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Constraining the Surface Flux of Sea Spray Particles from the Southern Ocean

Current-era GCMs over-estimate sea spray concentrations relative

Introduction

In the remote boundary layer of the Southern Ocean, continental sources of particulate matter such as black carbon, terrestrial monoterpenes, dusts, and pollen contribute very little to the population of suspended particulate [START_REF] Murphy | Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer[END_REF]. As a result, the magnitudes of the direct and indirect shortwave radiative effects from the suspended particulate within the region are largely driven by local, marine sources [START_REF] Carslaw | Large contribution of natural aerosols to uncertainty in indirect forcing[END_REF][START_REF] Mccoy | Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo[END_REF]. There has been a considerable amount of work in recent years to understand the excess of shortwave radiation reaching the ocean surface in the Southern Ocean within climatechemistry models (CCMs), especially regarding the representation of clouds within these models [START_REF] Trenberth | Simulation of present-day and twentyfirst-century energy budgets of the Southern Oceans[END_REF][START_REF] Bodas-Salcedo | Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models[END_REF]. Since hygroscopic particulate matter are a necessary precursor to cloud formation, they can indirectly exert a substantial influence on the radiation balance through modification of cloud brightness [START_REF] Twomey | The influence of pollution on the shortwave albedo of clouds[END_REF] and cloud phase through the availability of ice nuclei [START_REF] Demott | Predicting global atmospheric ice nuclei distributions and their impacts on climate[END_REF].

The natural sources of airborne particles in the region are the production of sea-spray generated particles (SSPs) from wind-wave interactions and ultra-fine particles from the homogeneous nucleation of sulfuric acid and other volatile vapours.

However, the rate of production of SSPs remains an open problem: the number of particles entering the atmosphere of a given droplet size and at a given wind speed has been shown to vary by over an order of magnitude among existing parameterizations for the production of SSPs [START_REF] Ovadnevaite | A sea spray aerosol flux parameterization encapsulating wave state[END_REF]. If one also accounts for the uncertainties related to predicting the dependence of the surface flux on the wind speed over the water, estimates for the intensity of the surface flux diverge further. As a result, both the concentration and seasonal cycle of SSPs remain poorly constrained in the Southern Ocean [START_REF] Henzing | A parameterization of size resolved below cloud scavenging of aerosols by rain[END_REF][START_REF] Revell | The sensitivity of Southern Ocean aerosols and cloud microphysics to sea spray and sulfate aerosol production in the HadGEM3-GA7.1 chemistry-climate model[END_REF]. Several studies have shown that the lack of prediction accuracy for the flux of SSPs results in large biases between observed and modelled mass concentrations of SSPs in the marine boundary layer (MBL), particularly in regions with cold waters [START_REF] Jaeglé | Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations[END_REF][START_REF] Grythe | A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements[END_REF][START_REF] Witek | Satellite assessment of sea spray aerosol productivity: Southern Ocean case study[END_REF].

In general, sea spray is the dominant source of particulate matter in the Southern Ocean in terms of mass [START_REF] Murphy | Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer[END_REF]; however, during ice formation in coastal Antarctica, wind-blown frost flowers and snow from sea-ice can also become locally prominent sources [START_REF] Kaleschke | Frost flowers on sea ice as a source of sea salt and their influence on tropospheric halogen chemistry[END_REF][START_REF] Yang | Sea salt aerosol production and bromine release: Role of snow on sea ice[END_REF]. Since these particles are the largest in the region [START_REF] Quinn | Small fraction of marine cloud condensation nuclei made up of sea spray aerosol[END_REF], they are also a substantial contributor to the local aerosol optical depth (AOD) [START_REF] Shindell | Radiative forcing in the ACCMIP historical and future climate simulations[END_REF]. While the contribution of SSPs to the regional AOD is much more significant than its contribution to cloud albedo in the Northern Hemisphere, over the Southern Ocean it is precisely the opposite [START_REF] Ayash | Direct and indirect shortwave radiative effects of sea salt aerosols[END_REF]. This highlights that SSPs are a regionally important component of cloud formation over the Southern Ocean. This is not surprising: SSPs are mainly comprised of highly soluble sea salt and so they are very efficient cloud condensation nuclei (CCN) [START_REF] Petters | A single parameter representation of hygroscopic growth and cloud condensation nucleus activity[END_REF]. While SSPs form only a small fraction of CCN globally, they can make up ∼65% of CCN over the Southern Ocean [START_REF] Quinn | Small fraction of marine cloud condensation nuclei made up of sea spray aerosol[END_REF].

Recent studies have also shown that SSPs can act as ice nucleating particles (INPs), which encourage the phase transition of cloud droplets to ice [START_REF] Demott | Sea spray aerosol as a unique source of ice nucleating particles[END_REF][START_REF] Mccluskey | Observations of ice nucleating particles over Southern Ocean waters[END_REF]. Since the Southern Ocean is far removed from continental sources of INPs (e.g. dust), SSPs may be the only source of INPs in the region. Ice nucleation sites within the droplets are likely a result of suspended amounts of organic material within the sea surface microlayer which became entrained within the droplets during formation [START_REF] Demott | Sea spray aerosol as a unique source of ice nucleating particles[END_REF]. However, organic materials form very little of the mass composition of the resulting SSPs [START_REF] Murphy | Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer[END_REF]; hence, the ice-nucleating potential of sea spray is very weak relative to continental sources such as mineral dusts [START_REF] Mccluskey | Observations of ice nucleating particles over Southern Ocean waters[END_REF]. Still, the capacity for SSPs to modulate cloud phase represents an additional mechanism through which they can affect the local radiation balance.

While we have emphasized the potential radiative effects SSPs might have on the Southern Ocean region, there are other ways in which they can perturb the Earth system. Several studies have shown that the largest SSPs are non-negligible contributors to the exchange of latent and specific heat across the ocean-atmosphere interface [START_REF] Richter | Sea surface drag and the role of spray[END_REF][START_REF] Ortiz-Suslow | Sea spray generation in very high winds[END_REF]. In a bulk flux model of the air-sea exchange of heat, [START_REF] Andreas | An improved bulk air-sea surface flux algorithm, including spray-mediated transfer[END_REF] showed that these large, "shear" sea-spray droplets accounted for fluxes of sensible and latent heat on the same order of magnitude as fluxes directly from the ocean-atmosphere interface at high wind speeds (U 10 > 15 m s -1 ). Observations and model simulations have shown that the rate of momentum transferred from the atmosphere to the ocean starts to decrease after a critical threshold wind speed is passed (30 m s -1 ; [START_REF] Powell | Reduced drag coefficient for high wind speeds in tropical cyclones[END_REF][START_REF] Bao | Parameterizations of sea-spray impact on the air-sea momentum and heat fluxes[END_REF][START_REF] Hwang | High-wind drag coefficient and whitecap coverage derived from microwave radiometer observations in tropical cyclones[END_REF]). Theoretical work has suggested that this change is driven by the exchange of sensible heat between the largest droplets and the atmosphere, which become more abundant at high wind speeds [START_REF] Bao | Parameterizations of sea-spray impact on the air-sea momentum and heat fluxes[END_REF]. This leads to considerable biases in the prediction of storm intensity [START_REF] Bao | Parameterizations of sea-spray impact on the air-sea momentum and heat fluxes[END_REF]. The ability to predict the abundance of SSPs is therefore vital to fully understanding many macroscopic processes within the region.

To constrain the potential role sea spray may have on the regional radiation budget, it is first necessary to validate current parameterizations for its flux against in situ observations of its abundance. However, there is currently a dearth of such observations over the Southern Ocean. In this work we present measurements of the total number concentration of airborne particles recorded throughout an austral summer voyage to the Ross Sea aboard the R/V Tangaroa. We use these measurements to test existing empirical parameterizations which describe the flux of particles from wave breaking events in open seas. Measurements from instruments onboard the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) throughout the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) were also used to validate these parameterizations. Since the winds throughout both of these experiments included the extremes of surface conditions encountered at the air-sea interface, understanding the flux of SSPs in this highly dynamic region will be valuable in constraining both current and future flux estimates.

Methods

Measurements

The voyage aboard the R/V Tangaroa began on February 9 th and ended on March 21 st , 2018 departing and returning to Wellington, New Zealand (41°17' S, 174°46' E). The bulk of the voyage was spent in waters south of 60°S, with 17 days of the voyage spent in seas between 60-70°S and 13 days of the voyage south of 70°S.

In situ measurements of boundary layer aerosol were conducted from a container laboratory on the shelter deck of the R/V Tangaroa (2 m a.s.l.). The instruments within the container laboratory drew a continuous air sample through 40 m of 100 mm ID anti-static tubing (EOLU PU; IPL Ltd.) from the mast of the R/V Tangaroa (15 m a.s.l.). For the purposes of this study, we have primarily focussed on measurements from the passive cavity aerosol spectrometer probe (PCASP-100X; Droplet Measurement Technologies) with supplementary data from a differential mobility particle sizer (DMPS; TSI). The PCASP-100X is an optical particle counter which measured the number concentration size spectra of particles within the air sample. The instrument is capable of detecting particles with optical diameters between 0.1-3.0 µm in 30 size bins at 1 Hz. The DMPS measured the number concentration size spectra of particles within the air sample with mobility diameters between 0.02-0.3 µm in 32 size bins once every 10 minutes. We have corrected the number concentration measurements according to calculations of the sampling and transport efficiency from [START_REF] Brockman | Sampling and transport of aerosols[END_REF]. These calculations accounted for anisokinetic sampling conditions, diffusion of the particles toward the tube walls, and gravitational settling of the particles. All of these calculations were based on empirical parameterizations of these losses in a turbulent flow. Across the spectrum of sizes we measured, we estimate that the total sampling efficiency was at most 93%, but no less than 90%.

Throughout the voyage, a cavity ring-down spectrometer (CRDS; Picarro G2301) measured mole fractions of CO 2 , CH 4 , and H 2 O from a separate sampling line. The sampling line of the CRDS was within 5 m of the main sampling line used for the particulate sampling. Intrusions of ship exhaust from the rear of the ship would have been sufficiently well-mixed in the turbulent air around the ship superstructure so as to affect both sampling lines. We used a threshold limit of 405 ppm of CO 2 to detect when ship exhaust contaminated our main sampling line. This threshold was well above the trend line of the [CO 2 ] mole fraction time-series. After removing these outliers, we used 1 Hz sub-samples of the particle number concentrations to calculate 1-minute averages of the number concentration size spectra and its standard deviation. When the standard deviation of the 1 Hz samples deviated significantly from Poisson counting statistics the sample was removed.

This study also incorporated measurements from the New Zealand Met Service's Automated Weather Station (AWS) aboard the R/V Tangaroa. The AWS anemometer was positioned at 22.5 m a.s.l. on the mast of the ship, while the rest of the AWS was positioned at 15 m a.s.l. The AWS measured: atmospheric pres-sure, atmospheric temperature, relative humidity, wind speed, wind direction, and accumulated precipitation. Measurements of the average relative wind speed and wind direction were made using a pair of ultrasonic anemometers (Gill WindSonic) and reported at 1-minute intervals. The measurements of wind speed were corrected according to directionally-dependent acceleration factors, based on a model of air flow around the R/V Tangaroa's superstructure [START_REF] Popinet | Experimental and numerical study of the turbulence characteristics of airflow around a research vessel[END_REF][START_REF] Smith | Uncertainties in gas exchange parameterization during the SAGE dualtracer experiment[END_REF]. The wind speeds were then corrected according to the ship heading and speed to derive the true wind speed and wind direction. Finally, the acceleration-corrected, true wind speed at 22.5 m was scaled to the 10 m reference level using the bulk flux algorithms developed from the Coupled Ocean-Atmosphere Response Experiment (COARE) [START_REF] Edson | On the exchange of momentum over the open ocean[END_REF]. In employing the COARE bulk flux algorithms, we have not accounted for differences in the height of the AWS due to heave with respect to mean sea level, which may amount to ±4 m in heavy seas. If for a given measurement, the pitch or roll of the ship was significant with respect to the mean wind vector, then the measured wind speed would have been systematically biased low. However, throughout the voyage, the pitch of the ship was <20°, and so these corrections would be less than 6%.

Measurements of the boundary layer number concentration size spectra were also conducted onboard HIAPER, a modified Gulfstream V aircraft, from January 16 th -February 24 th , 2018. These measurements were part of the SOCRATES experiment. Over the course of the experiment, there were 15 flights, which departed and returned to Hobart, Australia. We have focused on the flights which coincided with our observational record, namely Research Flights (RF) 10-15 which took place between February 7 th -24 th , 2018. Two Ultra-High Sensitivity Aerosol Spectrometers (UHSAS; Droplet Measurement Technologies) were used throughout the experiment to measure the number concentration size spectra of particles within the surrounding air; however, for this study we focused solely on the measurements from the UHSAS mounted inside of the aircraft. The UHSAS sampled ambient air via a counterflow virtual impactor inlet mounted outside of the aircraft. This ensured that the internal flow rate of the UHSAS was isokinetically matched to the exterior flow around HIAPER. Like the PCASP-100X, the UHSAS is an optical particle counter which can detect particles with optical diameters between 0.059-1.022 µm in 100 discrete size bins at 1 Hz. It was determined that corrections to the number concentration size spectra from the additional ram pressure of sampling the aerosol from a moving aircraft would amount to less than 1%. This was substantially less than the observed variability in both the number concentration time series and the volume flow rate of the pump that provided the flow through the UHSAS. For each flight we identified 3-6 periods when the altitude was stable, there was little precipitation, and the observed number concentration size spectra were relatively stable. In each of these periods, we averaged the number concentration size spectra over 5-10 minutes. This resulted in 28 unique measurements between 69-6,100 m a.s.l, 17 of which were in the boundary layer.

FLEXPART-WRF

The FLEXible PARTicle transport model (FLEXPART), FLEXPART-WRF, is a Lagrangian particle dispersion model designed to model particle trajectories within mesoscale meteorological fields from the Weather Research & Forecasting Model (WRF) [START_REF] Brioude | The Lagrangian particle dispersion model FLEXPART-WRF version 3.1[END_REF]. For this study, we used meteorological forecasts from the real-time Antarctic Mesoscale Prediction System (AMPS) (Polar Meteorology Group, Byrd Polar and Climate Research Center, 2018). AMPS uses a variety of data sources to constrain these forecasts, including near-real-time seaice concentrations measured from the Special Sensor Microwave/Imager (SSM/I) radiometer and sea surface temperature (SST) data from the National Center for Environmental Prediction (NCEP) [START_REF] Bromwich | Realtime forecasting for the Antarctic: An evaluation of the Antarctic Mesoscale Prediction System (AMPS)[END_REF]. Initial and boundary conditions for AMPS were specified according to near-real-time forecasts from the NCEP Global Forecasting System [START_REF] Bromwich | Realtime forecasting for the Antarctic: An evaluation of the Antarctic Mesoscale Prediction System (AMPS)[END_REF]. We used the AMPS output with the widest spatial coverage, domain 1, which has a horizontal resolution of 24 × 24 km, a vertical resolution of 61 η levels, and a temporal resolution of three hours. The AMPS forecasts used throughout this study were downloaded from https://www.earthsystemgrid.org/project/amps.html.

We initialized 100, 000 particle trajectories from the geographic location of the R/V Tangaroa every three hours to match the temporal resolution of AMPS.

Additional simulations were run for every hour in between the meteorological time steps if the R/V Tangaroa had entered a new grid cell in the AMPS domain. These two criteria resulted in 651 unique simulations. To trace losses due to deposition throughout the simulation, FLEXPART assigned each particle a unit mass distributed over a log-normal size distribution. To match our observations, we centered this distribution around a geometric dry diameter of 0.20 µm (D p,g = 0.4 µm at 80% relative humidity), with a geometric standard deviation of 2.00, and a dry density of 1.84 g cm -3 . FLEXPART-WRF used the discretized Langevin equation to describe the turbulent dispersion of these particles through the atmosphere in reverse time with an adaptive time-step strictly less than 180 s. The particles were advected through the meteorological fields specified by AMPS from the time of measurement up to five days prior in reverse time. Throughout the trajectory, losses of particle mass due to dry deposition were calculated according to the resistance method [START_REF] Hicks | A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities[END_REF]. To improve these calculations we modified FLEXPART-WRF to account for hygroscopic particle growth according to the ambient relative humidity (Gerber, 1985), since changes in particle size can significantly affect a particle's settling velocity and dry deposition velocity. FLEXPART-WRF also accounted for losses of particle mass from precipitation and droplet activation. Within clouds, FLEXPART-WRF calculated the scavenging rate of particles from droplet activation according to the parameterization of [START_REF] Hertel | Development and testing of a new variable scale air pollution model-ACDEP[END_REF]. For scavenging by precipitation below cloud, loss rates were estimated from the following empirical relationship:

Λ = AI B s (1)
where the scavenging rate, Λ, was calculated as a function of the rain-equivalent snow intensity, I s (mm hr -1 ), and user-set scavenging coefficients, A and B. While fairly good representations of particle scavenging from rain exist in the literature, there is substantially more uncertainty with regards to the scavenging from snow [START_REF] Slinn | Some approximations for the wet and dry removal of particles and gases from the atmosphere[END_REF]. Recent parameterizations of below-cloud scavenging in the non-WRF version of FLEXPART recommend applying an empirical fit to a set of snow scavenging rates measured in southern Finland [START_REF] Kyrö | Snow scavenging of ultrafi ne particles: field measurements and parameterization[END_REF][START_REF] Grythe | A new aerosol wet removal scheme for the Lagrangian particle model FLEXPART v10[END_REF]. However, this parameterization doesn't explicitly account for increases in scavenging with increasing snow intensity. We observed that the differences in scavenging rates [START_REF] Kyrö | Snow scavenging of ultrafi ne particles: field measurements and parameterization[END_REF] observed across the particle size spectra were small compared to the difference in median snow scavenging rates they observed between their median observed snow intensity (0.2 mm hr -1 ) and peak snow intensity (5 mm hr -1 ). We used the median scavenging rates and snow intensity values they reported to estimate the following scavenging coefficients for snow: A = 4×10 -5 and B = 0.43. For reference, the typical values used by FLEXPART-WRF for rain are 5×10 -6 and 0.62, respectively. Together with the dry deposition velocity, the mass concentration loss rate could be described at any point in the simulation by the following:

dm dt = - ( v d h + Λ ) m ( 2 
)
where m is the mass of the particle, v d is the dry deposition velocity, and h was the height of the layer in which dry deposition occurred (30 m a.s.l.).

In reverse mode, FLEXPART-WRF calculated the residence time of the particles within the lowest 100 m of the atmosphere. The residence time calculation was weighted by the local air density and the residual mass of the particles within the grid-cell. The weighted residence time was normalized by the initial mass of the particles such that the resulting residence time accounted for losses from wet and dry deposition as described above. Finally, FLEXPART-WRF integrated the weighted residence time over the duration of the meteorological time-step for each grid-cell of the AMPS domain.

Quantifying the contribution of sea spray

Previous studies have shown that in pristine marine environments, the contribution of SSPs to the number concentration size spectra can be characterized by a single log-normal number concentration size distribution [START_REF] Modini | Primary marine aerosol-cloud interactions off the coast of California[END_REF][START_REF] Quinn | Small fraction of marine cloud condensation nuclei made up of sea spray aerosol[END_REF]. Distributions derived from this method have been shown to agree well with number concentration size spectra measured during laboratory wave-breaking experiments and the "canonical sea spray size distribution" derived from other studies [START_REF] Prather | Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol[END_REF][START_REF] Lewis | Sea salt aerosol production: Mechanisms, methods, measurements and models -a critical review[END_REF]. This also agrees with the mass composition of the particles measured in the Southern Ocean boundary layer during the ACE-1 campaign, which found that particles larger than 0.3 µm were composed almost entirely of sea-salt [START_REF] Murphy | Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer[END_REF]. We applied this methodology to our own measurements of the number concentration size spectra from the PCASP-100X; i.e. we fit a number concentration size spectra, dn(d log D p ) -1 , of the following form:

dn d log D p = N √ 2π log(σ g ) exp   - log 2 ( Dp Dp,g ) 2 log 2 (σ g )   (3) 
where D p is the particle diameter, N is the total number concentration of particles, D p,g is the geometric mean diameter of the distribution, and σ g is the geometric standard deviation of the distribution. After fitting, the retrieved spectra were corrected to a relative humidity of 80% (Gerber, 1985). In the process of fitting, the geometric standard deviation (σ g ) of the mode was fixed to a value of 2, which best fit our data. While [START_REF] Modini | Primary marine aerosol-cloud interactions off the coast of California[END_REF] and [START_REF] Quinn | Small fraction of marine cloud condensation nuclei made up of sea spray aerosol[END_REF] allowed σ g to freely vary in their regression analysis, the variance-covariance matrix from our regression indicated that the resulting parameters were significantly correlated, since the data very weakly constrained σ g .

To calculate the total number concentration of sea spray from the FLEXPART-WRF residence time, we assumed that the surface flux of SSPs also followed a log-normal distribution:

∂f ∂ log D p = F √ 2π log(σ g ) exp   - log 2 ( Dp Dp,g ) 2 log 2 (σ g )   ( 4 
)
where f is the partial particle flux in m -2 s -1 , F is the total particle flux in m -2

s -1 , and D p is the particle diameter.

The most widely used empirical approach for constraining the particle flux from the ocean surface is the "whitecap method". It results from the following assumptions: first, that the total flux of particles entering the atmosphere from the ocean surface can be determined from the fractional surface coverage of whitecaps, W ("whitecap fraction"); second, that the whitecap fraction can be adequately determined from the 10 m scalar wind speed over the ocean, U 10 ; and third, that the shape of the SSP size distribution is not a function of wind speed. Laboratory and field experiments have shown that all of these assumptions are reasonable [START_REF] Monahan | Optimal power-law description of oceanic whitecap coverage dependence on wind speed[END_REF][START_REF] Monahan | A model of marine aerosol generation via whitecaps and wave disruption[END_REF]. Hence, the total number of particles entering the atmosphere, F , can be predicted from just the 10 m wind speed,

U 10 : F = E τ W (U 10 ) F = αW (U 10 ) (5)
where W is a function that models how the surface coverage of whitecaps increases as a function of wind speed, E is the number of particles produced per whitecap, and τ is the lifetime of the whitecaps. Since we can only hope to constrain one constant pre-factor, we combine both E and τ into a single parameter α, which we assume to be constant. Historically, the whitecap function W has been assumed to be a simple power-law, based on early field observations of whitecap formation [START_REF] Monahan | Oceanic whitecaps[END_REF]). However, it has since been well-established that whitecaps do not form in the open ocean until the 10 m wind speed exceeds 3-4 m s -1 , which is a feature that cannot be described by a power-law model (A. [START_REF] Callaghan | Relationship of oceanic whitecap coverage to wind speed and wind history[END_REF][START_REF] Schwendeman | Observations of whitecap coverage and the relation to wind stress, wave slope, and turbulent dissipation[END_REF][START_REF] Bell | Estimation of bubble-mediated air-sea gas exchange from concurrent DMS and CO 2 transfer velocities at intermediate-high wind speeds[END_REF]. We considered three other wind-dependent models of the surface flux that incorporated a threshold wind speed below which very few SSPs are produced:

W P L = a 1 U 10 a2 W C (U 10 ) = { b 1 (U 10 -b 2 ) 3 , U 10 ≥ b 2 0, U 10 < b 2 W F (U 10 ) = 1 -Φ ( c 1 √ U 10 ) W LLP L (U 10 ) = d 1 U 10 d2 1 + ( U10 d3
) -d4 (1983), who developed a model of whitecap production based on a fetch dependent threshold for wave breaking. While the work of [START_REF] Xu | Probability of wave breaking and whitecap coverage in a fetch-limited sea[END_REF] showed that the whitecap fraction could be fully determined from the model of [START_REF] Snyder | On the formation of whitecaps by a threshold mechanism. part i:. basic formalism[END_REF] if both the wind speed and fetch were known, the fetch was typically unlimited throughout our observation period. In high fetch regimes, the coverage of whitecaps is only very weakly dependent on variations in fetch [START_REF] Piazzola | A sea spray generation function for fetch-limited conditions[END_REF]. As a result, we treated c 1 , which is a function of the fetch, as a free parameter to be determined through regression, since a single value should accurately describe the data. The last function, W LLP L ('LLPL' = 'Log-Logistic Power-Law') combined the power-law with a log-logistic curve to emulate the threshold mechanism. While W P L , W C and W LLP L predict that the surface flux will continue increasing as a function of wind speed, the Fetch model (W F ) is the only model which predicts that there exists an upper bound on the particle flux at high wind speeds.

There has also been some debate as to how the temperature of the sea water might moderate whitecap formation [START_REF] Mårtensson | Laboratory simulations and parameterization of the primary marine aerosol production[END_REF][START_REF] Sellegri | Surfactants and submicron sea spray generation[END_REF][START_REF] Jaeglé | Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations[END_REF][START_REF] Zábori | Wintertime Arctic Ocean sea water properties and primary marine aerosol concentrations[END_REF][START_REF] Callaghan | The effect of water temperature on air entrainment, bubble plumes, and surface foam in a laboratory breaking-wave analog[END_REF][START_REF] Grythe | A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements[END_REF]. This was tested directly with SST data from NCEP, which was available from the AMPS forecasts. Thus, the model of surface flux was expanded to:

F = α(T w )W (U 10 ) α(T w ) = α 0 (1 + α 1 T w ) (7) 
where the coefficient α, which describes both the lifetime of the whitecaps and the number of particles produced per whitecap, is now a function of the SST, T w .

Note that, in reality, parameters α 0 and other scaling coefficients within W (e.g.

a 1 , b 1 , d 1
) cannot be determined independently, so they are combined into a single parameter for each regression (e.g. a * 1 = a 1 α). Finally, we assumed that the surface flux was well-mixed within the lowest atmospheric grid cell in FLEXPART-WRF, h = 100 m. Following these assumptions, the number concentration of particles in the SSP mode, N , was calculated according to:

Ni = 1 h 0 ∫ -t0 ∫ ∫ O F (1 -C ice ) dP i ( 8 
)
where t 0 was the length of the FLEXPART-WRF simulation, C ice was the fractional surface coverage of sea ice, O denotes that the integral was only integrated over oceans, and P i was the map of footprint residence times for the observation i.

A non-linear least-squares regression analysis optimized the set of parameters for each surface flux model, W , being tested. Parameter optimization was achieved with the Gauss-Newton algorithm, where the goodness-of-fit was measured by the Nash-Sutcliffe model efficiency coefficient (NSE):

N SE = 1 - m ∑ i=1 ( N i -Ni ) 2 m ∑ i=1 ( N i -N ) 2 (9)
where m was the total number of observations and N represents the average of every measurement of N i within the dataset [START_REF] Nash | River flow forecasting through conceptual models part i -a discussion of principles[END_REF]. To account for differences between the number of parameters between models, we also calculated the Akaike Information Criterion (AIC), which penalized models with more parameters [START_REF] Akaike | A new look at the statistical model identification[END_REF]:

AIC = 2k + m log ( 1 m m ∑ i=1 ( N i -Ni ) 2 ) ( 10 
)
where k was the total number of parameters for a given model. The best model of surface flux was the model which minimized the AIC.

Results

Comparisons Between Surface Meteorological Measurements and Model Forecasts

To demonstrate that the transport simulations produced a meaningful link where R • represents the circular correlation coefficient (Fisher & Lee, 1986).

Despite the good agreement we found between the measured and forecast winds, there was no spatio-temporal correlation between the rain-equivalent snow rate measured aboard the R/V Tangaroa and the precipitation fields forecast by AMPS. However, the climatological distribution of the rain-equivalent snow rate was at least consistent between measurements and forecasts. This suggests that even if precipitation was not spatially consistent with our observations, it was at least as frequent, and of the right intensity within the AMPS forecasts. While comparing localized, discrete events like precipitation can be challenging, even comparing our measurements to grid cells within 100 km and within 6 hours of the R/V Tangaroa measurements did not produce a significant correlation.

Source-Receptor Modeling

In Fig. 2a we show the cumulative five-day, near-surface, residence time for all of the source-receptor simulations described in Section 2.2. The track of the R/V Tangaroa throughout the voyage has also been shown for reference. As expected, the near-surface residence time was greatest near the R/V Tangaroa. This indicated that our measurements were most sensitive to surface fluxes near the ship.

To understand how dry deposition might govern the concentration of SSPs, we also ran several FLEXPART-WRF simulations in which the dry deposition velocity was set to a fixed rate. However, the consistent turbulence of the atmosphere over the Southern Ocean meant that the simulated particles were often very evenly dispersed throughout the boundary layer. As a result, dry deposition was severely limited throughout all of the simulations. Predicted surface flux sensitivities within these simulations only began to diverge after 1-2 days had elapsed in simulation time; however, by then the residence time was typically less than 5% of what it was near the ship. Hence, dry deposition was not a strong factor controlling the concentration of SSPs.

It was evident from Fig. 2a, however, that our observations near the Ross Ice shelf were sensitive to non-marine sources. The fraction of the time the particles spent above non-marine surfaces throughout their five-day simulations increased rapidly as the R/V Tangaroa approached Cape Adare, Antarctica. Throughout this period we observed strong, southerly winds, which brought continental, Antarctic air
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Feb. 09 Feb. 13 Feb. 17 across the Ross Ice Shelf. Intrusions of continental air into the MBL are a common phenomenon within the region [START_REF] Coggins | Synoptic climatology of the Ross Ice Shelf and Ross Sea region of Antarctica: k-means clustering and validation[END_REF][START_REF] Coggins | The influence of the Amundsen Sea low on the winds in the Ross Sea and surroundings: Insights from a synoptic climatology[END_REF].

Near the end of the observation period, after March 18 th , 2018, the source-receptor simulations showed that our measurements were also sensitive to surface fluxes from the South Island of New Zealand. This was a direct result of the strong northerlies we observed throughout our return transect.

As we identified in Section 3.1, the rain-equivalent snow rates forecast by AMPS were not well-correlated with snowfall intensity measured onboard the R/V

Tangaroa. While the frequency of occurrence of these events seemed consistent, it is important to note that the wet deposition scheme used by FLEXPART-WRF implicitly assumed that in-cloud activation events only occurred within a precipitating cloud. Hence, the frequency of in-cloud scavenging events was almost certainly under-estimated within the source-receptor simulations. As [START_REF] Hertel | Development and testing of a new variable scale air pollution model-ACDEP[END_REF] note, the magnitude of the loss of particles to in-cloud activation is almost always greater than either below-cloud scavenging or dry deposition. In fact, an activation event is always strong enough to terminate a particle trajectory within FLEXPART-WRF. Therefore, it was expected that the source-receptor modeling vastly overestimated the near surface residence time by continuing to advect particles that should have been completely scavenged by cloud. However, a lack of boundary layer cloud within the simulation did not stem from this issue alone. It has been well-established that there is currently a large shortwave radiation bias over the Southern Ocean [START_REF] Bodas-Salcedo | Origins of the solar radiation biases over the Southern Ocean in CFMIP2 models[END_REF]. Observations of cloud base height from radiosondes and ceilometer measurements throughout this same voyage showed that the shortwave radiation bias is related to the lack of low-level cloud and fog predicted within atmospheric models [START_REF] Kuma | Evaluation of Southern Ocean cloud in the HadGEM3 general circulation model and MERRA-2 reanalysis using shipbased observations[END_REF]. Therefore, it is reasonable to expect that even with an improved in-cloud activation scheme (e.g. Grythe et al. ( 2017)), FLEXPART-WRF still would have under-estimated the frequency of droplet activation events. This would have a substantial impact on our source- to 80% relative humidity (Gerber, 1985). Number concentrations for particles larger than 0.5 µm were used to constrain a single log-normal number concentration size distribution ("SSP mode"). This method has been used by other researchers (e.g. [START_REF] Modini | Primary marine aerosol-cloud interactions off the coast of California[END_REF] and Quinn et al. ( 2017)) to constrain the contribution of SSPs to the total number concentration size spectra.

The Aitken and accumulation modes are shown for reference.

receptor calculations, resulting in significantly less ocean surface area contributing to the integral in Eq. (8). To visualize this effect, we have also shown the cumulative near surface residence time for a two-day simulation in Fig. 2b, instead of the five-day simulation shown in Fig. 2a. This is addressed further in Section 3.4.

Number Concentrations of Sea Spray

In Fig. 3 we show an example modal analysis of a number concentration size spectrum measured by the PCASP-100X and DMPS aboard the R/V Tangaroa. The size spectra were used to constrain three log-normal "modes" which represented the entire size distribution. The largest of these modes, the SSP mode, is so-named as it has been shown to be comprised almost solely of SSPs [START_REF] Modini | Primary marine aerosol-cloud interactions off the coast of California[END_REF][START_REF] Quinn | Small fraction of marine cloud condensation nuclei made up of sea spray aerosol[END_REF]. At each hour of observation throughout the voyage we constrained the SSP mode from the spectral measurements shown in Fig. 3, resulting in the time series of the total number concentration of SSPs shown in Fig. 4. In general it was sufficient to constrain the SSP mode from just the PCASP-100X measurements, so the measurements from the DMPS were not used in this study, but are shown for reference. Throughout the entire voyage, we observed the median and standard deviation of the geometric mean diameter of the SSP mode to be 0.4 ± 0.05 µm at a relative humidity of 80%. This agreed well with the observations of [START_REF] Quinn | Small fraction of marine cloud condensation nuclei made up of sea spray aerosol[END_REF] in the Southern Ocean. This also agreed with the median dry diameter of SSPs measured from laboratory generated waves, 140-200 nm [START_REF] Prather | Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol[END_REF], since SSPs are twice as large at 80% relative humidity compared to dry conditions (Gerber, 1985).

(a) In Fig. 4a, the total number concentrations of SSPs and the 10 m scalar wind speeds measured are shown from the beginning of the voyage, February 9 th , 2018, until March 18 th , 2018. Throughout the voyage, there were several periods when either fog or precipitation was observed at the ship. As expected, fog very efficiently scavenged the particles in the SSP mode through droplet activation processes, much more so than precipitation. However, the lack of observed particles during such events meant that the SSP mode could not be constrained. This is particularly evident around March 5 th , 2018. In the last three days of the voyage, March 18 th -21 st , 2018, we encountered strong northerly winds along the coast of New Zealand, which transported terrestrial particles to the R/V Tangaroa. The addition of these non-SSPs resulted in number concentration size spectra from which the SSP mode could not be constrained. As a result, measurements when fog or precipitation was observed at the ship, or when there was a significant influence from New Zealand were excluded from the regression analysis presented in the following section.

In Fig. 4b we also show the 10 m wind speed throughout the same period of measurement. We observed that when winds were light (U 10 < 4 m s -1 ) the total number concentration of particles in the SSP mode was no more than 10 cm -3 , and had a median of 7 cm -3 . Light-wind periods (U 10 <4 m s -1 ) occurred 14% of the time in upwind conditions, as weighted by the near surface residence time. However, during a light-wind period on March 12 th , 2018, there appeared to be no particles at all. This agreed well with the transport modeling in Fig. 2, which showed that during all light-wind periods, except the period occurring on March 12 th , the particles had a significant near surface residence time over Antarctica. While the boundary layer over Antarctica is generally a very pristine environment, human activity from research stations near the Ross Ice shelf and exposed mountain faces both represent potential sources for the concentration of particles observed at low wind speeds. In the regression analysis that followed, the median concentration of SSPs observed at 11-15 took place on the following days, in order: Feb. 17 th , 18 th , 20 th , 21 st and 24 th , 2018. low wind speeds was removed from the observations (except for the period around March 12 th , 2018). After removing this background concentration, we calculated the hourly-averaged number concentration of particles in the SSP mode to be 9 cm -3 , with a maximum of 62 cm -3 .

In Fig. 5 we show the total number concentration of SSPs derived from the UHSAS number concentration size spectra onboard HIAPER. These measurements were taken over the course of several flights in February 2018 to illustrate the range of concentrations observed within each 1 km bin. The measurements within one kilometer of the Earth's surface were always determined to be below-cloud (if any cloud was present) and within the boundary layer. In contrast, all other bins were determined to be above cloud (if any cloud was present) and above the boundary layer. From Fig. 5 we can also identify that there was always at least 5-10 cm -3 of SSPs in the boundary layer, which is consistent with the measurements at low wind speeds on board the R/V Tangaroa. As expected, there were also very few SSPs above the cloud, indicating that nearly all of these particles had been consumed during cloud formation.

Regression Analysis

Predicted SSP concentrations can be obtained by integrating Eq. ( 8); however, we have already identified that particle losses from in-cloud scavenging represented the greatest uncertainty to our source-receptor modeling. To address this within the regression analysis we allowed the simulation length, t 0 , to vary as a free parameter within Eq. ( 8). In effect, this allowed the regression to estimate the return rate of a droplet activation event within a boundary layer cloud (e.g. fog or marine stratocumulus) or a significant precipitation event (>10 mm hr -1 ). Either of these events would have efficiently scavenged the particle, thereby terminating its trajectory. This approach is similar to the Statistical Wet Deposition method used by other researchers, which prescribes the length of time it takes a surface flux of particles to fully mix into the boundary layer after a precipitation event or cyclone (e.g. [START_REF] Ovadnevaite | A sea spray aerosol flux parameterization encapsulating wave state[END_REF]).

Table 1. The values listed in this table are the relative likelihood that a given parameterization of surface flux correctly predicted the observed number concentration of sea spray generated particles relative to the best parameterization. These values were calculated from the difference between the Aikake Information Criterion (AIC) of each parameterization and the AIC of the best parameterization (AIC b ) according to the following: exp(-0.5(AIC -AIC b )) [START_REF] Burnham | Model selection and multimodel inference[END_REF]. The AIC measures the log-likelihood that a given surface flux parameterization minimizes the residual sum of squares between predicted and observed concentrations while also penalizing parameterizations which include large numbers of parameters [START_REF] Akaike | A new look at the statistical model identification[END_REF]. See Eq (6) for parameterization definitions.

Surface Flux parameterization

W P L ‡ W C † W F § W LLP L † † F (U 10 ) <1×10 -3 <1×10 -3 1 0.2 F (U 10 , T w ) <1×10 -3 <1×10 -3 0.6 <1×10 -3 ‡ Power-Law; † Cubic; § Fetch; † † Log-Logistic Power-Law.
In Table 1 we have calculated the relative likelihood that a given surface flux parameterization fit the data as compared to the best parameterization, W F . We used the relative probabilities in Table 1 to compare two parameterizations: for instance, modelling the flux with W F and a function of sea surface temperature was only 60% as likely to optimally fit our data as using W F alone. We also found that regardless of the surface flux parameterization, the optimal simulation length, t 0 was 48 ± 3 hours. This is similar to the "filling time" [START_REF] Ovadnevaite | A sea spray aerosol flux parameterization encapsulating wave state[END_REF] used to characterize surface fluxes of SSPs from their measurements in the North Atlantic.

The filling time is a characteristic timescale used in the Statistical Wet Deposition Method for determining sea spray fluxes from a concentration time series [START_REF] Lewis | Sea salt aerosol production: Mechanisms, methods, measurements and models -a critical review[END_REF]). Definition of the filling time varies by author. In Ovadnevaite et al.

(2014), they interpret the filling time as "...the time between the cyclone formation and subsequent arrival to [the measurement location]" instead of "the time since the last precipitation event as considered in [START_REF] Lewis | Sea salt aerosol production: Mechanisms, methods, measurements and models -a critical review[END_REF]". The filling time we determined is consistent with the average time that elapsed between the passage of seven separate cyclones we encountered throughout March, 2018. These cyclones provided widespread high winds and boundary layer cloud, resulting in high fluxes, but relatively short lifetimes for any suspended particulate. Hence, our finding is consistent with the definition of filling time given by [START_REF] Ovadnevaite | A sea spray aerosol flux parameterization encapsulating wave state[END_REF].

According to the AIC, the best parameterization for the surface flux of SSPs, F , used the fetch parameterization for whitecaps, W F [START_REF] Snyder | On the formation of whitecaps by a threshold mechanism. part i:. basic formalism[END_REF][START_REF] Xu | Probability of wave breaking and whitecap coverage in a fetch-limited sea[END_REF]:

∂f ∂ log D p = F √ 2π log(2) exp   - log 2 ( Dp 0.4 ) 2 log 2 (2)   F = αW F (U 10 ) α = 3.6 × 10 7 W F (U 10 ) = 1 -Φ ( 6.5 √ U 10 ) (11)
where D p is the particle diameter in µm at a relative humidity of 80%. In Fig. 6a we show the model-measurement residuals for the best parameterization of surface flux. The model-measurement residuals have been color-coded according to the average SST. The average values of SST were weighted by the twoday, near-surface residence time. On average, the predicted concentrations did not appear to be biased positive or negative. However, a recent study by [START_REF] Jaeglé | Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations[END_REF] showed that particle fluxes may significantly depend on SST. Changes in SST result in changes to the water viscosity. This is thought to modify the length of time for the whitecap to dissipate, τ , which is part of the constant, α. Hence, in order to compare to their result, we fit a linear correction term for the constant α presented in Eq. ( 11) as a function of the SST, T w , finding:

α(T w ) = 3.6 × 10 7 (1 + 0.024T w ) (12) 
The model-measurement residuals of the temperature-corrected parameterization, are shown in Fig. 6b. From Table 1 we can see that this did not substantially improve model fidelity. In both Figs. 6a andb we have also shown the modelmeasurement pairs for the SOCRATES observations within the boundary layer.

Since these measurements were not included within the regression framework, the good agreement in both of these figures provides a measure of confidence that Eq. ( 11) produces reasonable results within the Southern Ocean region.

In Fig. 7a we show the predicted flux of SSPs from each of the models in Eq. ( 6) as a function of near-surface wind speed. The total particle flux predicted by [START_REF] Gong | A parameterization of sea-salt aerosol source function for suband super-micron particles[END_REF] has also been shown for reference. In Fig. 7b we have compared the linear function of SST we recovered from the regression analysis to the polynomial function fit by [START_REF] Jaeglé | Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations[END_REF]. We have shifted the values of the polynomial function so that it matches our linear function at T w = -2°C. The slope of our linear function predicts that SST is not as significant a control of SSP surface flux as shown by [START_REF] Jaeglé | Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations[END_REF]. This may be a result of the distribution of our mea- surements across different SST regimes since 78% of our observations were related to waters in a narrow temperature range (-2-0°C). Hence, there would be little improvement to either the NSE or AIC for these samples. Still, as shown in Fig. 7b, the bias correction curve presented by [START_REF] Jaeglé | Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations[END_REF] is clearly outside of the uncertainty bounds for the modest temperature dependence we observe within our dataset.

Finally, we compared the Nash-Sutcliffe model efficiency coefficient (NSE) for the best parameterization we found within our regression framework to two different parameterizations of SSP surface flux. The NSE is generally equivalent to R 2 , but can also become negative when the average observed concentration provides a better fit to the data than the proposed parameterization. From Table 2 it is clear that Eq. ( 11) predicted concentrations of SSPs that were more consistent with our observations than predictions from either the [START_REF] Gong | A parameterization of sea-salt aerosol source function for suband super-micron particles[END_REF] or the [START_REF] Jaeglé | Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations[END_REF] parameterizations. Comparisons showed that the [START_REF] Gong | A parameterization of sea-salt aerosol source function for suband super-micron particles[END_REF] parameterization produced too many SSPs at all wind speeds.

For reference, we also performed the regression for the entire five-day simulation. In all of the parameterizations presented, the NSE decreased significantly for the longer simulation, consistent with our hypothesis that in-cloud droplet activation was not accurately simulated. In addition, surface fluxes predicted by W F when constrained by the five-day simulations were strictly smaller than surface fluxes predicted by W F when constrained by the two-day simulations, for all wind speeds. Therefore, our finding that the parameterization of [START_REF] Gong | A parameterization of sea-salt aerosol source function for suband super-micron particles[END_REF] over-predicted the surface flux of SSPs was robust.

Meta-Analysis of Whitecap Data

In order to assess the conditions under which the parameterization presented above may be applicable, we analyzed global whitecap data from the literature. In Table 2. The Nash-Sutcliffe model efficiency coefficient between the number concentration of SSPs predicted by a given surface flux parameterization and the observation conducted aboard the R/V Tangaroa. The time, t0, is the length of time for which the Lagrangian particle dispersion parameterization simulated the movement of SSPs back in time. A negative value for the NSE implied that the mean of the observations was better at predicting the observed variance than the given parameterization, whereas a value of 1 would imply a perfect model-measurement fit.

Surface Flux parameterization NSE (t 0 = 48 hours) NSE (t 0 = 120 hours) [START_REF] Gong | A parameterization of sea-salt aerosol source function for suband super-micron particles[END_REF] <0 <0 [START_REF] Jaeglé | Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations[END_REF] 0.22 <0 Eq. ( 11) 0.67 0.52 Fig. 8b we have amalgamated 527 in situ ship-borne and tower observations of the surface coverage of whitecaps as a function of the 10 m wind speed, U 10 [START_REF] Xu | Probability of wave breaking and whitecap coverage in a fetch-limited sea[END_REF][START_REF] Stramska | Observations of oceanic whitecaps in the north polar waters of the atlantic[END_REF][START_REF] Sugihara | Variation of whitecap coverage with wave-field conditions[END_REF][START_REF] Callaghan | Relationship of oceanic whitecap coverage to wind speed and wind history[END_REF][START_REF] Norris | Near-surface measurements of sea spray aerosol production over whitecaps in the open ocean[END_REF][START_REF] Schwendeman | Observations of whitecap coverage and the relation to wind stress, wave slope, and turbulent dissipation[END_REF][START_REF] Bell | Estimation of bubble-mediated air-sea gas exchange from concurrent DMS and CO 2 transfer velocities at intermediate-high wind speeds[END_REF][START_REF] Brumer | Whitecap coverage dependence on wind and wave statistics as observed during so gasex and hiwings[END_REF][START_REF] Jia | The influence of wind speed and sea states on whitecap coverage[END_REF]. Studies published after the year 2000 were used since they all employed some form of automated image processing. This meant that each whitecap measurement was a result of >10 2 images, a necessary minimum to have a convergent mean (A. H. [START_REF] Callaghan | Automated processing of sea surface images for the determination of whitecap coverage[END_REF]. The spatial coverage of these studies is shown in Fig. 8a, indicating that there is a good degree of coverage across surface temperature regimes within the database. In Fig. 8b we have shown three parameterizations for the whitecap coverage from the literature overlying the in situ measurements [START_REF] Monahan | Optimal power-law description of oceanic whitecap coverage dependence on wind speed[END_REF][START_REF] Callaghan | Relationship of oceanic whitecap coverage to wind speed and wind history[END_REF][START_REF] Hwang | High-wind drag coefficient and whitecap coverage derived from microwave radiometer observations in tropical cyclones[END_REF]. We used the AIC to compare the existing parameterizations shown in Fig. 8b to the fetch model, which was fit to the data via non-linear least-squares regression. We found that the fetch model for whitecap development captured the variability in the database best, with the relative likelihood that the other models accurately captured the variability being <10 -3 . It also did so with a continuous function, whereas the other models were piece-wise. The best fit for the whitecap data was as follows:
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W F = 1 -Φ ( 6.2 √ U 10 ) (13) 
We also sought to validate the dependence of SSP fluxes on SST. However, SST data within the works cited were either not included or simply summarized as a range of values encountered. Still, most voyages made their measurements within a fairly narrow SST band. Hence, we could test whether or not there was any dependence by using a voyage-average SST for each study. Using the AIC as a measure of the goodness of fit, we found that SST did not improve the regression. This is evident by visually comparing the observations of [START_REF] Jia | The influence of wind speed and sea states on whitecap coverage[END_REF], which took place in extremely warm seas (T w ∼28°C), to the rest of the data points.

Discussion

Meteorological Measurements

In the previous section, we presented total number concentrations of SSPs within the Southern Ocean marine boundary layer as measured from two separate measurement platforms. These were compared to estimations of the total number concentration of SSPs derived from a source-receptor analysis. To assess the validity of the meteorological fields used within the source-receptor analysis, we compared the near-surface winds forecast by AMPS to our observations aboard the R/V Tangaroa. We found that the near-surface winds forecast by AMPS compared favorably to our observed winds with respect to both magnitude and direction. Previous studies have found large biases between AMPS forecasts and the true, local winds over the complex coastal topography of the Antarctic coastline [START_REF] Bromwich | Realtime forecasting for the Antarctic: An evaluation of the Antarctic Mesoscale Prediction System (AMPS)[END_REF][START_REF] Jolly | A validation of the Antarctic mesoscale prediction system using self-organizing maps and high-density observations from SNOWWEB[END_REF]. However, ocean waves have much less surface roughness in comparison to the coastal topography of Antarctica, which would suggest that this may not be as substantial an issue over the ocean.

While the precipitation fields forecast by AMPS did not correlate well with our measurements, the climatological distribution of precipitation events within AMPS was consistent with our observations. However, within FLEXPART-WRF a lack of precipitation "trickled up" to the cloud layer: in the current version of FLEXPART-WRF, clouds are only present within a simulation if they are precipitating. As a result, scavenging of SSPs from in-cloud activation was likely poorly modeled within the AMPS-FLEXPART-WRF framework. As our own observational record showed, SSPs were strongly scavenged by boundary layer cloud (e.g. fog), particularly through February 15-17 th and March 4-6 th , 2018. It is useful, however, to recall that clouds over the Southern Ocean are not very well represented within modern atmospheric models [START_REF] Trenberth | Simulation of present-day and twentyfirst-century energy budgets of the Southern Oceans[END_REF]Schuddeboom et al., 2019). Current era atmospheric models systematically under-predict the amount of low-lying cloud and fog relative to the true cloud observed over the Southern Ocean [START_REF] Kuma | Evaluation of Southern Ocean cloud in the HadGEM3 general circulation model and MERRA-2 reanalysis using shipbased observations[END_REF]. Hence, even if a state-of-the-art microphysical parameterization of in-cloud scavenging had been present in FLEXPART-WRF, it is likely that the scavenging of sea spray still would have been under-estimated.

Source-Receptor Modelling

Once we had established that there was a missing sink of sea spray within our source-receptor framework, it was necessary to decouple this sink from each of the parameterizations of surface flux we tested within the regression analysis. This was accomplished by allowing the simulation length to vary as a free parameter within the regression analysis. The simulation length can be interpreted as the average length of time since a boundary layer in-cloud activation event (e.g. fog or lowcloud). From Table 2 it is evident that our observations were better reproduced for a fixed simulation length of two days, rather than the five days originally simulated.

This agreed well with the "filling time" of 1.5-2 days used by [START_REF] Ovadnevaite | A sea spray aerosol flux parameterization encapsulating wave state[END_REF] to constrain the surface flux of sea spray in the North Atlantic. While setting a voyage-wide simulation time may have been a gross approximation, it was likely the only approach in light of the present systematic cloud biases over the Southern Ocean.

Regression Analysis

By constraining the missing sink of sea spray within our model framework, we could finally compare how well the near-surface wind speed and SST predicted our observational record. We found that the fetch parameterization presented by [START_REF] Xu | Probability of wave breaking and whitecap coverage in a fetch-limited sea[END_REF] and [START_REF] Snyder | On the formation of whitecaps by a threshold mechanism. part i:. basic formalism[END_REF] performed the best in our comparison as measured by the Nash-Sutcliffe model efficiency coefficient, NSE, and the Akaike Information Criterion, AIC. The parameterization, W F , is so-named since the parameter c 1 is a function of the fetch. In our analysis we have assumed that this parameter was constant, since fetch does not significantly influence the degree of whitecapping in open seas [START_REF] Hsu | A mechanism for the increase of wind stress (drag) coefficient with wind speed over water surfaces: A parametric model[END_REF][START_REF] Piazzola | A sea spray generation function for fetch-limited conditions[END_REF]. Later, when we performed a similar regression analysis with a database of whitecap coverage observations, we found a slightly smaller value for c 1 . When we compared Eq. ( 11)

to Eq. ( 13), we found that c 1 retrieved from the whitecap regression was 6.2 ± 0.2, which was consistent with the value of 6.5 ± 0.2 we retrieved from the SSP regression. The sensitivity of W F means that Eq. ( 11) will under-estimate whitecap coverage globally and subsequently result in under-estimations of sea spray fluxes.

However, we can compare to the value for c 1 retrieved when we only consider Southern Ocean whitecap data from [START_REF] Brumer | Whitecap coverage dependence on wind and wave statistics as observed during so gasex and hiwings[END_REF] (c 1 = 6.4 ± 0.1). Combined with the goodness of fit to the SOCRATES data (Fig. 7a), this provides a secondary measure of validation for the parameterization over the Southern Ocean. We can only conclude that for a global study, a value for c 1 of 6.2 may be more appropriate.

For Southern Ocean specific studies a value for c 1 of 6.5 should be used.

Finally, we compared results from two other parameterizations for the surface flux of SSPs to our observations. We found that neither the [START_REF] Jaeglé | Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations[END_REF] nor the [START_REF] Gong | A parameterization of sea-salt aerosol source function for suband super-micron particles[END_REF] parameterization could predict the concentration of SSPs we observed over the Southern Ocean as well as Eq. ( 11). This is connected to how the [START_REF] Gong | A parameterization of sea-salt aerosol source function for suband super-micron particles[END_REF] parameterization (which Jaeglé et al. (2011) re-scaled) scales the surface flux of SSPs with increasing wind speed. Within this parameterization, the scaling is estimated via a power-law relationship between the surface coverage of whitecaps and near-surface wind speed [START_REF] Monahan | Optimal power-law description of oceanic whitecap coverage dependence on wind speed[END_REF].

However, as we show in Fig. 8b, the parameterization presented by [START_REF] Monahan | Optimal power-law description of oceanic whitecap coverage dependence on wind speed[END_REF] results in consistent over-estimations of the whitecap coverage. These over-estimations propagate through the SSP flux parameterization of [START_REF] Gong | A parameterization of sea-salt aerosol source function for suband super-micron particles[END_REF] and lead to the over-estimations in concentrations we observe. In addition, the power-law predicts that there will always be a flux of sea spray from the ocean surface, despite it being well-established that whitecaps do not form until the wind speed over the ocean exceeds 3-4 m s -1 . Even the re-scaled [START_REF] Gong | A parameterization of sea-salt aerosol source function for suband super-micron particles[END_REF] parameterization presented in [START_REF] Jaeglé | Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations[END_REF] did not match our observations well, either.

The Effect of Sea Surface Temperature

To understand differences between whitecapping in different regions, previous research has focused on wave parameters and SST. As [START_REF] Sugihara | Variation of whitecap coverage with wave-field conditions[END_REF] and

Goddijn [START_REF] Goddijn-Murphy | Parameterizations and algorithms for oceanic whitecap coverage[END_REF] have shown, there is a marked difference between observations of whitecaps in a pure windsea vs. a swell dominated sea. Indeed, when we fit W F to the whitecap data from [START_REF] Sugihara | Variation of whitecap coverage with wave-field conditions[END_REF] we retrieved a value for c 1 of 6.1 ± 0.1 in a pure windsea (indicating higher spatial coverage of whitecapping) compared to 6.7 ± 0.1 when the winds were following swell or counter swell (indicating lower spatial coverage of whitecapping). This could potentially explain the difference between the value of c 1 we retrieved from our measurements and the one retrieved from the entire whitecap database. However, conversely, in a satellite-derived whitecap database, [START_REF] Albert | Parameterization of oceanic whitecap fraction based on satellite observations[END_REF] found that whitecaps were not dependent on wave parameters, but were actually modestly dependent on SST.

They noted that the lack of dependence on wave parameters may have been a result of using wind history as a proxy for wave age and spatial averaging. However, we found that there was no dependence on SST within the database of in situ whitecap observations.

Of course, even if SST does not affect the fractional coverage of whitecaps, it can still affect the surface flux of particles through changes to viscosity. Results from laboratory studies are mixed: while two studies have clearly shown that the surface flux of sea spray should increase in warmer waters [START_REF] Mårtensson | Laboratory simulations and parameterization of the primary marine aerosol production[END_REF][START_REF] Sellegri | Surfactants and submicron sea spray generation[END_REF], others found that that differences in seawater composition (A. H. [START_REF] Callaghan | The effect of water temperature on air entrainment, bubble plumes, and surface foam in a laboratory breaking-wave analog[END_REF] and wave characteristics (A. H. [START_REF] Callaghan | Observed variation in the decay time of oceanic whitecap foam[END_REF]) could be much more important. Other laboratory results have even shown that increases in water temperature led to decreases in sea spray fluxes [START_REF] Zábori | Wintertime Arctic Ocean sea water properties and primary marine aerosol concentrations[END_REF]. To test whether or not changes in SST affected our own observations, we used SST as a second independent variable within the regression analysis. We found that the impact to the model-measurement fit was more modest than predicted by [START_REF] Jaeglé | Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations[END_REF] (see Fig. 7b), and that the parameterization which only used wind speed (Eq. ( 11)) performed just as well. As we noted, this may have been a

result of making observations in a very narrow range of SSTs, which would result in very small changes to the regression metrics we analyzed. However, from Fig. 6b we can see that the model-measurement residuals don't appear to be significantly biased from the 1:1 line at warm temperatures.

Ultimately, we should be cautious when implementing temperature correction functions for SSP fluxes. Consider that field observations have already clearly shown that the presence of swell inhibits the surface fraction of whitecaps for a given wind speed [START_REF] Sugihara | Variation of whitecap coverage with wave-field conditions[END_REF]. Hence, global climatologies of swell could potentially explain the latitudinal trends in SSP flux expected by [START_REF] Jaeglé | Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations[END_REF]: swell rarely occurs in the tropics (where fluxes are expected to be higher), whereas swell frequently is present at high latitudes (where fluxes are expected to be lower) [START_REF] Jiang | A global view on the swell and wind sea climate by the jason-1 mission: A revisit[END_REF]). As a result, the resulting bias correction curve [START_REF] Jaeglé | Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations[END_REF] derived from in situ and satellite observations of aerosol may be partially dependent on the presence (or absence) of swell. Yet, the curve attributed the latitudinal variations in flux necessary to fit their observations completely to variations in SST. Our own observations, which were made exclusively in the presence of swell, showed that the dependence of SSP fluxes on SST was much weaker than anticipated by [START_REF] Jaeglé | Global distribution of sea salt aerosols: new constraints from in situ and remote sensing observations[END_REF], leading to a very negligible effect on model performance. We conclude that a more comprehensive global study of sea spray which fully controls for upwind wave and SST conditions is needed in order to decouple these two effects. In the interim, models should be cautious in implementing functions which could potentially over-exaggerate radiative feedback loops.

The Direct Radiative Effect

As the goal of this study was to understand how SSPs might influence the local radiation budget, it would be useful to evaluate whether or not changes to the parameterization of SSP fluxes result in substantial changes within existing climatechemistry models (CCMs). A recent study comparing the winter-time AOD over the Southern Ocean found that current era parameterizations (e.g. [START_REF] Gong | A parameterization of sea-salt aerosol source function for suband super-micron particles[END_REF])

of sea spray within a climate-chemistry model (CCM) resulted in over-estimations of the AOD relative to satellite observations [START_REF] Revell | The sensitivity of Southern Ocean aerosols and cloud microphysics to sea spray and sulfate aerosol production in the HadGEM3-GA7.1 chemistry-climate model[END_REF]. However, in the austral summer, the opposite was observed: namely, a lack of particles formed from the nucleation of sulfate-gasses resulted in under-estimates of AOD. Within this same study, the parameterization of surface flux, W P L , was implemented within the CCM to better constrain the contribution of SSPs to the total particle population [START_REF] Revell | The sensitivity of Southern Ocean aerosols and cloud microphysics to sea spray and sulfate aerosol production in the HadGEM3-GA7.1 chemistry-climate model[END_REF]. While W P L was not the best function determined by this work, it was similar in form to the [START_REF] Gong | A parameterization of sea-salt aerosol source function for suband super-micron particles[END_REF] currently implemented within the CCM being studied, so it was an easy substitution. Since W P L had a Nash-Sutcliffe coefficient of 0.6 it also produced results that were consistent with Eq. ( 11). It is important to note that W P L was used to re-scale the size distribution of the [START_REF] Gong | A parameterization of sea-salt aerosol source function for suband super-micron particles[END_REF] parameterization, so any changes would be related to differences in the scaling function and not to differences between size distributions. Results conclusively showed that the more conservative estimates of the surface flux of SSPs generated by W P L completely removed the bias in winter-time AOD that was previously observed. Therefore, we are confident that the parameterization for the surface flux of SSPs presented in Eq. ( 11) will result in better predictions of the abundance of SSPs within the Southern Ocean region. More importantly, [START_REF] Revell | The sensitivity of Southern Ocean aerosols and cloud microphysics to sea spray and sulfate aerosol production in the HadGEM3-GA7.1 chemistry-climate model[END_REF] show that it helps disentangle the potential compensating errors in predicting the AOD for studies interested in the more complicated gas phase and aqueous phase chemistry which produces sulfate particles from volatile marine precursors like dimethylsulfide.

As we have emphasized throughout this study, the MBL over the Southern Ocean region is home to the strongest surface winds over open ocean on Earth (I. [START_REF] Young | Seasonal variability of the global ocean wind and wave climate[END_REF]. Surface winds also appear to be getting stronger: at Macquarie Island, winds have increased in intensity by 3 cm s -1 per year from 1973-2011, with satellite data showing that winds over the Ross Sea increased by 0.5-1% through 1991-2008 [START_REF] Hande | Observed trends in wind speed over the Southern Ocean[END_REF]I. R. Young et al., 2011). Within the Ross Sea region, this increase is related to the deepening of the Amundsen Sea low, an area of climatologically low pressure in the Southern Ocean which influences regional winds, sea-ice extent and temperature [START_REF] Coggins | The influence of the Amundsen Sea low on the winds in the Ross Sea and surroundings: Insights from a synoptic climatology[END_REF][START_REF] Raphael | The Amundsen Sea low: Variability, change, and impact on Antarctic climate[END_REF]. As we show throughout this study, sea spray has a highly non-linear relationship with wind speed. Given their large contribution to the CCN population (10-65%; Quinn et al. ( 2017)), AOD [START_REF] Murphy | Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer[END_REF][START_REF] Revell | The sensitivity of Southern Ocean aerosols and cloud microphysics to sea spray and sulfate aerosol production in the HadGEM3-GA7.1 chemistry-climate model[END_REF], and cloud phase [START_REF] Mccluskey | Observations of ice nucleating particles over Southern Ocean waters[END_REF] over the Southern Ocean, these particles can have a significant buffering effect on the local climate. We would therefore encourage future studies interested in climate projections for the Southern Ocean to make use of Eq. ( 11) when predicting the surface flux of sea spray generated particles.

Conclusions

In this study, we described and optimized an existing parameterization for the surface flux of sea spray generated particles (SSPs) based on the 10 m wind speed in Eq. ( 11). Within our regression framework we found that the dependence of SSP fluxes on SST was very weak in the temperature range of our observations (T w < 12 °C) and that it did not help to constrain additional variability in our data set. An external database of previously published whitecap observations was exploited to test the parameterization we used in this analysis and found no temperature dependence at all. While others have shown that temperature-dependent flux parameterizations seem to explain known latitudinal variations in SSP flux, the correction functions derived from such an analysis could potentially be a proxy for latitudinal variations in wave characteristics. Given the potential links between SSPs and the Southern Ocean radiation budget, we should be cautious to add feedback loops where none may exist.

Finally, the parameterization presented in this study is already being used to model the AOD and concentration of CCN in the region. Research has shown that the new parameterization vastly improved regional calculations of AOD, compared with previous parameterizations which over-predicted the surface flux of

  a x , b x , c x and d x and are empirical parameters determined from regression analysis with our observations, and Φ is the error function. The first function, W P L ('PL' = 'Power-Law'), is as previously introduced. The second function, W C ('C' = 'Cubic'), has been used to match more recent field observations of whitecaps (A. Callaghan et al., 2008; Schwendeman & Thomson, 2015)). The third function, W F ('F' = 'Fetch'), was based on the theoretical work of Snyder and Kennedy

  between the observations and surface fluxes, it was necessary to first validate the Antarctic Mesoscale Prediction System's meteorological fields against the record of observations from the Automated Weather Station (AWS) aboard the R/V Tangaroa. As described in the Section 2.1, the AWS measured wind speeds at 22.5 m, which were corrected to the 10 m reference height according to the COARE 3.5 bulk flux algorithms. The corrected wind speeds were compared to the 10 m wind speeds predicted by the AMPS forecasts by matching the location of the R/V Tangaroa to the nearest grid-cell within AMPS. This comparison is presented in Fig.1. The correlation coefficients calculated for both the wind speed (R = 0.81) and wind direction (R • = 0.78) between observations and forecasts were both significant (p<0.01),

Figure 1 .

 1 Figure 1. (a) The hourly 10 m scalar wind speeds from the AMPS forecasts were compared to the corrected wind speed (see Section 2.1) observed on the R/V Tangaroa. (b) The hourly 10 m wind direction.

Figure 2 .

 2 Figure 2. (a) A map of the cumulative near-surface residence time derived from FLEXPART-WRF particle dispersion simulations. The model simulated the transport of 1×10 5 0.2 µm particles in reverse time from the time of measurement to five days prior. The near-surface residence time is simply the total amount of time the particle spent below 100 m a.g.l. Within FLEXPART-WRF the transport of the particles was calculated according to meteorological forecasts from the Antarctic Mesoscale Prediction System (AMPS). (b) The same map, but now for a 48-hr. simulation. The colored line in both panels marks the track of the R/V Tangaroa throughout the voyage.

Figure 3 .

 3 Figure 3. Number concentration size spectra measured from the PCASP-100X (0.1-3µm) and the DMPS (0.02-0.3µm) on February 20 th , 2018 at 1300 UTC. Particle sizes have been corrected

1 )Figure 4 .

 14 Figure 4. (a) The average hourly number concentration of sea spray particles is shown for the entire campaign with periods of fog (RH>98%) or rain (>1 mm hr -1 ) marked by the shaded areas. (b) The hourly 10 m wind speed.

Figure 5 .

 5 Figure 5. The total number concentration of sea spray generated particles is shown as a function of altitude over the course of several flights aboard HIAPER, (RF 11-15). The ranges within each altitude bin show the minimum and maximum number concentration observed. Flights RF

  Predicted concentrations of sea spray generated particles from the best parameterization of surface flux are compared to measurements from two observation platforms: a PCASP-100X aboard the R/V Tangaroa and the UHSAS onboard HIAPER. The best parameterization for the surface flux, F , of these particles was a function of the wind speed over the ocean surface. Each model-measurement pair is colored according to the average SST, weighted by the near-surface residence time. (b) As in (a), but for a parameterization of surface flux which incorporated a linear function of SST in addition to the wind speed dependence.

Figure 7 .

 7 Figure 7. (a) The best parameterization of the total surface flux of sea spray generated particles, WF , is compared to calculations from the Gong (2003) parameterization. (b) The linear bias correction function found by the regression is compared to the function reported by Jaeglé et al. (2011), where their function has been shifted vertically to match the linear bias correction function at T = -2°C. The shaded region shows how uncertainty in the retrieved regression parameters propagated to prediction uncertainty.

Figure 8 .

 8 Figure 8. (a) The spatial extent of shipborne and tower whitecap observations within the database assembled for the whitecap meta-analysis. Studies where the coordinates of the observations were not specified all took place in the North Atlantic. (b) The fractional coverage of the sea surface by whitecaps as a function of 10 m wind speed.
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SSPs [START_REF] Revell | The sensitivity of Southern Ocean aerosols and cloud microphysics to sea spray and sulfate aerosol production in the HadGEM3-GA7.1 chemistry-climate model[END_REF]. We recommend that studies interested in aerosol-cloud interactions implement the parameterization as it has been shown to better constrain the contribution of SSPs to the CCN population.