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Key Points:9

• Current-era GCMs over-estimate sea spray concentrations relative to measure-10

ments in the Ross Sea11

• Better constraints for sea spray flux were found by tuning wind-speed based12

parameterizations to these observations13

• Variations in sea surface temperature did not explain further variability14

within the temperature range studied15
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Abstract16

Modeling the shortwave radiation balance over the Southern Ocean region remains17

a challenge for Earth system models. To investigate whether this is related to the18

representation of aerosol-cloud interactions, we compared measurements of the total19

number concentration of sea spray generated particles within the Southern Ocean20

region to model predictions thereof. Measurements were conducted from a con-21

tainer laboratory aboard the R/V Tangaroa throughout an austral summer voyage22

to the Ross Sea. We used source–receptor modeling to calculate the sensitivity of23

our measurements to upwind surface fluxes. From this approach, we could constrain24

empirical parameterizations of sea spray surface flux based on surface wind speed25

and sea surface temperature. A newly tuned parameterization for the flux of sea26

spray particles based on the near-surface wind speed is presented. Comparisons to27

existing model parameterizations revealed that present model parameterizations28

led to over-estimations of sea spray concentrations. In contrast to previous stud-29

ies, we found that including sea surface temperature as an explanatory variable did30

not substantially improve model–measurement agreement. To test whether or not31

the parameterization may be applicable globally, we conducted a similar regression32

analysis using a database of in situ whitecap measurements. We found that the33

key fitting parameter within this regression agreed well the parameterization of sea34

spray flux. Finally, we compared calculations from the best model of surface flux to35

boundary layer measurements collected onboard an aircraft throughout the Southern36

Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES),37

finding good agreement overall.38

1 Introduction39

In the remote boundary layer of the Southern Ocean, continental sources of40

particulate matter such as black carbon, terrestrial monoterpenes, dusts, and pollen41

contribute very little to the population of suspended particulate (Murphy et al.,42

1998). As a result, the magnitudes of the direct and indirect shortwave radiative43

effects from the suspended particulate within the region are largely driven by lo-44

cal, marine sources (Carslaw et al., 2013; McCoy et al., 2015). There has been a45

considerable amount of work in recent years to understand the excess of short-46

wave radiation reaching the ocean surface in the Southern Ocean within climate-47

chemistry models (CCMs), especially regarding the representation of clouds within48

these models (Trenberth & Fasullo, 2010; Bodas-Salcedo et al., 2014). Since hygro-49

scopic particulate matter are a necessary precursor to cloud formation, they can50

indirectly exert a substantial influence on the radiation balance through modification51

of cloud brightness (Twomey, 1977) and cloud phase through the availability of ice52

nuclei (DeMott et al., 2010).53

The natural sources of airborne particles in the region are the production of54

sea-spray generated particles (SSPs) from wind–wave interactions and ultra-fine par-55

ticles from the homogeneous nucleation of sulfuric acid and other volatile vapours.56

However, the rate of production of SSPs remains an open problem: the number of57

particles entering the atmosphere of a given droplet size and at a given wind speed58

has been shown to vary by over an order of magnitude among existing parameteri-59

zations for the production of SSPs (Ovadnevaite et al., 2014). If one also accounts60

for the uncertainties related to predicting the dependence of the surface flux on the61

wind speed over the water, estimates for the intensity of the surface flux diverge fur-62

ther. As a result, both the concentration and seasonal cycle of SSPs remain poorly63

constrained in the Southern Ocean (Henzing et al., 2006; Revell et al., 2019). Sev-64

eral studies have shown that the lack of prediction accuracy for the flux of SSPs re-65

sults in large biases between observed and modelled mass concentrations of SSPs in66
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the marine boundary layer (MBL), particularly in regions with cold waters (Jaeglé67

et al., 2011; Grythe et al., 2014; Witek et al., 2016).68

In general, sea spray is the dominant source of particulate matter in the South-69

ern Ocean in terms of mass (Murphy et al., 1998); however, during ice formation in70

coastal Antarctica, wind-blown frost flowers and snow from sea-ice can also become71

locally prominent sources (Kaleschke et al., 2004; Yang et al., 2008). Since these72

particles are the largest in the region (Quinn et al., 2017), they are also a substantial73

contributor to the local aerosol optical depth (AOD) (Shindell et al., 2013). While74

the contribution of SSPs to the regional AOD is much more significant than its con-75

tribution to cloud albedo in the Northern Hemisphere, over the Southern Ocean it76

is precisely the opposite (Ayash et al., 2008). This highlights that SSPs are a re-77

gionally important component of cloud formation over the Southern Ocean. This is78

not surprising: SSPs are mainly comprised of highly soluble sea salt and so they are79

very efficient cloud condensation nuclei (CCN) (Petters & Kreidenweis, 2007). While80

SSPs form only a small fraction of CCN globally, they can make up ∼65% of CCN81

over the Southern Ocean (Quinn et al., 2017).82

Recent studies have also shown that SSPs can act as ice nucleating particles83

(INPs), which encourage the phase transition of cloud droplets to ice (DeMott et84

al., 2016; McCluskey et al., 2018). Since the Southern Ocean is far removed from85

continental sources of INPs (e.g. dust), SSPs may be the only source of INPs in86

the region. Ice nucleation sites within the droplets are likely a result of suspended87

amounts of organic material within the sea surface microlayer which became en-88

trained within the droplets during formation (DeMott et al., 2016). However,89

organic materials form very little of the mass composition of the resulting SSPs90

(Murphy et al., 1998); hence, the ice-nucleating potential of sea spray is very weak91

relative to continental sources such as mineral dusts (McCluskey et al., 2018). Still,92

the capacity for SSPs to modulate cloud phase represents an additional mechanism93

through which they can affect the local radiation balance.94

While we have emphasized the potential radiative effects SSPs might have95

on the Southern Ocean region, there are other ways in which they can perturb the96

Earth system. Several studies have shown that the largest SSPs are non-negligible97

contributors to the exchange of latent and specific heat across the ocean–atmosphere98

interface (Richter & Sullivan, 2013; Ortiz-Suslow et al., 2016). In a bulk flux model99

of the air–sea exchange of heat, Andreas et al. (2015) showed that these large,100

“shear” sea-spray droplets accounted for fluxes of sensible and latent heat on the101

same order of magnitude as fluxes directly from the ocean–atmosphere interface102

at high wind speeds (U10 > 15 m s−1). Observations and model simulations have103

shown that the rate of momentum transferred from the atmosphere to the ocean104

starts to decrease after a critical threshold wind speed is passed (30 m s−1; (Powell105

et al., 2003; Bao et al., 2011; Hwang, 2018)). Theoretical work has suggested that106

this change is driven by the exchange of sensible heat between the largest droplets107

and the atmosphere, which become more abundant at high wind speeds (Bao et al.,108

2011). This leads to considerable biases in the prediction of storm intensity (Bao et109

al., 2011). The ability to predict the abundance of SSPs is therefore vital to fully110

understanding many macroscopic processes within the region.111

To constrain the potential role sea spray may have on the regional radiation112

budget, it is first necessary to validate current parameterizations for its flux against113

in situ observations of its abundance. However, there is currently a dearth of such114

observations over the Southern Ocean. In this work we present measurements of115

the total number concentration of airborne particles recorded throughout an austral116

summer voyage to the Ross Sea aboard the R/V Tangaroa. We use these mea-117

surements to test existing empirical parameterizations which describe the flux of118

particles from wave breaking events in open seas. Measurements from instruments119
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onboard the High-Performance Instrumented Airborne Platform for Environmental120

Research (HIAPER) throughout the Southern Ocean Clouds, Radiation, Aerosol121

Transport Experimental Study (SOCRATES) were also used to validate these pa-122

rameterizations. Since the winds throughout both of these experiments included the123

extremes of surface conditions encountered at the air–sea interface, understanding124

the flux of SSPs in this highly dynamic region will be valuable in constraining both125

current and future flux estimates.126

2 Methods127

2.1 Measurements128

The voyage aboard the R/V Tangaroa began on February 9th and ended on129

March 21st, 2018 departing and returning to Wellington, New Zealand (41°17’ S,130

174°46’ E). The bulk of the voyage was spent in waters south of 60°S, with 17 days131

of the voyage spent in seas between 60–70°S and 13 days of the voyage south of132

70°S.133

In situ measurements of boundary layer aerosol were conducted from a con-134

tainer laboratory on the shelter deck of the R/V Tangaroa (2 m a.s.l.). The instru-135

ments within the container laboratory drew a continuous air sample through 40 m of136

100 mm ID anti-static tubing (EOLU PU; IPL Ltd.) from the mast of the R/V Tan-137

garoa (15 m a.s.l.). For the purposes of this study, we have primarily focussed on138

measurements from the passive cavity aerosol spectrometer probe (PCASP-100X;139

Droplet Measurement Technologies) with supplementary data from a differential140

mobility particle sizer (DMPS; TSI). The PCASP-100X is an optical particle counter141

which measured the number concentration size spectra of particles within the air142

sample. The instrument is capable of detecting particles with optical diameters143

between 0.1–3.0 µm in 30 size bins at 1 Hz. The DMPS measured the number con-144

centration size spectra of particles within the air sample with mobility diameters145

between 0.02–0.3 µm in 32 size bins once every 10 minutes. We have corrected146

the number concentration measurements according to calculations of the sampling147

and transport efficiency from Brockman (2001). These calculations accounted for148

anisokinetic sampling conditions, diffusion of the particles toward the tube walls,149

and gravitational settling of the particles. All of these calculations were based on150

empirical parameterizations of these losses in a turbulent flow. Across the spectrum151

of sizes we measured, we estimate that the total sampling efficiency was at most152

93%, but no less than 90%.153

Throughout the voyage, a cavity ring-down spectrometer (CRDS; Picarro154

G2301) measured mole fractions of CO2, CH4, and H2O from a separate sampling155

line. The sampling line of the CRDS was within 5 m of the main sampling line used156

for the particulate sampling. Intrusions of ship exhaust from the rear of the ship157

would have been sufficiently well-mixed in the turbulent air around the ship super-158

structure so as to affect both sampling lines. We used a threshold limit of 405 ppm159

of CO2 to detect when ship exhaust contaminated our main sampling line. This160

threshold was well above the trend line of the [CO2] mole fraction time-series. After161

removing these outliers, we used 1 Hz sub-samples of the particle number concen-162

trations to calculate 1-minute averages of the number concentration size spectra and163

its standard deviation. When the standard deviation of the 1 Hz samples deviated164

significantly from Poisson counting statistics the sample was removed.165

This study also incorporated measurements from the New Zealand Met Ser-166

vice’s Automated Weather Station (AWS) aboard the R/V Tangaroa. The AWS167

anemometer was positioned at 22.5 m a.s.l. on the mast of the ship, while the rest168

of the AWS was positioned at 15 m a.s.l. The AWS measured: atmospheric pres-169
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sure, atmospheric temperature, relative humidity, wind speed, wind direction, and170

accumulated precipitation. Measurements of the average relative wind speed and171

wind direction were made using a pair of ultrasonic anemometers (Gill WindSonic)172

and reported at 1-minute intervals. The measurements of wind speed were corrected173

according to directionally-dependent acceleration factors, based on a model of air174

flow around the R/V Tangaroa’s superstructure (Popinet et al., 2004; Smith et al.,175

2011). The wind speeds were then corrected according to the ship heading and speed176

to derive the true wind speed and wind direction. Finally, the acceleration-corrected,177

true wind speed at 22.5 m was scaled to the 10 m reference level using the bulk flux178

algorithms developed from the Coupled Ocean-Atmosphere Response Experiment179

(COARE) (Edson et al., 2013). In employing the COARE bulk flux algorithms, we180

have not accounted for differences in the height of the AWS due to heave with re-181

spect to mean sea level, which may amount to ±4 m in heavy seas. If for a given182

measurement, the pitch or roll of the ship was significant with respect to the mean183

wind vector, then the measured wind speed would have been systematically biased184

low. However, throughout the voyage, the pitch of the ship was <20°, and so these185

corrections would be less than 6%.186

Measurements of the boundary layer number concentration size spectra were187

also conducted onboard HIAPER, a modified Gulfstream V aircraft, from January188

16th–February 24th, 2018. These measurements were part of the SOCRATES ex-189

periment. Over the course of the experiment, there were 15 flights, which departed190

and returned to Hobart, Australia. We have focused on the flights which coincided191

with our observational record, namely Research Flights (RF) 10–15 which took192

place between February 7th–24th, 2018. Two Ultra-High Sensitivity Aerosol Spec-193

trometers (UHSAS; Droplet Measurement Technologies) were used throughout the194

experiment to measure the number concentration size spectra of particles within the195

surrounding air; however, for this study we focused solely on the measurements from196

the UHSAS mounted inside of the aircraft. The UHSAS sampled ambient air via a197

counterflow virtual impactor inlet mounted outside of the aircraft. This ensured that198

the internal flow rate of the UHSAS was isokinetically matched to the exterior flow199

around HIAPER. Like the PCASP-100X, the UHSAS is an optical particle counter200

which can detect particles with optical diameters between 0.059–1.022 µm in 100201

discrete size bins at 1 Hz. It was determined that corrections to the number concen-202

tration size spectra from the additional ram pressure of sampling the aerosol from a203

moving aircraft would amount to less than 1%. This was substantially less than the204

observed variability in both the number concentration time series and the volume205

flow rate of the pump that provided the flow through the UHSAS. For each flight206

we identified 3–6 periods when the altitude was stable, there was little precipitation,207

and the observed number concentration size spectra were relatively stable. In each208

of these periods, we averaged the number concentration size spectra over 5–10 min-209

utes. This resulted in 28 unique measurements between 69–6,100 m a.s.l, 17 of which210

were in the boundary layer.211

2.2 FLEXPART-WRF212

The FLEXible PARTicle transport model (FLEXPART), FLEXPART-WRF,213

is a Lagrangian particle dispersion model designed to model particle trajectories214

within mesoscale meteorological fields from the Weather Research & Forecasting215

Model (WRF) (Brioude et al., 2013). For this study, we used meteorological fore-216

casts from the real-time Antarctic Mesoscale Prediction System (AMPS) (Polar217

Meteorology Group, Byrd Polar and Climate Research Center, 2018). AMPS uses218

a variety of data sources to constrain these forecasts, including near-real-time sea-219

ice concentrations measured from the Special Sensor Microwave/Imager (SSM/I)220

radiometer and sea surface temperature (SST) data from the National Center for221

Environmental Prediction (NCEP) (Bromwich et al., 2005). Initial and boundary222
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conditions for AMPS were specified according to near-real-time forecasts from the223

NCEP Global Forecasting System (Bromwich et al., 2005). We used the AMPS224

output with the widest spatial coverage, domain 1, which has a horizontal resolu-225

tion of 24 × 24 km, a vertical resolution of 61 η levels, and a temporal resolution of226

three hours. The AMPS forecasts used throughout this study were downloaded from227

https://www.earthsystemgrid.org/project/amps.html.228

We initialized 100, 000 particle trajectories from the geographic location of229

the R/V Tangaroa every three hours to match the temporal resolution of AMPS.230

Additional simulations were run for every hour in between the meteorological time231

steps if the R/V Tangaroa had entered a new grid cell in the AMPS domain. These232

two criteria resulted in 651 unique simulations. To trace losses due to deposition233

throughout the simulation, FLEXPART assigned each particle a unit mass dis-234

tributed over a log-normal size distribution. To match our observations, we centered235

this distribution around a geometric dry diameter of 0.20 µm (Dp,g = 0.4 µm at236

80% relative humidity), with a geometric standard deviation of 2.00, and a dry den-237

sity of 1.84 g cm−3. FLEXPART-WRF used the discretized Langevin equation to238

describe the turbulent dispersion of these particles through the atmosphere in re-239

verse time with an adaptive time-step strictly less than 180 s. The particles were240

advected through the meteorological fields specified by AMPS from the time of mea-241

surement up to five days prior in reverse time. Throughout the trajectory, losses242

of particle mass due to dry deposition were calculated according to the resistance243

method (Hicks et al., 1987). To improve these calculations we modified FLEXPART-244

WRF to account for hygroscopic particle growth according to the ambient relative245

humidity (Gerber, 1985), since changes in particle size can significantly affect a246

particle’s settling velocity and dry deposition velocity. FLEXPART-WRF also ac-247

counted for losses of particle mass from precipitation and droplet activation. Within248

clouds, FLEXPART-WRF calculated the scavenging rate of particles from droplet249

activation according to the parameterization of Hertel et al. (1995). For scavenging250

by precipitation below cloud, loss rates were estimated from the following empirical251

relationship:252

Λ = AIBs (1)253

where the scavenging rate, Λ, was calculated as a function of the rain-equivalent254

snow intensity, Is (mm hr−1), and user-set scavenging coefficients, A and B. While255

fairly good representations of particle scavenging from rain exist in the litera-256

ture, there is substantially more uncertainty with regards to the scavenging from257

snow (Slinn, 1977). Recent parameterizations of below-cloud scavenging in the non-258

WRF version of FLEXPART recommend applying an empirical fit to a set of snow259

scavenging rates measured in southern Finland (Kyrö et al., 2009; Grythe et al.,260

2017). However, this parameterization doesn’t explicitly account for increases in261

scavenging with increasing snow intensity. We observed that the differences in scav-262

enging rates Kyrö et al. (2009) observed across the particle size spectra were small263

compared to the difference in median snow scavenging rates they observed between264

their median observed snow intensity (0.2 mm hr−1) and peak snow intensity (5265

mm hr−1). We used the median scavenging rates and snow intensity values they266

reported to estimate the following scavenging coefficients for snow: A = 4×10−5267

and B = 0.43. For reference, the typical values used by FLEXPART-WRF for rain268

are 5×10−6 and 0.62, respectively. Together with the dry deposition velocity, the269

mass concentration loss rate could be described at any point in the simulation by270

the following:271

dm
dt = −

(vd
h

+ Λ
)
m (2)272

where m is the mass of the particle, vd is the dry deposition velocity, and h was the273

height of the layer in which dry deposition occurred (30 m a.s.l.).274
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In reverse mode, FLEXPART-WRF calculated the residence time of the parti-275

cles within the lowest 100 m of the atmosphere. The residence time calculation was276

weighted by the local air density and the residual mass of the particles within the277

grid-cell. The weighted residence time was normalized by the initial mass of the par-278

ticles such that the resulting residence time accounted for losses from wet and dry279

deposition as described above. Finally, FLEXPART-WRF integrated the weighted280

residence time over the duration of the meteorological time-step for each grid-cell of281

the AMPS domain.282

2.3 Quantifying the contribution of sea spray283

Previous studies have shown that in pristine marine environments, the contri-284

bution of SSPs to the number concentration size spectra can be characterized by a285

single log-normal number concentration size distribution (Modini et al., 2015; Quinn286

et al., 2017). Distributions derived from this method have been shown to agree well287

with number concentration size spectra measured during laboratory wave-breaking288

experiments and the “canonical sea spray size distribution” derived from other289

studies (Prather et al., 2013; Lewis & Schwartz, 2004). This also agrees with the290

mass composition of the particles measured in the Southern Ocean boundary layer291

during the ACE-1 campaign, which found that particles larger than 0.3 µm were292

composed almost entirely of sea-salt (Murphy et al., 1998). We applied this method-293

ology to our own measurements of the number concentration size spectra from the294

PCASP-100X; i.e. we fit a number concentration size spectra, dn(d logDp)
−1, of the295

following form:296

dn
d logDp

=
N√

2π log(σg)
exp

− log2
(

Dp

Dp,g

)
2 log2(σg)

 (3)297

where Dp is the particle diameter, N is the total number concentration of particles,298

Dp,g is the geometric mean diameter of the distribution, and σg is the geometric299

standard deviation of the distribution. After fitting, the retrieved spectra were cor-300

rected to a relative humidity of 80% (Gerber, 1985). In the process of fitting, the301

geometric standard deviation (σg) of the mode was fixed to a value of 2, which best302

fit our data. While Modini et al. (2015) and Quinn et al. (2017) allowed σg to freely303

vary in their regression analysis, the variance-covariance matrix from our regression304

indicated that the resulting parameters were significantly correlated, since the data305

very weakly constrained σg.306

To calculate the total number concentration of sea spray from the307

FLEXPART-WRF residence time, we assumed that the surface flux of SSPs also308

followed a log-normal distribution:309

∂f

∂ logDp
=

F√
2π log(σg)

exp

− log2
(

Dp

Dp,g

)
2 log2(σg)

 (4)310

where f is the partial particle flux in m−2 s−1, F is the total particle flux in m−2311

s−1, and Dp is the particle diameter.312

The most widely used empirical approach for constraining the particle flux313

from the ocean surface is the “whitecap method”. It results from the following as-314

sumptions: first, that the total flux of particles entering the atmosphere from the315

ocean surface can be determined from the fractional surface coverage of whitecaps,316

W (“whitecap fraction”); second, that the whitecap fraction can be adequately de-317

termined from the 10 m scalar wind speed over the ocean, U10; and third, that the318

shape of the SSP size distribution is not a function of wind speed. Laboratory and319

field experiments have shown that all of these assumptions are reasonable (Monahan320
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& Ó Muircheartaigh, 1980; Monahan et al., 1986). Hence, the total number of par-321

ticles entering the atmosphere, F , can be predicted from just the 10 m wind speed,322

U10:323

F =
E

τ
W (U10)

F = αW (U10)
(5)324

where W is a function that models how the surface coverage of whitecaps increases325

as a function of wind speed, E is the number of particles produced per whitecap,326

and τ is the lifetime of the whitecaps. Since we can only hope to constrain one con-327

stant pre-factor, we combine both E and τ into a single parameter α, which we328

assume to be constant. Historically, the whitecap function W has been assumed329

to be a simple power-law, based on early field observations of whitecap forma-330

tion (Monahan, 1971). However, it has since been well-established that whitecaps331

do not form in the open ocean until the 10 m wind speed exceeds 3–4 m s−1, which332

is a feature that cannot be described by a power-law model (A. Callaghan et al.,333

2008; Schwendeman & Thomson, 2015; Bell et al., 2017). We considered three other334

wind-dependent models of the surface flux that incorporated a threshold wind speed335

below which very few SSPs are produced:336

WPL = a1U10
a2

WC(U10) =

{
b1 (U10 − b2)

3
, U10 ≥ b2

0, U10 < b2

WF (U10) = 1− Φ

(
c1√
U10

)
WLLPL(U10) =

d1U10
d2

1 +
(

U10

d3

)−d4

(6)337

338

where ax, bx, cx and dx and are empirical parameters determined from regression339

analysis with our observations, and Φ is the error function. The first function,340

WPL (‘PL’ = ‘Power-Law’), is as previously introduced. The second function, WC341

(‘C’ = ‘Cubic’), has been used to match more recent field observations of white-342

caps (A. Callaghan et al., 2008; Schwendeman & Thomson, 2015)). The third func-343

tion, WF (‘F’ = ‘Fetch’), was based on the theoretical work of Snyder and Kennedy344

(1983), who developed a model of whitecap production based on a fetch dependent345

threshold for wave breaking. While the work of Xu et al. (2000) showed that the346

whitecap fraction could be fully determined from the model of Snyder and Kennedy347

(1983) if both the wind speed and fetch were known, the fetch was typically unlim-348

ited throughout our observation period. In high fetch regimes, the coverage of white-349

caps is only very weakly dependent on variations in fetch (Piazzola et al., 2002). As350

a result, we treated c1, which is a function of the fetch, as a free parameter to be351

determined through regression, since a single value should accurately describe the352

data. The last function, WLLPL (‘LLPL’ = ‘Log-Logistic Power-Law’) combined353

the power-law with a log-logistic curve to emulate the threshold mechanism. While354

WPL, WC and WLLPL predict that the surface flux will continue increasing as a355

function of wind speed, the Fetch model (WF ) is the only model which predicts that356

there exists an upper bound on the particle flux at high wind speeds.357

There has also been some debate as to how the temperature of the sea water358

might moderate whitecap formation (Mårtensson et al., 2003; Sellegri et al., 2006;359

Jaeglé et al., 2011; Zábori et al., 2012; A. H. Callaghan et al., 2014; Grythe et al.,360

2014). This was tested directly with SST data from NCEP, which was available361

from the AMPS forecasts. Thus, the model of surface flux was expanded to:362

F = α(Tw)W (U10)

α(Tw) = α0(1 + α1Tw)
(7)363

364
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where the coefficient α, which describes both the lifetime of the whitecaps and365

the number of particles produced per whitecap, is now a function of the SST, Tw.366

Note that, in reality, parameters α0 and other scaling coefficients within W (e.g.367

a1, b1, d1) cannot be determined independently, so they are combined into a single368

parameter for each regression (e.g. a∗1 = a1α). Finally, we assumed that the surface369

flux was well-mixed within the lowest atmospheric grid cell in FLEXPART-WRF, h370

= 100 m. Following these assumptions, the number concentration of particles in the371

SSP mode, N̂ , was calculated according to:372

N̂i =
1

h

0∫
−t0

∫∫
O

F (1− Cice) dPi (8)373

where t0 was the length of the FLEXPART-WRF simulation, Cice was the fractional374

surface coverage of sea ice, O denotes that the integral was only integrated over375

oceans, and Pi was the map of footprint residence times for the observation i.376

A non-linear least-squares regression analysis optimized the set of parameters377

for each surface flux model, W , being tested. Parameter optimization was achieved378

with the Gauss-Newton algorithm, where the goodness-of-fit was measured by the379

Nash-Sutcliffe model efficiency coefficient (NSE):380

NSE = 1−

m∑
i=1

(
Ni − N̂i

)2
m∑
i=1

(
Ni −N

)2 (9)381

where m was the total number of observations and N represents the average of ev-382

ery measurement of Ni within the dataset (Nash & Sutcliffe, 1970). To account for383

differences between the number of parameters between models, we also calculated384

the Akaike Information Criterion (AIC), which penalized models with more parame-385

ters (Akaike, 1974):386

AIC = 2k +m log

(
1

m

m∑
i=1

(
Ni − N̂i

)2)
(10)387

where k was the total number of parameters for a given model. The best model of388

surface flux was the model which minimized the AIC.389

3 Results390

3.1 Comparisons Between Surface Meteorological Measurements391

and Model Forecasts392

To demonstrate that the transport simulations produced a meaningful link393

between the observations and surface fluxes, it was necessary to first validate the394

Antarctic Mesoscale Prediction System’s meteorological fields against the record of395

observations from the Automated Weather Station (AWS) aboard the R/V Tan-396

garoa. As described in the Section 2.1, the AWS measured wind speeds at 22.5 m,397

which were corrected to the 10 m reference height according to the COARE 3.5 bulk398

flux algorithms. The corrected wind speeds were compared to the 10 m wind speeds399

predicted by the AMPS forecasts by matching the location of the R/V Tangaroa to400

the nearest grid-cell within AMPS. This comparison is presented in Fig. 1. The cor-401

relation coefficients calculated for both the wind speed (R = 0.81) and wind direc-402

tion (R◦ = 0.78) between observations and forecasts were both significant (p<0.01),403

where R◦ represents the circular correlation coefficient (Fisher & Lee, 1986).404

Despite the good agreement we found between the measured and forecast405

winds, there was no spatio-temporal correlation between the rain-equivalent snow406
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Figure 1. (a) The hourly 10 m scalar wind speeds from the AMPS forecasts were compared to
the corrected wind speed (see Section 2.1) observed on the R/V Tangaroa. (b) The hourly 10 m
wind direction.

rate measured aboard the R/V Tangaroa and the precipitation fields forecast by407

AMPS. However, the climatological distribution of the rain-equivalent snow rate was408

at least consistent between measurements and forecasts. This suggests that even if409

precipitation was not spatially consistent with our observations, it was at least as410

frequent, and of the right intensity within the AMPS forecasts. While comparing411

localized, discrete events like precipitation can be challenging, even comparing our412

measurements to grid cells within 100 km and within 6 hours of the R/V Tangaroa413

measurements did not produce a significant correlation.414

3.2 Source–Receptor Modeling415

In Fig. 2a we show the cumulative five-day, near-surface, residence time for416

all of the source–receptor simulations described in Section 2.2. The track of the417

R/V Tangaroa throughout the voyage has also been shown for reference. As ex-418

pected, the near-surface residence time was greatest near the R/V Tangaroa. This419

indicated that our measurements were most sensitive to surface fluxes near the ship.420

To understand how dry deposition might govern the concentration of SSPs, we also421

ran several FLEXPART-WRF simulations in which the dry deposition velocity was422

set to a fixed rate. However, the consistent turbulence of the atmosphere over the423

Southern Ocean meant that the simulated particles were often very evenly dispersed424

throughout the boundary layer. As a result, dry deposition was severely limited425

throughout all of the simulations. Predicted surface flux sensitivities within these426

simulations only began to diverge after 1–2 days had elapsed in simulation time;427

however, by then the residence time was typically less than 5% of what it was near428

the ship. Hence, dry deposition was not a strong factor controlling the concentration429

of SSPs.430

It was evident from Fig. 2a, however, that our observations near the Ross Ice431

shelf were sensitive to non-marine sources. The fraction of the time the particles432

spent above non-marine surfaces throughout their five-day simulations increased433

rapidly as the R/V Tangaroa approached Cape Adare, Antarctica. Throughout this434

period we observed strong, southerly winds, which brought continental, Antarctic air435
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Figure 2. (a) A map of the cumulative near-surface residence time derived from FLEXPART-
WRF particle dispersion simulations. The model simulated the transport of 1×105 0.2 µm
particles in reverse time from the time of measurement to five days prior. The near-surface res-
idence time is simply the total amount of time the particle spent below 100 m a.g.l. Within
FLEXPART-WRF the transport of the particles was calculated according to meteorological fore-
casts from the Antarctic Mesoscale Prediction System (AMPS). (b) The same map, but now for a
48-hr. simulation. The colored line in both panels marks the track of the R/V Tangaroa through-
out the voyage.

across the Ross Ice Shelf. Intrusions of continental air into the MBL are a common436

phenomenon within the region (Coggins et al., 2014; Coggins & McDonald, 2015).437

Near the end of the observation period, after March 18th, 2018, the source–receptor438

simulations showed that our measurements were also sensitive to surface fluxes from439

the South Island of New Zealand. This was a direct result of the strong northerlies440

we observed throughout our return transect.441

As we identified in Section 3.1, the rain-equivalent snow rates forecast by442

AMPS were not well-correlated with snowfall intensity measured onboard the R/V443

Tangaroa. While the frequency of occurrence of these events seemed consistent, it444

is important to note that the wet deposition scheme used by FLEXPART-WRF445

implicitly assumed that in-cloud activation events only occurred within a precipitat-446

ing cloud. Hence, the frequency of in-cloud scavenging events was almost certainly447

under-estimated within the source–receptor simulations. As Hertel et al. (1995)448

note, the magnitude of the loss of particles to in-cloud activation is almost always449

greater than either below-cloud scavenging or dry deposition. In fact, an activation450

event is always strong enough to terminate a particle trajectory within FLEXPART-451

WRF. Therefore, it was expected that the source–receptor modeling vastly over-452

estimated the near surface residence time by continuing to advect particles that453

should have been completely scavenged by cloud. However, a lack of boundary454

layer cloud within the simulation did not stem from this issue alone. It has been455

well-established that there is currently a large shortwave radiation bias over the456

Southern Ocean (Bodas-Salcedo et al., 2014). Observations of cloud base height457

from radiosondes and ceilometer measurements throughout this same voyage showed458

that the shortwave radiation bias is related to the lack of low-level cloud and fog459

predicted within atmospheric models (Kuma et al., 2019). Therefore, it is reason-460

able to expect that even with an improved in-cloud activation scheme (e.g. Grythe461

et al. (2017)), FLEXPART-WRF still would have under-estimated the frequency462

of droplet activation events. This would have a substantial impact on our source–463
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Figure 3. Number concentration size spectra measured from the PCASP-100X (0.1–3µm) and
the DMPS (0.02–0.3µm) on February 20th, 2018 at 1300 UTC. Particle sizes have been corrected
to 80% relative humidity (Gerber, 1985). Number concentrations for particles larger than 0.5
µm were used to constrain a single log-normal number concentration size distribution (“SSP
mode”). This method has been used by other researchers (e.g. Modini et al. (2015) and Quinn et
al. (2017)) to constrain the contribution of SSPs to the total number concentration size spectra.
The Aitken and accumulation modes are shown for reference.

receptor calculations, resulting in significantly less ocean surface area contributing464

to the integral in Eq. (8). To visualize this effect, we have also shown the cumula-465

tive near surface residence time for a two-day simulation in Fig. 2b, instead of the466

five-day simulation shown in Fig. 2a. This is addressed further in Section 3.4.467

3.3 Number Concentrations of Sea Spray468

In Fig. 3 we show an example modal analysis of a number concentration size469

spectrum measured by the PCASP-100X and DMPS aboard the R/V Tangaroa. The470

size spectra were used to constrain three log-normal “modes” which represented the471

entire size distribution. The largest of these modes, the SSP mode, is so-named as it472

has been shown to be comprised almost solely of SSPs (Modini et al., 2015; Quinn473

et al., 2017). At each hour of observation throughout the voyage we constrained the474

SSP mode from the spectral measurements shown in Fig. 3, resulting in the time475

series of the total number concentration of SSPs shown in Fig. 4. In general it was476

sufficient to constrain the SSP mode from just the PCASP-100X measurements,477

so the measurements from the DMPS were not used in this study, but are shown478

for reference. Throughout the entire voyage, we observed the median and standard479

deviation of the geometric mean diameter of the SSP mode to be 0.4 ± 0.05 µm480

at a relative humidity of 80%. This agreed well with the observations of Quinn et481

al. (2017) in the Southern Ocean. This also agreed with the median dry diame-482

ter of SSPs measured from laboratory generated waves, 140–200 nm (Prather et483

al., 2013), since SSPs are twice as large at 80% relative humidity compared to dry484

conditions (Gerber, 1985).485

–12–



manuscript submitted to JGR: Atmospheres

(a)

Feb. 09 Feb. 13 Feb. 17 Feb. 21 Feb. 25 Mar. 01 Mar. 05 Mar. 09 Mar. 13 Mar. 17
0

15

30

45

60

75

90

N
um

be
r 

C
on

ce
nt

ra
ti

on
, N

 (
cm

-3
)

(b)

Feb. 09 Feb. 13 Feb. 17 Feb. 21 Feb. 25 Mar. 01 Mar. 05 Mar. 09 Mar. 13 Mar. 17
UTC

0

5

10

15

20

25

30

W
in

d 
S

pe
ed

, U
10

(m
 s

-1
)

Figure 4. (a) The average hourly number concentration of sea spray particles is shown for
the entire campaign with periods of fog (RH>98%) or rain (>1 mm hr−1) marked by the shaded
areas. (b) The hourly 10 m wind speed.

In Fig. 4a, the total number concentrations of SSPs and the 10 m scalar wind486

speeds measured are shown from the beginning of the voyage, February 9th, 2018,487

until March 18th, 2018. Throughout the voyage, there were several periods when488

either fog or precipitation was observed at the ship. As expected, fog very efficiently489

scavenged the particles in the SSP mode through droplet activation processes, much490

more so than precipitation. However, the lack of observed particles during such491

events meant that the SSP mode could not be constrained. This is particularly evi-492

dent around March 5th, 2018. In the last three days of the voyage, March 18th–21st,493

2018, we encountered strong northerly winds along the coast of New Zealand, which494

transported terrestrial particles to the R/V Tangaroa. The addition of these non-495

SSPs resulted in number concentration size spectra from which the SSP mode could496

not be constrained. As a result, measurements when fog or precipitation was ob-497

served at the ship, or when there was a significant influence from New Zealand were498

excluded from the regression analysis presented in the following section.499

In Fig. 4b we also show the 10 m wind speed throughout the same period of500

measurement. We observed that when winds were light (U10 < 4 m s−1) the total501

number concentration of particles in the SSP mode was no more than 10 cm−3, and502

had a median of 7 cm−3. Light-wind periods (U10<4 m s−1) occurred 14% of the503

time in upwind conditions, as weighted by the near surface residence time. However,504

during a light-wind period on March 12th, 2018, there appeared to be no particles at505

all. This agreed well with the transport modeling in Fig. 2, which showed that dur-506

ing all light-wind periods, except the period occurring on March 12th, the particles507

had a significant near surface residence time over Antarctica. While the boundary508

layer over Antarctica is generally a very pristine environment, human activity from509

research stations near the Ross Ice shelf and exposed mountain faces both represent510

potential sources for the concentration of particles observed at low wind speeds. In511

the regression analysis that followed, the median concentration of SSPs observed at512
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(cm-3)Number Concentration, N

Figure 5. The total number concentration of sea spray generated particles is shown as a func-
tion of altitude over the course of several flights aboard HIAPER, (RF 11–15). The ranges within
each altitude bin show the minimum and maximum number concentration observed. Flights RF
11–15 took place on the following days, in order: Feb. 17th, 18th, 20th, 21st and 24th, 2018.

low wind speeds was removed from the observations (except for the period around513

March 12th, 2018). After removing this background concentration, we calculated the514

hourly-averaged number concentration of particles in the SSP mode to be 9 cm−3,515

with a maximum of 62 cm−3.516

In Fig. 5 we show the total number concentration of SSPs derived from the517

UHSAS number concentration size spectra onboard HIAPER. These measurements518

were taken over the course of several flights in February 2018 to illustrate the range519

of concentrations observed within each 1 km bin. The measurements within one520

kilometer of the Earth’s surface were always determined to be below-cloud (if any521

cloud was present) and within the boundary layer. In contrast, all other bins were522

determined to be above cloud (if any cloud was present) and above the boundary523

layer. From Fig. 5 we can also identify that there was always at least 5–10 cm−3 of524

SSPs in the boundary layer, which is consistent with the measurements at low wind525

speeds on board the R/V Tangaroa. As expected, there were also very few SSPs526

above the cloud, indicating that nearly all of these particles had been consumed527

during cloud formation.528

3.4 Regression Analysis529

Predicted SSP concentrations can be obtained by integrating Eq. (8); however,530

we have already identified that particle losses from in-cloud scavenging represented531

the greatest uncertainty to our source–receptor modeling. To address this within532

the regression analysis we allowed the simulation length, t0, to vary as a free pa-533

rameter within Eq. (8). In effect, this allowed the regression to estimate the return534

rate of a droplet activation event within a boundary layer cloud (e.g. fog or ma-535

rine stratocumulus) or a significant precipitation event (>10 mm hr−1). Either of536

these events would have efficiently scavenged the particle, thereby terminating its537

trajectory. This approach is similar to the Statistical Wet Deposition method used538

by other researchers, which prescribes the length of time it takes a surface flux of539
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particles to fully mix into the boundary layer after a precipitation event or cyclone540

(e.g. Ovadnevaite et al. (2014)).541

Table 1. The values listed in this table are the relative likelihood that a given parameterization
of surface flux correctly predicted the observed number concentration of sea spray generated
particles relative to the best parameterization. These values were calculated from the difference
between the Aikake Information Criterion (AIC) of each parameterization and the AIC of the
best parameterization (AICb) according to the following: exp(−0.5(AIC − AICb)) (Burnham &
Anderson, 2002). The AIC measures the log-likelihood that a given surface flux parameterization
minimizes the residual sum of squares between predicted and observed concentrations while also
penalizing parameterizations which include large numbers of parameters (Akaike, 1974). See Eq
(6) for parameterization definitions.

Surface Flux parameterization WPL
‡ WC

† WF
§ WLLPL

††

F (U10) <1×10−3 <1×10−3 1 0.2
F (U10, Tw) <1×10−3 <1×10−3 0.6 <1×10−3

‡Power-Law; †Cubic; §Fetch; ††Log-Logistic Power-Law.

In Table 1 we have calculated the relative likelihood that a given surface flux542

parameterization fit the data as compared to the best parameterization, WF . We543

used the relative probabilities in Table 1 to compare two parameterizations: for in-544

stance, modelling the flux with WF and a function of sea surface temperature was545

only 60% as likely to optimally fit our data as using WF alone. We also found that546

regardless of the surface flux parameterization, the optimal simulation length, t0 was547

48 ± 3 hours. This is similar to the “filling time” Ovadnevaite et al. (2014) used to548

characterize surface fluxes of SSPs from their measurements in the North Atlantic.549

The filling time is a characteristic timescale used in the Statistical Wet Deposition550

Method for determining sea spray fluxes from a concentration time series (Lewis &551

Schwartz, 2004). Definition of the filling time varies by author. In Ovadnevaite et al.552

(2014), they interpret the filling time as “...the time between the cyclone formation553

and subsequent arrival to [the measurement location]” instead of “the time since the554

last precipitation event as considered in (Lewis & Schwartz, 2004)”. The filling time555

we determined is consistent with the average time that elapsed between the passage556

of seven separate cyclones we encountered throughout March, 2018. These cyclones557

provided widespread high winds and boundary layer cloud, resulting in high fluxes,558

but relatively short lifetimes for any suspended particulate. Hence, our finding is559

consistent with the definition of filling time given by Ovadnevaite et al. (2014).560

According to the AIC, the best parameterization for the surface flux of SSPs,561

F , used the fetch parameterization for whitecaps, WF (Snyder & Kennedy, 1983; Xu562

et al., 2000):563

∂f

∂ logDp
=

F√
2π log(2)

exp

− log2
(

Dp

0.4

)
2 log2(2)


F = αWF (U10)

α = 3.6× 107

WF (U10) = 1− Φ

(
6.5√
U10

)
(11)564

565

where Dp is the particle diameter in µm at a relative humidity of 80%.566
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Figure 6. (a) Predicted concentrations of sea spray generated particles from the best pa-
rameterization of surface flux are compared to measurements from two observation platforms: a
PCASP-100X aboard the R/V Tangaroa and the UHSAS onboard HIAPER. The best parameter-
ization for the surface flux, F , of these particles was a function of the wind speed over the ocean
surface. Each model–measurement pair is colored according to the average SST, weighted by
the near-surface residence time. (b) As in (a), but for a parameterization of surface flux which
incorporated a linear function of SST in addition to the wind speed dependence.

In Fig. 6a we show the model–measurement residuals for the best parameter-567

ization of surface flux. The model–measurement residuals have been color-coded568

according to the average SST. The average values of SST were weighted by the two-569

day, near-surface residence time. On average, the predicted concentrations did not570

appear to be biased positive or negative. However, a recent study by Jaeglé et al.571

(2011) showed that particle fluxes may significantly depend on SST. Changes in SST572

result in changes to the water viscosity. This is thought to modify the length of time573

for the whitecap to dissipate, τ , which is part of the constant, α. Hence, in order to574

compare to their result, we fit a linear correction term for the constant α presented575

in Eq. (11) as a function of the SST, Tw, finding:576

α(Tw) = 3.6× 107(1 + 0.024Tw) (12)577578

The model–measurement residuals of the temperature-corrected parameterization,579

are shown in Fig. 6b. From Table 1 we can see that this did not substantially580

improve model fidelity. In both Figs. 6a and b we have also shown the model–581

measurement pairs for the SOCRATES observations within the boundary layer.582

Since these measurements were not included within the regression framework, the583

good agreement in both of these figures provides a measure of confidence that584

Eq. (11) produces reasonable results within the Southern Ocean region.585

In Fig. 7a we show the predicted flux of SSPs from each of the models in586

Eq. (6) as a function of near-surface wind speed. The total particle flux predicted587

by Gong (2003) has also been shown for reference. In Fig. 7b we have compared the588

linear function of SST we recovered from the regression analysis to the polynomial589

function fit by Jaeglé et al. (2011). We have shifted the values of the polynomial590

function so that it matches our linear function at Tw = -2°C. The slope of our lin-591

ear function predicts that SST is not as significant a control of SSP surface flux as592

shown by Jaeglé et al. (2011). This may be a result of the distribution of our mea-593
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Figure 7. (a) The best parameterization of the total surface flux of sea spray generated par-
ticles, WF , is compared to calculations from the Gong (2003) parameterization. (b) The linear
bias correction function found by the regression is compared to the function reported by Jaeglé
et al. (2011), where their function has been shifted vertically to match the linear bias correction
function at T = -2° C. The shaded region shows how uncertainty in the retrieved regression pa-
rameters propagated to prediction uncertainty.

surements across different SST regimes since 78% of our observations were related594

to waters in a narrow temperature range (-2–0°C). Hence, there would be little im-595

provement to either the NSE or AIC for these samples. Still, as shown in Fig. 7b,596

the bias correction curve presented by Jaeglé et al. (2011) is clearly outside of the597

uncertainty bounds for the modest temperature dependence we observe within our598

dataset.599

Finally, we compared the Nash-Sutcliffe model efficiency coefficient (NSE) for600

the best parameterization we found within our regression framework to two differ-601

ent parameterizations of SSP surface flux. The NSE is generally equivalent to R2,602

but can also become negative when the average observed concentration provides a603

better fit to the data than the proposed parameterization. From Table 2 it is clear604

that Eq. (11) predicted concentrations of SSPs that were more consistent with our605

observations than predictions from either the Gong (2003) or the Jaeglé et al. (2011)606

parameterizations. Comparisons showed that the Gong (2003) parameterization607

produced too many SSPs at all wind speeds.608

For reference, we also performed the regression for the entire five-day simula-609

tion. In all of the parameterizations presented, the NSE decreased significantly for610

the longer simulation, consistent with our hypothesis that in-cloud droplet activation611

was not accurately simulated. In addition, surface fluxes predicted by WF when612

constrained by the five-day simulations were strictly smaller than surface fluxes pre-613

dicted by WF when constrained by the two-day simulations, for all wind speeds.614

Therefore, our finding that the parameterization of Gong (2003) over-predicted the615

surface flux of SSPs was robust.616

3.5 Meta-Analysis of Whitecap Data617

In order to assess the conditions under which the parameterization presented618

above may be applicable, we analyzed global whitecap data from the literature. In619
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Table 2. The Nash-Sutcliffe model efficiency coefficient between the number concentration of
SSPs predicted by a given surface flux parameterization and the observation conducted aboard
the R/V Tangaroa. The time, t0, is the length of time for which the Lagrangian particle disper-
sion parameterization simulated the movement of SSPs back in time. A negative value for the
NSE implied that the mean of the observations was better at predicting the observed variance
than the given parameterization, whereas a value of 1 would imply a perfect model–measurement
fit.

Surface Flux parameterization NSE (t0 = 48 hours) NSE (t0 = 120 hours)

(Gong, 2003) <0 <0
(Jaeglé et al., 2011) 0.22 <0

Eq. (11) 0.67 0.52
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(b)

Figure 8. (a) The spatial extent of shipborne and tower whitecap observations within the
database assembled for the whitecap meta-analysis. Studies where the coordinates of the obser-
vations were not specified all took place in the North Atlantic. (b) The fractional coverage of the
sea surface by whitecaps as a function of 10 m wind speed.

Fig. 8b we have amalgamated 527 in situ ship-borne and tower observations of the620

surface coverage of whitecaps as a function of the 10 m wind speed, U10 (Xu et al.,621

2000; Stramska & Petelski, 2003; Sugihara et al., 2007; A. Callaghan et al., 2008;622

Norris et al., 2013; Schwendeman & Thomson, 2015; Bell et al., 2017; Brumer et623

al., 2017; Jia & Zhao, 2019). Studies published after the year 2000 were used since624

they all employed some form of automated image processing. This meant that each625

whitecap measurement was a result of >102 images, a necessary minimum to have626

a convergent mean (A. H. Callaghan & White, 2009). The spatial coverage of these627

studies is shown in Fig. 8a, indicating that there is a good degree of coverage across628

surface temperature regimes within the database. In Fig. 8b we have shown three629

parameterizations for the whitecap coverage from the literature overlying the in630

situ measurements (Monahan & Ó Muircheartaigh, 1980; A. Callaghan et al., 2008;631

Hwang, 2018). We used the AIC to compare the existing parameterizations shown632

in Fig. 8b to the fetch model, which was fit to the data via non-linear least-squares633

regression. We found that the fetch model for whitecap development captured the634

variability in the database best, with the relative likelihood that the other models635

accurately captured the variability being <10−3. It also did so with a continuous636

function, whereas the other models were piece-wise. The best fit for the whitecap637

data was as follows:638

WF = 1− Φ

(
6.2√
U10

)
(13)639
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We also sought to validate the dependence of SSP fluxes on SST. However, SST data640

within the works cited were either not included or simply summarized as a range641

of values encountered. Still, most voyages made their measurements within a fairly642

narrow SST band. Hence, we could test whether or not there was any dependence643

by using a voyage-average SST for each study. Using the AIC as a measure of the644

goodness of fit, we found that SST did not improve the regression. This is evident645

by visually comparing the observations of Jia and Zhao (2019), which took place in646

extremely warm seas (Tw ∼28°C), to the rest of the data points.647

4 Discussion648

4.1 Meteorological Measurements649

In the previous section, we presented total number concentrations of SSPs650

within the Southern Ocean marine boundary layer as measured from two separate651

measurement platforms. These were compared to estimations of the total number652

concentration of SSPs derived from a source–receptor analysis. To assess the validity653

of the meteorological fields used within the source–receptor analysis, we compared654

the near-surface winds forecast by AMPS to our observations aboard the R/V Tan-655

garoa. We found that the near-surface winds forecast by AMPS compared favorably656

to our observed winds with respect to both magnitude and direction. Previous stud-657

ies have found large biases between AMPS forecasts and the true, local winds over658

the complex coastal topography of the Antarctic coastline (Bromwich et al., 2005;659

Jolly et al., 2016). However, ocean waves have much less surface roughness in com-660

parison to the coastal topography of Antarctica, which would suggest that this may661

not be as substantial an issue over the ocean.662

While the precipitation fields forecast by AMPS did not correlate well with663

our measurements, the climatological distribution of precipitation events within664

AMPS was consistent with our observations. However, within FLEXPART-WRF665

a lack of precipitation “trickled up” to the cloud layer: in the current version of666

FLEXPART-WRF, clouds are only present within a simulation if they are precip-667

itating. As a result, scavenging of SSPs from in-cloud activation was likely poorly668

modeled within the AMPS–FLEXPART-WRF framework. As our own observational669

record showed, SSPs were strongly scavenged by boundary layer cloud (e.g. fog),670

particularly through February 15–17th and March 4–6th, 2018. It is useful, how-671

ever, to recall that clouds over the Southern Ocean are not very well represented672

within modern atmospheric models (Trenberth & Fasullo, 2010; Schuddeboom et673

al., 2019). Current era atmospheric models systematically under-predict the amount674

of low-lying cloud and fog relative to the true cloud observed over the Southern675

Ocean (Kuma et al., 2019). Hence, even if a state-of-the-art microphysical parame-676

terization of in-cloud scavenging had been present in FLEXPART-WRF, it is likely677

that the scavenging of sea spray still would have been under-estimated.678

4.2 Source–Receptor Modelling679

Once we had established that there was a missing sink of sea spray within our680

source–receptor framework, it was necessary to decouple this sink from each of the681

parameterizations of surface flux we tested within the regression analysis. This was682

accomplished by allowing the simulation length to vary as a free parameter within683

the regression analysis. The simulation length can be interpreted as the average684

length of time since a boundary layer in-cloud activation event (e.g. fog or low-685

cloud). From Table 2 it is evident that our observations were better reproduced for686

a fixed simulation length of two days, rather than the five days originally simulated.687

This agreed well with the “filling time” of 1.5–2 days used by Ovadnevaite et al.688

(2014) to constrain the surface flux of sea spray in the North Atlantic. While setting689
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a voyage-wide simulation time may have been a gross approximation, it was likely690

the only approach in light of the present systematic cloud biases over the Southern691

Ocean.692

4.3 Regression Analysis693

By constraining the missing sink of sea spray within our model framework, we694

could finally compare how well the near-surface wind speed and SST predicted our695

observational record. We found that the fetch parameterization presented by Xu696

et al. (2000) and Snyder and Kennedy (1983) performed the best in our compar-697

ison as measured by the Nash-Sutcliffe model efficiency coefficient, NSE, and the698

Akaike Information Criterion, AIC. The parameterization, WF , is so-named since699

the parameter c1 is a function of the fetch. In our analysis we have assumed that700

this parameter was constant, since fetch does not significantly influence the degree701

of whitecapping in open seas (Hsu, 1986; Piazzola et al., 2002). Later, when we702

performed a similar regression analysis with a database of whitecap coverage ob-703

servations, we found a slightly smaller value for c1. When we compared Eq. (11)704

to Eq. (13), we found that c1 retrieved from the whitecap regression was 6.2 ±705

0.2, which was consistent with the value of 6.5 ± 0.2 we retrieved from the SSP re-706

gression. The sensitivity of WF means that Eq. (11) will under-estimate whitecap707

coverage globally and subsequently result in under-estimations of sea spray fluxes.708

However, we can compare to the value for c1 retrieved when we only consider South-709

ern Ocean whitecap data from Brumer et al. (2017) (c1 = 6.4 ± 0.1). Combined710

with the goodness of fit to the SOCRATES data (Fig. 7a), this provides a secondary711

measure of validation for the parameterization over the Southern Ocean. We can712

only conclude that for a global study, a value for c1 of 6.2 may be more appropriate.713

For Southern Ocean specific studies a value for c1 of 6.5 should be used.714

Finally, we compared results from two other parameterizations for the surface715

flux of SSPs to our observations. We found that neither the Jaeglé et al. (2011)716

nor the Gong (2003) parameterization could predict the concentration of SSPs we717

observed over the Southern Ocean as well as Eq. (11). This is connected to how718

the Gong (2003) parameterization (which Jaeglé et al. (2011) re-scaled) scales the719

surface flux of SSPs with increasing wind speed. Within this parameterization,720

the scaling is estimated via a power-law relationship between the surface coverage721

of whitecaps and near-surface wind speed (Monahan & Ó Muircheartaigh, 1980).722

However, as we show in Fig. 8b, the parameterization presented by Monahan and723

Ó Muircheartaigh (1980) results in consistent over-estimations of the whitecap cov-724

erage. These over-estimations propagate through the SSP flux parameterization725

of Gong (2003) and lead to the over-estimations in concentrations we observe. In726

addition, the power-law predicts that there will always be a flux of sea spray from727

the ocean surface, despite it being well-established that whitecaps do not form until728

the wind speed over the ocean exceeds 3–4 m s−1. Even the re-scaled Gong (2003)729

parameterization presented in Jaeglé et al. (2011) did not match our observations730

well, either.731

4.4 The Effect of Sea Surface Temperature732

To understand differences between whitecapping in different regions, previous733

research has focused on wave parameters and SST. As Sugihara et al. (2007) and734

Goddijn-Murphy et al. (2011) have shown, there is a marked difference between ob-735

servations of whitecaps in a pure windsea vs. a swell dominated sea. Indeed, when736

we fit WF to the whitecap data from Sugihara et al. (2007) we retrieved a value737

for c1 of 6.1 ± 0.1 in a pure windsea (indicating higher spatial coverage of white-738

capping) compared to 6.7 ± 0.1 when the winds were following swell or counter739

swell (indicating lower spatial coverage of whitecapping). This could potentially740
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explain the difference between the value of c1 we retrieved from our measurements741

and the one retrieved from the entire whitecap database. However, conversely, in a742

satellite-derived whitecap database, Albert et al. (2016) found that whitecaps were743

not dependent on wave parameters, but were actually modestly dependent on SST.744

They noted that the lack of dependence on wave parameters may have been a result745

of using wind history as a proxy for wave age and spatial averaging. However, we746

found that there was no dependence on SST within the database of in situ whitecap747

observations.748

Of course, even if SST does not affect the fractional coverage of whitecaps,749

it can still affect the surface flux of particles through changes to viscosity. Re-750

sults from laboratory studies are mixed: while two studies have clearly shown that751

the surface flux of sea spray should increase in warmer waters (Mårtensson et al.,752

2003; Sellegri et al., 2006), others found that that differences in seawater compo-753

sition (A. H. Callaghan et al., 2014) and wave characteristics (A. H. Callaghan et754

al., 2012) could be much more important. Other laboratory results have even shown755

that increases in water temperature led to decreases in sea spray fluxes (Zábori et756

al., 2012). To test whether or not changes in SST affected our own observations, we757

used SST as a second independent variable within the regression analysis. We found758

that the impact to the model–measurement fit was more modest than predicted by759

Jaeglé et al. (2011) (see Fig. 7b), and that the parameterization which only used760

wind speed (Eq. (11)) performed just as well. As we noted, this may have been a761

result of making observations in a very narrow range of SSTs, which would result762

in very small changes to the regression metrics we analyzed. However, from Fig. 6b763

we can see that the model–measurement residuals don’t appear to be significantly764

biased from the 1:1 line at warm temperatures.765

Ultimately, we should be cautious when implementing temperature correction766

functions for SSP fluxes. Consider that field observations have already clearly shown767

that the presence of swell inhibits the surface fraction of whitecaps for a given wind768

speed (Sugihara et al., 2007). Hence, global climatologies of swell could potentially769

explain the latitudinal trends in SSP flux expected by (Jaeglé et al., 2011): swell770

rarely occurs in the tropics (where fluxes are expected to be higher), whereas swell771

frequently is present at high latitudes (where fluxes are expected to be lower) (Jiang772

& Chen, 2013). As a result, the resulting bias correction curve Jaeglé et al. (2011)773

derived from in situ and satellite observations of aerosol may be partially dependent774

on the presence (or absence) of swell. Yet, the curve attributed the latitudinal varia-775

tions in flux necessary to fit their observations completely to variations in SST. Our776

own observations, which were made exclusively in the presence of swell, showed that777

the dependence of SSP fluxes on SST was much weaker than anticipated by Jaeglé778

et al. (2011), leading to a very negligible effect on model performance. We conclude779

that a more comprehensive global study of sea spray which fully controls for upwind780

wave and SST conditions is needed in order to decouple these two effects. In the in-781

terim, models should be cautious in implementing functions which could potentially782

over-exaggerate radiative feedback loops.783

4.5 The Direct Radiative Effect784

As the goal of this study was to understand how SSPs might influence the lo-785

cal radiation budget, it would be useful to evaluate whether or not changes to the786

parameterization of SSP fluxes result in substantial changes within existing climate-787

chemistry models (CCMs). A recent study comparing the winter-time AOD over788

the Southern Ocean found that current era parameterizations (e.g. Gong (2003))789

of sea spray within a climate-chemistry model (CCM) resulted in over-estimations790

of the AOD relative to satellite observations (Revell et al., 2019). However, in the791

austral summer, the opposite was observed: namely, a lack of particles formed from792
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the nucleation of sulfate-gasses resulted in under-estimates of AOD. Within this793

same study, the parameterization of surface flux, WPL, was implemented within794

the CCM to better constrain the contribution of SSPs to the total particle popula-795

tion (Revell et al., 2019). While WPL was not the best function determined by this796

work, it was similar in form to the Gong (2003) currently implemented within the797

CCM being studied, so it was an easy substitution. Since WPL had a Nash-Sutcliffe798

coefficient of 0.6 it also produced results that were consistent with Eq. (11). It is799

important to note that WPL was used to re-scale the size distribution of the Gong800

(2003) parameterization, so any changes would be related to differences in the scal-801

ing function and not to differences between size distributions. Results conclusively802

showed that the more conservative estimates of the surface flux of SSPs generated803

by WPL completely removed the bias in winter-time AOD that was previously ob-804

served. Therefore, we are confident that the parameterization for the surface flux of805

SSPs presented in Eq. (11) will result in better predictions of the abundance of SSPs806

within the Southern Ocean region. More importantly, Revell et al. (2019) show that807

it helps disentangle the potential compensating errors in predicting the AOD for808

studies interested in the more complicated gas phase and aqueous phase chemistry809

which produces sulfate particles from volatile marine precursors like dimethylsulfide.810

As we have emphasized throughout this study, the MBL over the South-811

ern Ocean region is home to the strongest surface winds over open ocean on812

Earth (I. Young, 1999). Surface winds also appear to be getting stronger: at Mac-813

quarie Island, winds have increased in intensity by 3 cm s−1 per year from 1973–814

2011, with satellite data showing that winds over the Ross Sea increased by 0.5–1%815

through 1991–2008 (Hande et al., 2012; I. R. Young et al., 2011). Within the Ross816

Sea region, this increase is related to the deepening of the Amundsen Sea low, an817

area of climatologically low pressure in the Southern Ocean which influences regional818

winds, sea-ice extent and temperature (Coggins & McDonald, 2015; Raphael et al.,819

2016). As we show throughout this study, sea spray has a highly non-linear rela-820

tionship with wind speed. Given their large contribution to the CCN population821

(10–65%; Quinn et al. (2017)), AOD (Murphy et al., 1998; Revell et al., 2019), and822

cloud phase (McCluskey et al., 2018) over the Southern Ocean, these particles can823

have a significant buffering effect on the local climate. We would therefore encourage824

future studies interested in climate projections for the Southern Ocean to make use825

of Eq. (11) when predicting the surface flux of sea spray generated particles.826

5 Conclusions827

In this study, we described and optimized an existing parameterization for828

the surface flux of sea spray generated particles (SSPs) based on the 10 m wind829

speed in Eq. (11). Within our regression framework we found that the dependence830

of SSP fluxes on SST was very weak in the temperature range of our observations831

(Tw < 12 °C) and that it did not help to constrain additional variability in our832

data set. An external database of previously published whitecap observations was833

exploited to test the parameterization we used in this analysis and found no tem-834

perature dependence at all. While others have shown that temperature-dependent835

flux parameterizations seem to explain known latitudinal variations in SSP flux, the836

correction functions derived from such an analysis could potentially be a proxy for837

latitudinal variations in wave characteristics. Given the potential links between SSPs838

and the Southern Ocean radiation budget, we should be cautious to add feedback839

loops where none may exist.840

Finally, the parameterization presented in this study is already being used841

to model the AOD and concentration of CCN in the region. Research has shown842

that the new parameterization vastly improved regional calculations of AOD, com-843

pared with previous parameterizations which over-predicted the surface flux of844
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SSPs (Revell et al., 2019). We recommend that studies interested in aerosol–cloud845

interactions implement the parameterization as it has been shown to better con-846

strain the contribution of SSPs to the CCN population.847
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