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AN INTEGRABILITY CRITERION FOR A PROJECTIVE LIMIT OF

BANACH DISTRIBUTIONS

FERNAND PELLETIER

Abstract. We give an integrability criterion for a projective limit of Banach dis-
tributions on a Fréchet manifold which is a projective limit of Banach manifolds.
This leads to a result of integrability of projective limit of involutive bundles on a
projective sequence of Banach manifolds. This can be seen as a version of Frobenius
Theorem in Fréchet setting. As consequence, we obtain a version of the third Lie
theorem for a Fréchet-Lie group which is a submersive projective limit of Banach
Lie groups. We also give an application to a sequence of prolongations of a Banach
Lie algebroid.

2010 MSC: 53C30, 53Z05, 46T05. secondary 18A30, 58B20, 58B25.
Keywords: Banach manifold, Fréchet manifold, projective limit of Banach manifolds, pro-
jective limit of Banach bundles, integrability of projective limit of Banach distributions,
projective limit of Banach Lie subalgebras.

1. introduction

In classical differential geometry, a distribution on a smooth manifold M , is an assign-
ment ∆ : x 7→ ∆x ⊂ TxM on M , where ∆x is a subspace of TxM . This distribution is
integrable if, for any x ∈ M , there exists an immersed submanifold f : L→ M such that
x ∈ f(L) and for any z ∈ L, we have Tf(TzL) = ∆f(z). On the other hand, ∆ is called
involutive if, for any vector fields X and Y on M tangent to ∆, their Lie bracket [X,Y ]
is also tangent to ∆.

On a finite dimensional manifold, when ∆ is a subbundle of TM , the classical Frobe-
nius Theorem gives an equivalence between integrability and involutivity. In the other
cases, the distribution is singular and, even under assumptions of smoothness on ∆, in
general, the involutivity is not a sufficient condition for integrability (one needs some more
additional local conditions). These problems were clarified and resolved essentially in [20]
and [19].

In the context of Banach manifolds, the Frobenius Theorem is again true for distribu-
tions which are complemented subbundles in the tangent bundle (cf. [16]). For singular
Banach distributions closed and complemented (i.e. ∆x is a complemented Banach sub-
space of TxM) we also have the integrability property under some natural geometrical
conditions (see [5] for instance). In a more general way, weak Banach distributions ∆ (i.e.
∆x which is a Banach subspace of TxM not necessary complemented), the integrability
property is again true under some additional geometrical assumptions (see [18] or [4] for
more details).

The proof of this last results is essentially based on the existence of the flow of a local
vector field. In a more general infinite dimensional context as distributions on convenient
manifolds or on locally convex manifolds, in general the local flow for a vector field does
not exist. Analog results exists in such previous settings: [12], [13], [8], [21] [2] for instance.
But essentially, all these integrability criteria are proved under strong assumptions which,
either implies the existence of a family of vector fields which are tangent and generate
locally a distribution and each one of these vector fields have a local flow, or implies the
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2 FERNAND PELLETIER

existence of an implicit function theorem in such a setting.

The purpose of this paper is to give an integrability criterion for projective limit of
Banach distributions on a Fréchet manifold which is a projective limit of Banach man-
ifolds. The precise assumptions on the distribution are presented in assumptions (*) in
Definition 1) and this criterion is formulated in a local way in Theorem 2 and in a global
way in Theorem 3. These results are obtained under conditions which permits to used a
Theorem of existence and unicity of solution of ODE in a Fréchet space proved in [17],
and which can be reformulated in the context of projective limit of Banach spaces (cf.
Appendix C). Using such a Theorem, this proof needs, in the one hand, an adaptation of
some arguments used in the proof of Theorem 1 in [18] for closed distributions on Banach
manifolds, and on the other hand, some properties of the Banach Lie group of ”uniformly
bounded” automorphisms of a Fréchet space (cf. Appendix B). As application, this cri-
terion permits to obtain a kind of projective limit of ”Banach Frobenius theorem” for
submersive projective limit of involutive bundles on a submersive projective sequence of
Banach manifolds (cf. Theorem 4). By the way, as consequence, a submersive projective
limit of complemented Banach Lie subalgebras of a submersive projective limit of Banach
Lie group algebras is the Lie algebra of a Féchet Lie group (cf. Theorem 5). This result
can be considered as a version of the third Lie Theorem for a Fréchet-Lie group which
is a submersive projective limit of Banach Lie groups. We also give an application to a
sequence of prolongations of a Banach Lie algebroid (cf. Theorem 7). We complete these
results, by an example of integrable Fréchet distribution which is a projective limit of non
integrable distributions but which satisfies the assumptions (*).

This paper is organized as follows. The first paragraph of the next section describes
the context and the assumptions of this criterion of integrability used in Theorem 2 and
Theorem 3. In order to present these Theorems in a more accessible way for a quick
reading, the useful definitions and results take place in Appendix A, and we formulate the
assumptions with precise references to this Appendix. The Theorem 3 permits to show
that, under some natural conditions, the projective limit E of a submersive projective
sequence of involutive subbundles Ei of the tangent bundle TMi of a submersive projective
sequence of Banach manifold Mi, is a Fréchet involutive and integrable subbundle of the
tangent bundle TM of the Fréchet manifold M = lim←−Mi.

A first application of these results, is the existence of a Féchet Lie group whose Lie
algebra is a submersive projective limit of complemented Banach Lie subalgebra of the a
submersive projective limit of Banach Lie groups Lie algebras (cf. Theorem 5 in § 3.1).
In § 3.2, we give an application of Theorem 2 to a sequence of prolongations of a Banach-
Lie algebroid (see [3]) and we end this paragraph by the announced contre-exemple of
Theorem 2 and Theorem 3.
The proof of the basic Theorem 2 is located in §4.
All properties concerning the set of uniformly bounded endomorphisms of a Fréchet space
are developed in Appendix B. Also in a series of other Appendices, we expose all the
definitions and results needed in the statements of Theorems and in the proof of Theorem
2.

2. An integrability criterion for a submersive projective limit of Banach
distributions

2.1. The criterion and its corollaries. The context needed in this section is detailed
in Appendix A.
Let

(
Mi, δ

j
i

)
j≥i be a sequence of projective Banach manifolds with projective limit M =

lim←−Mi
1. In order to give a criterion of integrability for projective limits of local Banach

1cf. section A.4
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bundles on M under some additional assumptions, we need to introduce some notations.
Let ν (resp. µ) be a norm on a Banach space E (resp. M). We denote by ‖ ‖op the
associated norm on the linear space of continuous linear mappings L(E,M).
Then we have:

Definition 1. Let
(
Mi, δ

j
i

)
j≥i be a projective sequence of Banach manifolds where the

maps δji are submersions and M = lim←−Mi its projective limit.

A closed distribution ∆ on M will be called a submersive projective limit of local anchored
bundles if the following property is satisfied:

(*) For any x = lim←−xi ∈ M , there exists an open neighbourhood U = lim←−Ui of x,

a submersive projective sequence of anchored Banach bundles (Ei, πi, Ui, ρi) 2 3 4

fulfilling the following properties for any z = lim←−zi ∈ U :

1. lim←−ρi((Ei)zi) = ∆z, for any z ∈ U .

2. The kernel of (ρi)zi is complemented in (Ei)zi and the range of (ρi)zi is
closed, for all i ∈ N.

3. There exists a constant C > 0 and a Finsler norm || ||Ei (resp. || ||Mi) on
(Ei)|Ui (resp. TMi|Ui) such that:

∀i ∈ N, ||(ρi)zi ||
op
i ≤ C, ∀zi ∈ Ui.5

We have the following criterion of integrability:

Theorem 2. Let M be a projective limit of a submersive projective sequence (Mi, δ
j
i )j≥i of

Banach manifolds and ∆ be a local projective limit of local Banach bundles on M . Assume
that, under the property (*), there exists a Lie bracket [., .]i on (Ei, πi, Ui, ρi) such that
(Ei, πi, Ui, ρi, [., .]i) is a submersive projective sequence of Banach-Lie algebroids 6.
Then the distribution ∆ is integrable and the maximal integral manifold N through x =
lim←−xi is a closed Fréchet submanifold of M which is a submersive projective limit of the

set of maximal leaves Ni of ρi(Ei) through xi in Mi.

The proof of Theorem takes place in section 4.

Now, we have the following consequences of Theorem 2:

Theorem 3. Let (Ei, πi,Mi, ρi, [., .]i) be a submersive projective sequence of split Lie
algebroids 7. Then we have:

1.
(
E := lim←−Ei, π := lim←−πi,M := lim←−Mi, ρ = lim←−ρi

)
is Fréchet anchored bundle and

∆ = ρ(E) is a closed distribution on M
2 If (ρi) satisfies the condition (3) in Definition 1, then ∆ is integrable and each

leaf L of ∆ is a projective limit of leaves Li of ∆i.

Proof The property (1) is a consequence of Proposition 29. From this property, it
follows that locally ∆ satisfies assumption (1) and (2) of Definition 1 so if the assumption
(3) is satisfied, the result is a direct consequence of Theorem 2.

�

Theorem 4. Let
(
Mi, δ

j
i

)
j≥i be a submersive projective sequence of Banach manifold

and (Ei, πi,Mi) an involutive subbundle of TMi where πi is the restriction of the natural

projection pMi : TMi → Mi. Assume that the restriction Tδji : Ej → Ei is a surjective

2 see: Definition 25 and Notations 24 for a submersive sequence of projective Banach bundles
3 see: Definition 27 for an anchored Banach bundle
4 a sequence of projective anchored bundle (Ei, πi,Mi, ρi) is a projective sequence of Banach bundles

which satisfies assumption (PSBLA 2) in Definition 28
5 More precisely, ||(ρi)zi ||

op
i = sup{||(ρi)zi (u)||Mi , ||u||Ei ≤ 1}

6 cf. Definition 28
7cf. Definition 28
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bundle morphism for all i ∈ N and j ≥ i. Then (Ei, πi,Mi) is a submersive projective
sequence of Banach bundles, and (E = lim←−Ei, π = lim←−πi,M = lim←−Mi) is an integrable

Fréchet subbundle of TM whose each leaf L of E in M is a projective limit of leaves Li
of Ei in Mi

Proof Since δji : Mj → Mi is a surjective submersion, so is Tδji : TMj → TMi. If

Tδji : Ej → Ei is a surjective morphism, this implies that Tδji is a submersion onto Ei and
so (Ei, πi,Mi) is a submersive projective sequence of Banach bundles. Let ιi : Ei → TMi

the natural inclusion and [ , ]i the restriction of Lie bracket of vector fields to (local) sec-

tions of Ei. Then (Ei,Mi, ιi, [ , ]i) is a Banach Lie algebroid and since Tδji ◦ ιj = ιi ◦ Tδji
it follows that (Ei,Mi, ιi, [ , ]i) is a is a submersive projective sequence of Banach-Lie
algebroids. Fix some x = lim←−xi ∈ M = lim←−Mi. According to Theorem 3 we have only to

show that the condition (3) of Definition 1 is satisfied by ιi.
Given any norm || ||Mi on TxiMi we denote by || ||Ei the induced norm on the fiber {Ei}xi ,
then, for the associated norm operator we have ||{ιi}xi ||

op
i = 1. So all the assumption of

Theorem 2 are satisfied which ends the proof.

�

3. Some applications and contre-example

3.1. Application to submersive projective sequence of Banach Lie groups. Let(
Gi, δ

j
i

)
j≥i be a submersive a projective sequence of Banach-Lie groups where Gi is mod-

elled on Gi (cf. Definition 19). We denote by L(Gi) the Lie algebra of Gi. Then

L(Gi) ≡ TeGi is isomorphic to Gi. If we set δ̄ji := Teδ
j
i , then each δ̄ji is a surjective

linear map from L(Gj) to L(Gi) whose kernel is complemented.
Consider a sequence hi of complemented sub-Lie algebra of L(Gi) such that the restric-

tion of δ̄ji to hj is a continuous surjective map. Then (hi, δ̂
j
i )j≥i is a submersive projective

sequence of Banach Lie algebra and so h = lim←−hi is a Fréchet Lie algebra (cf. [4] chapter

4). Now from classic result on Banach Lie groups (cf. [16]), by left translation each hi
gives rise to a complemented involutive subbundle of Hi of TGi and the leaf Hi through
the neutral ei in Gi has a structure of connected Banach Lie group so that the inclusion
ιi : Hi → Gi is a Banach Lie morphism. Note that ii := Tei ιi is nothing but else that the
inclusion of hi in L(Gi) and which induces the natural inclusion ι̂i of Hi in TGi.

Moreover, since (hi, δ̂
j
i )j≥i is a submersive projective sequence of Banach Lie algebra and(

Gi, δ
j
i

)
j≥i be a submersive a projective sequence of Banach-Lie groups, it follows that

(Hi, Gi, îi, [ , ]i) 8 is a submersive projective sequence of split Banach Lie algebroids.
On the other hand, from Theorem 21 the Lie algebra L(G) of G = lim←−Gi is lim←−LGi

and so h = lim←−hi is a closed complemented Lie subalgebra of L(G). As in the context of

Banach setting, by left translation, h gives rise to an involutive Fréchet subbundle H of

TG which is clearly the projective limit of the submersive sequence (Hi, Gi, îi, [ , ]i). So
from Theorem 4 by same arguments as in Banach Lie groups, we obtain:

Theorem 5. Let G = lim←−Gi be a the projective limit of a submersive projective sequence

of Banach-Lie groups
(
Gi, δ

j
i

)
j≥i and for each i ∈ N, consider a closed complemented

Banach Lie subalgebra hi of L(Gi). Assume that the restriction of δ̄ji to hj is a continuous
surjective map. Then there exists a Fréchet Lie group H in G such that L(H) is isomor-

phic to h and H is the projective limit of (Hi, δ
j
i |Hj

)j≥i.

Remark 6. The reader will also find an application of Theorem 2 in the proof of The-
orem 8.23 on submersive projective limit of a projective sequence of Banach groupoids in

8here [ , ]i denote again the restriction to sections of Hi of the Lie bracket of vector fields on Gi
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[4] which is a kind of generalization of Theorem 5 to Lie groupoids setting .

3.2. Application to sequences of prolongations of a Banach-Lie algebroid over a
Banach manifold. Consider an anchored Banach bundle (A, π,M, ρ) with typical fiber
A. Let VA ⊂ TA be the vertical subbundle of pA : TA → A. If Ax := π−1(x) is the
fiber over x ∈ M , according to [3], the prolongation TA of the anchored Banach bundle
(A, π,M, ρ) over A is the set {(x, a, b, c), (x, b) ∈ Ax, (x, a, c) ∈ V(x,a)A}. It is a Banach
vector bundle p̂ : TA → A with typical fiber A×A and we have an anchor ρ̂ : TA → TA
given by

ρ̂(x, a, b, c) = (x, a, ρx(b), c) ∈ T(x,a)A.
From now on, we fix a Banach Lie algebroid (A, π,M, ρ, [., .]A) such that the typical

fiber A of A is finite dimensional. By the way, we have a Banach Lie algebroid structure
(TA, p̂,A, ρ̂, [., .]TA) (cf. [3] Corollary 44 )

We denote (A1, π1,A0, ρ1, [., .]1) the Banach-Lie algebroid (A, π,M, ρ, [., .]A) over a
Banach manifold A0 = M . Thus we have the following commutative diagram:

A1
ρ1 //

π1

!!

TA0

pA0||
A0

(1)

According to the notations of Theorem 43 and Corollary 44 in [3], we set A2 =
TA1, ρ2 = ρ̂, [., .]2 = [., .]TA1 and π2 = p̂. Then we have the following commuta-
tive diagram:

A2
ρ2 //

π2 !!

TA1

pA1

||

Tπ1

##
A1

ρ1 //

π1 ""

TA0

pA0{{
A0

(2)

Fix some x ∈ A0 and a norm || ||0 (resp.|| ||1) on the fibre TxA0 ≡ A0 (resp. Ax =
π−1

1 (x) ≡ A1). Since the fiber T(x,a)A1 (resp. T(x,a)A1) is isomorphic to A1 × A1 (resp.
A0 × A1), it follows that sup{|| ||1 , || ||1} (resp. sup{|| ||0 , || ||1} gives rise to a norm on
T(x,a)A1 (resp. T(x,a)A1). Then for the associated operator norm || ||op we have

||(ρ2)(x,a)||op ≤ sup(||(ρ1)x||op, 1) (3)

By induction, for i ≥ 1, again according to notations of Theorem 43 and Corollary 44
in [3] , we we set
Ai+1 = TAiAi, ρi+1 = ρ̂i, [., .]i+1 = [., .]TAiAi and πi+1 = p̂ and, as before, we have

the following commutative diagrams:

Ai+1

ρi+1 //

πi+1
""

TAi
pA

||

Tπi

$$
Ai

ρi //

πi
""

TAi−1

pAi−1zz
Ai−1

(4)
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Also, by same arguments as for (3) we obtain:

||(ρi+1)(x,a1,...,ai+1)||op ≤ sup(||(ρi)(x,a1,...,ai)||
op, 1) (5)

It follows that we have a submersive projective sequence of Banach-Lie algebroids
(Ai,Ai−1, ρi, [., .]i) over a submersive projective sequence of Banach manifolds (Ai)i∈N
which satisfies the assumptions of Theorem 2. Thus, we obtain:

Theorem 7. Under the previous context,

(A = lim←−i≥1Ai,M = lim←−j≥0Aj , ρ = lim←−i≥1ρi, [., .] = lim←−i≥1[., .]i)

is a Fréchet Lie algebroid on the Fréchet manifold M and the distribution ρ(A) is in-
tegrable. Each leaf L is a projective limit of a projective sequence of leaves of type (Li)
defined by induction in the following way:
L0 is a leaf of ρ1(A1) and if Li is a leaf of ρi(Ai) then Li+1 = (Ai)|Li .

3.3. A contre-example. In this subsection we give a Example of an integrable distribu-
tion on a Fréchet bundle over a finite dimensional manifold which satisfies the assumptions
(*) in Definition 1 but is a projective limit of a submersive sequence of Banach not inte-
grable distributions.

Let E = M ×Rm the trivial bundle over a manifold M of dimension n. The set Jk(E)
of the k-jets of section of E over M is a finite dimensional manifold which is a vector

bundle πk : Jk(E) → M and whose typical fiber is is the space

k∏
j=0

Ljsym (Rn,Rm) where

Ljsym (Rn,Rm) is the space of continuous j-linear symmetric mappings Rn → Rm. Then

each projection πlk : J l (E)→ Jk (E) defined, for l ≥ k, by

πlk

[
jl (s) (x)

]
= jk (s) (x)

is a smooth surjection.

Proposition 8. ([4])
(
Jk (E) , πlk

)
is a submersive projective sequence of Banach vector

bundles and the projective limit

J∞ (E) = lim←−J
k (E)

can be endowed with a structure of Fréchet vector bundle whose fibre is isomorphic to the

Fréchet space

∞∏
j=0

Ljsym (Rn,Rm).

Let s be a section of π on a neighbourhood U of x ∈ M . For ξ = jk (s) (x) ∈ Jk (E),
the n-dimensional subspace R (s, x) of TξJ

k (E) equals to the tangent space at ξ to the
submanifold jk (s) (U) ⊂ Jk (π) is called an R-plane.

The Cartan subspace Ck (E) of TξJ
k (E) is the linear subspace spanned by all R-planes

R (s′, x) such that jk (s′) (x) = ξ. So it is the hull of the union of
(
jk (s)

)
∗ (x) (TxM)

where s is any local section of π around de x.
The Cartan subspaces form a smooth distribution on Jk (π) called Cartan distribu-

tionand denoted Ck. Then Ck is a regular distribution which a contact distribution
and so is not integrable (cf. [14]). We have a submersive projective limit of bundle
(Ck, Tπlk, jk(E)) whose projective limit C = lim←−C

k is called the Cartan distribution on

J∞ (E). In fact C is integrable (cf. [14]). Note that since Ck is a subbundle of TJk(E),
from the proof of Theorem 4, the condition (3) of Definition 1 is satisfied.
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4. Proof of Theorem 2

Fix some x ∈ M . According to the property (*) and the Definition 1, we can choose

a submersive projective sequence of charts
(
Ui, δ

j
i |Uj

)
j≥i

and a submersive projective

sequence of Banach bundles (Ei, λ
j
i )j≥i, such that:

– U = lim←−Ui is an open neighbourhood of x in M ;

– If x = lim←−(xi), each Ui is the contractile domain of a chart (Ui, φi) around xi in

Mi and (U = lim←−(Ui), φ = lim←−(φi)) is a projective limit chart in M around x.

– the projective sequence of Banach bundles (Ei, λ
j
i )j≥i satisfies the assumption (*)

on U .

Step 1: The kernel of ρx is supplemented.
There exists a trivialization τi : Ei → Ui × Ei which satisfies the compatibility condition:

(δji × λ
j
i ) ◦ τj = τi ◦ λji (6)

where (Ei, λji )j≥i is the projective sequence of Banach spaces on which (Ei, λ
j
i )j≥i is

modeled.
Under these conditions, without loss of generality we may assume that, for each i ∈ N, we
have

– xi ≡ 0 ∈ Mi;
– Ui is an open subset of Mi and so TUi = Ui ×Mi;
– Ei = Ui × Ei.

The projection δji at point xj ≡ 0 (resp. λji in restriction to the fibre of Ej over xj ≡ 0)

is denoted dji (resp. `ji ). The morphism ρi in restriction to the fibre Ei over xi ≡ 0 is
denoted ri and ρx is denoted r, so that r = lim←−ri. Now, according to the context of

Assumption 1 in Definition 1, we have the following result:

Lemma 9. There exists a decomposition E = ker r ⊕ F′ with the following property:
if (ν′n) (resp. (µn) is the graduation on F′ (resp. (µn) on M) induced by the norm || ||Ei
(resp. || ||Mi) on (Ei)xi (resp. TxiMi), then the restriction of r to F′ is a closed uniformly
bounded operator according to these graduations 9.

Proof of Lemma 9

At first, in such a context we have Txj δ
j
i ≡ d

j
i and the following compatibility condition:

dji ◦ rj = ri ◦ `ji . (7)

We set Fi = ri(Ei) for all i ∈ N. From Definition 1 assumption 1, Fi is a Banach
subspace of Ei and there exists a decomposition Ei = ker ri ⊕ F′i. Thus the restriction r′i
of ri to F′i is an isomorphism onto Fi. Now, from (7), we have

∀(i, j) ∈ N2 : j > i, dji ◦ r
′
j = r′i ◦ `ji .

But since each r′i is an isomorphism, the restriction (`ji )
′ of `ji to F′j takes values in F′i for

all (i, j) ∈ N2 such that j ≥ i. Moreover, as δji is surjective, according to (7) again, this

implies that dji (Fj) = Fi and so `ji (F
′
j) = F′i. Since (Ei, `ji )j≥i is a projective sequence, this

implies that (F′i, (`ji )
′)j≥i is a surjective projective system. The vector space F′ = lim←−F

′
i

is then a Fréchet subspace of E.

On the other hand, let (`ji )
′′

be the restriction of `ji to ker rj . Always from (7), we have

∀(i, j) ∈ N2 : j > i, (`ji )
′′

(ker rj) ⊂ ker ri.

9cf. Appendix B
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By same argument, it implies that (ker ri, (`
j
i )
′′

)j≥i is a projective sequence and ker r =
lim←− ker ri. Moreover, since Ei = ker ri ⊕ F′i, it follows that E = ker r ⊕ F′ and also the

restriction r′ of r to F′ is obtained as r′ = lim←−r
′
i and r′ is an injective continuous operator

r′ : F′ → M whose range is the closed subspace F = lim←−Fi. It remains to show that r′ is

uniformly bounded.
According to the context of assumption 2 of Definition 1, there exists a constant C > 0
and, for each i ∈ N, we have a norm ‖ ‖Ei on Ei and a norm ‖ ‖Mi on Mi such that
‖ri‖op

i ≤ C. As F′i is a closed Banach subspace of Ei, it follows that for the induced norm
on F′i we have

∀i ∈ N, ||r′i||op
i ≤ C. (8)

Set `i = lim←−`
j
i and di = lim←−d

j
i . By construction we have `i(F′) = F′i and di(M) = Mi. The

norm ‖ ‖Ei on Ei induces a norm ‖ ‖F
′
i on the Banach subspace F′i and we get a natural

graduation (ν′i) on F′ given by ν′i(u) = ||`i(u)||F
′
i (cf. Appendix B (29)). In the same

way, the norm ‖ ‖Mi induces a graduation (µi) on M given by µi(v) = ||di(v)||Mi . Now
(8) implies that r′ is uniformly bounded and r′(F′) = r(E) = ∆x is closed by assumption.
Therefore, the proof of Lemma 9 is complete.

�
Step 2: There exists a neighbourhood V ⊂ U of x such that the map ρ′ = ρ|U×F′ takes

values in IHb(F′,M)10 and is K-Lipschitz on V for some K > 0.

Since Ei = Ui × Ei, it follows that E = U × E and so ρ : E → TU can be seen as
a smooth map from U into H(E,M). Let ρ′ be the restriction of ρ to U × F′ and so
consider ρ′ as a smooth map from U to H(F′,M). From the definition of a Finsler norm,
Assumption 2 in Definition 1 and Lemma 9, the map x 7→ ρ′x takes value in Hb(F′,M).

Lemma 10. There exists a neighbourhood V1 ⊂ V of 0 such that the map ρ′ : V1 →
Hb(F′,M) is Lipschitz, that is:

there exists K > 0 such that

µ̂opi (ρ′z − ρ′x) ≤ Kµ̂i(z − z′), ∀(z, z′) ∈ V 2
1

11

Proof of Lemma 10 Let (ν̂′i)i∈N (resp. (µ̂i)i∈N) be the canonical increasing graduation

associated to the graduation (ν′i)i∈N on M (resp. (µ̂i)i∈N) (cf. Appendix (B 29)). Since

the map x 7→ ρ′x is a smooth map from U to Hb(F′,M) it follows that for each x the
differential map dxρ

′ is a continuous linear map from M to the Banach space Hb(F′,M)
and so there exists i0 ∈ N and a constant Ax > 0 such that

‖dxρ′(u)‖∞ ≤ Ax ν̂′i0(u) (9)

for all u ∈ F′ and so

‖dxρ′(u)‖∞ ≤ Ax ν̂′i(u) (10)

for all u ∈ F′ and and i ≥ i0 and according to Remark 32 we set

||dxρ′||opi := sup{µ̂i(dxρ′(u)) : ν̂′i(u) ≤ 1} ≤ Ax, ∀i ≥ i0 (11)

On the other hand, for 1 ≤ i < i0 we set Cix = ||dxρ′||opi . Then dxρ
′ belongs to

Hb (M,Hb(F′,M)) for all x ∈ U since we have

||dxρ′||∞ := sup
i∈N
||dxρ′||opi ≤ sup{Ax, C1

x, · · · , Ci0−1
x }.

10cf. Appendix B
11cf. Remark 32
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We set C = ||d0ρ
′||∞. By continuity, there exists an open neighbourhood V1 of 0 such

that

||dxρ′||∞ ≤ 2C (12)

By choosing K = 2C, from the definition of ||dxρ′||∞ it implies the announced result.
�

Step 3: Local flow of the vector field Xu = ρ′(u).
Consider a neighbourhood V as announced in step 2. As δi is surjective, Vi = δi(V ) is
an open set of Ui and so we have V = lim←−Vi. For each u ∈ F′, let Xu = ρ′(u) be the

vector field on V . If u = lim←−ui with ui ∈ F′i, then Xui = ρ′i(ui) is a vector field on Vi and

Xu = lim←−Xui . Now since ρ′ takes values in IHb(F′,M), from our assumption, there exists

a constant C > 0 such that ||(ρ′i)zi ||
op
i ≤ C for all zi ∈ Vi. Therefore, if u belongs to F′

and ui = λ(u), then ‖Xui‖Mi ≤ C‖u‖Ei and, from Lemma 10 and the definition of µ̂op
i we

have

∀
(
xi, x

′
i

)
∈ (δi(V ))2 , ‖Xui(xi)−Xui(x

′
i)‖Mi ≤ K‖ui‖Ei ||xi − x′i||Mi . (13)

Now, recall that we have provided F′ and M with seminorms (ν̂′n) and (µ̂n) respectively
defined by

νn(u) = ‖λi(u)‖Ei and µn(x) = ‖δi(x)‖Mi .
Since δi(Xu)(x) = Xui(δi(x)) and in this way, from (13), for all n ∈ N, we have

∀(x, x′) ∈ V 2, µn(Xu(x)−Xu(x′)) ≤ Kνn(u)µn(x− x′). (14)

Therefore, Xu satisfies the assumption of Corollary 37. Let ε > 0 such that the pseudo-ball

BM(0, 2ε) = {x ∈ M, : µ̂ni(x) < 2ε, 1 ≤ i ≤ k}

is contained in V and set

C1 := max
1≤i≤k

{Kνni(u)} = K max
1≤i≤k

νni(u);

C2 := sup
x∈BM(0,ε)

{
max

1≤i≤k
µni(X(x))

}
≤ C max

1≤i≤k
νni(u).

By application of Corollary 37, for any u such that max
1≤i≤k

νni(u) ≤ 1, there exists α > 0

such that

αe2αK ≤ ε

2C
,

such that the local flow Flut is defined on the pseudo-ball BM(0, ε) for all t ∈ [−α, α] for
all u which satisfied the previous inequality

Note that for any s ∈ R we have Xsu = sXu. Therefore, from the classical properties
of a flow of a vector field,

there exists η > 0 such that the local flow Flut is defined on [−1, 1], for all u in the open
pseudo-ball

BF′(0, η) :=
{
u ∈ F, : ν′ni(u) ≤ η, 1 ≤ i ≤ k

}
.

(cf. for instance proof of Corollary 4.2 in [5]).
We set BMi(0, ε) = δi(BM(0, ε)). Then Xui is a vector field on Vi = δi(V ) and Fluit :=
δi ◦ (Flut ) ◦ δi is the local flow of Xui which is defined on BMi(0, ε) for all t ∈ [−1, 1] and
Fluit (xi) belongs to Vi for all xi ∈ BMi(0, ε) and t ∈ [−1, 1] and, from (15), we have

Flut = lim←−Fluit . (15)

Step 4: Existence of an integral manifold.

Since (Ei, πi, Ui, ρi, [., .]i) is a Banach-Lie algebroid, the Lie bracket [Xui , Xu′i ] is tangent

to ∆i and so by Definition 3.2 and Lemma 3.6 in [18] we have

∀t ∈ [−1, 1], (T Fluit )((∆i)xi) = (∆i)Fl
ui
t (xi)

.
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Therefore, according to the notations at the end of step 3, for each i ∈ N, we set:

∀ui ∈ BF′i
(0, η) = λi(BF′(0, η)), Φi(ui) = (Flui1 )(0);

∀u ∈ BF′(0, η), Φ(u) = (Flu1 )(0); .

Lemma 11. Φ = lim←−Φi is smooth and there exists 0 < η′ ≤ η such that the restriction of

Φ to BF′(0, η
′) is injective and TuΦ belongs to IHb(F′,M) for all u ∈ BF′(0, η

′).

Recall that, for each i ∈ N, BF′i
(0, η′)) is an open ball in F′i and δi(V ) is open neigh-

bourhood of 0 ∈ Mi. From Lemma 11, since Φ is injective and each differential TuΦ is
injective, it follows that the same is true for each Φi : BFi(0, η

′)) → δi(V ). Thus we can
apply the proof of Theorem 1 in [18] for Φi. By the way, Ui = Φi(BF′i

(0, η′)) is an integral

manifold of ρi(F′i) and (Ui,Φ−1
i ) is a (global) chart for this integral manifold modeled on

F′i. As Φ = lim←−Φi, BF′(0, η
′) = lim←−BF′i

(0, η′)) Φi ◦ λji = δji ◦ Φj for all j ≥ i, it follows

that (Ui, δji )j≥i is a surjective projective sequence and so U = lim←−Ui is a Fréchet manifold

modeled on F′. This last result clearly ends the proof of Theorem 2.

Proof of Lemma 11
According to step 3, Φi is well defined on BF′i

(0, η) and Φ = lim←−Φi.

Now, for every x ∈ V , ρ′x belongs to IHb(F′,M) and so is injective; after shrinking V , if
necessary, there exists some M > 0 such that

∀x ∈ V, ‖ρ′x‖∞ ≤M. (16)

Now, by construction, we have T0Φ(u) = ρ′0(u) and so T0Φ is injective.

Claim 12. The map u 7→ TuΦ is a smooth map from B′(0, η) to Hb(F′,M).

Proof of Claim 12
We will use some argument of the proof of Lemma 2.12 of [18]. We fix the index i and,
for any y ∈ BF′i

(0, ε), v ∈ F′i we set

: Xv(y) = ρ′i(y, v)

: ϕ(t, v) = FlXvt (0)
: A(t) = ∂1ρ

′
i(ϕ(t, v), v) (partial derivative relative to the first variable)

: B(t) = ρ′i(ϕ(t, v), .)

Note that A and B are smooth fields on [0, 1] of operators in L(Mi,Mi) and L(F′i,Mi)
respectively. Therefore the differential equation

Ṡ = A ◦ S +B

has a unique solution St with initial condition S0 = 0 given by

St =

∫ t

0

Gt−s ◦B(s)ds (17)

where Gt is the unique solution of

Ġ = A ◦G
with initial condition G0 = IdM. Given by

Gt = IdM +

∫ t

0

A ◦Gsds. (18)

Under these notations, from [6], Chapter X § 7, we have ∂2ϕ(t, v)(.) = St .
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On the one hand, from the choice of ε, ϕ(t, v) belongs to Vi and so from (12), we have
‖A(t)‖op

i ≤ K for any t ∈ [−1, 1] and from (16) we have ‖B(t)‖op
i ≤ M . Thus from (18),

using Gronwal equality, we obtain

‖Gt‖op
i ≤ e

K ,

And so from (17) we obtain

‖St‖op
i ≤MeK

This implies that

‖∂2ϕ(t, v)‖op
i ≤MeK .

We set M1 = MeK . Since Φi(ui) = ϕ(1, ui) it follows that:

‖TuiΦ(vi)‖Mi ≤M1‖vi‖Ei (19)

from (19) we obtain:

µi(TuΦ(v)) ≤M1νi(v). (20)

But, since TuΦ(F′) = ∆Φ(u) ⊂ {Φ(u)} × M, it follows that the map u 7→ TuΦ can be
considered as a continuous linear map from F′ to M which takes values in Hb(F′,M). Now
as each Φi is a smooth map form BFi(0, η

′)) to δi(V ) and Φ = lim←−Φi, this imply that Φ

is a smooth map on BF′(0, η
′)) = lim←−BF′i

(0, η′)) to V = lim←−δi(V ) which ends the proof of

the Claim.
�

End of the proof of Lemma 10.
At first, from Claim 12, the map u 7→ TuΦ takes values in the Banach space Hb(F′,M), as
in step 2 for ρ, we can show that this map is Lipschitz on BF′(0, η) for η small enough. As
T0Φ = ρ′0, from Proposition 34, it follows that, again for η small enough, TΦ is injective
on BF(0, η′), and we have (cf. (19) )

∀u ∈ BF(0, η′), ∀v ∈ F′ µi(TuΦ(v)) ≤M1νi(v) (21)

using the fact that the range of TuΦ is always closed for u ∈ BF′(0, η
′). Moreover, for

u ∈ BF′(0, η
′), as for the relation (33) in the proof of Proposition 34, we obtain:

1

`u
νi(v) ≤ µi(TuΦ(v))) ≤ `u.νn(v) (22)

for all i ∈ N, where `u = ‖TuΦ‖∞ ≤M1.
Finally we obtain:

∀i ∈ N, 1

M1
νi(v) ≤ µi(TuΦ(v)) ≤M1.νi(u) (23)

Suppose that, for any 0 ≤ η′ ≤ η, the restriction of each Φi to BF′i
(0, η) is not injective.

Consider any pair (u, v) ∈ [BF′(0, η)]2 such that u 6= v but Φ(u) = Φ(v), we set h = v−u.
For any α ∈ M∗, we consider the smooth curve cα : [0, 1]→ R defined by:

cα(t) =< α, (Φ(u+ th)− Φ(u)) > .

Of course, we have ċα(t) =< α, Tu+thΦ(h) >.
Denote by ]u, v[ the set of points {w = u + th, t ∈]0, 1[}. As we have cα(0) = cα(1) = 0,
from Rolle’s Theorem, there exists uα ∈]u, v[ such that

< α, δl(TuαΦ(h)) >= 0 (24)

Note that, for any t ∈ R, this relation is also true for any th. From our assumption, it
follows that, for each k ∈ N \ {0}, there exists uk and vk in BF(0, η

k
) so that uk 6= vk but

with Φ(uk) = Φ(vk). So from the previous argument, for any α ∈ M∗, we have

< α, (Tuα,kΦ(hk)) >= 0 (25)
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for some uα,k ∈]uk, vk[ and hk = vk − uk. From (25), for any i ∈ N, any t ∈ R and any
αi ∈ M∗i , if α = δ∗i (αi), we have:

| < α, T0Φ(thk) > | = | < αi, δi([T0Φ−TuαΦ](thk)) > | = | < αi, [T0Φi−Tδi(uα)Φi](λi(thk))|

Denote by ‖.‖M
∗
i the canonical norm on M∗i associated to ‖.‖Mi . Then from (25) and since

u 7→ TuΦ is K1-Lipschitz on B′(0, η) (for some constant K1) we obtain:

| < α, T0Φ(thk) > | ≤ (||αi||M
∗
i .K1.||δi(uα)||Mi ||.||λi(thk)||Ei

≤ (||αi||M
∗
i .K1.||λi(thk)||Ei η

k
.

(26)

Since uk 6= vk, there must exist at least one integer i ∈ N such that λi(hk) 6= 0. Thus, by

taking t =
uk − vk

νi((uk − vk))
in (26), we may assume t = 1 and ‖λi(hk)‖Ei = 1 In this way,

for this choice of hk, we have a 1-form β̄k,i on the linear space generated by λi(hk) in F′i
such that < β̄k,i, λi(hk) >= 1 and with (‖β̄k,i‖Ei)∗ = 1. From the Hahn-Banach Theorem,
we can extend this linear form to a form βk,i ∈ M∗i such that < βk,i, λi(hk) >= 1 and
(‖βk,i‖Ei)∗ = 1. But since each T0Φ is injective, this implies that T0Φi is injective and
so the adjoint T ∗0 Φi is surjective. This implies that there exists αk,i ∈ M∗i such that
T ∗0 Φi(αk,i) = βk,i. Thus from (26) we obtain

1 = | < βk,i, λi(hk) > | = | < αk,i, T0Φi(λi(hk)) > |
= | < δ∗i αk,i, T0Φ(hk) > | ≤ ‖αk,i‖M

∗
iK1

η

k
(27)

But, on the other hand since the operation ”adjoint” is an isometry, from (23) we have

1

M1
‖αk,i‖M

∗
i ≤ ‖T ∗0 Φαk,i‖M

∗
i = 1 (28)

which gives a contradiction with (27) for k large enough.
�

Appendix A. Projective limits

A.1. Projective limits of topological spaces.

Definition 13. A projective sequence of topological spaces is a sequence((
Xi, δ

j
i

))
(i,j)∈N2, j≥i where

(PSTS 1): For all i ∈ N, Xi is a topological space;

(PSTS 2): For all (i, j) ∈ N2 such that j ≥ i, δji : Xj → Xi is a continuous map;
(PSTS 3): For all i ∈ N, δii = IdXi ;

(PSTS 4): For all (i, j, k) ∈ N3 such that k ≥ j ≥ i, δji ◦ δ
k
j = δki .

Notation 14. For the sake of simplicity, the projective sequence
((
Xi, δ

j
i

))
(i,j)∈N2, j≥i

will be denoted
(
Xi, δ

j
i

)
j≥i.

An element (xi)i∈N of the product
∏
i∈N

Xi is called a thread if, for all j ≥ i, δji (xj) = xi.

Definition 15. The set X = lim←−Xi of all threads, endowed with the finest topology for

which all the projections δi : X → Xi are continuous, is called the projective limit of the
sequence

(
Xi, δ

j
i

)
j≥i.

A basis of the topology of X is constituted by the subsets (δi)
−1 (Ui) where Ui is an

open subset of Xi (and so δi is open whenever δi is surjective).
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Definition 16. Let
(
Xi, δ

j
i

)
j≥i and

(
Yi, γ

j
i

)
j≥i be two projective sequences whose respec-

tive projective limits are X and Y .
A sequence (fi)i∈N of continuous mappings fi : Xi → Yi, satisfying, for all (i, j) ∈ N2,

j ≥ i, the coherence condition

γji ◦ fj = fi ◦ δji
is called a projective sequence of mappings.

The projective limit of this sequence is the mapping

f : X → Y
(xi)i∈N 7→ (fi (xi))i∈N

The mapping f is continuous if all the fi are continuous (cf. [1]).

A.2. Projective limits of Banach spaces. Consider a projective sequence
(
Ei, δji

)
j≥i

of Banach spaces.

Remark 17. Since we have a countable sequence of Banach spaces, according to the
properties of bonding maps, the sequence

(
δji
)

(i,j)∈N2, j≥i is well defined by the sequence of

bonding maps
(
δi+1
i

)
i∈N.

A.3. Projective limits of differential maps. The following proposition (cf. [9], Lemma
1.2 and [4], Chapter 4) is essential

Proposition 18. Let
(
Ei, δji

)
j≥i be a projective sequence of Banach spaces whose projec-

tive limit is the Fréchet space F = lim←−Ei and (fi : Ei → Ei)i∈N a projective sequence of

differential maps whose projective limit is f = lim←−fi. Then the following conditions hold:

(1) f is smooth in the convenient sense (cf. [15])
(2) For all x = (xi)i∈N, dfx = lim←−(dfi)xi .

(3) df = lim←−dfi.

A.4. Projective limits of Banach manifolds and Banach Lie groups.

Definition 19. [9] The projective sequence
(
Mi, δ

j
i

)
j≥i is called projective sequence of

Banach manifolds if

(PSBM 1): Mi is a manifold modelled on the Banach space Mi;

(PSBM 2):
(
Mi, δ

j
i

)
j≥i

is a projective sequence of Banach spaces;

(PSBM 3): For all x = (xi) ∈ M = lim←−Mi, there exists a projective sequence of

local charts (Ui, ξi)i∈N such that xi ∈ Ui where one has the relation

ξi ◦ δji = δji ◦ ϕj ;

(PSBM 4): U = lim←−Ui is a non empty open set in M .

Under the assumptions (PSBM 1) and (PSBM 2) in Definition 19, the assumptions
(PSBM 3)] and (PSBM 4) around x ∈ M is called the projective limit chart property
around x ∈M and (U = lim←−Ui, φ = lim←−φi) is called a projective limit chart.

The projective limit M = lim←−Mi has a structure of Fréchet manifold modelled on the

Fréchet space M = lim←−Mi and is called a PLB-manifold . The differentiable structure is

defined via the charts (U,ϕ) where ϕ = lim←−ξi : U → (ξi (Ui))i∈N .

ϕ is a homeomorphism (projective limit of homeomorphisms) and the charts changings(
ψ ◦ ϕ−1

)
|ϕ(U)

= lim←−
((
ψi ◦ (ξi)

−1)
|ξi(Ui)

)
between open sets of Fréchet spaces are smooth

in the sense of convenient spaces.
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Definition 20. [9]
(
Gi, δ

j
i

)
j≥i is a projective sequence of Banach-Lie groups where Gi is

modelled on Gi if , for all i ∈ N, there exists a chart (Ui, ϕi) centered at the unity ei ∈ Gi
such that:

(PLBLG 1): ∀(i, j) ∈ N2 : j ≥ i, δji (Uj) ⊂ Ui;
(PLBLG 2): ∀(i, j) ∈ N2 : j ≥ i, δji ◦ ϕj = ϕj ◦ δji ;
(PLBLG 3): lim←−ϕi(Ui) is a non empty open set of G and lim←−Ui is open in G ac-

cording to the projective limit topology.

A projective sequence of Banach-Lie groups
(
Gi, δ

j
i

)
j≥i is submersive if each δji is a

surjective submersion.

Theorem 21. [9] Let G = lim←−Gi be a the projective limit of a projective sequence of

Banach-Lie groups
(
Gi, δ

j
i

)
j≥i. Then we have the following properties:

(1) G is a Fréchet-Lie group.
(2) If L(Gi) is the Lie algebra of Gi then L(G) = lim←−LGi.

(3) If expGi is the exponential map for Gi, then expG = lim←− expGi is the exponential

map of the Fréchet-Lie group G.

A.5. Projective limits of Banach vector bundles. Let
(
Mi, δ

j
i

)
j≥i be a projective

sequence of Banach manifolds where each manifold Mi is modeled on the Banach space
Mi.
For any integer i, let (Ei, πi,Mi) be the Banach vector bundle whose type fibre is the

Banach vector space Ei where
(
Ei, λji

)
j≥i is a projective sequence of Banach spaces.

Definition 22.
(
(Ei, πi,Mi),

(
ξji , δ

j
i

))
j≥i, where ξji : Ej → Ei is a morphism of vector

bundles, is called a projective sequence of Banach vector bundles on the projective sequence
of manifolds

(
Mi, δ

j
i

)
j≥i if, for all (xi), there exists a projective sequence of trivializations

(Ui, τi) of (Ei, πi,Mi), where τi : (πi)
−1 (Ui) → Ui × Ei are local diffeomorphisms, such

that xi ∈ Ui (open in Mi) and where U = lim←−Ui is a non empty open set in M where, for

all (i, j) ∈ N2 such that j ≥ i, we have the compatibility condition

(PLBVB):
(
δji × λ

j
i

)
◦ τj = τi ◦ ξji .

With the previous notations, (U = lim←−Ui, τ = lim←−τi) is called a projective bundle chart

limit . The triple of projective limit (E = lim←−Ei, π = lim←−πi,M = lim←−Mi)) is called a

projective limit of Banach bundles or PLB-bundle for short.

The following proposition generalizes the result of [10] about the projective limit of
tangent bundles to Banach manifolds (cf. [7] and [4]).

Proposition 23. Let
(
(Ei, πi,Mi),

(
ξji , δ

j
i

))
j≥i be a projective sequence of Banach vector

bundles.

Then
(

lim←−Ei, lim←−πi, lim←−Mi

)
is a Fréchet vector bundle.

Notation 24. For the sake of simplicity, the projective sequence
(
(Ei, πi,Mi),

(
ξji , δ

j
i

))
j≥i

will be denoted (Ei, πi,Mi).

Definition 25. A sequence (Ei, πi,Mi) is called a submersive projective sequence of Ba-

nach vector bundles if
(
Mi, δ

j
i )j≥i

)
is a submersive projective sequence of Banach mani-

folds and if around each x ∈M = lim←−Mi, there exists a projective limit chart bundle (U =

lim←−Ui, τ = lim←−τi) such that for all i ∈ N, we have a decomposition Ei+1 = ker λ̄i+1
i ⊕ E′i

such that the condition (PLBVB) is true.
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The projective limit (E, π,M) of a projective sequence of Banach vector bundles
(Ei, πi,Mi) is called a submersive projective limit of Banach bundles or submersive PLB-
bundle for short.

Now, we have the following result:

Proposition 26. Let (Ei, πi,Mi) be a submersive projective sequence of Banach bundles.
Then, for each i ∈ N, the maps δi : M →Mi and λi : E → Ei are submersions.

A.6. Projective limit of Banach Lie algebroids.

Definition 27. Let π : E →M be a Banach bundle.

(1) an anchor is a vector bundle morphism ρ : E → TM and (E, ρ) is called an
anchored bundle

(2) An almost Lie bracket [., .]E on an anchored bundle E is a sheaf of antisymmetric
bilinear maps

[., .]EU : Γ (EU )× Γ (EU )→ Γ (EU )

for any open set U ⊆M and which satisfies the following properties
(AL 1) the Leibniz identity:

∀ (a1, a2) ∈ Γ (EU )2 ,∀f ∈ C∞(M), [a1, fa2]EU = f.[a1, a2]EU + df(ρ(a1)).a2.

(AL 2) For any open set U ⊆M and any (a1, a2) ∈ Γ(EU )2, the map

(a1, a2) 7→ [a1, a2]EU

only depends on the 1-jets of a1 and a2.
(3) An anchored bundle (E, ρ) provided with an almost Lie bracket [., .]E which satis-

fies the Jacobi identity

[[a1, a2]E , a3]E + [[a2, a3]E , a1]E + [[a3, a1]E , a2]E = 0

∀ (a1, a2a3) ∈ Γ (EU )3

is called a Lie algebroid.

Definition 28. (Ei, πi,Mi, ρi, [., .]i) is called a submersive projective sequence of split Lie
algebroids if

(PSBLA 1):
(
Ei, ξ

j
i

)
j≥i is a submersive projective sequence of Banach vector bun-

dles (πi : Ei →Mi)i∈N over the projective sequence of manifolds
(
Mi, δ

j
i

)
j≥i;

(PSBLA 2): For all (i, j) ∈ N2 such that j ≥ i, one has

ρi ◦ ξji = Tδji ◦ ρj
(PSBLA 3): For all (i, j) ∈ N2 such that j ≥ i, one has

ξji ([., .]j) = [ξji (.), ξ
j
i (.)]i

(PSBLA 4): For all i ∈ N and xi ∈M the kernel ker(ρi)xi is complemented in the
fiber Exi .

Proposition 29. ([4]) Let (Ei, πi,Mi, ρi, [., .]i) be a submersive projective sequence of

split Lie algebroids. Then
(
E := lim←−Ei, π := lim←−πi,M := lim←−Mi, ρ = lim←−ρi

)
is Fréchet an-

chored bundle and ∆ = ρ(E) is a closed distribution on E

Remark 30. Under the assomptions of Proposition 29 , unfortunately [., .] = lim←−[., .]i does

not define a Lie bracket on the set of all local sections of (E, π,M) but only on section
which are projective limit of section of (Ei, πi,Mi). Therefore (E, π,M, ρ, [., .]) does not
have a Fréchet Lie algebroid structure.
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Appendix B. The Banach space Hb (F1,F2)

Any Fréchet space F can be realized as the limit of a surjective projective sequence
of Banach spaces (Bn, λmn )m≥n. Following [7], 2.3, we can identify F with the projective
limit of the projective sequenceB̂n = {x = (xi) ∈

∏
0≤i≤n

Bi : ∀j ≥ i, xi = λji (xj) }, λ̂
m
n = (λnn, . . . , λ

m
n )


m≥n

.

We denote by λn : F → Bn and λ̂n : F → B̂n the canonical surjective projections. Let
(|| ||n)n∈N be a sequence where || ||n is a norm on Bn. In this way,

|̂| ||n = sup
0≤i≤n

|| ||i

defines a norm on B̂n. Then

ν̂n = |̂| ||n ◦ λ̂n (resp. νn = || ||n ◦ λn) (29)

is the semi-norm on F associated to the sequence (|̂| ||n) (resp.(|| ||n)). Moreover, we have
ν̂n = max

0≤i≤n
νi and the topology of F is defined by (ν̂n) or (νn).

Let (F1, ν
1
n) (resp. (F2, ν

2
n)) be a graded Fréchet space.

Recall that a linear map L : F1 → F2 is continuous if

∀n ∈ N, ∃kn ∈ N, ∃Cn > 0 : ∀x ∈ F1, ν
n
2 (L.x) ≤ Cnνkn1 (x) .

The space L (F1,F2) of continuous linear maps between both these Fréchet spaces gen-
erally drops out of the Fréchet category. Indeed, L (F1,F2) is a Hausdorff locally convex
topological vector space whose topology is defined by the family of semi-norms {pn,B}:

pn,B (L) = sup
x∈B

{
ν2
n (L.x)

}
where n ∈ N and B is any bounded subset of F1. This topology is not metrizable since
the family {pn,B} is not countable.
So L (F1,F2) will be replaced, under certain assumptions, by a projective limit of appro-
priate functional spaces as introduced in [10].

We denote by L (Bn1 ,Bn2 ) the space of linear continuous maps (or equivalently bounded
linear maps because Bn1 and Bn2 are normed spaces). We then have the following result
([7], Theorem 2.3.10).

Theorem 31. The space of all continuous linear maps between F1 and F2 which can be
represented as projective limits

H (F1,F2) =

{
(Ln) ∈

∏
n∈N

L (Bn1 ,Bn2 ) : lim←−Ln exists

}
is a Fréchet space.

For this sequence (Ln)n∈N of linear maps, for any integer 0 ≤ n ≤ m, the following
diagram is commutative

Bn1 oo
(δ1)mn

Ln

��

Bm1

Lm

��
Bn2 oo

(δ2)mn Bm2
On H (F1,F2), the topology can be defined by the sequence of seminorms pn given by

pn (L) = max
0≤k≤n

sup
{
ν2
k (L.x) , x ∈ F1, ν

1
k(x) = 1

}
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so that (H (F1,F2) , pn) is a graded Fréchet space.

Remark 32. For l ∈ {1, 2} , given a graduation
(
νln
)

on a Fréchet space Fl, let Bnl be
the associated local Banach space and δnl : Fl → Bnl the canonical projection.
The quotient norm ν̃ln associated to νln is defined by

ν̃ln(δn(z)) = sup{νln(y) : δn(y) = δn(z)}. (30)

We denote by (ν̃2
n)op the corresponding operator norm on L(Bn1 ,Bn2 ).

If L = lim←−Ln where Ln : Bn1 → Bn2 , then we have

(ν̃2
n)op(L) = sup{ν̃2

n(Ln.x), x ∈ Bn1 ν̃1
n(x) ≤ 1} = sup{ν2

n(L.x), x ∈ F1, ν
1(x) ≤ 1}.

This implies that

pn(L) = max
0≤i≤n

(ν̃2
i )op(Ln).

Definition 33. Let (F1, ν
1
n) and (F2, ν

2
n) be graded Fréchet spaces. A linear map L : F1 →

F2 is called a uniformly bounded operator, if

∃C > O : ∀n ∈ N, νn(L(x)) ≤ Cµn(x).

We denote by Hb (F1,F2) the set of uniformly bounded operators. Of course Hb (F1,F2)
is contained in H (F1,F2) and L ∈ H (F1,F2) belongs to Hb (F1,F2) if and only if ||L||∞ :=
sup
n∈N

pn(L) <∞ and so

Hb (F1,F2) = [H (F1,F2)]b := {L ∈ H (F1,F2) : ||L||∞ <∞}

When F = F1 = F2 and ν1
n = ν2

n for all n ∈ N, the set H (F,F) (resp. Hb (F,F)) is simply
denoted H (F) (resp. Hb (F)).

We denote by IHb (F1,F2) (resp. SHb (F1,F2)) the set of injective (resp. surjective)
operators of Hb (F1,F2) with closed range.

Proposition 34. ([4])

(1) Each operator L ∈ H (F1,F2) has a closed range if and only if, for each n ∈ N,
the induced operator Ln : Bn1 → Bn2 has a closed range.

(2) IHb (F1,F2) is an open subset of Hb (F1,F2).
(3) SHb (F1,F2) is an open subset of Hb (F1,F2).

We will give the sketch of the proof of Point (2) since some arguments used in this
proof are also useful for the proof of Theorem 2:

Proof
(2) Consider an injective operator L ∈ H (F1,F2). According to the representation

Fi = lim←−B
n
i as a projective limit of a projective Banach sequence (Bni , (δi)mn )m≥n, we have

a sequence of linear operators Ln : Bn1 → Bn2 such that L = lim←−Ln (cf. Theorem 31).

Considering each

Fi = {(xn) ∈
∏
n∈N

Bni : ∀m ≥ n, xn = (δ2)mn (xm)}

, then if x = (xn) ∈ F1 then L(x) = (Ln(xn)) ∈ F2. Thus it is clear that L is injective if
and only if Ln is injective for all n ∈ N.

Now if L ∈ IHb (F1,F2), then Ln is an isomorphism from Bn1 onto its range and so we
have

1

`n
.ν̃1
n(x) ≤ ν̃2

n(Ln(x) ≤ `n.ν̃1
n(x) (31)
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for all x ∈ Bn1 , all n ∈ N, where ν̃in is the quotient norm of νin on Bni for i ∈ 1, 2, and

`n = (ν̃2
n)op(L) = sup{ ν̃

2
n(Ln(x))

ν̃1
n(x)

: x 6= 0}.

Since δ2
n is the canonical projection of F2 on Bn2 and ν2

n ◦ δn = ν̃2
n, we obtain

1

`n
ν1
n(x) ≤ ν2

n(L(x)) ≤ `n.ν1
n(x) (32)

for all x ∈ F1 and n ∈ N. But we have `n ≤ ||L||∞ and we finally obtain

1

`
ν1
n(x) ≤ ν2

n(L(x)) ≤ `.ν1
n(x) (33)

for all x ∈ F1, all n ∈ N and where ` = ||L||∞.
Fix some L ∈ Hb (F1,F2) and set ` = ||L||∞, we consider the open set

W = {T ∈ Hb (F1,F2) , : ||T − L||∞ <
`

2
}

Fix some n ∈ N. For any x ∈ F1 and T ∈W , we have

ν1
n(x)− ν1

n(T (x)) ≤ ν1
n(T − L)(x) ≤ pn(T − L).ν1

n(x) ≤ ||T − L||∞.ν1
n(x) ≤ `

2
ν1
n(x).

This implies that

ν2
n(T (x)) ≥ `

2
ν1
n(x). (34)

Since (νin) is a separating sequence of semi-norms, it follows that L is injective.
Now taking in account inequality (34) and relation ν̃in = νin ◦ (δi)n, for T ∈ W and each
n ∈ N, we have

ν̃2
n(Tn(x)) ≤ 3`

2
ν1
n(x) ≤ 3ν̃2

n(Tn(x))

for all x ∈ Bn1 . It follows that Tn is closed and so T is closed (cf. 1.). Finally, W is an
open neighbourhood of L contained in IHb (F1,F2), which ends the proof of (2).

�
From this Proposition we have

Theorem 35. ([4])

(1) The Banach space Hb(F) has a Banach-Lie algebra structure and the set GHb(F)
of uniformly bounded isomorphisms of F is open in Hb(F).

(2) GHb(F) has a structure of Banach-Lie group whose Lie algebra is Hb(F).
(3) If F is identified with the projective lim←−B

n we denote by expn : L(Bn)→ GL(Bn),

then we a have a well defined smooth map exp := lim←− expn : Hb(F) → GHb(F)

which is a diffeomorphism from an open set of 0 ∈ Hb(F) onto a a neighbourhood
of IdF.

Appendix C. A theorem of existence of ODE

The following result is in fact a reformulation in our context of Theorem 1 in [17].

Theorem 36. Let F a Fréchet space realized as the limit of a surjective projective sequence
of Banach spaces (Bn, λmn )m≥n whose topology is defined by the sequence of seminorms

(νn)n∈N. Let I be an open interval in R and U be an open set of I × F. Then U is a
surjective projective limit of open sets Un ⊂ I × Bn. Consider a smooth map f = lim←−fn :

U → F, projective limit of maps fn : Un → Bn. 12 Assume that for every point (t, x) ∈ U ,
and every n ∈ N, there exists an integrable function Kn > 0 such that

∀
(
(t, x), (t, x′)

)
∈ U2, νn(f(t, x)− f(t, x′)) ≤ Kn(t)νn(x− x′). (35)

12This means that we have: ∀m ≥ n, λmn ◦ fm = fn ◦ (IdR × λmn )
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and consider the differential equation:

ẋ = φ (t, x) . (36)

(1) For any (t0, x0) ∈ U , there exists α > 0 with Iα = [t0 − α, t0 + α] ⊂ I, an open
pseudo-ball V = B(x0, r) ⊂ U and a map Φ : Iα × Iα × V → F such that

t 7→ Φ(t, τ, x)

is the unique solution of (36) with initial condition Φ(τ, τ, x) = x for all x ∈ V .
(2) V is the projective limit of the open balls Vn of Bn. For each n ∈ N, the curve

t 7→ λn ◦Φ(t, τ, λn(x)) is the unique solution γ : Iα → Bn of the differential equa-
tion ẋn = φn (t, xn) with initial condition γ(τ) = λn(x).

From this theorem we obtain easily:

Corollary 37. Let U = lim←−Un be an open subset of F and X = lim←−Xn : U → F a

projective limit of smooth maps Xn : Un → Bn. Assume that for every n ∈ N we have

∀
(
(t, x), (t, x′)

)
∈ U2, νn(X(x)−X(x′)) ≤ Knνn(x− x′). (37)

For x0 ∈ U , let B(x0, 2r) = {x ∈ F, : νni(x − x0) < 2r, 1 ≤ i ≤ k} be a pseudo-ball
contained in U . Let us set

: C1 = max1≤i≤kKni

: C2 = sup
z∈B(x0,r)

{
max

1≤i≤k
νni(f(z))

}
.

Then for any α > 0 such that αe2αC1 ≤ r
2C2

, there exists a neighbourhood V = B(x0, r)

and a smooth map φα : Iα × V such that t 7→ φα(t, x) is the unique solution of ẋ = X(x)
defined on Iα with initial condition φα(0, x) = x. Moreover if Vn = λn(V ), consider
φαn : Iα × Vn → Bn defined by φαn = λn ◦ φα; For each z ∈ Vn, the map t 7→ φα(t, z)
is the unique solution of the differential equation ẋn = Xn(xn) defined on Iα with initial
condition φα(0, z) = z

Remark 38. If X = lim←−Xn is a smooth vector field defined on an open set U = lim←−Un
of F, which satisfies assumption (37), as classically, according to Corollary 37, the map
FlXt := FlX(t, ) is the local flow of X that is FlXt fullfils the properties of a 1-parameter
group:

: FlX0 = IdV
: FlXt ◦FlXs = FlXs+t if s,t and s+ t belong to Iα.

In particular FlXt is a diffeomorphism from V onto it range and its inverse is FlX−t. More-

over FlXnt = λn ◦ FlXt ◦λn is local flow of Xn = λn ◦X ◦ λn and we have FlXt = lim←−FlXnt .
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