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We give an integrability criterion for a projective limit of Banach distributions on a Fréchet manifold which is a projective limit of Banach manifolds. This leads to a result of integrability of projective limit of involutive bundles on a projective sequence of Banach manifolds. This can be seen as a version of Frobenius Theorem in Fréchet setting. As consequence, we obtain a version of the third Lie theorem for a Fréchet-Lie group which is a submersive projective limit of Banach Lie groups. We also give an application to a sequence of prolongations of a Banach Lie algebroid.

introduction

In classical differential geometry, a distribution on a smooth manifold M , is an assignment ∆ : x → ∆x ⊂ TxM on M , where ∆x is a subspace of TxM . This distribution is integrable if, for any x ∈ M , there exists an immersed submanifold f : L → M such that x ∈ f (L) and for any z ∈ L, we have T f (TzL) = ∆ f (z) . On the other hand, ∆ is called involutive if, for any vector fields X and Y on M tangent to ∆, their Lie bracket [X, Y ] is also tangent to ∆.

On a finite dimensional manifold, when ∆ is a subbundle of T M , the classical Frobenius Theorem gives an equivalence between integrability and involutivity. In the other cases, the distribution is singular and, even under assumptions of smoothness on ∆, in general, the involutivity is not a sufficient condition for integrability (one needs some more additional local conditions). These problems were clarified and resolved essentially in [START_REF] Sussmann | Orbits of families of vector fields and integrability of distributions[END_REF] and [START_REF] Stefan | Integrability of systems of vectorfields[END_REF].

In the context of Banach manifolds, the Frobenius Theorem is again true for distributions which are complemented subbundles in the tangent bundle (cf. [START_REF] Lang | Differential and Riemannian Manifolds[END_REF]). For singular Banach distributions closed and complemented (i.e. ∆x is a complemented Banach subspace of TxM ) we also have the integrability property under some natural geometrical conditions (see [START_REF] Chillingworth | Integrability of singular distributions on Banach manifolds[END_REF] for instance). In a more general way, weak Banach distributions ∆ (i.e. ∆x which is a Banach subspace of TxM not necessary complemented), the integrability property is again true under some additional geometrical assumptions (see [START_REF] Pelletier | Integrability of weak distributions on Banach manifolds[END_REF] or [START_REF] Cabau | Direct and Projective Limits of Geometric Banach Structures. with the assistance and partial collaboration of D. Beltit ¸ȃ[END_REF] for more details).

The proof of this last results is essentially based on the existence of the flow of a local vector field. In a more general infinite dimensional context as distributions on convenient manifolds or on locally convex manifolds, in general the local flow for a vector field does not exist. Analog results exists in such previous settings: [START_REF] Glöckner | Frobenius and Stefan-Sussmann theorems for various types of distributions on infinite-dimensional manifolds[END_REF], [START_REF] Hiltunen | A Frobenius Theorem for Locally Convex Global Analysis[END_REF], [START_REF] Milan | The Frobenius theorem for Banach distributions on infinite-dimensional manifolds and applications in infinite-dimensional Lie theory[END_REF], [START_REF] Teichmann | A Frobenius Theorem on Convenient Manifolds[END_REF] [START_REF] Cabau | Integrability of direct limits of Banach manifolds[END_REF] for instance. But essentially, all these integrability criteria are proved under strong assumptions which, either implies the existence of a family of vector fields which are tangent and generate locally a distribution and each one of these vector fields have a local flow, or implies the existence of an implicit function theorem in such a setting. The purpose of this paper is to give an integrability criterion for projective limit of Banach distributions on a Fréchet manifold which is a projective limit of Banach manifolds. The precise assumptions on the distribution are presented in assumptions (*) in Definition 1) and this criterion is formulated in a local way in Theorem 2 and in a global way in Theorem 3. These results are obtained under conditions which permits to used a Theorem of existence and unicity of solution of ODE in a Fréchet space proved in [START_REF] Lobanov | Picard's theorem for ordinary differential equations in locally convex spaces[END_REF], and which can be reformulated in the context of projective limit of Banach spaces (cf. Appendix C). Using such a Theorem, this proof needs, in the one hand, an adaptation of some arguments used in the proof of Theorem 1 in [START_REF] Pelletier | Integrability of weak distributions on Banach manifolds[END_REF] for closed distributions on Banach manifolds, and on the other hand, some properties of the Banach Lie group of "uniformly bounded" automorphisms of a Fréchet space (cf. Appendix B). As application, this criterion permits to obtain a kind of projective limit of "Banach Frobenius theorem" for submersive projective limit of involutive bundles on a submersive projective sequence of Banach manifolds (cf. Theorem 4). By the way, as consequence, a submersive projective limit of complemented Banach Lie subalgebras of a submersive projective limit of Banach Lie group algebras is the Lie algebra of a Féchet Lie group (cf. Theorem 5). This result can be considered as a version of the third Lie Theorem for a Fréchet-Lie group which is a submersive projective limit of Banach Lie groups. We also give an application to a sequence of prolongations of a Banach Lie algebroid (cf. Theorem 7). We complete these results, by an example of integrable Fréchet distribution which is a projective limit of non integrable distributions but which satisfies the assumptions (*). This paper is organized as follows. The first paragraph of the next section describes the context and the assumptions of this criterion of integrability used in Theorem 2 and Theorem 3. In order to present these Theorems in a more accessible way for a quick reading, the useful definitions and results take place in Appendix A, and we formulate the assumptions with precise references to this Appendix. The Theorem 3 permits to show that, under some natural conditions, the projective limit E of a submersive projective sequence of involutive subbundles Ei of the tangent bundle T Mi of a submersive projective sequence of Banach manifold Mi, is a Fréchet involutive and integrable subbundle of the tangent bundle T M of the Fréchet manifold M = lim ← -Mi. A first application of these results, is the existence of a Féchet Lie group whose Lie algebra is a submersive projective limit of complemented Banach Lie subalgebra of the a submersive projective limit of Banach Lie groups Lie algebras (cf. Theorem 5 in § 3.1). In § 3.2, we give an application of Theorem 2 to a sequence of prolongations of a Banach-Lie algebroid (see [START_REF] Cabau | Prolongation of convenient Lie algebroids[END_REF]) and we end this paragraph by the announced contre-exemple of Theorem 2 and Theorem 3. The proof of the basic Theorem 2 is located in §4. All properties concerning the set of uniformly bounded endomorphisms of a Fréchet space are developed in Appendix B. Also in a series of other Appendices, we expose all the definitions and results needed in the statements of Theorems and in the proof of Theorem 2.

2. An integrability criterion for a submersive projective limit of Banach distributions 2.1. The criterion and its corollaries. The context needed in this section is detailed in Appendix A. Let Mi, δ j i j≥i be a sequence of projective Banach manifolds with projective limit M = lim ← -Mi 1 . In order to give a criterion of integrability for projective limits of local Banach

1 cf. section A.4
bundles on M under some additional assumptions, we need to introduce some notations. Let ν (resp. µ) be a norm on a Banach space E (resp. M). We denote by op the associated norm on the linear space of continuous linear mappings L(E, M). Then we have: Definition 1. Let Mi, δ j i j≥i be a projective sequence of Banach manifolds where the maps δ j i are submersions and M = lim ← -Mi its projective limit. A closed distribution ∆ on M will be called a submersive projective limit of local anchored bundles if the following property is satisfied:

(*) For any x = lim ← -xi ∈ M , there exists an open neighbourhood U = lim ← -Ui of x, a submersive projective sequence of anchored Banach bundles (Ei, πi, Ui, ρi) 2 3 4 fulfilling the following properties for any z = lim

← - zi ∈ U : 1. lim ← - ρi((Ei)z i ) = ∆z, for any z ∈ U . 2.
The kernel of (ρi)z i is complemented in (Ei)z i and the range of (ρi)z i is closed, for all i ∈ N. 3. There exists a constant C > 0 and a Finsler norm

|| || E i (resp. || || M i ) on (Ei) |U i (resp. T Mi |U i ) such that: ∀i ∈ N, ||(ρi)z i || op i ≤ C, ∀zi ∈ Ui. 5
We have the following criterion of integrability: Theorem 2. Let M be a projective limit of a submersive projective sequence (Mi, δ j i ) j≥i of Banach manifolds and ∆ be a local projective limit of local Banach bundles on M . Assume that, under the property (*), there exists a Lie bracket [., .]i on (Ei, πi, Ui, ρi) such that (Ei, πi, Ui, ρi, [., .]i) is a submersive projective sequence of Banach-Lie algebroids 6 . Then the distribution ∆ is integrable and the maximal integral manifold N through x = lim ← -xi is a closed Fréchet submanifold of M which is a submersive projective limit of the set of maximal leaves Ni of ρi(Ei) through xi in Mi.

The proof of Theorem takes place in section 4. Now, we have the following consequences of Theorem 2: Theorem 3. Let (Ei, πi, Mi, ρi, [., .]i) be a submersive projective sequence of split Lie algebroids 7 . Then we have:

1. E := lim ← - Ei, π := lim ← - πi, M := lim ← - Mi, ρ = lim ← -
ρi is Fréchet anchored bundle and ∆ = ρ(E) is a closed distribution on M 2 If (ρi) satisfies the condition (3) in Definition 1, then ∆ is integrable and each leaf L of ∆ is a projective limit of leaves Li of ∆i.

Proof The property (1) is a consequence of Proposition 29. From this property, it follows that locally ∆ satisfies assumption (1) and (2) of Definition 1 so if the assumption (3) is satisfied, the result is a direct consequence of Theorem 2.

Theorem 4. Let Mi, δ j i j≥i be a submersive projective sequence of Banach manifold and (Ei, πi, Mi) an involutive subbundle of T Mi where πi is the restriction of the natural projection pM i : T Mi → Mi. Assume that the restriction T δ j i : Ej → Ei is a surjective 3. Some applications and contre-example 3.1. Application to submersive projective sequence of Banach Lie groups. Let Gi, δ j i j≥i be a submersive a projective sequence of Banach-Lie groups where Gi is modelled on Gi (cf. Definition 19). We denote by L(Gi) the Lie algebra of Gi. Then L(Gi) ≡ TeGi is isomorphic to Gi. If we set δj i := Teδ j i , then each δj i is a surjective linear map from L(Gj) to L(Gi) whose kernel is complemented. Consider a sequence hi of complemented sub-Lie algebra of L(Gi) such that the restriction of δj i to hj is a continuous surjective map. Then (hi, δj i ) j≥i is a submersive projective sequence of Banach Lie algebra and so h = lim ← -hi is a Fréchet Lie algebra (cf. [START_REF] Cabau | Direct and Projective Limits of Geometric Banach Structures. with the assistance and partial collaboration of D. Beltit ¸ȃ[END_REF] chapter 4). Now from classic result on Banach Lie groups (cf. [START_REF] Lang | Differential and Riemannian Manifolds[END_REF]), by left translation each hi gives rise to a complemented involutive subbundle of Hi of T Gi and the leaf Hi through the neutral ei in Gi has a structure of connected Banach Lie group so that the inclusion ιi : Hi → Gi is a Banach Lie morphism. Note that ii := Te i ιi is nothing but else that the inclusion of hi in L(Gi) and which induces the natural inclusion ιi of Hi in T Gi. Moreover, since (hi, δj i ) j≥i is a submersive projective sequence of Banach Lie algebra and Gi, δ j i j≥i be a submersive a projective sequence of Banach-Lie groups, it follows that (Hi, Gi, ii, [ , ]i)8 is a submersive projective sequence of split Banach Lie algebroids.

On the other hand, from Theorem 21 the Lie algebra

L(G) of G = lim ← - Gi is lim ← - LGi and so h = lim ← - hi is a closed complemented Lie subalgebra of L(G).
As in the context of Banach setting, by left translation, h gives rise to an involutive Fréchet subbundle H of T G which is clearly the projective limit of the submersive sequence (Hi, Gi, ii, [ , ]i). So from Theorem 4 by same arguments as in Banach Lie groups, we obtain:

Theorem 5. Let G = lim
← -Gi be a the projective limit of a submersive projective sequence of Banach-Lie groups Gi, δ j i j≥i and for each i ∈ N, consider a closed complemented Banach Lie subalgebra hi of L(Gi). Assume that the restriction of δj i to hj is a continuous surjective map. Then there exists a Fréchet Lie group H in G such that L(H) is isomorphic to h and H is the projective limit of (Hi, δ j i |H j ) j≥i .

Remark 6. The reader will also find an application of Theorem 2 in the proof of Theorem 8.23 on submersive projective limit of a projective sequence of Banach groupoids in [START_REF] Cabau | Direct and Projective Limits of Geometric Banach Structures. with the assistance and partial collaboration of D. Beltit ¸ȃ[END_REF] which is a kind of generalization of Theorem 5 to Lie groupoids setting .

3.2.

Application to sequences of prolongations of a Banach-Lie algebroid over a Banach manifold. Consider an anchored Banach bundle (A, π, M, ρ) with typical fiber A. Let V A ⊂ T A be the vertical subbundle of pA : T A → A. If Ax := π -1 (x) is the fiber over x ∈ M , according to [START_REF] Cabau | Prolongation of convenient Lie algebroids[END_REF], the prolongation TA of the anchored Banach bundle (A, π, M, ρ) over A is the set {(x, a, b, c), (x, b) ∈ Ax, (x, a, c) ∈ V (x,a) A}. It is a Banach vector bundle p : TA → A with typical fiber A × A and we have an anchor ρ : TA → T A given by ρ(x, a, b, c) = (x, a, ρx(b), c) ∈ T (x,a) A. From now on, we fix a Banach Lie algebroid (A, π, M, ρ, [., .]A) such that the typical fiber A of A is finite dimensional. By the way, we have a Banach Lie algebroid structure (TA, p, A, ρ, [., .] TA ) (cf. [START_REF] Cabau | Prolongation of convenient Lie algebroids[END_REF] Corollary 44 )

We denote (A1, π1, A0, ρ1, [., .]1) the Banach-Lie algebroid (A, π, M, ρ, [., .]A) over a Banach manifold A 0 = M . Thus we have the following commutative diagram:

A1 ρ 1 / / π 1 ! ! T A0 p A 0 | | A0 (1)
According to the notations of Theorem 43 and Corollary 44 in [START_REF] Cabau | Prolongation of convenient Lie algebroids[END_REF], we set A2 = TA1, ρ2 = ρ, [., .]2 = [., .] TA 1 and π2 = p. Then we have the following commutative diagram:

A2 ρ 2 / / π 2 ! ! T A1 p A 1 | | T π 1 # # A1 ρ 1 / / π 1 " " T A0 p A 0 { { A0 (2)
Fix some x ∈ A0 and a norm || ||0 (resp.|| ||1) on the fibre TxA0 ≡ A0 (resp. Ax = π -1 1 (x) ≡ A1). Since the fiber T (x,a) A1 (resp. T (x,a) A1) is isomorphic to A1 × A1 (resp. A0 × A1), it follows that sup{|| ||1 , || ||1} (resp. sup{|| ||0 , || ||1} gives rise to a norm on T (x,a) A1 (resp. T (x,a) A1). Then for the associated operator norm || || op we have

||(ρ2) (x,a) || op ≤ sup(||(ρ1)x|| op , 1) (3) 
By induction, for i ≥ 1, again according to notations of Theorem 43 and Corollary 44 in [START_REF] Cabau | Prolongation of convenient Lie algebroids[END_REF] , we we set

A i+1 = T A i Ai, ρi+1 = ρi, [., .]i+1 = [., .] T A i A i
and πi+1 = p and, as before, we have the following commutative diagrams:

Ai+1 ρ i+1 / / π i+1 " " T Ai p A | | T π i $ $ Ai ρ i / / π i " " T Ai-1 p A i-1 z z Ai-1 (4)
Also, by same arguments as for (3) we obtain:

||(ρi+1) (x,a 1 ,...,a i+1 ) || op ≤ sup(||(ρi) (x,a 1 ,...,a i ) || op , 1) (5) 
It follows that we have a submersive projective sequence of Banach-Lie algebroids (Ai, Ai-1, ρi, [., .]i) over a submersive projective sequence of Banach manifolds (Ai) i∈N which satisfies the assumptions of Theorem 2. Thus, we obtain: Theorem 7. Under the previous context,

(A = lim ← -i≥1 Ai, M = lim ← -j≥0 Aj, ρ = lim ← -i≥1 ρi, [., .] = lim ← -i≥1 [., .]i)
is a Fréchet Lie algebroid on the Fréchet manifold M and the distribution ρ(A) is integrable. Each leaf L is a projective limit of a projective sequence of leaves of type (Li) defined by induction in the following way: L0 is a leaf of ρ1(A1) and if Li is a leaf of ρi(Ai) then Li+1 = (Ai) |L i .

3.3.

A contre-example. In this subsection we give a Example of an integrable distribution on a Fréchet bundle over a finite dimensional manifold which satisfies the assumptions (*) in Definition 1 but is a projective limit of a submersive sequence of Banach not integrable distributions.

Let E = M × R m the trivial bundle over a manifold M of dimension n. The set J k (E) of the k-jets of section of E over M is a finite dimensional manifold which is a vector bundle π k : J k (E) → M and whose typical fiber is is the space

k j=0 L j sym (R n , R m ) where L j sym (R n , R m ) is the space of continuous j-linear symmetric mappings R n → R m . Then each projection π l k : J l (E) → J k (E) defined, for l ≥ k, by π l k j l (s) (x) = j k (s) (x)
is a smooth surjection.

Proposition 8. ([4]) J k (E) , π l
k is a submersive projective sequence of Banach vector bundles and the projective limit

J ∞ (E) = lim ← - J k (E)
can be endowed with a structure of Fréchet vector bundle whose fibre is isomorphic to the Fréchet space

∞ j=0 L j sym (R n , R m ).
Let s be a section of π on a neighbourhood

U of x ∈ M . For ξ = j k (s) (x) ∈ J k (E), the n-dimensional subspace R (s, x) of T ξ J k (E) equals to the tangent space at ξ to the submanifold j k (s) (U ) ⊂ J k (π) is called an R-plane. The Cartan subspace C k (E) of T ξ J k (E)
is the linear subspace spanned by all R-planes R (s , x) such that j k (s ) (x) = ξ. So it is the hull of the union of j k (s) * (x) (TxM ) where s is any local section of π around de x.

The Cartan subspaces form a smooth distribution on J k (π) called Cartan distributionand denoted C k . Then C k is a regular distribution which a contact distribution and so is not integrable (cf. [START_REF] Igonin | Notes on symmetries of PDEs and Poisson structures[END_REF]). We have a submersive projective limit of bundle (C k , T π l k , j k (E)) whose projective limit C = lim ← -C k is called the Cartan distribution on J ∞ (E). In fact C is integrable (cf. [START_REF] Igonin | Notes on symmetries of PDEs and Poisson structures[END_REF]). Note that since C k is a subbundle of T J k (E), from the proof of Theorem 4, the condition (3) of Definition 1 is satisfied.

Proof of Theorem 2

Fix some x ∈ M . According to the property (*) and the Definition 1, we can choose a submersive projective sequence of charts Ui, δ j i |U j j≥i and a submersive projective sequence of Banach bundles (Ei, λ j i ) j≥i , such that:

-U = lim ← - Ui is an open neighbourhood of x in M ; -If x = lim ← - (xi), each Ui is the contractile domain of a chart (Ui, φi) around xi in Mi and (U = lim ← - (Ui), φ = lim ← - (φi)) is a projective limit chart in M around x.
-the projective sequence of Banach bundles (Ei, λ j i ) j≥i satisfies the assumption (*) on U .

Step 1: The kernel of ρx is supplemented. There exists a trivialization τi : Ei → Ui × Ei which satisfies the compatibility condition:

(δ j i × λ j i ) • τj = τi • λ j i ( 6 
)
where (Ei, λ j i ) j≥i is the projective sequence of Banach spaces on which (Ei, λ j i ) j≥i is modeled. Under these conditions, without loss of generality we may assume that, for each i ∈ N, we have -xi ≡ 0 ∈ Mi; -Ui is an open subset of Mi and so T Ui = Ui × Mi; -Ei = Ui × Ei. The projection δ j i at point xj ≡ 0 (resp. λ j i in restriction to the fibre of Ej over xj ≡ 0) is denoted d j i (resp. j i ). The morphism ρi in restriction to the fibre Ei over xi ≡ 0 is denoted ri and ρx is denoted r, so that r = lim ← -ri. Now, according to the context of Assumption 1 in Definition 1, we have the following result: Lemma 9. There exists a decomposition E = ker r ⊕ F with the following property: if (ν n ) (resp. (µn) is the graduation on F (resp. (µn) on M) induced by the norm || || E i (resp. || || M i ) on (Ei)x i (resp. Tx i Mi), then the restriction of r to F is a closed uniformly bounded operator according to these graduations 9 .

Proof of Lemma 9

At first, in such a context we have Tx j δ j i ≡ d j i and the following compatibility condition:

d j i • rj = ri • j i . (7) 
We set Fi = ri(Ei) for all i ∈ N. From Definition 1 assumption 1, Fi is a Banach subspace of Ei and there exists a decomposition Ei = ker ri ⊕ F i . Thus the restriction r i of ri to F i is an isomorphism onto Fi. Now, from (7), we have

∀(i, j) ∈ N 2 : j > i, d j i • r j = r i • j i .
But since each r i is an isomorphism, the restriction ( j i ) of j i to F j takes values in F i for all (i, j) ∈ N 2 such that j ≥ i. Moreover, as δ j i is surjective, according to [START_REF] Dodson | Geometry in a Fréchet context: a Projective Limit Approach[END_REF] again, this implies that d j i (Fj) = Fi and so j i (F j ) = F i . Since (Ei, j i ) j≥i is a projective sequence, this implies that (F i , ( j i ) ) j≥i is a surjective projective system. The vector space F = lim ← -F i is then a Fréchet subspace of E. On the other hand, let ( j i ) be the restriction of j i to ker rj. Always from (7), we have ∀(i, j) ∈ N 2 : j > i, ( j i ) (ker rj) ⊂ ker ri.

By same argument, it implies that (ker ri, ( j i ) ) j≥i is a projective sequence and ker r = lim ← -ker ri. Moreover, since Ei = ker ri ⊕ F i , it follows that E = ker r ⊕ F and also the restriction r of r to F is obtained as r = lim ← -r i and r is an injective continuous operator r : F → M whose range is the closed subspace F = lim ← -Fi. It remains to show that r is uniformly bounded. According to the context of assumption 2 of Definition 1, there exists a constant C > 0 and, for each i ∈ N, we have a norm E i on Ei and a norm M i on Mi such that ri op i ≤ C. As F i is a closed Banach subspace of Ei, it follows that for the induced norm on F i we have

∀i ∈ N, ||r i || op i ≤ C. (8) 
Set i = lim ← -j i and di = lim ← -d j i . By construction we have i(F ) = F i and di(M) = Mi. The norm E i on Ei induces a norm F i on the Banach subspace F i and we get a natural graduation (ν i ) on F given by ν i (u) = || i(u)|| F i (cf. Appendix B (29)). In the same way, the norm M i induces a graduation (µi) on M given by µi(v) = ||di(v)|| M i . Now (8) implies that r is uniformly bounded and r (F ) = r(E) = ∆x is closed by assumption. Therefore, the proof of Lemma 9 is complete.

Step 2: There exists a neighbourhood V ⊂ U of x such that the map ρ = ρ |U ×F takes values in IH b (F , M) 10 and is K-Lipschitz on V for some K > 0.

Since Ei = Ui × Ei, it follows that E = U × E and so ρ : E → T U can be seen as a smooth map from U into H(E, M). Let ρ be the restriction of ρ to U × F and so consider ρ as a smooth map from U to H(F , M). From the definition of a Finsler norm, Assumption 2 in Definition 1 and Lemma 9, the map x → ρ x takes value in H b (F , M). Lemma 10. There exists a neighbourhood V1 ⊂ V of 0 such that the map ρ : V1 → H b (F , M) is Lipschitz, that is: there exists K > 0 such that

μop i (ρ z -ρ x ) ≤ K μi(z -z ), ∀(z, z ) ∈ V 2 1 11
Proof of Lemma 10 Let ( ν i)i∈N (resp. (μi) i∈N ) be the canonical increasing graduation associated to the graduation (ν i ) i∈N on M (resp. (μi) i∈N ) (cf. Appendix (B 29)). Since the map x → ρ x is a smooth map from U to H b (F , M) it follows that for each x the differential map dxρ is a continuous linear map from M to the Banach space H b (F , M) and so there exists i0 ∈ N and a constant Ax > 0 such that

dxρ (u) ∞ ≤ Ax ν i 0 (u) (9) 
for all u ∈ F and so dxρ (u) ∞ ≤ Ax ν i(u) [START_REF] Galanis | Projective Limits of Banach Vector Bundles[END_REF] for all u ∈ F and and i ≥ i0 and according to Remark 32 we set

||dxρ || op i := sup{ μi(dxρ (u)) : ν i(u) ≤ 1} ≤ Ax, ∀i ≥ i0 (11) 
On the other hand, for 1 ≤ i < i0 we set

C i x = ||dxρ || op i . Then dxρ belongs to H b (M, H b (F , M)) for all x ∈ U since we have ||dxρ ||∞ := sup i∈N ||dxρ || op i ≤ sup{Ax, C 1 x , • • • , C i 0 -1 x }.
We set C = ||d0ρ ||∞. By continuity, there exists an open neighbourhood V1 of 0 such that ||dxρ ||∞ ≤ 2C

By choosing K = 2C, from the definition of ||dxρ ||∞ it implies the announced result.

Step 3: Local flow of the vector field Xu = ρ (u). Consider a neighbourhood V as announced in step 2. As δi is surjective, Vi = δi(V ) is an open set of Ui and so we have V = lim ← -Vi. For each u ∈ F , let Xu = ρ (u) be the vector field on V . If u = lim ← -ui with ui ∈ F i , then Xu i = ρ i (ui) is a vector field on Vi and Xu = lim ← -Xu i . Now since ρ takes values in IH b (F , M), from our assumption, there exists a constant C > 0 such that ||(ρ i )z i || op i ≤ C for all zi ∈ Vi. Therefore, if u belongs to F and ui = λ(u), then Xu i M i ≤ C u E i and, from Lemma 10 and the definition of μop i we have

∀ xi, x i ∈ (δi(V )) 2 , Xu i (xi) -Xu i (x i ) M i ≤ K ui E i ||xi -x i || M i . ( 13 
)
Now, recall that we have provided F and M with seminorms ( ν n) and (μn) respectively defined by νn(u) = λi(u) E i and µn(x) = δi(x) M i .

Since δi(Xu)(x) = Xu i (δi(x)) and in this way, from ( 13), for all n ∈ N, we have

∀(x, x ) ∈ V 2 , µn(Xu(x) -Xu(x )) ≤ Kνn(u)µn(x -x ). (14) 
Therefore, Xu satisfies the assumption of Corollary 37. Let > 0 such that the pseudo-ball

B M (0, 2 ) = {x ∈ M, : μn i (x) < 2 , 1 ≤ i ≤ k} is contained in V and set C1 := max 1≤i≤k {Kνn i (u)} = K max 1≤i≤k νn i (u); C2 := sup x∈B M (0, ) max 1≤i≤k µn i (X(x)) ≤ C max 1≤i≤k νn i (u).
By application of Corollary 37, for any u such that max 1≤i≤k νn i (u) ≤ 1, there exists α > 0 such that αe 2αK ≤ 2C , such that the local flow Fl u t is defined on the pseudo-ball B M (0, ) for all t ∈ [-α, α] for all u which satisfied the previous inequality Note that for any s ∈ R we have Xsu = sXu. Therefore, from the classical properties of a flow of a vector field, there exists η > 0 such that the local flow Fl u t is defined on [-1, 1], for all u in the open pseudo-ball

B F (0, η) := u ∈ F, : ν n i (u) ≤ η, 1 ≤ i ≤ k .
(cf. for instance proof of Corollary 4.2 in [START_REF] Chillingworth | Integrability of singular distributions on Banach manifolds[END_REF]).

We set B M i (0, ) = δi(B M (0, )). Then Xu i is a vector field on Vi = δi(V ) and Fl

u i t := δi • (Fl u t )
• δi is the local flow of Xu i which is defined on B M i (0, ) for all t ∈ [-1, 1] and Fl u i t (xi) belongs to Vi for all xi ∈ B M i (0, ) and t ∈ [-1, 1] and, from (15), we have

Fl u t = lim ← - Fl u i t . ( 15 
)
Step 4: Existence of an integral manifold.

Since (Ei, πi, Ui, ρi, [., .]i) is a Banach-Lie algebroid, the Lie bracket [Xu i , X u i ] is tangent to ∆i and so by Definition 3.2 and Lemma 3.6 in [START_REF] Pelletier | Integrability of weak distributions on Banach manifolds[END_REF] we have

∀t ∈ [-1, 1], (T Fl u i t )((∆i)x i ) = (∆i) Fl u i t (x i ) .
Therefore, according to the notations at the end of step 3, for each i ∈ N, we set:

∀ui ∈ B F i (0, η) = λi(B F (0, η)), Φi(ui) = (Fl u i 1 )(0); ∀u ∈ B F (0, η), Φ(u) = (Fl u 1 )(0); . Lemma 11. Φ = lim ← -
Φi is smooth and there exists 0 < η ≤ η such that the restriction of Φ to B F (0, η ) is injective and TuΦ belongs to IH b (F , M) for all u ∈ B F (0, η ).

Recall that, for each

i ∈ N, B F i (0, η )) is an open ball in F i and δi(V ) is open neigh- bourhood of 0 ∈ Mi.
From Lemma 11, since Φ is injective and each differential TuΦ is injective, it follows that the same is true for each Φi : B F i (0, η )) → δi(V ). Thus we can apply the proof of Theorem 1 in [START_REF] Pelletier | Integrability of weak distributions on Banach manifolds[END_REF] for Φi. By the way, Ui = Φi(B F i (0, η )) is an integral manifold of ρi(F i ) and (Ui, Φ -1 i ) is a (global) chart for this integral manifold modeled on

F i . As Φ = lim ← - Φi, B F (0, η ) = lim ← - B F i (0, η )) Φi • λ j i = δ j i
• Φj for all j ≥ i, it follows that (Ui, δ j i ) j≥i is a surjective projective sequence and so U = lim ← -Ui is a Fréchet manifold modeled on F . This last result clearly ends the proof of Theorem 2.

Proof of Lemma 11

According to step 3, Φi is well defined on B F i (0, η) and Φ = lim ← -Φi. Now, for every x ∈ V , ρ x belongs to IH b (F , M) and so is injective; after shrinking V , if necessary, there exists some M > 0 such that

∀x ∈ V, ρ x ∞ ≤ M. (16) 
Now, by construction, we have T0Φ(u) = ρ 0 (u) and so T0Φ is injective.

Claim 12. The map u → TuΦ is a smooth map from B (0, η) to H b (F , M).

Proof of Claim 12

We will use some argument of the proof of Lemma 2.12 of [START_REF] Pelletier | Integrability of weak distributions on Banach manifolds[END_REF]. We fix the index i and, for any y ∈ B F i (0, ), v ∈ F i we set

: Xv(y) = ρ i (y, v) : ϕ(t, v) = Fl Xv t (0) : A(t) = ∂1ρ i (ϕ(t, v), v) (partial derivative relative to the first variable) : B(t) = ρ i (ϕ(t, v), .)
Note that A and B are smooth fields on [0, 1] of operators in L(Mi, Mi) and L(F i , Mi) respectively. Therefore the differential equation

Ṡ = A • S + B
has a unique solution St with initial condition S0 = 0 given by

St = t 0 Gt-s • B(s)ds ( 17 
)
where Gt is the unique solution of Ġ = A • G with initial condition G0 = Id M . Given by

Gt = Id M + t 0 A • Gsds. (18) 
Under these notations, from [START_REF] Dieudonné | Fondement de l'analyse Moderne[END_REF], Chapter X § 7, we have ∂2ϕ(t, v)(.) = St .

On the one hand, from the choice of , ϕ(t, v) belongs to Vi and so from (12), we have A(t) op i ≤ K for any t ∈ [-1, 1] and from [START_REF] Lang | Differential and Riemannian Manifolds[END_REF] we have B(t) op i ≤ M . Thus from (18), using Gronwal equality, we obtain

Gt op

i ≤ e K , And so from [START_REF] Lobanov | Picard's theorem for ordinary differential equations in locally convex spaces[END_REF] we obtain St op i ≤ M e K This implies that ∂2ϕ(t, v) op i ≤ M e K . We set M1 = M e K . Since Φi(ui) = ϕ(1, ui) it follows that:

Tu i Φ(vi) M i ≤ M1 vi E i (19) 
from ( 19) we obtain:

µi(TuΦ(v)) ≤ M1νi(v). (20) 
But, since TuΦ(F ) = ∆ Φ(u) ⊂ {Φ(u)} × M, it follows that the map u → TuΦ can be considered as a continuous linear map from F to M which takes values in H b (F , M). Now as each Φi is a smooth map form

B F i (0, η )) to δi(V ) and Φ = lim ← - Φi, this imply that Φ is a smooth map on B F (0, η )) = lim ← - B F i (0, η )) to V = lim ← - δi(V ) which ends the proof of the Claim.
End of the proof of Lemma 10. At first, from Claim 12, the map u → TuΦ takes values in the Banach space H b (F , M), as in step 2 for ρ, we can show that this map is Lipschitz on B F (0, η) for η small enough. As T0Φ = ρ 0 , from Proposition 34, it follows that, again for η small enough, T Φ is injective on B F (0, η ), and we have (cf. [START_REF] Stefan | Integrability of systems of vectorfields[END_REF] )

∀u ∈ B F (0, η ), ∀v ∈ F µi(TuΦ(v)) ≤ M1νi(v) (21) 
using the fact that the range of TuΦ is always closed for u ∈ B F (0, η ). Moreover, for u ∈ B F (0, η ), as for the relation (33) in the proof of Proposition 34, we obtain:

1 u νi(v) ≤ µi(TuΦ(v))) ≤ u.νn(v) (22) 
for all i ∈ N, where u = TuΦ ∞ ≤ M1.

Finally we obtain:

∀i ∈ N, 1 M1 νi(v) ≤ µi(TuΦ(v)) ≤ M1.νi(u) (23) 
Suppose that, for any 0 ≤ η ≤ η, the restriction of each Φi to

B F i (0, η) is not injective. Consider any pair (u, v) ∈ [B F (0, η)] 2 such that u = v but Φ(u) = Φ(v), we set h = v -u.
For any α ∈ M * , we consider the smooth curve cα : [0, 1] → R defined by:

cα(t) =< α, (Φ(u + th) -Φ(u)) > .
Of course, we have ċα(t) =< α, T u+th Φ(h) >.

Denote by ]u, v[ the set of points {w = u + th, t ∈]0, 1[}. As we have cα(0) = cα(1) = 0, from Rolle's Theorem, there exists uα ∈]u, v[ such that

< α, δ l (Tu α Φ(h)) >= 0 (24) 
Note that, for any t ∈ R, this relation is also true for any th. From our assumption, it follows that, for each k ∈ N \ {0}, there exists u k and v k in B F (0, η k ) so that u k = v k but with Φ(u k ) = Φ(v k ). So from the previous argument, for any α ∈ M * , we have 25), for any i ∈ N, any t ∈ R and any αi ∈ M * i , if α = δ * i (αi), we have:

< α, (Tu α,k Φ(h k )) >= 0 (25) for some u α,k ∈]u k , v k [ and h k = v k -u k . From (
| < α, T0Φ(th k ) > | = | < αi, δi([T0Φ-Tu α Φ](th k )) > | = | < αi, [T0Φi-T δ i (uα) Φi](λi(th k ))|
Denote by . M * i the canonical norm on M * i associated to . M i . Then from (25) and since u → TuΦ is K1-Lipschitz on B (0, η) (for some constant K1) we obtain:

| < α, T0Φ(th k ) > | ≤ (||αi|| M * i .K1.||δi(uα)|| M i ||.||λi(th k )|| E i ≤ (||αi|| M * i .K1.||λi(th k )|| E i η k . (26) 
Since u k = v k , there must exist at least one integer i ∈ N such that λi(h k ) = 0. Thus, by

taking t = u k -v k νi((u k -v k ))
in ( 26), we may assume t = 1 and λi(h k ) E i = 1 In this way, for this choice of h k , we have a 1-form βk,i on the linear space generated by λi(h k ) in F i such that < βk,i , λi(h k ) >= 1 and with ( βk,i E i ) * = 1. From the Hahn-Banach Theorem, we can extend this linear form to a form

β k,i ∈ M * i such that < β k,i , λi(h k ) >= 1 and ( β k,i E i ) * = 1.
But since each T0Φ is injective, this implies that T0Φi is injective and so the adjoint T * 0 Φi is surjective. This implies that there exists α k,i ∈ M * i such that T * 0 Φi(α k,i ) = β k,i . Thus from (26) we obtain

1 = | < β k,i , λi(h k ) > | = | < α k,i , T0Φi(λi(h k )) > | = | < δ * i α k,i , T0Φ(h k ) > | ≤ α k,i M * i K1 η k (27) 
But, on the other hand since the operation "adjoint" is an isometry, from (23) we have

1 M1 α k,i M * i ≤ T * 0 Φα k,i M * i = 1 (28) 
which gives a contradiction with (27) for k large enough.

Appendix A. Projective limits A.1. Projective limits of topological spaces.

Definition 13. A projective sequence of topological spaces is a sequence Xi, δ j i (i,j)∈N 2 , j≥i where (PSTS 1): For all i ∈ N, Xi is a topological space; (PSTS 2): For all (i, j) ∈ N 2 such that j ≥ i, δ j i : Xj → Xi is a continuous map;

(PSTS 3): For all i ∈ N, δ i i = IdX i ; (PSTS 4): For all (i, j, k) ∈ N 3 such that k ≥ j ≥ i, δ j i • δ k j = δ k i .
Notation 14. For the sake of simplicity, the projective sequence Xi, δ j i (i,j)∈N 2 , j≥i will be denoted Xi, δ j i j≥i .

An element (xi) i∈N of the product i∈N Xi is called a thread if, for all j ≥ i, δ j i (xj) = xi.

Definition 15. The set X = lim ← -Xi of all threads, endowed with the finest topology for which all the projections δi : X → Xi are continuous, is called the projective limit of the sequence Xi, δ j i j≥i .

A basis of the topology of X is constituted by the subsets (δi) -1 (Ui) where Ui is an open subset of Xi (and so δi is open whenever δi is surjective). Definition 16. Let Xi, δ j i j≥i and Yi, γ j i j≥i be two projective sequences whose respective projective limits are X and Y .

A sequence (fi) i∈N of continuous mappings fi : Xi → Yi, satisfying, for all (i, j) ∈ N 2 , j ≥ i, the coherence condition

γ j i • fj = fi • δ j i
is called a projective sequence of mappings.

The projective limit of this sequence is the mapping

f : X → Y (xi) i∈N → (fi (xi)) i∈N
The mapping f is continuous if all the fi are continuous (cf. [START_REF] Abbati | On Differential Structure for Projective Limits of Manifolds[END_REF]).

A.2. Projective limits of Banach spaces. Consider a projective sequence Ei, δ j i j≥i of Banach spaces.

Remark 17. Since we have a countable sequence of Banach spaces, according to the properties of bonding maps, the sequence δ j i (i,j)∈N 2 , j≥i is well defined by the sequence of bonding maps δ i+1 i i∈N . A.3. Projective limits of differential maps. The following proposition (cf. [START_REF] Galanis | Projective Limits of Banach-Lie groups[END_REF], Lemma 1.2 and [START_REF] Cabau | Direct and Projective Limits of Geometric Banach Structures. with the assistance and partial collaboration of D. Beltit ¸ȃ[END_REF], Chapter 4) is essential Proposition 18. Let Ei, δ j i j≥i be a projective sequence of Banach spaces whose projective limit is the Fréchet space F = lim ←-Ei and (fi : Ei → Ei) i∈N a projective sequence of differential maps whose projective limit is f = lim ← -fi. Then the following conditions hold:

(1) f is smooth in the convenient sense (cf. 

• δ j i = δ j i • ϕj; (PSBM 4): U = lim ← - Ui is a non empty open set in M .
Under the assumptions (PSBM 1) and (PSBM 2) in Definition 19, the assumptions (PSBM 3)] and (PSBM 4) around x ∈ M is called the projective limit chart property around x ∈ M and (U = lim ← -Ui, φ = lim ← -φi) is called a projective limit chart. The projective limit M = lim ← -Mi has a structure of Fréchet manifold modelled on the Fréchet space M = lim ← -Mi and is called a PLB-manifold . The differentiable structure is defined via the charts (U, ϕ) where ϕ = lim ← -ξi : U → (ξi (Ui)) i∈N . ϕ is a homeomorphism (projective limit of homeomorphisms) and the charts changings

ψ • ϕ -1 |ϕ(U ) = lim ← - ψi • (ξi) -1 |ξ i (U i )
between open sets of Fréchet spaces are smooth in the sense of convenient spaces. Definition 20. [START_REF] Galanis | Projective Limits of Banach-Lie groups[END_REF] Gi, δ j i j≥i is a projective sequence of Banach-Lie groups where Gi is modelled on Gi if , for all i ∈ N, there exists a chart (Ui, ϕi) centered at the unity ei ∈ Gi such that:

(PLBLG 1): ∀(i, j) ∈ N 2 : j ≥ i, δ j i (Uj) ⊂ Ui; (PLBLG 2): ∀(i, j) ∈ N 2 : j ≥ i, δ j i • ϕj = ϕj • δ j i ; (PLBLG 3): lim ← - ϕi(Ui) is a non empty open set of G and lim ← -
Ui is open in G according to the projective limit topology.

A projective sequence of Banach-Lie groups Gi, δ j i j≥i is submersive if each δ j i is a surjective submersion. Theorem 21. [START_REF] Galanis | Projective Limits of Banach-Lie groups[END_REF] Let G = lim ← -Gi be a the projective limit of a projective sequence of Banach-Lie groups Gi, δ j i j≥i . Then we have the following properties:

(1) G is a Fréchet-Lie group. (2) If L(Gi) is the Lie algebra of Gi then L(G) = lim ← - LGi. (3) If exp G i is the exponential map for Gi, then exp G = lim ← - exp G i is the exponential map of the Fréchet-Lie group G.
A.5. Projective limits of Banach vector bundles. Let Mi, δ j i j≥i be a projective sequence of Banach manifolds where each manifold Mi is modeled on the Banach space Mi. For any integer i, let (Ei, πi, Mi) be the Banach vector bundle whose type fibre is the Banach vector space Ei where Ei, λ j i j≥i is a projective sequence of Banach spaces.

Definition 22. (Ei, πi, Mi), ξ j i , δ j i j≥i , where ξ j i : Ej → Ei is a morphism of vector bundles, is called a projective sequence of Banach vector bundles on the projective sequence of manifolds Mi, δ j i j≥i if, for all (xi), there exists a projective sequence of trivializations (Ui, τi) of (Ei, πi, Mi), where τi : (πi) -1 (Ui) → Ui × Ei are local diffeomorphisms, such that xi ∈ Ui (open in Mi) and where U = lim ← -Ui is a non empty open set in M where, for all (i, j) ∈ N 2 such that j ≥ i, we have the compatibility condition

(PLBVB): δ j i × λ j i • τj = τi • ξ j i .
With the previous notations, (U = lim ← -Ui, τ = lim ← -τi) is called a projective bundle chart limit. The triple of projective limit (E = lim ← -Ei, π = lim ← -πi, M = lim ← -Mi)) is called a projective limit of Banach bundles or PLB-bundle for short.

The following proposition generalizes the result of [START_REF] Galanis | Projective Limits of Banach Vector Bundles[END_REF] about the projective limit of tangent bundles to Banach manifolds (cf. [START_REF] Dodson | Geometry in a Fréchet context: a Projective Limit Approach[END_REF] and [START_REF] Cabau | Direct and Projective Limits of Geometric Banach Structures. with the assistance and partial collaboration of D. Beltit ¸ȃ[END_REF]).

Proposition 23. Let (Ei, πi, Mi), ξ j i , δ j i j≥i be a projective sequence of Banach vector bundles. Then lim ← -Ei, lim ← -πi, lim ← -Mi is a Fréchet vector bundle.

Notation 24. For the sake of simplicity, the projective sequence (Ei, πi, Mi), ξ j i , δ j i j≥i will be denoted (Ei, πi, Mi).

Definition 25. A sequence (Ei, πi, Mi) is called a submersive projective sequence of Banach vector bundles if Mi, δ j i ) j≥i is a submersive projective sequence of Banach manifolds and if around each x ∈ M = lim ← -Mi, there exists a projective limit chart bundle (U = lim ← -Ui, τ = lim ← -τi) such that for all i ∈ N, we have a decomposition Ei+1 = ker λi+1

i ⊕ E i such that the condition (PLBVB) is true.

The projective limit (E, π, M ) of a projective sequence of Banach vector bundles (Ei, πi, Mi) is called a submersive projective limit of Banach bundles or submersive PLBbundle for short. Now, we have the following result: Proposition 26. Let (Ei, πi, Mi) be a submersive projective sequence of Banach bundles. Then, for each i ∈ N, the maps δi : M → Mi and λi : E → Ei are submersions. is called a Lie algebroid.

Definition 28. (Ei, πi, Mi, ρi, [., .]i) is called a submersive projective sequence of split Lie algebroids if (PSBLA 1): Ei, ξ j i j≥i is a submersive projective sequence of Banach vector bundles (πi : Ei → Mi) i∈N over the projective sequence of manifolds Mi, δ j i j≥i ; (PSBLA 2): For all (i, j) ∈ N 2 such that j ≥ i, one has ρi • ξ j i = T δ j i • ρj (PSBLA 3): For all (i, j) ∈ N 2 such that j ≥ i, one has ξ j i ([., .]j) = [ξ j i (.), ξ j i (.)]i (PSBLA 4): For all i ∈ N and xi ∈ M the kernel ker(ρi)x i is complemented in the fiber Ex i . , .]i does not define a Lie bracket on the set of all local sections of (E, π, M ) but only on section which are projective limit of section of (Ei, πi, Mi). Therefore (E, π, M, ρ, [., .]) does not have a Fréchet Lie algebroid structure.

[15]) ( 2 )A. 4 .

 24 For all x = (xi) i∈N , dfx = lim ← -(dfi) x i . (3) df = lim ← -dfi. Projective limits of Banach manifolds and Banach Lie groups. Definition 19. [9] The projective sequence Mi, δ j i j≥i is called projective sequence of Banach manifolds if (PSBM 1): Mi is a manifold modelled on the Banach space Mi; (PSBM 2): Mi, δ j i j≥i is a projective sequence of Banach spaces; (PSBM 3): For all x = (xi) ∈ M = lim ← -Mi, there exists a projective sequence of local charts (Ui, ξi) i∈N such that xi ∈ Ui where one has the relation ξi

A. 6 . 2 ) 3 )

 623 Projective limit of Banach Lie algebroids. Definition 27. Let π : E → M be a Banach bundle.(1) an anchor is a vector bundle morphism ρ : E → T M and (E, ρ) is called an anchored bundle (An almost Lie bracket [., .]E on an anchored bundle E is a sheaf of antisymmetric bilinear maps[., .]E U : Γ (EU ) × Γ (EU ) → Γ (EU )for any open set U ⊆ M and which satisfies the following properties (AL 1) the Leibniz identity:∀ (a1, a2) ∈ Γ (EU ) 2 , ∀f ∈ C ∞ (M ), [a1, f a2]E U = f.[a1, a2]E U + df (ρ(a1)).a2.(AL 2) For any open set U ⊆ M and any (a1, a2) ∈ Γ(EU ) 2 , the map (a1, a2) → [a1, a2]E U only depends on the 1-jets of a1 and a2. (An anchored bundle (E, ρ) provided with an almost Lie bracket [., .]E which satisfies the Jacobi identity [[a1, a2]E, a3]E + [[a2, a3]E, a1]E + [[a3, a1]E, a2]E = 0 ∀ (a1, a2a3) ∈ Γ (EU ) 3

Proposition 29 .

 29 ([4]) Let (Ei, πi, Mi, ρi, [., .]i) be a submersive projective sequence of split Lie algebroids. Then E := lim ← -Ei, π := lim ← -πi, M := lim ← -Mi, ρ = lim ← -ρi is Fréchet anchored bundle and ∆ = ρ(E) is a closed distribution on E Remark 30. Under the assomptions of Proposition 29 , unfortunately [., .] = lim ← -[.

  Given any norm || || M i on Tx i Mi we denote by || || E i the induced norm on the fiber {Ei}x i , then, for the associated norm operator we have ||{ιi}x i || op i = 1. So all the assumption of Theorem 2 are satisfied which ends the proof.

	bundle morphism for all i ∈ N and j ≥ i. Then (Ei, πi, Mi) is a submersive projective
	sequence of Banach bundles, and (E = lim ← -Fréchet subbundle of T M whose each leaf L of E in M is a projective limit of leaves Li Ei, π = lim ← -πi, M = lim Mi) is an integrable ← -
	of Ei in Mi
	Proof Since δ j i : Mj → Mi is a surjective submersion, so is T δ j i : T Mj → T Mi. If T δ j i : Ej → Ei is a surjective morphism, this implies that T δ j i is a submersion onto Ei and
	so (Ei, πi, Mi) is a submersive projective sequence of Banach bundles. Let ιi : Ei → T Mi
	the natural inclusion and [ , ]i the restriction of Lie bracket of vector fields to (local) sec-
	tions of Ei. Then (Ei, Mi, ιi, [ , ]i) is a Banach Lie algebroid and since T δ j i • ιj = ιi • T δ j i
	it follows that (Ei, Mi, ιi, [ , ]i) is a is a submersive projective sequence of Banach-Lie
	algebroids. Fix some x = lim ← -show that the condition (3) of Definition 1 is satisfied by ιi. xi ∈ M = lim Mi. According to Theorem 3 we have only to ← -
	2 see: Definition 25 and Notations 24 for a submersive sequence of projective Banach bundles
	3 see: Definition 27 for an anchored Banach bundle
	4 a sequence of projective anchored bundle (Ei, πi, Mi, ρi) is a projective sequence of Banach bundles
	which satisfies assumption (PSBLA 2) in Definition 28
	5 More precisely, ||(ρi)z i || op i = sup{||(ρi)z i (u)|| M i , ||u|| E i ≤ 1} 6 cf. Definition 28
	7 cf. Definition 28

here [ , ]i denote again the restriction to sections of Hi of the Lie bracket of vector fields on Gi

cf. Appendix B

cf. Appendix B

This means that we have:∀m ≥ n, λ m n • fm = fn • (Id R × λ m n )

Appendix B. The Banach space H b (F1, F2) Any Fréchet space F can be realized as the limit of a surjective projective sequence of Banach spaces (Bn, λ m n ) m≥n . Following [START_REF] Dodson | Geometry in a Fréchet context: a Projective Limit Approach[END_REF], 2.3, we can identify F with the projective limit of the projective sequence   Bn = {x = (xi) ∈ Let (F1,

. The space L (F1, F2) of continuous linear maps between both these Fréchet spaces generally drops out of the Fréchet category. Indeed, L (F1, F2) is a Hausdorff locally convex topological vector space whose topology is defined by the family of semi-norms {pn,B}:

where n ∈ N and B is any bounded subset of F1. This topology is not metrizable since the family {pn,B} is not countable. So L (F1, F2) will be replaced, under certain assumptions, by a projective limit of appropriate functional spaces as introduced in [START_REF] Galanis | Projective Limits of Banach Vector Bundles[END_REF].

We denote by L (B n 1 , B n 2 ) the space of linear continuous maps (or equivalently bounded linear maps because B n 1 and B n 2 are normed spaces). We then have the following result ([7], Theorem 2.3.10).

Theorem 31. The space of all continuous linear maps between F1 and F2 which can be represented as projective limits

For this sequence (Ln) n∈N of linear maps, for any integer 0 ≤ n ≤ m, the following diagram is commutative

On H (F1, F2), the topology can be defined by the sequence of seminorms pn given by

so that (H (F1, F2) , pn) is a graded Fréchet space.

Remark 32. For l ∈ {1, 2} , given a graduation ν l n on a Fréchet space F l , let B n l be the associated local Banach space and δ n l : F l → B n l the canonical projection. The quotient norm νl n associated to ν l n is defined by

We denote by (ν 2 n ) op the corresponding operator norm on

We denote by H b (F1, F2) the set of uniformly bounded operators. Of course

We denote by IH b (F1, F2) (resp. SH b (F1, F2)) the set of injective (resp. surjective) operators of H b (F1, F2) with closed range.

Proposition 34. ([4])

(1) Each operator L ∈ H (F1, F2) has a closed range if and only if, for each n ∈ N, the induced operator Ln :

We will give the sketch of the proof of Point (2) since some arguments used in this proof are also useful for the proof of Theorem 2:

Proof

(2) Consider an injective operator L ∈ H (F1, F2). According to the representation Fi = lim ← -B n i as a projective limit of a projective Banach sequence (B n i , (δi) m n ) m≥n , we have a sequence of linear operators Ln :

), then Ln is an isomorphism from B n 1 onto its range and so we have 1

for all x ∈ B n 1 , all n ∈ N, where νi n is the quotient norm of ν i n on B n i for i ∈ 1, 2, and

Since δ 2 n is the canonical projection of F2 on B n 2 and ν 2 n • δn = ν2 n , we obtain 1

for all x ∈ F1 and n ∈ N. But we have n ≤ ||L||∞ and we finally obtain

for all x ∈ F1, all n ∈ N and where = ||L||∞. Fix some L ∈ H b (F1, F2) and set = ||L||∞, we consider the open set

Fix some n ∈ N. For any x ∈ F1 and T ∈ W , we have

This implies that

Since (ν i n ) is a separating sequence of semi-norms, it follows that L is injective. Now taking in account inequality (34) and relation νi

It follows that Tn is closed and so T is closed (cf. 1.). Finally, W is an open neighbourhood of L contained in IH b (F1, F2), which ends the proof of [START_REF] Cabau | Integrability of direct limits of Banach manifolds[END_REF]. (3) If F is identified with the projective lim ← -B n we denote by exp n : L(Bn) → GL(Bn), then we a have a well defined smooth map exp := lim ← -

The following result is in fact a reformulation in our context of Theorem 1 in [START_REF] Lobanov | Picard's theorem for ordinary differential equations in locally convex spaces[END_REF].

Theorem 36. Let F a Fréchet space realized as the limit of a surjective projective sequence of Banach spaces (Bn, λ m n ) m≥n whose topology is defined by the sequence of seminorms (νn) n∈N . Let I be an open interval in R and U be an open set of I × F. Then U is a surjective projective limit of open sets Un ⊂ I × Bn. Consider a smooth map f = lim ← -fn : U → F, projective limit of maps fn : Un → Bn. 12 Assume that for every point (t, x) ∈ U , and every n ∈ N, there exists an integrable function Kn > 0 such that

and consider the differential equation:

(1) For any (t0, x0) ∈ U , there exists α > 0 with Iα = [t0 -α, t0 + α] ⊂ I, an open pseudo-ball V = B(x0, r) ⊂ U and a map Φ :

is the unique solution of (36) with initial condition Φ(τ, τ, x) = x for all x ∈ V . (2) V is the projective limit of the open balls Vn of Bn. For each n ∈ N, the curve t → λn • Φ(t, τ, λn(x)) is the unique solution γ : Iα → Bn of the differential equation ẋn = φn (t, xn) with initial condition γ(τ ) = λn(x).

From this theorem we obtain easily:

Un be an open subset of F and X = lim ← -Xn : U → F a projective limit of smooth maps Xn : Un → Bn. Assume that for every n ∈ N we have

Then for any α > 0 such that αe 2αC 1 ≤ r 2C 2 , there exists a neighbourhood V = B(x0, r) and a smooth map φα : Iα × V such that t → φ α (t, x) is the unique solution of ẋ = X(x) defined on Iα with initial condition φ α (0, x) = x. Moreover if Vn = λn(V ), consider φ α n : Iα × Vn → Bn defined by φ α n = λn • φ α ; For each z ∈ Vn, the map t → φ α (t, z) is the unique solution of the differential equation ẋn = Xn(xn) defined on Iα with initial condition φ α (0, z) = z Remark 38. If X = lim ← -Xn is a smooth vector field defined on an open set U = lim ← -Un of F, which satisfies assumption (37), as classically, according to Corollary 37, the map Fl X t := Fl X (t, ) is the local flow of X that is Fl X t fullfils the properties of a 1-parameter group:

: Fl X 0 = IdV : Fl X t • Fl X s = Fl X s+t if s,t and s + t belong to Iα. In particular Fl X t is a diffeomorphism from V onto it range and its inverse is Fl X -t . Moreover Fl Xn t = λn • Fl X t •λn is local flow of Xn = λn • X • λn and we have Fl X t = lim ← -Fl Xn t .