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AN INTEGRABILITY CRITERION FOR A PROJECTIVE LIMIT OF
BANACH DISTRIBUTIONS

FERNAND PELLETIER

ABSTRACT. We give an integrability criterion for a projective limit of Banach dis-
tributions on a Fréchet manifold which is a projective limit of Banach manifolds.
This leads to a result of integrability of projective limit of involutive bundles on a
projective sequence of Banach manifolds. This can be seen as a version of Frobenius
Theorem in Fréchet setting. As consequence, we obtain a version of the third Lie
theorem for a Fréchet-Lie group which is a submersive projective limit of Banach
Lie groups. We also give an application to a sequence of prolongations of a Banach
Lie algebroid.

2010 MSC: 53C30, 53Z05, 46T05. secondary 18A30, 58B20, 58B25.
Keywords: Banach manifold, Fréchet manifold, projective limit of Banach manifolds, pro-
jective limit of Banach bundles, integrability of projective limit of Banach distributions,
projective limit of Banach Lie subalgebras.

1. INTRODUCTION

In classical differential geometry, a distribution on a smooth manifold M, is an assign-
ment A :x — Ay C T M on M, where A, is a subspace of T, M. This distribution is
integrable if, for any x € M, there exists an immersed submanifold f : L — M such that
x € f(L) and for any z € L, we have Tf(T.L) = Ag(,y. On the other hand, A is called
involutive if, for any vector fields X and Y on M tangent to A, their Lie bracket [X,Y]
is also tangent to A.

On a finite dimensional manifold, when A is a subbundle of T'M, the classical Frobe-
nius Theorem gives an equivalence between integrability and involutivity. In the other
cases, the distribution is singular and, even under assumptions of smoothness on A, in
general, the involutivity is not a sufficient condition for integrability (one needs some more
additional local conditions). These problems were clarified and resolved essentially in [20]
and [19].

In the context of Banach manifolds, the Frobenius Theorem is again true for distribu-
tions which are complemented subbundles in the tangent bundle (cf. [16]). For singular
Banach distributions closed and complemented (i.e. A, is a complemented Banach sub-
space of T, M) we also have the integrability property under some natural geometrical
conditions (see [5] for instance). In a more general way, weak Banach distributions A (i.e.
A, which is a Banach subspace of T, M not necessary complemented), the integrability
property is again true under some additional geometrical assumptions (see [18] or [4] for
more details).

The proof of this last results is essentially based on the existence of the flow of a local
vector field. In a more general infinite dimensional context as distributions on convenient
manifolds or on locally convex manifolds, in general the local flow for a vector field does
not exist. Analog results exists in such previous settings: [12], [13], [8], [21] [2] for instance.
But essentially, all these integrability criteria are proved under strong assumptions which,
either implies the existence of a family of vector fields which are tangent and generate
locally a distribution and each one of these vector fields have a local flow, or implies the
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2 FERNAND PELLETIER

existence of an implicit function theorem in such a setting.

The purpose of this paper is to give an integrability criterion for projective limit of
Banach distributions on a Fréchet manifold which is a projective limit of Banach man-
ifolds. The precise assumptions on the distribution are presented in assumptions (*) in
Definition 1) and this criterion is formulated in a local way in Theorem 2 and in a global
way in Theorem 3. These results are obtained under conditions which permits to used a
Theorem of existence and unicity of solution of ODE in a Fréchet space proved in [17],
and which can be reformulated in the context of projective limit of Banach spaces (cf.
Appendix C). Using such a Theorem, this proof needs, in the one hand, an adaptation of
some arguments used in the proof of Theorem 1 in [18] for closed distributions on Banach
manifolds, and on the other hand, some properties of the Banach Lie group of ”uniformly
bounded” automorphisms of a Fréchet space (cf. Appendix B). As application, this cri-
terion permits to obtain a kind of projective limit of ”Banach Frobenius theorem” for
submersive projective limit of involutive bundles on a submersive projective sequence of
Banach manifolds (cf. Theorem 4). By the way, as consequence, a submersive projective
limit of complemented Banach Lie subalgebras of a submersive projective limit of Banach
Lie group algebras is the Lie algebra of a Féchet Lie group (cf. Theorem 5). This result
can be considered as a wversion of the third Lie Theorem for a Fréchet-Lie group which
is a submersive projective limit of Banach Lie groups. We also give an application to a
sequence of prolongations of a Banach Lie algebroid (cf. Theorem 7). We complete these
results, by an example of integrable Fréchet distribution which is a projective limit of non
integrable distributions but which satisfies the assumptions (*).

This paper is organized as follows. The first paragraph of the next section describes
the context and the assumptions of this criterion of integrability used in Theorem 2 and
Theorem 3. In order to present these Theorems in a more accessible way for a quick
reading, the useful definitions and results take place in Appendix A, and we formulate the
assumptions with precise references to this Appendix. The Theorem 3 permits to show
that, under some natural conditions, the projective limit E of a submersive projective
sequence of involutive subbundles E; of the tangent bundle T'M; of a submersive projective
sequence of Banach manifold M;, is a Fréchet involutive and integrable subbundle of the
tangent bundle TM of the Fréchet manifold M = @M,

A first application of these results, is the existence of a Féchet Lie group whose Lie
algebra is a submersive projective limit of complemented Banach Lie subalgebra of the a
submersive projective limit of Banach Lie groups Lie algebras (cf. Theorem 5 in § 3.1).
In § 3.2, we give an application of Theorem 2 to a sequence of prolongations of a Banach-
Lie algebroid (see [3]) and we end this paragraph by the announced contre-exemple of
Theorem 2 and Theorem 3.

The proof of the basic Theorem 2 is located in §4.

All properties concerning the set of uniformly bounded endomorphisms of a Fréchet space
are developed in Appendix B. Also in a series of other Appendices, we expose all the
definitions and results needed in the statements of Theorems and in the proof of Theorem
2.

2. AN INTEGRABILITY CRITERION FOR A SUBMERSIVE PROJECTIVE LIMIT OF BANACH
DISTRIBUTIONS

2.1. The criterion and its corollaries. The context needed in this section is detailed
in Appendiz A.

Let (Mi, 57 )j>i be a sequence of projective Banach manifolds with projective limit M =
@Mi . In order to give a criterion of integrability for projective limits of local Banach

Lef. section A.4
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bundles on M under some additional assumptions, we need to introduce some notations.
Let v (resp. p) be a norm on a Banach space E (resp. M). We denote by || ||° the
associated norm on the linear space of continuous linear mappings £(EE, M).

Then we have:

Definition 1. Let (Mi,éf)j>i be a projective sequence of Banach manifolds where the

maps 53 are submersions and M = limM,; its projective limit.
A closed distribution A on M will be called a submersive projective limit of local anchored
bundles if the following property is satisfied:
(*) For any x = 1&1:1@1 € M, there exists an open neighbourhood U = l'&lUi of x,
a submersive projective sequence of anchored Banach bundles (E;,m;,U;, p;) 2 34
fulfilling the following properties for any z = mzl eU:
1. @pl((Ez)zl) =A,, forany z € U.
2. The kernel of (pi)z; is complemented in (E;)., and the range of (pi); is
closed, for all i € N.
3. There exists a constant C > 0 and a Finsler norm || ||® (resp.
(E:)u; (resp. TM;y,) such that:

Vi e N, H(pl)zlnfp < C, Vz; € Ui.5

[111*) on

We have the following criterion of integrability:

Theorem 2. Let M be a projective limit of a submersive projective sequence (M;, Sf)jzi of
Banach manifolds and A be a local projective limit of local Banach bundles on M. Assume
that, under the property (*), there exists a Lie bracket [.,.]; on (Fs;, 7, Us, p;) such that
(B, mi, Ui, piy [, -]:) is a submersive projective sequence of Banach-Lie algebroids .

Then the distribution A is integrable and the mazimal integral manifold N through r =
l’&nxi is a closed Fréchet submanifold of M which is a submersive projective limit of the
set of mazimal leaves N; of pi(E;) through x; in M.

The proof of Theorem takes place in section 4.

Now, we have the following consequences of Theorem 2:

Theorem 3. Let (F;,m, M, pi,|.,.]i) be a submersive projective sequence of split Lie
algebroids 7. Then we have:
1. (E = @Ei, Ti= @mi, M = @Mi,p = mpl) 1s Fréchet anchored bundle and
A = p(E) is a closed distribution on M
2 If (pi) satisfies the condition (3) in Definition 1, then A is integrable and each
leaf L of A is a projective limit of leaves L; of A;.

Proof The property (1) is a consequence of Proposition 29. From this property, it
follows that locally A satisfies assumption (1) and (2) of Definition 1 so if the assumption
(3) is satisfied, the result is a direct consequence of Theorem 2.

O

Theorem 4. Let (Mi,5g)j>i
and (E;, 7, M;) an involutive subbundle of TM; where ; is the restriction of the natural
projection pu; : TM; — M;. Assume that the restriction Téf : E; — E; is a surjective

be a submersive projective sequence of Banach manifold

2 see: Definition 25 and Notations 24 for a submersive sequence of projective Banach bundles

3 see: Definition 27 for an anchored Banach bundle

4 a sequence of projective anchored bundle (E;, 7;, M;, p;) is a projective sequence of Banach bundles
which satisfies assumption (PSBLA 2) in Definition 28

5 More precisely, [|(p:)=, || = sup{||(p:)=, (W)™, [Jul[®F < 1}

6 cf. Definition 28

7¢f. Definition 28
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bundle morphism for all i € N and j > i. Then (E;, 7, M;) is a submersive projective
sequence of Banach bundles, and (E = l'&nEi,w = Liéﬂm,M = l&an) is an integrable
Fréchet subbundle of TM whose each leaf L of E in M is a projective limit of leaves L;
Of Ei n Mi

Proof Since 617 : M; — M; is a surjective submersion, so is T(S{ : TM; — TM;. If
Téz : E; — E; is a surjective morphism, this implies that Téf is a submersion onto F; and
so (Es,ms:, M;) is a submersive projective sequence of Banach bundles. Let ¢; : E; — T'M;
the natural inclusion and [, ]; the restriction of Lie bracket of vector fields to (local) sec-
tions of E;. Then (E;, M;, i, [, |:) is a Banach Lie algebroid and since Tég 0Lj =10 T5Z
it follows that (E;, M;,u:, [, ]:) is a is a submersive projective sequence of Banach-Lie
algebroids. Fix some z = @xl eEM= @Ml According to Theorem 3 we have only to
show that the condition (3) of Definition 1 is satisfied by ¢;.

Given any norm || || on Ty, M; we denote by || ||¥¢ the induced norm on the fiber {F;},,
then, for the associated norm operator we have ||{¢;}«,;||;* = 1. So all the assumption of
Theorem 2 are satisfied which ends the proof.

3. SOME APPLICATIONS AND CONTRE-EXAMPLE

3.1. Application to submersive projective sequence of Banach Lie groups. Let
(Gi, 55 )].>i be a submersive a projective sequence of Banach-Lie groups where G; is mod-
elled on G; (cf. Definition 19). We denote by L(G;) the Lie algebra of G;. Then
L(G;) = T.G; is isomorphic to G,;. If we set 67 := T.67, then each &/ is a surjective
linear map from L(G;) to L(G;) whose kernel is complemented.

Consider a sequence h; of complemented sub-Lie algebra of L(G;) such that the restric-
tion of 55 to f; is a continuous surjective map. Then (bh;, 5{)321 is a submersive projective
sequence of Banach Lie algebra and so h = l’&nhi is a Fréchet Lie algebra (cf. [4] chapter
4). Now from classic result on Banach Lie groups (cf. [16]), by left translation each b;
gives rise to a complemented involutive subbundle of H; of T'G; and the leaf H; through
the neutral e; in G; has a structure of connected Banach Lie group so that the inclusion
ti + H; — G; is a Banach Lie morphism. Note that i; := T¢,¢; is nothing but else that the
inclusion of b; in L(G;) and which induces the natural inclusion Z; of H; in TG;.
Moreover, since (b, 55)]21 is a submersive projective sequence of Banach Lie algebra and
(Gi7 527 )],>i be a submersive a projective sequence of Banach-Lie groups, it follows that
(H, Gi,?i, [, ]:) 8 is a submersive projective sequence of split Banach Lie algebroids.

On the other hand, from Theorem 21 the Lie algebra L(G) of G = @Gi is @LGi
and so h = limb; is a closed complemented Lie subalgebra of L(G). As in the context of
Banach setting, by left translation, h gives rise to an involutive Fréchet subbundle H of
TG which is clearly the projective limit of the submersive sequence (H;, Gi, s, [, ]:)- So
from Theorem 4 by same arguments as in Banach Lie groups, we obtain:

Theorem 5. Let G = @Gi be a the projective limit of a submersive projective sequence
of Banach-Lie groups (G¢,5f)j>i
Banach Lie subalgebra b; of L(G;). Assume that the restriction of 5{ to b; is a continuous

surjective map. Then there exists a Fréchet Lie group H in G such that L(H) is isomor-
phic to b and H is the projective limsit of (H;, 57.]'|Hj)j2i'

and for each i € N, consider a closed complemented

Remark 6. The reader will also find an application of Theorem 2 in the proof of The-
orem 8.28 on submersive projective limit of a projective sequence of Banach groupoids in

8here [, ]: denote again the restriction to sections of H; of the Lie bracket of vector fields on G;
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[4] which is a kind of generalization of Theorem 5 to Lie groupoids setting .

3.2. Application to sequences of prolongations of a Banach-Lie algebroid over a
Banach manifold. Consider an anchored Banach bundle (A, 7, M, p) with typical fiber
A. Let VA C TA be the vertical subbundle of p4 : TA — A. If A, := 7 '(z) is the
fiber over x € M, according to [3], the prolongation T.A of the anchored Banach bundle
(A,m, M, p) over A is the set {(z,a,b,c),(x,b) € Az, (x,a,c) € Viz,q)A}. It is a Banach
vector bundle p : TA — A with typical fiber A x A and we have an anchor p: TA — TA
given by
p(x,a,b,¢c) = (x,a, pz (D), c) € T(z,a)A.

From now on, we fix a Banach Lie algebroid (A, 7, M, p,|.,.]4) such that the typical
fiber A of A is finite dimensional. By the way, we have a Banach Lie algebroid structure
(TA,p, A, p,[.,.]JTa) (cf. [3] Corollary 44 )

We denote (A1, 71, Ao, p1,[.,.]1) the Banach-Lie algebroid (A,m, M,p,[.,.]Ja) over a
Banach manifold A° = M. Thus we have the following commutative diagram:

Ay Z T Ao (1)
T
PAg
Ao

According to the notations of Theorem 43 and Corollary 44 in [3], we set Ay =
TAy, p2 = p, [,.]J2 = [,.]Jta, and w2 = p. Then we have the following commuta-

tive diagram:
Az = T A (2)

PA; Tmy
T2
Al o T Ao
Ao

Fix some © € Ay and a norm || ||o (resp.|| ||1) on the fibre T, 49 = Ao (resp. A, =
77 (x) = A1). Since the fiber T, o). A1 (resp. T(s.q)A1) is isomorphic to A; x A; (resp.
1 (z,a) (z,a)

Ao x A1), it follows that sup{|| |1 ,|| ||1} (resp. sup{|| |lo, || |[1} gives rise to a norm on
T (s,0)A1 (resp. T(z,q)A1). Then for the associated operator norm || ||°P we have
1(p2) (z,a) [I” < sup(l(p1)a]|°", 1) 3)

By induction, for ¢ > 1, again according to notations of Theorem 43 and Corollary 44
in [3] , we we set

AL =T A i = pi, [ Jiss = [ Jra; 4, and w1 = P and, as before, we have
the following commutative diagrams:

Pi+1

Ay

rk\\

TA,; (4)

>N
A b TA;—1
A

%1

i—1
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Also, by same arguments as for (3) we obtain:

(Pit1) @ a1, a7 < sP(1(Pi) @ 01,0y [I775 1) (5)
It follows that we have a submersive projective sequence of Banach-Lie algebroids
(Ais Aiz1, pis [, ]s) over a submersive projective sequence of Banach manifolds (A;),cy

which satisfies the assumptions of Theorem 2. Thus, we obtain:

Theorem 7. Under the previous context,
(A= limi> A, M = Lm0 Ay, p = limazpi, [, ] = limiza [ i)

is a Fréchet Lie algebroid on the Fréchet manifold M and the distribution p(A) is in-
tegrable. Fach leaf L is a projective limit of a projective sequence of leaves of type (L;)
defined by induction in the following way:

Lo is a leaf of p1(A1) and if L; is a leaf of pi(Ai) then Liyr = (Ai)|z,-

3.3. A contre-example. In this subsection we give a Example of an integrable distribu-
tion on a Fréchet bundle over a finite dimensional manifold which satisfies the assumptions
(*) in Definition 1 but is a projective limit of a submersive sequence of Banach not inte-
grable distributions.

Let E = M x R™ the trivial bundle over a manifold M of dimension n. The set J*(E)

of the k-jets of section of E over M is a finite dimensional manifold which is a vector
k

bundle 7% : J*(E) — M and whose typical fiber is is the space Hﬁgym (R™,R™) where
j=0

LI, (R",R™) is the space of continuous j-linear symmetric mappings R — R™. Then

each projection «}, : J' (E) — J* (E) defined, for I > k, by

w3 (5) @)] = 3* (9) (@)
is a smooth surjection.

Proposition 8. ([4]) (Jk (E),7},) is a submersive projective sequence of Banach vector
bundles and the projective limit

> (B) = limJ* (E)
can be endowed with a structure of Fréchet vector bundle whose fibre is isomorphic to the

Fréchet space Hﬂgym (R™,R™).

Jj=0

Let s be a section of 7 on a neighbourhood U of z € M. For & = j* (s) (z) € J* (E),
the n-dimensional subspace R (s,z) of T¢J" (E) equals to the tangent space at & to the
submanifold j* (s) (U) C J* () is called an R-plane.

The Cartan subspace C* (E) of T¢J* (F) is the linear subspace spanned by all R-planes
R(s',z) such that j*(s) (z) = & So it is the hull of the union of (j* (s)), (z) (T=M)
where s is any local section of 7 around de x.

The Cartan subspaces form a smooth distribution on J* () called Cartan distribu-
tionand denoted C*. Then C* is a regular distribution which a contact distribution
and so is not integrable (cf. [14]). We have a submersive projective limit of bundle
(C*, Txt, j*(E)) whose projective limit C = @c’“ is called the Cartan distribution on

J°° (E). In fact C is integrable (cf. [14]). Note that since C* is a subbundle of TJ*(E),
from the proof of Theorem 4, the condition (3) of Definition 1 is satisfied.
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4. PROOF OF THEOREM 2

Fix some x € M. According to the property (*) and the Definition 1, we can choose
a submersive projective sequence of charts (Ui,dflUj)Pi and a submersive projective
sequence of Banach bundles (E;, \]);>;, such that: -
- U= @Ui is an open neighbourhood of x in M;
- Ifz= l&n(ml), each Uj; is the contractile domain of a chart (U;, ¢;) around z; in
M; and (U = l'gl(Ui), ¢ = @(qx)) is a projective limit chart in M around .
— the projective sequence of Banach bundles (Ej;, \]);>; satisfies the assumption (*)
on U.

Step 1: The kernel of pg is supplemented.
There exists a trivialization 7; : E; — U; x E; which satisfies the compatibility condition:

(6] x X)or; =7 0N (6)

where (Ei,T{)jZi is the projective sequence of Banach spaces on which (FEi, \);>; is
modeled.

Under these conditions, without loss of generality we may assume that, for each i € N, we
have

- x; =0¢€ M;;
— U, is an open subset of Ml; and so TU; = U; x M;;
- El = UZ X Ez

The projection &/ at point x; = 0 (resp. A/ in restriction to the fibre of E; over z; = 0)
is denoted d{ (resp. Zf) The morphism p; in restriction to the fibre E; over z; = 0 is
denoted 7; and p, is denoted r, so that r = limr;. Now, according to the context of
Assumption 1 in Definition 1, we have the following result:

Lemma 9. There exists a decomposition E = kerr & F’ with the following property:

if (Vh) (resp. (wn) is the graduation on F' (resp. (un) on M) induced by the norm || ||
(resp. || ||M) on (E:)s, (resp. Tw,M;), then the restriction of r to B is a closed uniformly
bounded operator according to these graduations °.

Proof of Lemma 9

’ 67 = d’ and the following compatibility condition:

At first, in such a context we have T,

djor; =riol]. (7)

We set F; = r;(E;) for all ¢ € N. From Definition 1 assumption 1, F; is a Banach

subspace of E; and there exists a decomposition E; = kerr; ® IF;. Thus the restriction r}
of r; to F; is an isomorphism onto F;. Now, from (7), we have

V(i,5) EN?:j>i, d)ory =r;oll.
But since each 7} is an isomorphism, the restriction (¢/)’ of £/ to F} takes values in F} for
all (i,7) € N? such that j > i. Moreover, as §7 is surjective, according to (7) again, this
implies that d (F;) = F; and so ¢ (F}) = F}. Since (E;, £!);>; is a projective sequence, this
implies that (F}, (¢/)"),>; is a surjective projective system. The vector space F' = @F;
is then a Fréchet subspace of E.
On the other hand, let (@f)” be the restriction of £ to kerr;. Always from (7), we have

"

Y(i,j) € N*: j > i, (&) (kerr;) C kerr;.

9cf. Appendix B
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By same argument, it implies that (kerr;, (ZZ)N) j>i is a projective sequence and kerr =
l'&nker r;. Moreover, since E; = kerr; @ IF;, it follows that E = kerr @ F’ and also the
restriction 7’ of r to [’ is obtained as v’ = ](ﬂ”“; and 7’ is an injective continuous operator
r’ : ' — M whose range is the closed subspace F = @FZ It remains to show that 7’ is
uniformly bounded.

According to the context of assumption 2 of Definition 1, there exists a constant C > 0
and, for each i € N, we have a norm || |* on E; and a norm || ||* on M; such that
lri]];? < C. As F; is a closed Banach subspace of E;, it follows that for the induced norm
on F} we have

vi N, [ < C. ®)
Set 4; = @Eﬁ and d; = l&ndf . By construction we have ¢;(F') = F; and d;(M) = M;. The
norm || ||¥ on E; induces a norm || ||]F; on the Banach subspace F; and we get a natural
graduation (1) on F' given by v/(u) = |[¢;(u)|[* (cf. Appendix B (29)). In the same
way, the norm | ||™ induces a graduation (u;) on M given by p;(v) = ||d:(v)||. Now
(8) implies that r’ is uniformly bounded and 7' (F') = 7(E) = A, is closed by assumption.
Therefore, the proof of Lemma 9 is complete.
(]

Step 2: There exists a neighbourhood V. C U of x such that the map p’' = pjuxw takes
values in THy(F',M)1° and is K-Lipschitz on 'V for some K > 0.

Since E; = U; x E;, it follows that £ = U x E and so p : E — TU can be seen as
a smooth map from U into H(E,M). Let p’ be the restriction of p to U x F’ and so
consider p’ as a smooth map from U to H(F',M). From the definition of a Finsler norm,
Assumption 2 in Definition 1 and Lemma 9, the map z > p), takes value in H,(F', M).

Lemma 10. There exists a neighbourhood Vi C V of 0 such that the map p' : Vi —
Hp(F' M) is Lipschitz, that is:
there exists K > 0 such that

A7 (ot — p) < Kjui(z — 2'), ¥(2,2') € Vi

11

Proof of Lemma 10 Let (v':)ien (resp. (f1i);cy) be the canonical increasing graduation
associated to the graduation (v;)ien on M (resp. (fii);cy) (cf. Appendix (B 29)). Since
the map = — p;, is a smooth map from U to H,(F',M) it follows that for each z the
differential map d.p’ is a continuous linear map from M to the Banach space H;(F’, M)
and so there exists 19 € N and a constant A, > 0 such that

lldep’ (W) [|oo < Au i (1) (9)
for all uw € F’ and so
defd (@)l < Au 575(u) (10)
for all u € F/ and and i > i¢ and according to Remark 32 we set
a1 = sup s (dap (w) = P's(w) < 1} < Au, ¥i > i (1)
On the other hand, for 1 < i < ig we set C% = ||dzp’||”. Then d.p’ belongs to

Hp (M, Hp(F',M)) for all x € U since we have
HdZPIHOO ‘= sup Hdzlol”jp < Sup{Az7 Ca}:a T 702071}'
ieN

10c¢, Appendix B
Ief. Remark 32
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We set C = ||dop’||oc- By continuity, there exists an open neighbourhood V; of 0 such
that
dup|o < 2C (12)
By choosing K = 2C, from the definition of ||dyp’||o it implies the announced result.
O
Step 3: Local flow of the vector field X, = p'(u).
Consider a neighbourhood V as announced in step 2. As §; is surjective, V; = 6;(V) is
an open set of U; and so we have V = @Vl For each u € F’, let X, = p'(u) be the
vector field on V. If u = @ui with u; € Fj, then X,, = p}(u;) is a vector field on V; and
Xy = @Xul Now since p' takes values in ZH, (]F'7 M), from our assumption, there exists
a constant C' > 0 such that ||(p)z,]];¥ < C for all z; € V;. Therefore, if u belongs to F’
and u; = A(u), then || X, |[* < C|lu||¥ and, from Lemma 10 and the definition of i® we
have
/ M; E; M;
V (@i, @5) € (8i(V))?, 1 Xu; (23) = X, (@)™ < Klua||™|2: — 25" (13)
Now, recall that we have provided F' and M with seminorms (') and (fi,) respectively
defined by
E; _ M;
vn(u) = [[X(u)[™* and pn(z) = [|6:(2)[
Since §;(Xw)(z) = Xu, (6:(z)) and in this way, from (13), for all n € N, we have
W, 2') € V2, pn(Xu(®) = Xu(&)) < Kvn(u)jin (e — o). (14)
Therefore, X, satisfies the assumption of Corollary 37. Let € > 0 such that the pseudo-ball
Bu(0,2¢) ={z €M, : fin,(z) <2¢6,1<i<k}
is contained in V and set
C1 := max {Kvyn, (u)} = K max vn,(u);

1<i<k 1<i<k
= i (X < s .
Cz o {gggéxku o (w))} < C max vn; (u)
By application of Corollary 37, for any u such that max vn, (u) < 1, there exists a > 0
such that o
20K €
ae < —

— 207
such that the local flow F1} is defined on the pseudo-ball By (0,¢) for all ¢ € [—a, o] for
all u which satisfied the previous inequality

Note that for any s € R we have X, = sX,. Therefore, from the classical properties
of a flow of a vector field,

there exists 7 > 0 such that the local flow F1 is defined on [—1, 1], for all u in the open
pseudo-ball

Bw(0,n) :={u€eF, : vy, (u<n 1<i<k}.

(cf. for instance proof of Corollary 4.2 in [5]).
We set By, (0,€) = §;(Bm(0,¢€)). Then X, is a vector field on V; = §;(V) and FI}"* :=
d; o (F1{¥) 0 §; is the local flow of X, which is defined on By, (0,€) for all ¢ € [—1,1] and
F1y¢(z;) belongs to V; for all z; € B, (0,¢€) and t € [—1,1] and, from (15), we have

FIj' = lim FI}" . (15)

Step 4: Existence of an integral manifold.

Since (E;, s, Ui, pi, [-,.]i) is a Banach-Lie algebroid, the Lie bracket [Xui,Xu;] is tangent
to A; and so by Definition 3.2 and Lemma 3.6 in [18] we have

vt € [=11], (TFL)((Ad)e;) = (Ad)psi (4,
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Therefore, according to the notations at the end of step 3, for each i € N, we set:
Vui € By (0,1) = Xi(Br (0,7m)), ®i(ui) = (F17*)(0);
Vu € By (0,m), ®(u) = (FI7')(0);.

Lemma 11. & = T&nfbi is smooth and there exists 0 < 1’ < n such that the restriction of
® to By (0,7) is injective and T, ® belongs to TH,(F', M) for all u € By (0,7).

Recall that, for each i € N, By (0,71')) is an open ball in F; and &;(V) is open neigh-
bourhood of 0 € M;. From Lemrﬁa 11, since @ is injective and each differential T, ® is
injective, it follows that the same is true for each ®; : B, (0,%")) — §;(V). Thus we can
apply the proof of Theorem 1 in [18] for ®;. By the way, U; = @i(BF;(O, n')) is an integral
manifold of p;(IF}) and (U;, ®; ") is a (global) chart for this integral manifold modeled on
Fi. As ® = lim®;, By (0,7') = limBy (0,7')) ®i o N = 6] o ®; for all j > i, it follows
that (U;, 07, is a surjective projective sequence and so U = lim4; is a Fréchet manifold
modeled on F’. This last result clearly ends the proof of Theorem 2.

Proof of Lemma 11
According to step 3, ®; is well defined on By (0,7) and & = @1@1
Now, for every = € V, p. belongs to ZH,(F’, M) and so is injective; after shrinking V, if
necessary, there exists some M > 0 such that
Vo €V, ||pelloe < M. (16)

Now, by construction, we have To®(u) = pj(u) and so To® is injective.

Claim 12. The map u s T, ® is a smooth map from B'(0,n) to Hy(F',M).

Proof of Claim 12
We will use some argument of the proof of Lemma 2.12 of [18]. We fix the index 4 and,
for any y € By (0,¢), v € F} we set

2 Xo(y) = pi(y,v)

: lt,v) = FIX* (0)

: A(t) = O1pi(p(t,v),v) (partial derivative relative to the first variable)

: B(t) = pi(e(t,0),.)
Note that A and B are smooth fields on [0, 1] of operators in £(M;,M;) and L(Fj, M;)
respectively. Therefore the differential equation

S=AcS+B
has a unique solution S; with initial condition Sy = 0 given by

Sy = /0 Gi—s 0o B(s)ds (17)

where G is the unique solution of
G=AoG
with initial condition Go = Idy. Given by
t
Gy = Idy +/ Ao Ggds. (18)
0

Under these notations, from [6], Chapter X § 7, we have da(t,v)(.) = St .
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On the one hand, from the choice of €, ¢(t,v) belongs to V; and so from (12), we have
|A(t)]|;¥ < K for any ¢ € [—1,1] and from (16) we have ||B(¢)||;® < M. Thus from (18),
using Gronwal equality, we obtain

Gl < e,
And so from (17) we obtain
ISl < Me™
This implies that
10260 (t, ) [ < Me™.
We set My = Me¥. Since D, (ui) = p(1,u;) it follows that:
1T, @ (03[ < Ma i (19)

from (19) we obtain:

1i(Tu®(v)) < Mivi(v). (20)

But, since T, ®(F') = Ag) C {®(u)} x M, it follows that the map u — T,® can be
considered as a continuous linear map from F’ to M which takes values in H;(F, M). Now
as each ®; is a smooth map form By, (0,7")) to §(V) and & = lim®;, this imply that &
is a smooth map on B (0,7)) = lim By, (0, n')) toV = limd; (V') which ends the proof of
the Claim.

d

End of the proof of Lemma 10.

At first, from Claim 12, the map u — T, ® takes values in the Banach space H(F', M), as
in step 2 for p, we can show that this map is Lipschitz on B/ (0,7) for  small enough. As
To® = pg, from Proposition 34, it follows that, again for n small enough, T'® is injective
on Br(0,7'), and we have (cf. (19) )

Yu € Br(0,1), Vv € F' 1;(T,®(v)) < Miv;(v) (21)

using the fact that the range of T,,® is always closed for v € By (0,7'). Moreover, for
u € Bp/(0,7'), as for the relation (33) in the proof of Proposition 34, we obtain:

(o) < (D)) < L (0) (22)

for all i € N, where £, = || Tu®P||cc < M;.
Finally we obtain:

1
Vi €N, ﬁl’i(v) < pi(Tu®(v)) < Myvi(u) (23)

1
Suppose that, for any 0 < n’ < n, the restriction of each ®; to Bg:(0,m) is not injective.
Consider any pair (u,v) € [Bw(0,7)]? such that u # v but ®(u) = ®(v), we set h = v — u.
For any a € M*, we consider the smooth curve ¢, : [0,1] — R defined by:

ca(t) =< a, (P(u+th) — &(u)) > .

Of course, we have ¢4 (t) =< a, Tuten®(h) >.
Denote by Ju, v[ the set of points {w = w + th,t €]0,1[}. As we have ¢4 (0) = ca(1) =0,
from Rolle’s Theorem, there exists uo €Ju,v[ such that

< @, 01(Tu, ®(h)) >=0 (24)

Note that, for any ¢ € R, this relation is also true for any th. From our assumption, it
follows that, for each & € N\ {0}, there exists uy and vx in Br(0, ) so that ux # vix but
with ®(ur) = ®(vk). So from the previous argument, for any o € M*, we have

<, (Tu, o ®(h)) >=0 (25)
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for some uq,; €|uk,vg[ and hy = vy — uk. From (25), for any ¢ € N, any ¢ € R and any
a; € Mj, if a = §; (as), we have:

| < a,TO@(thk;) > | = | < ai,5i([T0<I>—Tua¢'}(thk)) > | = | < oy, [To@i—Tgi(ua)(I’i]()\i(thk))|

Denote by ||| the canonical norm on M} associated to ||.|"*. Then from (25) and since
u+— T,® is Ki-Lipschitz on B’(0,7) (for some constant K1) we obtain:

| <, To®(thi) > | < (el K116 (o) []] s (th)

: | (26)
< (ol 7K [ (i) [

Since uy # vk, there must exist at least one integer 7 € N such that A;(hi) # 0. Thus, by

Uk — Vk E;
(o~ v0)) ) :
for this choice of hy, we have a 1-form Bk ; on the linear space generated by \;(hy) in F;
such that < B, Ai(hy) >= 1 and with (||Bx|*)* = 1. From the Hahn-Banach Theorem,
we can extend this linear form to a form Sy ; € Mj such that < S, Ai(he) >= 1 and
(I1Bk.c|I*)* = 1. But since each Tp® is injective, this implies that To®; is injective and
so the adjoint T35 ®; is surjective. This implies that there exists ax,; € M; such that
T6®i(ak,s) = Br,i- Thus from (26) we obtain

L=< Bri, ilhe) >| =< ki, ToPi(Ni(he)) > |
=| < 8rars, To®(h) > | < |low.||" K1

taking t = in (26), we may assume ¢t = 1 and ||A;(hx)||™* = 1 In this way,

n (27)
k

But, on the other hand since the operation ”adjoint” is an isometry, from (23) we have
1 * " *
ol < IT5 @au | =1 (28)

which gives a contradiction with (27) for k large enough.
O

APPENDIX A. PROJECTIVE LIMITS
A.1. Projective limits of topological spaces.

Definition 13. A projective sequence of topological spaces is a sequence
((X,-,dg))(i’j)eNQ,jZi where
(PSTS 1): For alli € N, X; is a topological space;
(PSTS 2): For all (i,5) € N* such that j >4, §) : X; — X, is a continuous map;
(PSTS 3): ForallicN, §! = Idx,;
(PSTS 4): For all (,j,k) € N* such that k > j > i, 6] o 5% = oF.

Notation 14. For the sake of simplicity, the projective sequence ((X,,éf))
will be denoted (Xi, 55)

(i,§)EN2, j>i
j>i’
An element (;),y of the product HXi is called a thread if, for all j > i, 67 (x;) = ;.
ieN
Definition 15. The set X = @Xi of all threads, endowed with the finest topology for

which all the projections 0; : X — X; are continuous, is called the projective limit of the

sequence (Xi7 6?)],21..

A basis of the topology of X is constituted by the subsets (8;)" (U;) where U; is an
open subset of X; (and so J; is open whenever §; is surjective).
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Definition 16. Let (Xi, 6{)]_%_ and (Yi,’yf)jh. be two projective sequences whose respec-
tive projective limits are X and Y. B
A sequence (fi);cy of continuous mappings fi : Xs — Y;, satisfying, for all (,7) € N2,
j > 1, the coherence condition
viof;=/fiod]

is called a projective sequence of mappings.

The projective limit of this sequence is the mapping
f: X — Y
@)ien = (fi (@) ien

The mapping f is continuous if all the f; are continuous (cf. [1]).

A.2. Projective limits of Banach spaces. Consider a projective sequence (Ei,éf)j>i

of Banach spaces.

Remark 17. Since we have a countable sequence of Banach spaces, according to the

properties of bonding maps, the sequence (55)@, DN, j>i is well defined by the sequence of

bonding maps (5f+1)ieN.
A.3. Projective limits of differential maps. The following proposition (cf. [9], Lemma
1.2 and [4], Chapter 4) is essential

Proposition 18. Let (Ei, 5f)j>i be a projective sequence of Banach spaces whose projec-
tive limit is the Fréchet space F = @El and (f; : E; — Ei)ieN a projective sequence of
differential maps whose projective limit is f = lglfl Then the following conditions hold:

(1) f is smooth in the convenient sense (cf. [15])
(2) For all v = (2i);ey, dfe = @(dfﬂL
(3) df = limdf;.

A.4. Projective limits of Banach manifolds and Banach Lie groups.

Definition 19. [9] The projective sequence (M“(Sg)jzi is called projective sequence of
Banach manifolds if
(PSBM 1): M; is a manifold modelled on the Banach space M;;
(PSBM 2): (Mug) . is a projective sequence of Banach spaces;
(PSBM 3): For all x]_:L (z:) e M = l(iLnMi, there exists a projective sequence of
local charts (Ui’fi)ieN such that x; € U; where one has the relation

€ 00] =6] 0 0y
(PSBM 4): U = @Ui is a non empty open set in M.

Under the assumptions (PSBM 1) and (PSBM 2) in Definition 19, the assumptions
(PSBM 3)] and (PSBM 4) around = € M is called the projective limit chart property
around z € M and (U = I'&nUi, ¢ = L&nq%) is called a projective limit chart.

The projective limit M = limM; has a structure of Fréchet manifold modelled on the
Fréchet space M = @Ml and is called a PLB-manifold. The differentiable structure is
defined wvia the charts (U, ¢) where ¢ = Wmé&; : U — (& (Ui))sen -
¢ is a homeomorphism (projective limit of homeomorphisms) and the charts changings
(1/1 o gfl) o) = l&n ((1/), o (&)71) \Ei(Ui)) between open sets of Fréchet spaces are smooth

in the sense of convenient spaces.
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> is a projective sequence of Banach-Lie groups where G; is

Definition 20. (9] (G, d7)
modelled on G; if , for all i € N, there exists a chart (U, ;) centered at the unity e; € G;
such that:
(PLBLG 1): V(i,j) € N*:j >, 6/(U;) C Us;
(PLBLG 2): Y(i,j) e N*:j >, 6/ opj = p;007;
(PLBLG 3): I&napz(Ul) is a non empty open set of G and l'&lUi is open in G ac-
cording to the projective limit topology.

A projective sequence of Banach-Lie groups (Gi,éf)j%, is submersive if each 6] is a
surjective submersion.

Theorem 21. [9] Let G = @Gi be a the projective limit of a projective sequence of

Banach-Lie groups (Gi, 5Z)j>i. Then we have the following properties:

(1) G is a Fréchet-Lie group.

(2) If L(G;) is the Lie algebra of G; then L(G) = UmLG;.

(3) If expg, is the exponential map for G, then expg = T&nexpci is the exponential

map of the Fréchet-Lie group G.

A.5. Projective limits of Banach vector bundles. Let (Mi,éf)j%. be a projective
sequence of Banach manifolds where each manifold M; is modeled on the Banach space
M.
For any integer 4, let (E;, m;, M;) be the Banach vector bundle whose type fibre is the
Banach vector space E; where (Ei, )\g)j>i is a projective sequence of Banach spaces.
Definition 22. ((Ei,m,Mi),( f,ég))j>i, where Ef : E; — FE; is a morphism of vector
bundles, is called a projective sequence of Banach vector bundles on the projective sequence
of manifolds (Mi7 5f)j>i if, for all (z;), there exists a projective sequence of trivializations
(Ui, i) of (Bi,mi, M), where 7; : ()~ (Ui) — U; x E; are local diffeomorphisms, such
that x; € U; (open in M;) and where U = WmU; is a non empty open set in M where, for
all (i,7) € N? such that j > i, we have the compatibility condition

PLBVB): (8 x Mot =708,
7 7 J I3

With the previous notations, (U = T&nUi, T= @TZ) is called a projective bundle chart
limit. The triple of projective limit (F = @Ei,ﬂ = @mi,M = l&an)) is called a
projective limit of Banach bundles or PLB-bundle for short.

The following proposition generalizes the result of [10] about the projective limit of
tangent bundles to Banach manifolds (cf. [7] and [4]).

Proposition 23. Let ((Ei,m, M;), ( Z, 65))],% be a projective sequence of Banach vector
bundles. a

Then (lglEl, @m,]&nMO is a Fréchet vector bundle.

Notation 24. For the sake of simplicity, the projective sequence ((EZ, i, M), ( Z, 55))].>i
will be denoted (E;, mi, M;). B

Definition 25. A sequence (E;, m;, M;) is called a submersive projective sequence of Ba-
nach vector bundles if (Mi,éf)jzi) is a submersive projective sequence of Banach mani-
folds and if around each x € M = @Mi, there exists a projective limit chart bundle (U =
l'&lUi,T = l&m) such that for all i € N, we have a decomposition E;1 = ker 5\2"'1 DO E;
such that the condition (PLBVB) is true.
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The projective limit (F,mw, M) of a projective sequence of Banach vector bundles
(Es, s, M;) is called a submersive projective limit of Banach bundles or submersive PLB-
bundle for short.

Now, we have the following result:

Proposition 26. Let (E;,m;, M;) be a submersive projective sequence of Banach bundles.
Then, for each i € N, the maps d; : M — M, and \; : E — FE; are submersions.

A.6. Projective limit of Banach Lie algebroids.

Definition 27. Let 7 : E — M be a Banach bundle.

(1) an anchor is a vector bundle morphism p : E — TM and (E,p) is called an
anchored bundle

(2) An almost Lie bracket [.,.]g on an anchored bundle E is a sheaf of antisymmetric
bilinear maps

[., ']EU : F(EU) X P(EU) — F(EU)

for any open set U C M and which satisfies the following properties
(AL 1) the Leibniz identity:

V(a1,a2) € ' (Ep)®,Vf € C®(M), [a1, fas]py = f.la1, a2]m, + df(p(a1)).az.
(AL 2) For any open set U C M and any (a1,02) € T(Ey)?, the map
(a1, a2) = [a1, az2] g,

only depends on the 1-jets of a1 and az.
(3) An anchored bundle (E, p) provided with an almost Lie bracket [.,.|g which satis-
fies the Jacobi identity

[[ah a2]E7 Cls}E + [[62,a3]E, a1]E + [[Cls, al]E,az]E =0

V(ah azag) el (EU)3

is called a Lie algebroid.

Definition 28. (E;,m;, M;, pi, [.,.]:) s called a submersive projective sequence of split Lie
algebroids if

(PSBLA 1): (Ei,fg)j% is a submersive projective sequence of Banach vector bun-
dles (m; : Es — M;)ien over the projective sequence of manifolds (Mi, 53)
(PSBLA 2): For all (i,j) € N such that j > i, one has
pio &l =Tb] op;
(PSBLA 3): For all (i,j) € N* such that j > i, one has
& ([ 15) = 161 (): €] ()

(PSBLA 4): Foralli € N and x; € M the kernel ker(p;)«
fiber E,.

=i’

, s complemented in the
Proposition 29. ([4]) Let (E;,m, Mi, pi,[.,.]s) be a submersive projective sequence of
split Lie algebroids. Then (E = @Ei, = @mi, M = @Mi, p= @pl) is Fréchet an-
chored bundle and A = p(E) is a closed distribution on E

Remark 30. Under the assomptions of Proposition 29 , unfortunately [.,.] = @1[, Ji does
not define a Lie bracket on the set of all local sections of (E,m, M) but only on section
which are projective limit of section of (E;, m;, M;). Therefore (E,m,M,p,].,.]) does not
have a Fréchet Lie algebroid structure.
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APPENDIX B. THE BANACH SPACE H,; (Fy,Fs)

Any Fréchet space F can be realized as the limit of a surjective projective sequence
of Banach spaces (B, Ay'),,,s,,- Following [7], 2.3, we can identify ' with the projective
limit of the projective sequence

Bo={z=(z)e [] Bi: Vji>i, 2=M(z) }, A =(\n,..., A7)

<<
0<i<n m>n

We denote by A, : F — B,, and Xn F— @n the canonical surjective projections. Let
(Il lln)nen be a sequence where || ||, is a norm on B,,. In this way,

[, = sup [[
0<i<
defines a norm on @n Then
Un = [l,, 0 An (resp. vn = || |[n 0 An) (29)

—

is the semi-norm on F associated to the sequence (|| ||,,) (resp.(|| ||)). Moreover, we have
Uy = Olzl_a<x v; and the topology of F is defined by (2r) or (vn).
<i<n
Let (F1,v}) (resp. (F2,v2)) be a graded Fréchet space.
Recall that a linear map L : F1 — Fy is continuous if

vn e N, 3k, € N,3C, > 0:Vz € Fr, v (L.x) < Cprt™ (z).

The space L (F1,F2) of continuous linear maps between both these Fréchet spaces gen-
erally drops out of the Fréchet category. Indeed, £ (F1,F2) is a Hausdorff locally convex
topological vector space whose topology is defined by the family of semi-norms {p,, 5}:

pr5 (L) = sup {va (L.x)}

where n € N and B is any bounded subset of F1. This topology is not metrizable since
the family {pn,5} is not countable.
So L (F1,F2) will be replaced, under certain assumptions, by a projective limit of appro-
priate functional spaces as introduced in [10].

We denote by £ (BT, B%) the space of linear continuous maps (or equivalently bounded
linear maps because BT and B3 are normed spaces). We then have the following result
([7], Theorem 2.3.10).

Theorem 31. The space of all continuous linear maps between F1 and F2 which can be
represented as projective limits

H (F1,Fs) = {(Ln) € H L (BY,B3) : Wm Ly, ezists}

neN
is a Fréchet space.
For this sequence (L), oy of linear maps, for any integer 0 < n < m, the following

diagram is commutative

1)t
<" B

Lnl lL'Vn
(62)5"

By <— BY*
On H (F1,F2), the topology can be defined by the sequence of seminorms p, given by
pn (L) = omax sup {1/;3 (L.x),z € F1, vp(z) = 1}
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so that (H (F1,F2),pn) is a graded Fréchet space.

Remark 32. Forl € {1,2} , given a graduation (V,fl) on a Fréchet space Fy, let B} be
the associated local Banach space and 0] : F; — B* the canonical projection.
The quotient norm v}, associated to v}, is defined by

Dn(8n(2)) = sup{vn(y) : dn(y) = 6n(2)}- (30)

We denote by (72)°P the corresponding operator norm on L(BY,BY).
If L = @Ln where Ly, : BT — By, then we have

(72)°P(L) = sup{ip(Ln.x), =€ B} vp(zx) <1} =sup{vp(L.x),z € Fi,v' (x) < 1}.

This implies that
_ ~2\op
pu(L) = max (7)° (L),
Definition 33. Let (F1,v.) and (Fz,v2) be graded Fréchet spaces. A linear map L : Fy —
Fs is called a uniformly bounded operator, if

AC >0 :VneN, v,(L(z)) < Cun(z).

We denote by Hj (F1, F2) the set of uniformly bounded operators. Of course Hyp (F1,F2)
is contained in H (F1,F2) and L € H (F1,F2) belongs to Hy, (F1,F2) if and only if ||L||e :=

sup pn (L) < 0o and so
neN

Hy (F1,F2) = [H (F1,F2)], :== {L € H(F1,F2) : [[L]|oc < 00}

When F = F; = Fs and v, = 12 for all n € N, the set H (F,F) (vesp. Hy (F,F)) is simply
denoted H (IF) (resp. Hy (F)).

We denote by ZTH,, (F1,F2) (resp. SHsp (F1,F2)) the set of injective (resp. surjective)
operators of Hy (F1,F2) with closed range.

Proposition 34. ([4])

(1) Each operator L € H (F1,F2) has a closed range if and only if, for each n € N,
the induced operator L, : BY — B3 has a closed range.

(2) ZHy (F1,F2) is an open subset of Hp (F1,F2).

(3) SHy (F1,F2) is an open subset of Hy (F1,F2).

We will give the sketch of the proof of Point (2) since some arguments used in this
proof are also useful for the proof of Theorem 2:

Proof

(2) Consider an injective operator L € H (F1,F2). According to the representation
F, = l'&ﬂ&" as a projective limit of a projective Banach sequence (B, (6:)7'),,>., We have
a sequence of linear operators L, : B — BS such that L = l<i£1Ln (cf. Theorem 31).

Considering each
Fi={(zn) € [[ B : Vm >n, 20 = (62)7 (wm)}
neN

, then if x = (z,,) € Fy then L(z) = (Ln(xn)) € F2. Thus it is clear that L is injective if
and only if L,, is injective for all n € N.

Now if L € ZH;, (F1,F2), then L, is an isomorphism from B} onto its range and so we
have

1P (@) < PA(Ln(@) < (@) (31)
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for all z € BY, all n € N, where #}, is the quotient norm of v, on B? for i € 1,2, and
T (Ln(z))

ln = (Di)op(L) = SUP{W oz # 0}
Since 2 is the canonical projection of Fy on BY and v2 o §,, = U2, we obtain
(@) S VALE) < (@) (32)
for all z € F; and n € N. But we have ¢, < ||L||o and we finally obtain
a(e) < V(L)) < Loh(a) (33)

for all z € Fy, all n € N and where ¢ = ||L||c.
Fix some L € H, (F1,F2) and set £ = ||L||, we consider the open set

W ={T € Hy (F1,F2), : ||T — L||oo < g}
Fix some n € N. For any € F'1 and T' € W, we have
V(@) = vp(T(2)) < vp(T = L)(2) < pa(T — L)y (x) < ||T = Ll|sovn(2) < §Vi(fﬂ)~
This implies that
(I(@) > i), (34)

Since (1/;) is a separating sequence of semi-norms, it follows that L is injective.
Now taking in account inequality (34) and relation o}, = v, o (8;)n, for T € W and each
n € N, we have

- 3¢ ~

75 (Tn(x)) < gl/rll(fv) < 30, (Tu(x))

for all z € BY. It follows that T}, is closed and so T is closed (cf. 1.). Finally, W is an
open neighbourhood of L contained in ZH, (F1,Fz), which ends the proof of (2).

From this Proposition we have

Theorem 35. ([4])

(1) The Banach space Hy(F) has a Banach-Lie algebra structure and the set GH,(F)
of uniformly bounded isomorphisms of F is open in Hp(F).

(2) GHy(F) has a structure of Banach-Lie group whose Lie algebra is Hy(F).

(3) IfF is identified with the projective 1'&1153” we denote by exp,, : L(B,) - GL(B,),
then we a have a well defined smooth map exp := limexp,, : Ho(F) — GHy(F)

which is a diffeomorphism from an open set of 0 € Hy(F) onto a a neighbourhood
of Idg.

APPENDIX C. A THEOREM OF EXISTENCE OF ODE
The following result is in fact a reformulation in our context of Theorem 1 in [17].

Theorem 36. LetF a Fréchet space realized as the limit of a surjective projective sequence
of Banach spaces (Bn, A7), s, whose topology is defined by the sequence of seminorms
(Un)pen- Let I be an open interval in R and U be an open set of I x F. Then U is a
surjective projective limit of open sets U, C I X B,,. Consider a smooth map f = L&lfn :
U — F, projective limit of maps fn : Un — B,. 12 Assume that for every point (t,x) € U,
and every n € N, there exists an integrable function K, > 0 such that

\ ((757 x), (t,m/)) e U?, vn(f(t, ) — f(t,2) < Kn(t)vm(z —2'). (35)

12This means that we have: Vm >n, A0 frn = frnoo (Idr X A1)
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and consider the differential equation:
z=¢(tx). (36)

(1) For any (to,x0) € U, there exists a > 0 with I = [to — a,to + ] C I, an open
pseudo-ball V = B(xo,7) CU and a map @ : Io X Io X V — F such that

t— O(t,T,x)

is the unique solution of (36) with initial condition ®(1,7,2) = x for allx € V.

(2) V is the projective limit of the open balls Vy, of B,. For each n € N, the curve
t = Ao @(t, 7, A\n(2)) is the unique solution ~y : I — By, of the differential equa-
tion &n, = ¢n (t, Tn) with initial condition v(1) = An(x).

From this theorem we obtain easily:

Corollary 37. Let U = @Un be an open subset of F and X = l'ngn U —- F a
projective limit of smooth maps X, : U, — B,,. Assume that for every n € N we have

v ((t,z), (t,2") € U?, vn(X(z) — X(2) < Knvn(z —2). (37)

For zg € U, let B(xo,2r) = {x € F, : vp,(x —x0) < 2r, 1 < i < k} be a pseudo-ball
contained in U. Let us set

: Cl = mMaxi1<i<k Kn,;

o= o {mm s}

Then for any a > 0 such that ae?*°t < ﬁ, there exists a neighbourhood V- = B(xo,T)

and a smooth map ¢o : Ia X V such that t — ¢°(t, ) is the unique solution of & = X (x)
defined on I, with initial condition ¢*(0,z) = x. Moreover if V, = A (V), consider
o 2 Ia X Vi, — By, defined by ¢y = An 0 ¢; For each z € V,, the map t — ¢*(t, z)
is the unique solution of the differential equation &n = Xn(xn) defined on I with initial
condition ¢*(0,2) = z

Remark 38. If X = l'&an is a smooth vector field defined on an open set U = @Un
of F, which satisfies assumption (37), as classically, according to Corollary 37, the map
FI¥ := F1% (¢, ) is the local flow of X that is FI¥ fullfils the properties of a 1-parameter
group:

: FI = Idy

: FIX o FIX = Flﬁ_t if s,t and s+t belong to I,.
In particular F1¥ is a diffeomorphism from V onto it range and its inverse is F1X,. More-
over Flf(” =\, 0 Flf oM is local flow of Xy, = Ap o X o Ay, and we have Flf = l'&lFlQX".
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