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Projections in enlargements of filtrations under Jacod’s

equivalence hypothesis for marked point processes∗

Pavel V. Gapeev† Monique Jeanblanc‡ Dongli Wu§

Abstract

We consider the initial and progressive enlargements of a filtration generated by a marked

point process (called the reference filtration) with a strictly positive random time. We assume

Jacod’s equivalence hypothesis, that is, the existence of a strictly positive conditional density

for the random time with respect to the reference filtration. Then, starting with the predictable

integral representation of a martingale in the initially enlarged reference filtration, we derive

explicit expressions for the coefficients which appear in the predictable integral representations

for the optional projections of the martingale on the progressively enlarged filtration and on the

reference filtration. We also provide similar results for the optional projection of a martingale

in the progressively enlarged filtration on the reference filtration.

1 Introduction

In this paper, we consider the initial (resp. progressive) enlargements of a filtration F (called

hereafter the reference filtration) with a strictly positive random variable τ (called hereafter the

random time), denoted by F(τ) (resp. G). We study the case in which F is generated by a marked

point process (MPP). We assume that the law of τ has no atoms and that Jacod’s equivalence

hypothesis introduced in [2, 10] holds (see Section 3 for details). We prove that these hypotheses

imply that the weak predictable representation property holds in the filtration F(τ) and (adding a
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pure jump martingale) in the filtration G. We study the relationship between the representation

of martingales in the initially (resp. progressively) enlarged filtration and the various optional

projections. The paper is an extension of our previous paper [9] for the case of models driven by

marked point processes. We refer the reader to the monograph [1] for results on enlargements of

filtrations. Our results can be useful to compare the optimal strategies of investors having different

information flows, and to investigate optimal stopping problems in different filtrations.

The reason why we are working with marked point processes is that a marked point process in

F remains a marked point processes, in particular a semi-martingale, in any enlargement of F (with

possibly a different compensator).

The paper is organised as follows. In Section 2, we recall standard definitions of projections as

well as other results of stochastic analysis that we use in the paper. In Section 3, we give some basic

definitions and results related to the initial and progressive enlargements of a filtration F generated

by a marked point process (MPP) with a random time τ , denoted by F(τ) and G, respectively, under

Jacod’s equivalence hypothesis. In Section 4, we recall that the weak predictable representation

property holds in the reference filtration with respect to the compensated random measure and

prove that the weak predictable representation property holds with respect to an explicit martingale

and a compensated random measure in the enlargements of filtration involved. In Section 5, we

consider the optional projections of an F(τ)-martingale on the filtrations G and F. We derive explicit

expressions for the coefficients in the integral representations of these optional projections in terms

of the original F(τ)-martingale and the components in its representation as a stochastic integral and

give analogous results in the case of F-optional projections of a G-martingale.

2 Preliminary definitions and results

We denote by B(R) (resp. B(R+)) the Borel sets of R (resp. of R+ = [0,∞)) and set R∗ = R \ {0}.
We work on a standard complete probability space (Ω,G,P), on which there exists a sequence

(Tn, Zn)n≥1, where (Tn)n≥1 is a strictly increasing sequence of finite strictly positive random vari-

ables with no accumulation point, and (Zn)n≥1 a sequence of real-valued random variables. We shall

say that the sequence N = (Tn, Zn)n≥1 is a marked point process (MPP) on R (see Def. 1.1.6 in [24],

Section 1.2, pages 3-4 in [21] and Chapter VIII in [5]).

We introduce the associated random measure µ on Ω× B(R+)× B(R) which is defined, for any

set A ∈ B(R) and any t ≥ 0, by

µ(ω; (0, t], A) =
∑
n≥1

11{Tn(ω)≤t} 11{Zn(ω)∈A} ,

which is called the jump measure of the marked point process N . Note that the process N(A) =

(Nt(A))t≥0 is a counting process. We denote by F = (Ft)t≥0 the natural filtration of the MPP

Ft = σ
(
µ((a, b], A), 0 ≤ a < b ≤ t, A ∈ B(R)

)
, ∀t ≥ 0 ,
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which is a right-continuous filtration (see Proposition 3.39 in [14]). We call F hereafter the reference

filtration, and note that Tn, for n ≥ 1, are F-stopping times. We define the compensator ν of the

jump measure µ with respect to F as the unique random measure1 on Ω×B(R+)×B(R) such that,

for any A ∈ B(R), the process

ν(ω; (0, t], A) =

∫ t

0

∫
A

ν(ω; ds, dz), ∀t ≥ 0 , (2.1)

is F-predictable and the process N(A) = (N t(A))t≥0 given by

N t(A) = µ((0, t], A)− ν((0, t], A), ∀t ≥ 0 , (2.2)

is an F-martingale. We shall say that N is the F-compensated martingale of the marked point process

N , and, by abuse of language, that ν is the compensator of N . More generally, if K is a filtration

larger that F, we say that νK is the K-compensator of N if, for any A ∈ B(R), the process

µ((0, t], A)− νK((0, t], A), ∀t ≥ 0 , (2.3)

is a K-martingale, and the process νK((0, ·], A) is K-predictable.

We assume, as in Chapter VIII, Definition D5, page 236 of [5] and [26] that the compensator ν

admits the representation

ν(ω; dt, dz) = dt ηt(ω; dz), ∀t ≥ 0 , (2.4)

where η(dz) is a transition kernel, so that η(A) = (ηt(A) =
∫
A
ηt(dz), t ≥ 0) is the intensity of the

counting process N(A).

As usual, P(F) (resp. O(F)) is the predictable (resp. optional) σ-algebra on F. For a family of

processes ξ(z) = (ξt(z))t≥0 parameterized by z ∈ R, we shall say that ξ is P(F)⊗ B(R)-measurable

if the map (t, ω, z) → ξt(ω; z) is P(F) ⊗ B(R)-measurable, and we define O(F) ⊗ B(R)-measurable

processes in a similar way.

Recall that, if ξ is a P(F)⊗ B(R)-measurable process such that∫ t

0

∫
R∗
|ξs(z)| ηs(dz) ds <∞, ∀t ≥ 0 , (2.5)

the process Y = (Yt)t≥0 defined as

Yt = Y0 +

∫ t

0

∫
R∗
ξs(z)

(
µ(ds, dz)− ηs(dz) ds

)
, ∀t ≥ 0 , (2.6)

is an F-local martingale. Under the stronger assumption

E
[ ∫ t

0

∫
R∗
|ξs(z)| ηs(dz) ds

]
<∞, ∀t ≥ 0 , (2.7)

1The compensator ν is given, for any A ∈ B(R), by

ν(ω; (0, t], A) =

∫ t

0

∫
A

∑
k≥1

11{Tk−1<s≤Tk}
P(Tk ∈ ds, Zk ∈ dz | FTk−1

)

P(Tk > s | FTk−1
)

, ∀t ≥ 0 ,

(see, e.g., Section 1.10 in [21], [12] or Chapter 11, Section 4 in [11]).
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the process Y is an F-martingale (see Chapter VIII, Corollary C4, page 235 in [5]).

Furthermore, any F-martingale Y admits a representation as

Yt = Y0 +

∫ t

0

∫
R∗
ξs(z)

(
µ(ds, dz)− ηs(dz) ds

)
, ∀t ≥ 0 ,

with ξ satisfying (2.5) (see Chapter VIII, Theorem T8, page 239 in [5] and Theorem 2.2 in [26]).

This property is referred to as the weak predictable representation property (WPRP) of the marked

point process N on the filtration F with respect to the compensated jump measure µ − ν (see also

Theorem 13.19 in [11], Th. 1.13.2 in [21] or Theorem 1.1.21 in [24]) . Such a representation is

essentially unique (P× ηt(dz)× dt-a.s.).
Let X = (Xt)t≥0 be a measurable process and H be a filtration satisfying the usual hypotheses

of completeness and right continuity. We denote by p,FX = (p,FXt)t≥0 (resp. o,FX = (o,FXt)t≥0) its

F-predictable (resp. optional) projection when they exist (see Chapter V, Th. 5.1 (resp. 5.2) in [11]

or Section 1.3.1, page 15 in [1]).

3 Jacod’s equivalence hypothesis

In the whole paper, we work on a probability space (Ω,G,P) which supports a marked point process

with a continuous on right and completed natural filtration F = (Ft)t≥0 and a strictly positive

random variable τ . Note that the inclusion F∞ ⊂ G holds and, in general, this inclusion is strict.

We recall that any F-martingale is càdlàg.

Hypothesis 3.1 We assume in the whole paper, as in [2] and [10], that Jacod’s equivalence hy-

pothesis holds, that is, the regular conditional distributions of τ given Ft are equivalent to ρ, the

unconditional law of the random variable τ :

P(τ ∈ · | Ft) ∼ P(τ ∈ ·),∀t ≥ 0 (P-a.s.) .

In our model, this assumption implies (see Lemma 2.3 in [8]) that there exists a family of strictly

positive processes p(u) = (pt(u))t≥0 such that the function (ω, t, u) 7→ pt(u;ω) is O(F) ⊗ B(R+)-

measurable, and, for each u ≥ 0, the process p(u) is a càdlàg F-martingale. Moreover, for any Borel

bounded function f , the following equality holds

E
[
f(τ)

∣∣Ft] =

∫ ∞
0

f(u) pt(u) ρ(du), ∀t ≥ 0 (P-a.s.) . (3.1)

The expression in (3.1) implies that the following equality holds

P(τ > s | Ft) =

∫ ∞
s

pt(u) ρ(du), ∀t, s ≥ 0 (P-a.s.) ,

so that, from the assumption of strict positivity of τ , the equality∫ ∞
0

pt(u) ρ(du) = 1, (P-a.s.),

is satisfied, and p0(u) = 1, for each u ≥ 0.
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We shall call the family of F-optional processes p(u), for each u ≥ 0, the F-conditional density fam-

ily with respect to ρ(du) (or the conditional density of τ if there is no ambiguity on the filtration). �

The following proposition is proved as a consequence of the WPRP in [23, Pro. 2.1].

Proposition 3.2 There exists a strictly positive and P(F) ⊗ B(R+) ⊗ B(R)-measurable process f

such that, for any u ≥ 0, the strictly positive F-martingale p(u) admits the representation

pt(u) = p0(u) exp

(∫ t

0

∫
R∗

ln
(
fs(u, z)

)
µ(ds, dz)−

∫ t

0

∫
R∗

(
fs(u, z)− 1

)
ηs(dz) ds

)
, ∀t ≥ 0 , (3.2)

or, equivalently, p(u) satisfies the stochastic differential equation

dpt(u) = pt−(u)

∫
R∗

(
ft(u, z)− 1

) (
µ(dt, dz)− ηt(dz) dt

)
, p0(u) = 1 . (3.3)

Let us denote by H = (Ht)t≥0 with Ht = 11{τ≤t}, for all t ≥ 0, which is called the indicator

default process in the credit risk theory, where τ denotes the time at which a default occurs. Moreover,

since H is a càdlàg process, we can introduce the F-supermartingale G = (Gt)t≥0 defined by G =

o,F(1−H), that is, the F-optional projection of 1−H satisfying the property

Gt = P(τ > t | Ft), ∀t ≥ 0 (P-a.s.) , (3.4)

which, according to the equality (3.1), can be represented in the form

Gt =

∫ ∞
t

pt(u) ρ(du), ∀t ≥ 0 (P-a.s.) . (3.5)

Note that G is strictly positive and that, from the assumption of strict positivity of the random

variable τ , one has G0 = 1. The F-supermartingale G is called the conditional survival process or

the Azéma supermartingale of the random time τ .

Hypothesis 3.3 We assume that the distribution law ρ of the strictly positive random variable τ is

non-atomic.

Remark 3.4 It is known that, under the assumption that the law ρ of the random variable τ

is non-atomic and under Jacod’s equivalence hypothesis, the random time τ avoids all F-stopping
times (see Corollary 2.2 in [7]). This will allow us to obtain a simpler formula for the semimartin-

gale decomposition. More precisely, under the avoidance hypothesis, the dual optional projection

of H is continuous and equal to the dual predictable projection of H, denoted by Hp (see Proposi-

tion 1.48 (a), page 22 in [1]). Therefore the martingale m which appears in the general formulae of

the semimartingale decomposition (see Proposition 5.30, page 116 in [1]) is equal to the martingale

part of the Doob-Meyer decomposition of G, that is, one has G = m − Hp. In particular, the

predictable projection of G is pG = pm − Hp = m− − Hp = G−. The fact that ρ is non-atomic

implies that, for a càdlàg process X, one has∫ t

0

Xs− ρ(ds) =

∫ t

0

Xs ρ(ds), ∀t ≥ 0 .
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4 Enlargement of filtrations and martingales

We will consider two enlarged filtrations: the initial enlargement of F obtained by adding the σ-field

σ(τ) at time 0 and denoted F(τ), and the progressive enlargement of F obtained by progressively

adding information σ(τ ∧ t) at time t ≥ 0, or, in other terms, the smallest filtration G containing F
and turning out τ into a stopping time.

The aim of the paper is to explicitly compute the components in the integral representations

of the optional projections of the F(τ)-martingales and of the G-martingales. In this section, we

recall some well known results. We give the form of the F(τ)-semimartingale decomposition and

G-semimartingale decomposition of N(A) defined in (2.2) as well as the G-semimartingale decompo-

sition of H. We underline that the martingale part N
(τ)

(A) of the F(τ)-semimartingale decomposi-

tion of N(A) enjoys the F(τ)-predictable representation property, while the pair (N
G

(A),MG) of the

martingale parts of the G-semimartingale decompositions of N(A) and H enjoys the G-predictable

representation property, where the integral with respect to the pair is understood componentwise as

in (4.15) below.

4.1 The initially enlarged filtration

As in the introduction, let us denote by F(τ) = (F (τ)
t )t≥0 = (Ft ∨σ(τ))t≥0 the initial enlargement of

the filtration F with the random time τ . We recall that, under Jacod’s equivalence hypothesis, any F-
local martingale is an F(τ)-special semimartingale (see, e.g., Theorem 2.1 in [13] or Proposition 5.30,

page 116 in [1]). Note that, according to Proposition 3.3 in [2], the filtration F(τ) is right-continuous.

We further denote F(τ)-optional processes with the superscript (τ) as in Y (τ). We denote F-
adapted processes by capital letters as X, or lower case x, or ϕ, or even x0.

We also recall that, for any t ≥ 0 fixed, any F (τ)
t -measurable random variable Y (τ)

t is of the form

Yt(ω, τ(ω)), for some Ft ⊗ B(R+)-measurable function (ω, u) 7→ Yt(ω, u) (see, e.g., Proposition 2.7,

part (i) in [6]). In particular, any F (τ)
0 -measurable random variable is a Borel function of τ . Recall

that any F(τ)-predictable process can be represented in the form Yt(ω, τ(ω)), for all t ≥ 0, where the

mapping (ω, t, u) 7→ Yt(ω, u) defined on Ω×R+×R+ and valued in R is P(F)⊗B(R+)-measurable.

Moreover, under Jacod’s equivalence density hypothesis, any F(τ)-optional process Y (τ) = (Y
(τ)
t )t≥0

can be written as Y (τ)
t = Yt(τ), for all t ≥ 0, where the process Y is O(F)⊗B(R+)-measurable (see

Theorem 6.9 in [27]).

As an immediate consequence of Jacod’s equivalence hypothesis, we observe that, for each t ≥ 0,

if the F (τ)
t -measurable random variable Yt(τ) is integrable, then the following representation holds

E
[
Yt(τ)

∣∣Ft] =

∫ ∞
0

Yt(u) pt(u) ρ(du), ∀t ≥ 0 , (4.1)

(see, e.g., Proposition 4.18 (b), page 85 in [1]).
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In the following proposition, we give the semimartingale decomposition of N(A), defined in (2.2),

in F(τ).

Proposition 4.1 For any Borel set A, the F(τ)-semimartingale decomposition of the F-martingale

N(A) is given by

N t(A) = N
(τ)

t (A) +

∫ t

0

∫
A

(
fs(τ, z)− 1

)
ηs(dz) ds, ∀t ≥ 0 ,

where N
(τ)

(A) is an F(τ)-martingale and f is given in (3.3). In other terms, the process N =

(Tn, Zn)n≥1 is a marked point process with F(τ)-compensator ν(τ), where we have

ν(τ)(dt, dz) = ft(τ, z) ηt(dz) dt, ∀t ≥ 0 ,∀z ∈ R . (4.2)

Proof: From the results of initial enlargement2, for any A ∈ B(R), the process N
(τ)

(A) =

(N
(τ)

t (A))t≥0 defined by

N
(τ)

t (A) = N t(A)−
∫ t

0

d〈N(A), p(u)〉Fs
ps−(u)

∣∣∣∣
u=τ

, ∀t ≥ 0 ,

is an F(τ)-martingale. In order to compute the predictable covariation, we start by computing the

quadratic covariation of the processes N(A) and p(u), for each u ≥ 0. Obviously, we have

[
N(A), p(u)

]
t

=

∫ t

0

∫
A

ps−(u)
(
fs(u, z)− 1

)
µ(ds, dz), ∀t, u ≥ 0 ,

and hence 〈
N(A), p(u)

〉F
t

=

∫ t

0

∫
A

ps−(u)
(
fs(u, z)− 1

)
ηs(dz) ds, ∀t ≥ 0 ,∀z ∈ R.

It follows that

N t(A)−
∫ t

0

∫
A

(
fs(τ, z)− 1

)
ηs(dz) ds, ∀t ≥ 0 ,

is an F(τ)-martingale and the F(τ)-compensator of N is

ν(τ)(dt, dz) = ft(τ, z) ηt(dz) dt, ∀t ≥ 0 ,∀z ∈ R.

This completes the proof. �

Note that Jacod’s equivalence hypothesis allows us to prove the stability of weak predictable

representation property in the enlargement of filtration by means of the following lemma (see [10]

or Theorem 4.37, page 94 in [1]).
2One applies Theorem 2.1 in [13] which states that, under Jacod’s hypothesis, for any F-martingale X = (Xt)t≥0,

the process X(τ) = (Xt(τ))t≥0 defined by

Xt(τ) = Xt −
∫ t

0

d〈X, p(u)〉Fs
ps−(u)

∣∣∣∣
u=τ

, ∀t ≥ 0 , (4.3)

is an F(τ)-martingale.
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Lemma 4.2 Let P∗ be the probability on F(τ) defined by means of

dP∗

dP

∣∣∣∣
F(τ)
t

=
1

pt(τ)
, ∀t ≥ 0 .

Then, F and τ are independent under P∗, as well as P∗|Ft = P∗|Ft , for all t ≥ 0, and P∗|σ(τ) = P|σ(τ).

In particular, immersion holds under P∗, i.e., any (P∗,F)-martingale is a (P∗,G)-martingale.

Proposition 4.3 Each (P,F(τ))-martingale Y (τ) = (Yt(τ))t≥0 admits a representation of the form

Yt(τ) = Y0(τ) +

∫ t

0

∫
R∗
ψs(τ, z)

(
µ(ds, dz)− ν(τ)(ds, dz)

)
, ∀t ≥ 0 , (4.4)

for some P(F)⊗ B(R+)⊗ B(R)-measurable process ψ satisfying∫ t

0

∫
R∗
|ψs(τ, z)| ν(τ)(ds, dz) <∞, ∀t ≥ 0 , (4.5)

where ν(τ) is defined in (4.2).

Proof: Note that, under the probability measure P∗, the conditional density of the random

variable τ is equal to ρ. Hence, we conclude, applying Proposition 2.1 in [6] to the probability P∗

that any (P∗,F(τ))-martingale Y ∗,(τ) is of the form Y
∗,(τ)
t = Y ∗t (τ), where Y ∗(u), for each u ≥ 0,

is a (P∗,F)-martingale, hence a (P,F)-martingale, which is a stochastic integral with respect to the

(P,F) (or equivalently (P∗,F(τ)))-compensated jump measure µ − ν. Observe that, for each u ≥ 0,

we have

Y ∗t (u) = Y ∗0 (u) +

∫ t

0

∫
R∗
ψ∗s (u, z)

(
µ(ds, dz)− ηs(dz) ds

)
, ∀t ≥ 0 ,

with ψ∗ being P(F)⊗ B(R+)⊗ B(R)-measurable and satisfying (4.5), and thus

Y ∗t (τ) = Y ∗0 (τ) +

∫ t

0

∫
R∗
ψ∗s (τ, z)

(
µ(ds, dz)− ηs(dz) ds

)
, ∀t ≥ 0 ,

and WPRP holds for F(τ) under P∗. Since WPRP is stable by equivalent change of probability mea-

sures (see, e.g., Chapter 13, Th. 13.22 in [11]), it follows that the weak predictable representation

property holds for F(τ) under P with respect to µ− ν(τ). �

As a particular case, we can represent all strictly positive F(τ)-local martingales:

Proposition 4.4 Every strictly positive F(τ)-local martingale L(τ) = (Lt(τ))t≥0 can be represented

as

Lt(τ) = L0(τ) +

∫ t

0

Ls−(τ)

∫
R∗

(
Θs(τ, z)− 1

) (
µ(ds, dz)− ν(τ)(ds, dz)

)
, ∀t ≥ 0 , (4.6)

where Θ is strictly positive and P(F(τ))⊗ B(R)-measurable and ν(τ) is defined in (4.2).
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4.2 The progressively enlarged filtration

We denote by G = (Gt)t≥0 the progressive enlargement of F with τ , that is,

Gt =
⋂
s>t

(
Fs ∨ σ(τ ∧ s)

)
, ∀t ≥ 0 . (4.7)

Note that τ is a G-stopping time and that, according to the hypothesis that the random variable

τ is strictly positive, the σ-algebra G0 is trivial, so that the initial value of a G-adapted process

is a deterministic one. Observe that, under Jacod’s equivalence hypothesis, any F-martingale is a

G-semimartingale (see, e.g., Proposition 5.30, page 116 in [1] or Theorem 3.1 in [16]), and thus, a

special semimartingale according to Chapter VI, Theorem 4, page 367 in [25]).

We observe that the completion of the two enlargements G and F(τ) follows from F∞ ⊂ G∞ ⊂
F (τ)
∞ ⊂ A, and we note that F (τ)

0 = σ(τ).

We further indicate with the superscript G the processes which are G-adapted, as Y G, except

for the G-adapted process H.

We recall that any G-predictable process KG = (KG
t )t≥0 can be written as

KG
t = 11{τ≥t}K

0
t + 11{τ<t}K

1
t (τ), ∀t ≥ 0 ,

where the processK0 is F-predictable andK1 is P(F)⊗B(R+)-measurable (see, e.g., Proposition 2.11,

page 36 in [1]). Under Jacod’s equivalence density hypothesis, any G-optional process Y G can be

written as

Y G
t = 11{τ>t} Y

0
t + 11{τ≤t} Y

1
t (τ), ∀t ≥ 0 , (4.8)

where Y 0 is F-optional and Y 1 is O(F)⊗ B(R+)-measurable (see Theorem 6.9 in [27]).

As it follows from the Doob-Meyer decomposition of the supermartingale H and the fact that

any G-predictable process is equal, on the set {τ ≥ t} to an F-predictable process, there exists an

F-predictable increasing process Λ = (Λt)t≥0 such that the process MG = (MG
t )t≥0 defined by

MG
t = Ht − Λt∧τ , ∀t ≥ 0 , (4.9)

is a G-martingale. It is known that, under Jacod’s equivalence hypothesis, the process Λ admits the

representation (we use also the fact that ρ has no atoms)

Λt =

∫ t

0

ps(s)

Gs
ρ(ds) =

∫ t

0

ps−(s)

Gs−
ρ(ds), ∀t ≥ 0 , (4.10)

(see Proposition 4.4 in [7] or Corollary 5.27 (b), page 114 in [1]). In this respect, the process

λ = (λt)t≥0 defined by λt = pt−(t)/Gt−, for t ≥ 0, is the intensity rate of τ with respect to the

measure ρ (see Proposition 2.15, page 37 in [1]).

The Doob-Meyer decomposition of the Azéma supermartingale can be given explicitly and its

multiplicative decomposition is as follows.
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Proposition 4.5 Suppose that Jacod’s equivalence hypothesis holds. The Doob-Meyer decomposi-

tion of the Azéma supermartingale G is

Gt = 1−
∫ t

0

Gs λs ρ(ds) +

∫ t

0

Gs−

∫
R∗

(
ϕs(z)− 1

) (
µ(ds, dz)− ηs(dz) ds

)
, ∀t ≥ 0 , (4.11)

where the function ϕ defined by

ϕt(z) =
1

Gt−

∫ ∞
t

pt−(u) ft(u, z) ρ(du), ∀t ≥ 0, ∀z ∈ R , (4.12)

is strictly positive and P(F)⊗ B(R)-measurable.

The multiplicative decomposition of the Azéma supermartingale G has the form

Gt = e−Λt exp

(∫ t

0

∫
R∗

ln
(
ϕs(z)

)
µ(ds, dz)−

∫ t

0

∫
R∗

(
ϕs(z)− 1

)
ηs(dz) ds

)
, ∀t ≥ 0 , (4.13)

where Λ is given by (4.10).

Proof: The Doob-Meyer decomposition of G is obtained using Itô-Ventzell formula as developed

in Theorem 3.1 in [22] to the process

Gt(s) = P(τ > s | Ft) =

∫ ∞
s

pt(u) ρ(du), ∀t, s ≥ 0 ,

with parameter s, where the forward integral (with respect to the compensated measure) in [22] is

the usual stochastic integral in our setting since we integrate predictable processes. �

In the following proposition, we give the semimartingale decomposition of the process N(A)

defined in (2.2) in the filtration G.

Proposition 4.6 For any A ∈ B(R), the G-semimartingale decomposition of the F-martingale N(A)

is given by

N t(A) = N
G
t (A) +

∫ t∧τ

0

∫
A

(
ϕs(z)− 1

)
ηs(dz) ds+

∫ t

t∧τ

∫
A

(
fs(τ, z)− 1

)
ηs(dz) ds, ∀t ≥ 0 ,

where N
G

(A) is a G-martingale, ϕ is defined in (4.12), and f is defined in (3.3). The predictable

random measure

νG(dt, dz) =
(
11{τ≥t} ϕt(z) + 11{τ<t} ft(τ, z)

)
ηt(dz) dt, ∀t ≥ 0, ∀z ∈ R , (4.14)

is the G-compensator of the random jump measure µ of the marked point process N .

Proof: Recall that G admits a Doob-Meyer decomposition as G = m − Hp (see Remark 3.4.
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The G-semimartingale decomposition3 of the F-martingale N(A) is given by

N t(A) = N
G
t (A) +

∫ t∧τ

0

d〈N(A),m〉Fs
Gs−

+

∫ t

t∧τ

d〈N(A), p(u)〉Fs
ps−(u)

∣∣∣∣
u=τ

= N
G
t (A) +

∫ t∧τ

0

∫
A

(ϕs(z)− 1)Gs−
Gs−

ηs(dz) ds+

∫ t

t∧τ

∫
A

(
fs(τ, z)− 1

)
ηs(dz) ds

= N
G
t (A) +

∫ t∧τ

0

∫
A

(
ϕs(z)− 1

)
ηs(dz) ds+

∫ t

t∧τ

∫
A

(
fs(τ, z)− 1

)
ηs(dz) ds, ∀t ≥ 0 ,

where N
G

(A) = (N
G
t (A))t≥0 is a G-martingale. It thus follows that the G-compensator of µ is given

by (4.14). �

Proposition 4.7 Every (P,G)-martingale Y G = (Y G
t )t≥0 can be represented as

Y G
t = Y G

0 +

∫ t

0

∫
R∗
αG
s (z)

(
µ(ds, dz)− νG(ds, dz)

)
+

∫ t

0

β0
s dM

G
s , ∀t ≥ 0 , (4.15)

for some P(G)⊗ B(R)-measurable process αG satisfying∫ t

0

∫
R∗
|αG
s (z)| νG(ds, dz) <∞, ∀t ≥ 0 , (4.16)

where νG is defined in (4.14). Here, the process αG is of the form

αG
t (z) = 11{τ≥t} α

0
t (z) + 11{τ<t} αt(τ, z), ∀t ≥ 0, ∀z ∈ R , (4.17)

where α0 is P(F)⊗B(R)-measurable process, α is a P(F)⊗B(R+)⊗B(R)-measurable process, while

β0 is an F-predictable process.

Proof: The weak predictable representation property holds for the filtration G under the prob-

ability measure P∗, due to the independence between F and σ(τ) under P∗. This property means

that any (P∗,G)-martingale Y ∗,G = (Y ∗,Gt )t≥0 admits the representation

Y ∗,Gt = Y ∗,G0 +

∫ t

0

∫
R∗
αG
s (z)

(
µ(ds, dz)− ηs(dz) ds

)
+

∫ t

0

β0
s dM

∗,G
s , ∀t ≥ 0 , (4.18)

with some P(G) ⊗ B(R)-measurable process αG satisfying (4.16) and being of the form (4.17), for

some P(F) ⊗ B(R)-measurable process α0, some P(F) ⊗ B(R+) ⊗ B(R)-measurable process α, and

some F-predictable process β0. Note that, due to immersion property the (P∗,G) compensator of µ

is the measure ηs(dz)ds. Here the processM∗,G = (M∗,Gt )t≥0 is the (P∗,G)-compensated martingale
3One can use Remark 3.4 and Theorem 5.30, page 116 in [1] to deduce that, for any F-martingale X, the process

XG = (XG
t )t≥0 defined by

XG
t = Xt −

∫ t∧τ

0

d〈X,m〉Fs
Gs−

−
∫ t

t∧τ

d〈X, p(u)〉Fs
ps−(u)

∣∣∣∣
u=τ

, ∀t ≥ 0 ,

is a G-martingale.
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associated with H defined similar to MG in (4.9), but under the probability measure P∗. Since the

weak predictable representation property (WPRP) is stable under an equivalent change of probabil-

ity measure (see Th. 13.22 in [11]), the result follows. �

Remark 4.8 Note that, if the process βG admits the representation

βG
t = 11{τ≥t} β

0
t + 11{τ<t} β

1
t (τ), ∀t ≥ 0 ,

then the equality ∫ t

0

βG
s dM

G
s =

∫ t

0

β0
s dM

G
s , ∀t ≥ 0 , (4.19)

holds, for any choice of the P(G) ⊗ B(R)-measurable process β1, since MG is flat after τ (i.e.,

MG
t = MG

t∧τ , for all t ≥ 0).

As a particular case of Proposition 4.7, we obtain:

Proposition 4.9 Every strictly positive G-local martingale LG = (LG
t )t≥0 can be represented as

LG
t = LG

0 +

∫ t

0

LG
s−

∫
R∗

(
κGs (z)− 1

) (
µ(ds, dz)− νG(ds, dz)

)
+

∫ t

0

LG
s−
(
ξGs − 1

)
dMG

s , ∀t ≥ 0 ,

for a strictly positive and P(G)⊗ B(R)-measurable process κG of the form

κGt (z) = 11{τ>t} κ
0
t (z) + 11{τ≤t} κt(τ, z), ∀t ≥ 0, ∀z ∈ R ,

and a strictly positive F-predictable process ξG, where νG is defined in (4.14).

5 Optional projections of martingales

Let Y (τ) be an F(τ)-martingale. Then, Y (τ) admits the integral representation given by (4.4). We

study the G-optional projection Y G of the process Y (τ) and the F-optional projection Y of Y (τ).

Note that Y G is a G-martingale and Y is an F-martingale. The G-martingale Y G admits the integral

representation given by (4.15), with some processes αG and β0 that can be represented as

αG
t (z) = 11{τ≥t} α

0
t (z) + 11{τ<t} αt(τ, z), ∀t ≥ 0, ∀z ∈ R , (5.1)

where, as in (4.17), α0 is P(F) ⊗ B(R)-measurable, α is P(F) ⊗ B(R+) ⊗ B(R)-measurable, and β0

is an F-predictable process.

Observe that any square integrable F-martingale Y admits the representation (2.6) with some

P(F)⊗ B(R)-measurable process ξ satisfying

E
[ ∫ t

0

∫
R∗
ξ2
s (z) ηs(dz) ds

]
<∞, ∀t ≥ 0 , (5.2)
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(see Chapter VIII, Theorem T8, page 239 in [5]).

Similarly, we observe that any square integrable F(τ)-martingale Y (τ) admits the representation

(4.4) with some P(F)⊗ B(R+)⊗ B(R)-measurable process ψ satisfying

E
[ ∫ t

0

∫
R∗
ψ2
s(τ, z) ν(τ)(ds, dz)

]
<∞, ∀t ≥ 0 , (5.3)

where ν(τ) is defined in (4.2) (see Chapter VIII, Theorem T8, page 239 in [5]).

Finally, we observe that any square integrable G-martingale Y G admits the representation (4.15)

with some P(G)⊗ B(R)-measurable process αG satisfying

E
[ ∫ t

0

∫
R∗

(
αG
s (z)

)2
νG(ds, dz)

]
<∞, ∀t ≥ 0 , (5.4)

and F-predictable process β0, where νG is defined in (4.14) (see Chapter VIII, Theorem T8, page 239

in [5]).

5.1 The projections of F(τ)-martingales on G

Proposition 5.1 Let Y (τ) = Y (τ) (with Y being O(F)⊗B(R+)-measurable) be an F(τ)-martingale

with the representation (4.4), where ψ is P(F) ⊗ B(R+) ⊗ B(R)-measurable. Then, its G-optional

projection Y G = (Y G
t )t≥0 is the G-martingale with representation given by the equation (4.15) with

Y0 = E[Yt(τ)], where αG admits the decomposition (5.1). The P(F) ⊗ B(R)-measurable process α0,

the P(F)⊗ B(R+)⊗ B(R)-measurable process α and the F-predictable process β0 are of the form

α0
t (z) =

1

ϕt(z)Gt−

∫ ∞
t

((
ψt(u, z) + Yt−(u)

)
ft(u, z)− Yt−(u)ϕt(z)

)
pt−(u) ρ(du), ∀t ≥ 0, ∀z ∈ R ,

αt(u, z) = ψt(u, z), ∀u ≥ t ≥ 0 ,

β0
t = p,FΣt −

1

Gt−

∫ ∞
t

Yt−(u) pt−(u) ρ(du), ∀t ≥ 0 ,

with Σt = Yt−(t), for all t ≥ 0.

Proof: In the first part of the proof (the first and the second step), we assume that the F(τ)-

martingale Y (τ) is square integrable, so that the G-martingale Y G is square integrable too. In the

first step, we determine αG(z), for each z ∈ R, and, in the second step, we determine β0. We

generalize the result to any F(τ)-martingale by localisation in the second part of the proof (third

step).

We introduce the sign TP
= to indicate that the tower property for conditional expectations is

applied.

First step: We assume that the F(τ)-martingale Y (τ) is square integrable, so that the G-

martingale Y G is square integrable too. In particular, Y0(τ) is square integrable and the P(F) ⊗
B(R+) ⊗ B(R)-measurable process ψ satisfies (5.3) as well as the P(G) ⊗ B(R)-measurable process
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αG satisfies (5.4). Then, consider a bounded P(G)⊗B(R)-measurable process γG such that γG(z) =

(γGt (z))t≥0, for each z ∈ R∗, as well as a bounded F-predictable process θ0 = (θ0
t )t≥0, and define the

process KG = (KG
t )t≥0 by

KG
t = KG

0 +

∫ t

0

∫
R∗
γGs (z)

(
µ(ds, dz)− νG(ds, dz)

)
+

∫ t

0

θ0
s dM

G
s , ∀t ≥ 0 , (5.5)

where νG is defined in (4.14). It is seen that the process KG is a square integrable G-martingale,

since γG satisfies the condition

E
[ ∫ t

0

∫
R∗

(
γGs (z)

)2
νG(ds, dz)

]
<∞, ∀t ≥ 0 , (5.6)

and the process θ0 is F-predictable and bounded. In this case, the square integrable random variable

Y G
t = E[Yt(τ) | Gt] is the only Gt-measurable random variable such that

E
[
Yt(τ)KG

t

]
= E

[
Y G
t KG

t

]
, ∀t ≥ 0 , (5.7)

holds. Thus, since one has

E
[
Yt(τ)KG

0

]
= E

[
Y G
t KG

0

]
, ∀t ≥ 0 ,

the equality (5.7) is equivalent to the system of two following equalities

E
[
Yt(τ)

∫ t

0

∫
R∗
γGs (z)

(
µ(ds, dz)− νG(ds, dz)

)]
(5.8)

= E
[
Y G
t

∫ t

0

∫
R∗
γGs (z)

(
µ(ds, dz)− νG(ds, dz)

)]
, ∀t ≥ 0 ,

and

E
[
Yt(τ)

∫ t

0

θ0
s dM

G
s

]
= E

[
Y G
t

∫ t

0

θ0
s dM

G
s

]
, ∀t ≥ 0 . (5.9)

We now determine the processes α0 and α from the equality (5.8). On the one hand, one has

E
[
Yt(τ)

∫ t

0

∫
R∗
γGs (z)

(
µ(ds, dz)− νG(ds, dz)

)]
= E

[
Yt(τ)

(∫ t

0

∫
R∗
γGs (z)

(
µ(ds, dz)− ν(τ)(ds, dz)

)
+

∫ t

0

∫
R∗
γGs (z)

(
ν(τ)(ds, dz)− νG(ds, dz)

))]
, ∀t ≥ 0 ,

where ν(τ) is defined in (4.2). Integrating by parts on the time interval [0, t] the product the two

F(τ)-martingales Y (τ) and Υ = (Υt)t≥0 defined by

Υt =

∫ t

0

∫
R∗
γGs (z)

(
µ(ds, dz)− ν(τ)(ds, dz)

)
, ∀t ≥ 0 ,
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and taking into account the fact that Υt−dYt(τ) and Yt−(τ)dΥt correspond to true martingales, as

we shall prove in Appendix below, one has

E
[
Yt(τ)

∫ t

0

∫
R∗
γGs (z)

(
µ(ds, dz)− ν(τ)(ds, dz)

)]
= E

[ ∫ t

0

∫
R∗
γGs (z)ψs(τ, z) ν

(τ)(ds, dz)

]
, ∀t ≥ 0 .

Now, integrating by parts on the time interval [0, t] the product of the martingale Y (τ) and the

bounded variation process Γ(τ) = (Γt(τ))t≥0 defined by

Γt(τ) =

∫ t

0

∫
R∗
γGs (z)

(
ν(τ)(ds, dz)− νG(ds, dz)

)
, ∀t ≥ 0 ,

one obtains

E
[
Yt(τ) Γt(τ)

]
= E

[ ∫ t

0

∫
R∗
Ys−(τ) γGs (z)

(
ν(τ)(ds, dz)− νG(ds, dz)

)]
, ∀t ≥ 0 .

On the other hand, one has by integration by parts

E
[
Y G
t

∫ t

0

∫
R∗
γGs (z)

(
µ(ds, dz)− νG(ds, dz)

)]
= E

[ ∫ t

0

∫
R∗
γGs (z)αG

s (z) νG(ds, dz)

]
, ∀t ≥ 0 .

Finally, (5.8) is equivalent to, for any γG satisfying (5.6), we have

E
[ ∫ t

0

∫
R∗
γGs (z)

(
ψs(τ, z) ν

(τ)(ds, dz) + Ys−(τ)
(
ν(τ)(ds, dz)− νG(ds, dz)

))]

= E
[ ∫ t

0

∫
R∗
γGs (z)αG

s (z) νG(ds, dz)

]
, ∀t ≥ 0 . (5.10)

For γG(z) such that γGs (z) = 11{τ≥s}γ
0
s (z), for all s > 0, where γ0 is P(F)⊗B(R)-measurable, using

the identities (4.2) and (4.14), we have

E
[ ∫ t

0

∫
R∗
γ0
s (z) 11{τ≥s}

((
ψs(τ, z) + Ys−(τ)

)
fs(τ, z)− Ys−(τ)ϕs(z)

)
ηs(dz) ds

]
= E

[ ∫ t

0

∫
R∗
γ0
s (z) 11{τ≥s} α

0
s(z)ϕs(z) ηs(dz) ds

]
, ∀t ≥ 0 , (5.11)

and, introducing by tower property a conditioning with respect to Fs and using the existence of the

conditional density, the left hand side of (5.11) is

E
[ ∫ t

0

∫
R∗
γ0
s (z) 11{τ≥s}

((
ψs(τ, z) + Ys−(τ)

)
fs(τ, z)− Ys−(τ)ϕs(z)

)
ηs(dz) ds

]
TP
= E

[ ∫ t

0

∫
R∗
γ0
s (z)

(∫ ∞
s

((
ψs(u, z) + Ys−(u)

)
fs(u, z)− Ys−(u)ϕs(z)

)
ps(u) ρ(du)

)
ηs(dz) ds

]
= E

[ ∫ t

0

∫
R∗
γ0
s (z)

(∫ ∞
s

((
ψs(u, z) + Ys−(u)

)
fs(u, y)− Ys−(u)ϕs(z)

)
ps−(u) ρ(du)

)
ηs(dz) ds

]
, ∀t ≥ 0 ,

(5.12)
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where, in the last equality, we have used the fact that the F-predictable projection of p(u) is p−(u),

the process p(u) being a martingale, for each u ≥ 0.

We note also that, using the fact that G− is the F-predictable projection of G (see Remark 3.4),

the right-hand side of (5.11) is

E
[ ∫ t

0

∫
R∗
γ0
s (z) 11{τ≥s} α

0
s(z)ϕs(z) ηs(dz) ds

]
= E

[ ∫ t

0

∫
R∗
γ0
s (z)Gs α

0
s(z)ϕs(z) ηs(dz) ds

]
= E

[ ∫ t

0

∫
R∗
γ0
s (z)Gs− α

0
s(z)ϕs(z) ηs(dz) ds

]
, ∀t ≥ 0 . (5.13)

It follows from (5.11) that the right-hand sides of (5.12) and (5.13) are equal for any γ0, hence

α0
s(z) =

1

ϕs(z)Gs−

∫ ∞
s

((
ψs(u, z) + Ys−(u)

)
fs(u, z)− Ys−(u)ϕs(z)

)
ps−(u) ρ(du), ∀s ≥ 0 .

Using the identities (4.2) and (4.14), for γG of the form γGs = γs(τ, z)11{τ<s}, for all s > 0, for

γ ∈ P(F)⊗ B(R+)⊗ B(R), equality (5.10) leads to

E
[ ∫ t

0

∫
R∗
γs(τ, z) 11{τ<s} ψs(τ, z) fs(τ, z) ηs(dz) ds

]
= E

[ ∫ t

0

∫
R∗
γs(τ, z) 11{τ<s} αs(τ, z) fs(τ, z) ηs(dz) ds

]
, ∀t ≥ 0 ,

and we can choose α = ψ.

Second step: In the second step, we compute the value of β0, from (5.9). It is straightforward

to see that

E
[
Y G
t

∫ t

0

θ0
s dM

G
s

]
= E

[ ∫ t

0

β0
s θ

0
s λs 11{τ>s} ρ(ds)

]
TP
= E

[ ∫ t

0

β0
s θ

0
s λsGs ρ(ds)

]
, ∀t ≥ 0 .

From the definition of MG, it follows that

E
[
Yt(τ)

∫ t

0

θ0
s dM

G
s

]
= E

[
Yt(τ)

(
11{τ≤t} θ

0
τ −

∫ t

0

11{τ>s} θ
0
s λs ρ(ds)

)]
TP
= E

[ ∫ t

0

Yt(s) θ
0
s pt(s) ρ(ds)−

∫ t

0

θ0
s λs E

[
Y (τ)
s 11{τ>s}

∣∣Fs] ρ(ds)

]
= E

[ ∫ t

0

Ys−(s) ps−(s) θ0
s ρ(ds)−

∫ t

0

θ0
s λs

(∫ ∞
s

Ys−(u) ps−(u) ρ(du)

)
ρ(ds)

]
= E

[ ∫ t

0

p,FΣs ps−(s) θ0
s ρ(ds)−

∫ t

0

θ0
s λs

(∫ ∞
s

Ys−(u) ps−(u) ρ(du)

)
ρ(ds)

]
, ∀t ≥ 0 ,

where we have used in the third equality that Y (u)p(u) is an F-martingale with predictable projection

Y−(u)p−(u), for each u ≥ 0, and defined Σ = (Σt)t≥0 by Σt = Yt−(t), for all t ≥ 0. We are not able

to give conditions so that Σ is predictable, since we do not have regularity of the process Yt−(u)

with respect to u, for each u ≥ 0, this is why we have to take its predictable projection.
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It follows that

β0
s =

1

λsGs−

(
p,FΣs ps−(s)− λs

∫ ∞
s

Ys−(u) ps−(u) ρ(du)

)
= p,FΣs −

1

Gs−

∫ ∞
s

Ys−(u) ps−(u) ρ(du), ∀s ≥ 0 ,

where we have used the fact that λs = ps−(s)/Gs−, for s ≥ 0.

Third step: The extension to F(τ)-martingales is done using usual localisation procedure (see

Third step of Proof of Proposition 5.1 in [9]). �

5.2 The projections of F(τ)-martingales on F

Proposition 5.2 Let Y (τ) be an F(τ)-martingale with the representation given by equality (4.4).

Then, its F-optional projection Y = (Yt)t≥0 admits the representation (2.6), with P(F) ⊗ B(R)-

measurable process ξ, given by

ξt(z) =

∫ ∞
0

((
ψt(u, z) + Yt−(u)

)
ft(u, z)− Yt−(u)

)
pt−(u) ρ(du), ∀t ≥ 0 . (5.14)

Proof: As before, we assume that Y (τ) is square integrable. Then, consider a bounded

P(F) ⊗ B(R)-measurable process φ such that φ(z) = (φt(z))t≥0, for each z ∈ R∗, and define the

process K = (Kt)t≥0 by

Kt = K0 +

∫ t

0

∫
R∗
φs(z)

(
µ(ds, dz)− ηs(dz) ds

)
, ∀t ≥ 0 .

It is seen that the process K is a square integrable G-martingale, since the process φ satisfies the

condition

E
[ ∫ t

0

∫
R∗
φ2
s(z) ηs(dz) ds

]
<∞, ∀t ≥ 0 .

In this case, the square integrable random variable Yt = E[Yt(τ) | Ft] is the only Ft-measurable

random variable such that

E
[
Yt(τ)Kt

]
= E

[
YtKt

]
, ∀t ≥ 0 , (5.15)

holds. Thus, the equality (5.15) is equivalent to the following equality

E
[
Yt(τ)

∫ t

0

∫
R∗
φs(z)

(
µ(ds, dz)− ηs(dz) ds

)]
= E

[
Yt

∫ t

0

∫
R∗
φs(z)

(
µ(ds, dz)− ηs(dz) ds

)]
, ∀t ≥ 0 . (5.16)
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On the one hand, one has

E
[
Yt(τ)

∫ t

0

∫
R∗
φs(z)

(
µ(ds, dz)− ηs(dz) ds

)]
= E

[
Yt(τ)

∫ t

0

∫
R∗
φs(z)

(
µ(ds, dz)− ν(τ)(ds, dz)

)
+ Yt(τ)

∫ t

0

∫
R∗
φs(z)

(
ν(τ)(ds, dz)− ηs(dz) ds

)]
, ∀t ≥ 0 ,

where ν(τ) is defined in (4.2). Integrating by parts on the time interval [0, t] the product of the two

F(τ)-martingales Y (τ) and Φ(τ) = (Φt(τ))t≥0 defined by

Φt(τ) =

∫ t

0

∫
R∗
φs(z)

(
µ(ds, dz)− ν(τ)(ds, dz)

)
, ∀t ≥ 0 ,

one has, using the square integrability assumption, that

E
[
Yt(τ) Φt(τ)

]
= E

[ ∫ t

0

∫
R∗
φs(z)ψs(τ, z) ν

(τ)(ds, dz)

]
, ∀t ≥ 0 .

By integrating by parts the product of Y (τ) and the process ∆(τ) = (∆t(τ))t≥0 of bounded variation

defined by

∆t(τ) =

∫ t

0

∫
R∗
φs(z)

(
ν(τ)(ds, dz)− ηs(dz) ds

)
, ∀t ≥ 0 ,

one obtains, using the equality (4.2), that

E
[
Yt(τ) ∆t(τ)

]
= E

[ ∫ t

0

∫
R∗
φs(z)Ys−(τ)

(
fs(τ, z)− 1

)
ηs(dz) ds

]
, ∀t ≥ 0 .

On the other hand, one has

E
[
Yt

∫ t

0

∫
R∗
φs(z)

(
µ(ds, dz)− ηs(dz) ds

)]
= E

[ ∫ t

0

∫
R∗
φs(z) ξs(z) ηs(dz) ds

]
, ∀t ≥ 0 .

Finally, (5.15) implies

E
[ ∫ t

0

∫
R∗
φs(z)

∫ ∞
0

(
ψs(u, z) fs(u, z) + Ys−(u)

(
fs(u, z)− 1

))
ps−(u) ρ(du) ηs(dz) ds

]
= E

[ ∫ t

0

∫
R∗
φs(z) ξs(z) ηs(dz) ds

]
, ∀t ≥ 0 ,

then, we obtain the expression (5.14). �

5.3 The projections of G-martingales on F

Proposition 5.3 Let Y G be a G-martingale with the representation given by equality (4.15) and

decomposition (4.8). Then, its F-optional projection Y is

Yt = Y0 +

∫ t

0

∫
R∗
χs(z)

(
µ(ds, dz)− ηs(dz) ds

)
, ∀t ≥ 0 ,
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where the P(F)⊗ B(R)-measurable process χ is given by

χs(z) = α0
s(z)ϕs(z) + Y 0

s−
(
ϕs(z)− 1

)
Gs−

+

∫ s

0

(
αs(u, z) fs(u, z) + Ys−(u)

(
fs(u, z)− 1

)
ps−(u)

)
ρ(du), ∀s ≥ 0, ∀z ∈ R ,

with the supermartingale G given by the equality (4.13).

Proof: As before, for any G-adapted bounded process θG, we consider the equality satisfied by

Y such that

E
[
Yt

∫ t

0

∫
R∗
θGs
(
µ(ds, dz)− ηs(dz) ds

)]
= E

[
Y G
t

∫ t

0

∫
R∗
θGs
(
µ(ds, dz)− ηs(dz) ds

)]
, ∀t ≥ 0 .

The left-hand side is equal to

E
[ ∫ t

0

∫
R∗
χs(z) θ

G
s ηs(dz) ds

]
, ∀t ≥ 0 .

The right-hand side is

E
[
Y G
t

∫ t

0

∫
R∗
θGs

((
µ(ds, dz)− νGs (ds, dz)

)
+
(
νGs (ds, dz)− ηs(dz) ds

))]
= E

[ ∫ t

0

∫
R∗
αG
s θ

G
s ν

G(ds, dz) +

∫ t

0

∫
R∗
θGs Y

G
s−
(
νG(ds, dz)− ηs(dz) ds

)]
= E

[ ∫ t

0

∫
R∗
θGs

(
α0
s(z)ϕs(z) + Y 0

s−
(
ϕs(z)− 1

))
Gs− ηs(dz) ds

]
+ E

[ ∫ t

0

∫
R∗
θGs

(∫ s

0

(
αs(u, z) fs(u, z) + Ys−(u)

(
fs(u, z)− 1

))
ps−(u) ρ(du)

)
ηs(dz) ds

]
, ∀t ≥ 0 ,

where νG is defined in (4.14). Hence, the proof is complete. �

6 Appendix

Using the same methodology as in [9] we prove the martingale property of the two local martingales

used in the proof of Proposition 5.1.

• We first prove that the F(τ)-local martingale M̃(τ) = (M̃t(τ))t≥0 defined by

M̃t(τ) =

∫ t

0

Υs− dYs(τ), ∀t ≥ 0 , (6.1)

is a true martingale. This will be the case when, for any T > 0 fixed, the property

E
[

sup
0≤t≤T

∣∣M̃t(τ)
∣∣] <∞
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holds (see Chapter I, Theorem 51, page 38 in [25]). By Burkholder-Davis-Gundy’s inequality4, this

condition is satisfied if

E
[(
〈M̃(τ)〉F

(τ)

T

)1/2]
<∞ .

Note that we have

E
[(
〈M̃(τ)〉F

(τ)

T

)1/2]
= E

[(∫ T

0

Υ2
s− ψ

2
s(τ, z) ν(τ)(ds, dz)

)1/2]
≤ E

[
sup

0≤s≤T

∣∣Υs

∣∣ ( ∫ T

0

∫
R∗
ψ2
s(τ, z) ν(τ)(ds, dz)

)1/2]
≤ E

[
sup

0≤s≤T

∣∣Υs

∣∣2]+ E
[ ∫ T

0

∫
R∗
ψ2
s(τ, z) ν(τ)(ds, dz)

]
,

where we have used the fact that |ab| ≤ (a2 + b2), for any a, b ∈ R. Using again Burkholder-Davis-

Gundy’s inequality, we obtain that

E
[

sup
0≤s≤T

∣∣Υs

∣∣2] ≤ C̃ E
[ ∫ T

0

(γGs )2 ν(τ)(ds, dz)

]
<∞ ,

for some constant C̃ > 0. Moreover, by the assumption of square integrability of the F(τ)-martingale

Y (τ), we have

E
[ ∫ T

0

∫
R∗
ψ2
s(τ, z) ν(τ)(ds, dz)

]
<∞ ,

so that the process M̃(τ) is a martingale.

• We now prove that the F(τ)-local martingale M̂(τ) = (M̂t(τ))t≥0 defined by

M̂t(τ) =

∫ t

0

Ys(τ) dΥs, ∀t ≥ 0 , (6.2)

is a true martingale. As above, by Burkholder-Davis-Gundy’s inequality, this will be the case when,

for any T > 0 fixed

E
[(
〈M̂(τ)〉F

(τ)

T

)1/2]
<∞ .

Note that we have

E
[(
〈M̂(τ)〉F

(τ)

T

)1/2]
= E

[(∫ T

0

Y 2
s (τ)

(
γGs (z)

)2
ν(τ)(ds, dz)

)1/2]
≤ E

[
sup

0≤s≤T

∣∣Ys(τ)
∣∣ ( ∫ T

0

∫
R∗

(
γGs (z)

)2
ν(τ)(ds, dz)

)1/2]
≤ E

[
sup

0≤s≤T

∣∣Ys(τ)
∣∣2]+ E

[ ∫ T

0

∫
R∗

(
γGs (z)

)2
ν(τ)(ds, dz)

]
.

4Burkholder-Davis-Gundy’s inequality states that, if M is a local martingale, for any p ≥ 1, then the expression

E
[

sup
0≤t≤T

∣∣Mt

∣∣p] ≤ Cp E[(〈M〉T )p/2]
holds, for some Cp > 0 depending on p only (see, e.g., Chapter IV, Section 4, Theorem 48, page 195 in [25]).
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It follows, using again Burkholder-Davis-Gundy’s inequality, that

E
[

sup
0≤s≤T

∣∣Ys(τ)
∣∣2] ≤ Ĉ E

[ ∫ T

0

ψ2
s(τ, z) ν(τ)(ds, dz)

]
<∞ ,

for some constant Ĉ > 0. Moreover, by the assumption of square integrability of the F(τ)-martingale

Υ, we have

E
[ ∫ T

0

∫
R∗

(
γGs
)2
ν(τ)(ds, dz)

]
<∞ ,

so that the process M̂(τ) is a martingale.
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