C(x)

= δH L(x) + b
1− δH−1

1− δ
+ δH−1b1C(x). (A.9)
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A.6 Additional properties

Let dH = 1+δH

2 ∈ (0, 1) since δ ∈ (0, 1). Let R(H) > 0 s.t. for all x ∈ S,
(
|x| > R(H)

)
⇒(

b1−δH−1

1−δ ≤ 1−δH
2 L(x)

)
(it exists since lim

|x|→∞
L(x) = +∞). Let C(H) = C ∪ {x ∈ S

∣∣ |x| ≤ R(H)}.

Then, outside C(H), using the trick δH = 1+δH

2 − 1−δH
2 , since |x| > R(H),

δH L(x) + b
1− δH−1

1− δ
=

1 + δH

2
L(x) + b

1− δH−1

1− δ
− 1− δH

2
L(x)︸ ︷︷ ︸

≤0

≤ 1 + δH

2
L(x) := dH L(x).

For x ∈ C(H),

PH L(x) ≤ δH L(x) + b
1− δH−1

1− δ
+ δH−1b

= dH L(x) +
(
δH − dH

)
L(x) + b

1− δH−1

1− δ
+ δH−1b.

Making the simplification: b1−δH−1

1−δ +δH−1b = b1−δH
1−δ and δH−dH = δH− 1+δH

2 = −1−δH
2 , denoting

bH = sup
x∈C(H)

(
b
1− δH

1− δ
− 1− δH

2
L(x)

)
,

then

PH L(x) ≤ dH L(x) +

(
b
1− δH

1− δ
− 1− δH

2
L(x)

)
≤ dH L(x) + bH .

Thus the wanted inequality PH L(x) ≤ dH L(x) + bH1C(H)(x) is satisfied.

The following proposition can be found in [MT09, Proposition 5.4.5 - (iii)] page 114.

Proposition A.8 (Extension of HS to lagged processes ). Suppose that V is a Φ-irreducible Markov
chain. If V is aperiodic then every skeleton is Φ-irreducible and aperiodic.

Theorem A.9 (Burkholder’s inequality [HH80, Theorem 2.10] ). Let {Si,Fi, 1 ≤ i ≤ n} be a
real-valued martingale, and 1 < p < ∞. Denoting X1 = S1 and Xi = Si − Si−1, 2 ≤ i ≤ n, then
there exist constants c (p) and CBp depending only on p such that

c (p)E

[∣∣∣∣ n∑
i=1

X2
i

∣∣∣∣p/2
]
≤ E

[∣∣∣∣Sn∣∣∣∣p] ≤ CBp E
[∣∣∣∣ n∑

i=1

X2
i

∣∣∣∣p/2
]

(A.10)

where suitable constants are given by c (p)−1 = (18p1/2q)p and CBp = (18pq1/2)p, where p−1 + q−1 =
1.
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