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Axisymmetric Electromagnetic Wave Propagation
Computation Using the Constrained Interpolation

Profile Scheme with Large Time Steps
Jean Porto, Paul-Quentin Elias

Abstract—Conventional explicit time-domain methods used
to solve Maxwell’s equations are reliable and robust but are
conditionally stable and often require the fulfillment of the
condition CFL ≤ 1. While this is acceptable for many ap-
plications, in some instances where the Maxwell’s equations
are solved alongside systems with slower propagation velocities,
explicit methods prove costly. This is the case for non-relativistic
electromagnetic Particle-In-Cell methods which are required to
study plasma thrusters. Several algorithms have been proposed
to retain a nearly explicit formulation using large time steps to
achieve higher CFL values. Among these is the semi-Lagrangian
Constrained Interpolation Profile method. While the ability of
this method to handle CFL > 1 has been demonstrated for
planar 2D–3D cases, this has not been done for 2D cases with
cylindrical symmetry. In this paper, a procedure is presented to
compute the electromagnetic wave propagation in 2D domains
with cylindrical symmetry using the Constrained Interpolation
Profile (CIP) method. The CIP scheme is extended for CFL ≥ 1
cases, and a ghost node method is proposed to deal with the axis
singularity and with the wall boundary condition. The results are
compared to the fields of a Hertzian dipole and with a coaxial
cable, and they show a good agreement.

Index Terms—Constrained Interpolation Profile (CIP) method,
electromagnetic wave propagation, 2D cylindrical coordinate
system, Courant-Friedrichs-Lewy condition (CFL) condition.

I. INTRODUCTION

Finite-difference (FD) methods are one of the most extended
and successful techniques for computational electromagnetic
problems [1], [2]. One of the advanced techniques among
the finite-difference methods is a stable third-order accurate
and non-dissipative scheme initially developed in the field of
Computational Fluid Dynamics [3], known as the Constrained
Interpolation Profile (CIP) method. It is a semi-Lagrangian
scheme which circumvent the Courant-Friedrichs-Lewy (CFL)
stability condition [4], [5]. This feature allows computations
with CFL values ≥ 1.0, as can be seen in [6] and [7] where
the authors performed simulations using a CFL value of 2.6
in a Cartesian coordinate system. It considers not only the
electromagnetic fields, but also their spatial derivatives, there-
fore suppressing instabilities and providing lower numerical
dispersion even when using coarse grids and large time steps
[8]. It has been shown that it provides higher accuracy than the
conventional finite-difference time-domain (FDTD) method
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[9] under the condition of identical cell size [10]. A proof
of the weak stability of the scheme is presented in [11].

The CIP scheme was combined with the Method of Char-
acteristic (MoC) to get an accurate simulation of Maxwell’s
equations by Ogata et al. in 2006 [12]. Since then, several
research developments have been published around the use of
the CIP method for electromagnetics [13], [14]. Indeed, the
CIP method has several interesting features for the computa-
tion of electromagnetic fields in time domain, among them
its higher order means lower dispersion and lesser points
required per wavelength. It can be used with variable cell
sizes or subgridding techniques [15]. Finally, being a semi-
Lagrangian technique, it can be used with larger CFL numbers
than classical explicit FD techniques.

For the particular case of cylindrical systems, Tanaka et al.
[13] proposed a method to deal with the radial terms with the
CIP method. By considering that the computational domain
can be seen as a medium with radially varying impedance,
the characteristic variables can propagate radially with the
semi-Lagrangian method taking into account the transmission
and reflection of waves due to the impedance variation. We
have tested this procedure and it has proved to be accurate
for the treatment of electromagnetic problems in a cylindrical
configuration. However, the procedure described by Tanaka et
al. [13] is only limited to CFL ≤ 1.0.

The CIP scheme features, coupled to the capacity to get
accurate results in cylindrical coordinate systems, could be
an interesting tool for the simulation of plasma propulsion
devices as they can often be represented by an axisymmetric
configuration [16]–[18]. An electromagnetic solver for cylin-
drical simulations based on the CIP method would have the
advantages of updating the fields at the same grid location,
which simplifies its integration to the Particle-In-Cell codes
used to model these low pressure plasma sources [19], [20].
In addition, the characteristic form used in the CIP method
for electromagnetic computation offers an easy handling of
different types of boundary conditions such as a Perfectly
Matched Layer (PML) and conducting or dielectric surfaces.
Nevertheless, with the methodology described in [13], it will
still be limited by the CFL ≤ 1.0 condition.

In this paper we extend the results of Tanaka. et al. [13] to
get a version of the 2D cylindrical CIP scheme that could be
used with a CFL condition greater than one, thus providing a
mean to considerably speed-up the calculations. In addition,
we define a systematic strategy for the treatment of boundary
conditions with this extended approach, using ghost nodes



outside the computational domain to take into account the
singularity at the symmetry axis in a cylindrical coordinate
system and conducting surfaces.

To investigate the accuracy of the proposed scheme, we
compared its results with those obtained using analytical ex-
pressions [21] to describe a Hertzian dipole. Another compari-
son seeking to test the stability of our approach was performed
with the steady-state propagation of electromagnetic waves
inside an open-ended coaxial wave guide. In that case the
time-domain simulation with the CIP method is compared with
the result using the COMSOL Multiphysics ™ [22] software
based on a frequency-domain finite-element analysis.

The paper is organized as follows. The sections II-A and
II-B recall the main features of the CIP method adapted for
2D cylindrical systems. Then, section II-C extends the method
proposed in [13] for cases where CFL ≥ 1. Section II-D
provides a simple method to account of the axis singularity
and perfectly conducting boundaries in the frame of the CIP
method with CFL ≥ 1. Finally, section III considers two tests
cases for the validation of the proposed method.

II. THE CIP METHOD IN A TWO-DIMENSIONAL
CYLINDRICAL COORDINATE SYSTEM

A. Fundamentals of the CIP Scheme

Just as the finite-difference time-domain (FDTD) method,
the CIP considers the electromagnetic fields on each grid
point. However, it also propagates the spatial derivatives values
for each field through an additional advection equation. This
feature produces less numerical dispersion or instabilities [8]
because for a given propagating wave, its values between the
grid points are interpolated using not only the wave informa-
tion at the grid but also its spatial derivatives. It allows to get
a better approximation of the wave all over the computational
domain and to maintain its original shape through the whole
simulation. Consider the following advection equation for a
one-dimensional problem :

∂f

∂t
+ c

∂f

∂z
= 0 (1)

It represents the propagation of the a wavefield f at a
constant speed c. The CIP method solves not only eq. 1, but
also another differential equation for its spatial derivative along
its propagation direction, obtained by differentiating eq. 1:

∂g

∂t
+ c

∂g

∂z
= 0 ; g =

∂f

∂z
(2)

The advection phase may be better understood thanks to
Fig. 1. It represents the field update process on the CIP method
where at each time step, the value at any given grid point is
updated using the value the field had before traveling up to that
point the distance given by the time step and its propagating
speed (c∆t). It can be summarized as follows: consider a wave
propagating along the positive direction of the z-axis (+z): the
function f and its spatial derivative g at each time step (∆t)
and at each grid point (zi) are obtained by shifting its values
from the position zi−c∆t, where c is the wave velocity. If the
required values to be shifted are not on the grid points, they

Fig. 1. Fields update on the CIP method for the propagation of an electro-
magnetic wave where ECIP and BCIP are the interpolated fields between
the grid cells: a) CFL ≤ 1.0, b) 1.0 < CFL ≤ 2.0.

are interpolated using a cubic polynomial function from the
values at the endpoints of the cell, generating what we will
call F

CIP
and G

CIP
located at the square marker as seen on

Fig. 1. If we consider the right-propagating wave (+z) f and
g at grid points zi and zi−1, the interpolated values between
those grid points are given by:

F
CIP

(z) =ai(z − zi)3 + bi(z − zi)2 + gi(z − zi) + fi

G
CIP

(z) =
∂F (z)

∂z
= 3ai(z − zi)2 + 2bi(z − zi) + gi

(3)

Where ai and bi are coefficients calculated based on the
functions f and g values at the grid points as follows:

ai =
gi + gi−1

(−∆z)2
+

2(fi − fi−1)

(−∆z)3

bi =
3(fi−1 − fi)

(−∆z)2
− 2gi + gi−1

(−∆z)

(4)

B. Electromagnetic Fields Numerical Analysis in the Two-
Dimensional Cylindrical Coordinate System

The Maxwell-Faraday and Maxwell-Ampère equations in a
2D axisymmetric cylindrical coordinate system can be written
as follows if the medium is nonconducting:

∂Er
∂t

+ c2
∂Bϕ
∂z

= −1

ε
Jr (5)

∂Ez
∂t
− c2 ∂Bϕ

∂r
=
c2

r
Bϕ −

1

ε
Jz (6)



∂Er
∂z
− ∂Ez

∂r
+
∂Bϕ
∂t

= 0 (7)

Where ε is the permittivity of the vacuum, µ is its per-
meability, the electric field has a radial and a longitudinal
component, Er and Ez respectively, and the magnetic field
is oriented in the azimuthal direction Bϕ. This set of equation
can be expressed in matrix form as:

∂W

∂t
+ Λ

∂W

∂r
+ Γ

∂W

∂z
= S (8)

W =

BϕEr
Ez

 ,Λ =

 0 0 −1
0 0 0
−c2 0 0

 ,Γ =

 0 1 0
c2 0 0
0 0 0


S =

[
0, − 1

εJr,
c2

r Bϕ −
1
εJz

]T
We now applied the change of variable proposed by Tanaka

et al. [13] to get rid of the azimuthal magnetic field term
in the right hand side of eq. 8: Iϕ = r

µBϕ. The key idea
here is to consider that the domain impedance is radially
varying. Around a radial grid point, Tanaka et al. assume
that the impedance is constant by part, thus removing the 1/r
dependence and transforming the medium as a graded-index
medium. The final form of our system can be written as:

W =

 Z
rj
Iϕ
Er
Ez

 ,Λ =

 0 0 −c
0 0 0
−c 0 0

 ,Γ =

0 c 0
c 0 0
0 0 0


S =

[
0, − 1

εJr,−
1
εJz
]T

Where Z =
√

µ
ε and rj is the radial distance from the

axis of symmetry to the grid point. We will treat the source
term S as a non-advection term that will only be taken
into account once the solution of the equation 8 is found
under the hypothesis of S = 0. To do so, thanks to the
change of variable previously introduced, we can now use the
dimensional-splitting method [23]:

∂W

∂t
+ Λ

∂W

∂r
= 0 (Wn →W∗) (9)

∂W

∂t
+ Γ

∂W

∂z
= 0 (W∗ →W∗∗) (10)

Where Wn is the field at time step n, W∗ represents the
field after propagation along the radial direction, and W∗∗ is
the field after the propagation along the longitudinal direction.
We will therefore express our system as the following set of
propagating characteristics with its spatial derivatives along
the propagation axis:

• Along the longitudinal direction (z-axis): Lp and Lm

Lp = Er +
Z

rj
Iϕ ; Lm = Er −

Z

rj
Iϕ (11)

∂Lp
∂z

=
∂Er
∂z

+
Z

rj

∂Iϕ
∂z

;
∂Lm
∂z

=
∂Er
∂z
− Z

rj

∂Iϕ
∂z

(12)

Fig. 2. Computational domain for the simulations in cylindrical coordinate
systems. The colourless nodes represent ghost nodes outside the domain used
for the boundary condition at the symmetry axis Z.

• Along the radial direction (r-axis): Rp and Rm

Rp = Ez −
Z

rj
Iϕ ; Rm = Ez +

Z

rj
Iϕ (13)

∂Rp
∂r

=
∂Ez
∂r
− Z
rj

∂Iϕ
∂r

;
∂Rm
∂r

=
∂Ez
∂r

+
Z

rj

∂Iϕ
∂r

(14)

The subscript p (plus) stands for a wave propagating in
the positive direction of its axis (right-going wave), and m
(minus) in the negative direction (left-going wave).

Once equation 10 is solved, we can treat the non-advection
term and obtain the field at the time step n+1 by adding the
current source J as follows:

En+1 = E∗∗ − ∆t

ε
J (W∗∗ →Wn+1) (15)

C. Wave Propagation with Multi-Layer Radial Scattering

The computational domain used for our calculations in a
2D cylindrical coordinate configuration is presented in Fig. 2.
The longitudinal axis goes from zi=0 to zi=Nz , and the radial
axis from rj=0 to rj=Nr. The empty circles are ghost nodes
helpful for the boundary conditions definition.

Thanks to the dimensional-splitting method presented in
equations 9 and 10, the problem can be treated along each
propagating axis. Regarding the longitudinal axis, the charac-
teristic and its derivatives described in equations 11 and 12
are advected along the positive and negative direction of the
z-axis using the interpolation polynomial described in section
II-A and as seen in the schematic example of Fig. 1.

However, special treatment is required for the radial prop-
agation because of the dependence of the Z/rj coefficient to
the radial distance from the longitudinal axis. Tanaka et al.
[13] has demonstrated that a radial scattering technique for
the radial propagation produces accurate results. In order to
extend this procedure for cases with CFL ≥ 1.0, let us begin
by considering a right-going wave Rp propagating along the
radial direction and a CFL ≤ 1.0. For a given node position



Fig. 3. Radial scattering procedure with CFL ≤ 1.0.

(zi, rj) in the mesh, we can update its value at time step n+1
(Rpn+1

j ) based on Rpnj−1 and Rpnj . The space between two
grid points (with radial distances to the symmetry axis rj and
rj−1) is considered as containing the interface between two
different medias (located at ∆r/2) each one described by a
fictitious impedance (Z/rj and Z/rj−1).

In Fig. 3, each medium is represented either as a grey zone
or as a hatched one. At the interface between different media,
as proposed by Okubo et al. in [24], the wave propagation
across this interface can be treated using the standard electro-
magnetic interface conditions between two dielectrics. Thus,
each incoming wave will be divided into a ’R’-wave reflected
back into the original media and a transmitted ’T’-wave that
propagates to the second medium. We will therefore call radial
scattering the procedure used to obtain the wave RS which
is the sum of a ’T’ wave coming from rj−1 and an ’R’-wave
coming from rj . The resulting wave RS can be thought of as
an equivalent wave coming from the left in the same medium.
This RS wave is used to perform the CIP propagation. This
variable RS is shown in Fig. 3, and it is represented as the
sum of the two double-arrow lines in the grey zone. It can be
obtained as follows for a right-going radial propagating wave:

RS =T+Rp
n
j−1 +R−Rm

n
j

∂(RS)

∂r
=T+

∂Rpnj−1

∂r
+R−

∂Rmn
j

∂r

(16)

With a transmission coefficient T+ =
2rj−1

rj+rj−1
and a reflec-

tion coefficient R− =
rj−rj−1

rj+rj−1
. We check that T+ +R− = 1.

Similarly, for a left-going radial propagating wave:

RS =T−Rm
n
j+1 −R+Rp

n
j

∂(RS)

∂r
=T−

∂Rmn
j+1

∂r
+R+

∂Rpnj
∂r

(17)

Where T− =
2rj+1

rj+1+rj
and R+ =

rj+1−rj
rj+1+rj

. As rj → ∞,
T → 1 and R → 0, meaning for example that for a right
going wave RS → Rpj−1, which is equivalent to the classical
CIP method in a planar Cartesian coordinate system.

Under the condition of CFL > 1.0, a multi-layer radial
scattering procedure is required in order to update the right-
going characteristic Rpn+1

j . For this discussion we will restrict
ourselves to the case CFL ≤ 2, but the method described below

Fig. 4. Multi-layer scattering of the advected characteristics in the radial
direction. Field update for a right-going wave Rp using 1.0 < CFL ≤ 2.0.

can be generalized to greater CFL numbers. We will use an
intermediate stage described as n+ 1

2 , as seen in Fig. 4, where
the required propagating characteristics will be calculated with
the following steps:

1) It starts with a radial scattering of the wave Rpnj−2

through the medias with impedance Z/rj−2 (hatched
zone) and Z/rj−1 (grey zone) using equations 16. The
sum of the transmitted part of Rpnj−2 from the striped
zone to the grey one (solid line with double-arrow), and
the reflected part of Rmn

j−1 back into the grey zone
(dashed line with double-arrow) is called RSpj−2.

2) This right-going characteristic RSpj−2 and the right-
going wave Rpnj−1 are both used to interpolate the
characteristic value between rj−2 and rj−1 using eq.
3. The result of this CIP interpolation is shifted to
the grid position rj−1 and it is an intermediate-stage
characteristic called RSpn+

1
2

j−1 .
3) A radial scattering for the left-going wave Rmn

j+1 using
equations 17 produces RSmj+1. A CIP interpolation
between RSmj+1 and Rmn

j , and a shift of the result of
this interpolation to the position rj allows us to get the
intermediate-stage left-going wave RSmn+ 1

2
j .

4) Finally, once the two intermediate characteristics are
obtained ( RSpn+

1
2

j−1 and RSmn+ 1
2

j ), the radial scattering

procedure is repeated with the right-going (RSpn+
1
2

j−1 )

and the left-going (RSmn+ 1
2

j ) characteristics between
t = n + 1

2 and t = n + 1. The result of this scattering
is shifted to rj and it gives us the update for Rpn+1

j .
Note that two interpolations are performed in this procedure,
one of them is using RSpj−2 and Rpnj−1, and the other
RSmj+1 and Rmn

j . For a left-going wave, the entire pro-



cedure is symmetrical, starting from the rightmost point rj+2

and moving leftward to rj with the same multi-layer scattering.
This procedure can be extended to higher CFL numbers.

First of all, the stencil changes as a function of the CFL
number. The higher the CFL, the greater the stencil extent
spreading over as many grid cells as the rounded upper value
of the CFL number. Having defined the stencil scope, the steps
1 and 2 are performed for the leftmost grid nodes, then the
radial scattering procedure is repeated for RSp and RSm over
the remaining grid cells until the wave quantities reach rj . For
example, for a CFL = 2.5, the radial scattering is performed
using a stencil scope going from rj−3 to rj+2.

D. Boundary Conditions

Different types of boundary conditions can be easily im-
posed with the use of ghost nodes as seen in Fig. 2. The
main idea is to update the values of the ghost nodes based
on the waves reaching the boundary, and then proceed to a
propagation back into the computational domain. Thus, no
special stencil is required for the boundary nodes which uses
the same stencil as nodes in the domain. The rules for the
ghost nodes update are the following:

• Symmetry axis
Based on [25], the ghost nodes of the symmetry axis
(smaller than rj=0) can be obtained by applying a simple
transformation rule to the incoming wave: we multiply
by -1.0 any radial derivative, and also any radial or
azimuthal component of a vector quantity (letting the
axial component unchanged). Under this rule, for any
given real number k, we obtain:

Ez(zi, r−k) = Ez(zi, rk)

∂Ez(zi, r−k)

∂r
= −∂Ez(zi, rk)

∂r
Bϕ(zi, r−k) = −Bϕ(zi, rk)

∂Bϕ(zi, r−k)

∂r
=
∂Bϕ(zi, rk)

∂r

(18)

• Perfect Conductor (PEC) wall parallel to the z-axis
Under the constraint of keeping a zero tangential electric
field and normal magnetic field on a conducting wall lo-
cated at (zi, rj), we can impose the following conditions:

Rp(zi, rj−k) = α+Rm(zi, rj+k) + β+Rm(zi, rj) (19)
Rm(zi, rj+k) = α−Rp(zi, rj−k) + β−Rp(zi, rj) (20)

α+ = − (rj + ∆r)(2rj −∆r)

(rj −∆r)(2rj + ∆r)

β+ = − 2rj∆r

(rj −∆r)(2rj + ∆r)

α− = − (rj −∆r)(2rj + ∆r)

(rj + ∆r)(2rj −∆r)

β− = +
2rj∆r

(rj + ∆r)(2rj −∆r)

Where the coefficients are obtained in order to ensure
the Ez = 0 condition over the wall with the interpolated

fields: α+ and β+ for a conducting wall at r ≤ rj (eq.
19) receiving left-going waves Rm, and α− and β− for a
conducting wall at r ≥ rj (eq. 20) receiving right-going
waves Rp.

• Perfect Conductor (PEC) wall parallel to the r-axis
To keep a zero tangential electric field on the conducting
wall, therefore ensuring Er = 0, we can impose the fol-
lowing conditions for any given real number k to produce
a mirrored wavefield with respect to the conducting wall:

Er(z−k, rj) = −Er(zk, rj)
∂Er(z−k, rj)

∂z
=
∂Er(zk, rj)

∂z
Bϕ(z−k, rj) = Bϕ(zk, rj)

∂Bϕ(z−k, rj)

∂z
= −∂Bϕ(zk, rj)

∂z

(21)

Once the ghost nodes have been updated, the corresponding
characteristics can be computed on those locations, and its
values can be propagated up to the inner nodes of the compu-
tational domain applying the same multi-layer radial scattering
procedure previously described.

III. NUMERICAL RESULTS

A. Hertzian Dipole

We simulated the electromagnetic radiation of a Hertzian
dipole with a 2D cylindrical coordinate system as seen in Fig.
2, by imposing a Gaussian function for the source term Jz
along the symmetry axis with a width of σz = 2∆z and σr =
4∆r where the mesh spacing ∆r = ∆z is fixed to 40 µm.
The dipole is located along the symmetry axis at r = 0 and
z = zd = 0.5∗Nz , as can be seen in Fig. 5, and it oscillates at
a frequency of 300 GHz. The expression for Jz is as follows
(with J0 = 2487.75 A.m−2):

Jz(r, z, t) = J0 sin(ωt) exp

(
− r

2

σ2
r

− (z − zd)2

σ2
z

)
(22)

Three different values of CFL were tested: CFL = 1.0,
CFL = 1.5 and CFL = 2.0. The number of points per
wavelength was 25. The simulations results are compared with
the analytical values calculated using the equations presented
in Appendix A based on [21]. Figures 6 and 7 show a good
agreement among the three cases with a longitudinal view
along the line (z = 0 → Nz, r = 0.5 ∗ Nr), and a radial
view along (z = 0.25 ∗ Nz, r = 0 → Nr). This position for
the radial view was chosen over the alternative located at the
middle point of the computational domain because the fields
reach extremely high values in the zone close to the dipole.
A radial view along the middle point of the computational
domain would not be detailed enough to appreciate at the
same time the two scales of the solution, close to the dipole
and faraway from it.

In Fig. 5, we can also notice the presence of an absorbing
boundary condition imposed in all the walls of the computa-
tional domain (except for the symmetry axis). Those absorbing
layers can be seen in Fig. 6 and 7 as a yellow zone. The
incoming waves into the Perfectly Matched Layer (PML)



TABLE I
RELATIVE ERRORS FOR THE HERTZIAN DIPOLE SIMULATION.

Ez Er Bϕ

Radial direction 3.9% 12.7% 8.3%

Longitudinal direction 4.5% 12.8% 5.7%

show an attenuation until the fields completely drop to zero
as desired. The implementation of this boundary condition
was done based on [26] with a linearly increasing attenuation
parameter kf that depends on the distance from the PML
starting point, and it is zero outside that layer. This attenuation
parameter is treated as a non-advection term for equation 8,
and it is taken into account in the same way as the source
term S in eq. 15. For example, after the advection phase,
the following equation is applied to the right-propagating Lp
characteristic:

Ln+1
p(i,j) = Ln+1

p(i,j) (1.0−∆tkf ) (23)

Where kf = kfmax
( zi−zozpml

). kfmax
is the maximum value of

the attenuation parameter, zo is the starting point of the PML,
and zpml is the total length of the layer. The same procedure is
applied to the other outbound characteristics, adapting the kf
coefficient for each direction. One should also underline that
the equations being in characteristic form, the implementation
of the PML is straightforward and does not require a modified
stencil.

A constant offset between the analytical results and the
plots from the CIP simulations can be seen in Fig. 6 at
z = 0. An explanation to this offset comes from the fact that
the analytical expressions used for this comparison describe
the radiation from the oscillation of two point charges in
free space separated by an infinitesimally small distance. The
numerical representation of this infinitesimal nature of the
Hertzian dipole is limited by the size of the mesh spacing.
Therefore, since a better match between the simulation and
the theoretical results can be achieved with either a smaller
mesh spacing or a greater number of points per wavelength,
the accuracy obtained with the previously described simulation
parameters is deemed sufficient for a proper comparison point.
The relative error along a given section compared to the
analytical result is given by:

η(F ) =

∑
i(F

A
i − FCIPi )2∑
i(F

A
i )2

Where F = Er, Ez, Bϕ, FA and FCIP are the analytical
and the simulation results, respectively. The results can be
seen in Table I. The overlapping of all the plots obtained with
the simulations using three different CFL values is a sign
of the robustness and precision of the multi-layer scattering
procedure even for larger CFL.

B. Steady-State Open-Ended Coaxial Cable

Another comparison was performed using the simulation
of an open-ended coaxial wave guide in vacuum, as shown
in Fig. 5. This test case has been chosen because it is

Fig. 5. Computational domain for a) the Hertzian dipole, b) the coaxial cable.
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representative of the coaxial configuration used in an ECR
plasma thruster for which this model is developed [18], [20].
The dimensions of the coaxial wave guide are: an inner radius
Rin = 1.15 mm, an outer radius of Rout = 13.75 mm, a
length L = 200 mm, and a rectangular computational domain
of z = 400 mm and r = 100 mm. A 2.45 GHz Transverse
Electro-Magnetic (TEM) input wave is imposed at the left-
hand wall. More precisely, the analytic solution for a right
propagating coaxial TEM mode was used to set the right-
propagating characteristics Lp and ∂zLp in eq. 12 at the left
of the simulation domain boundary. The exiting left-going
characteristic Lm was left free. For the boundary conditions
we used a PML at the right-hand side and at the top right
corner, and a perfectly conducting surface boundary condition
at the inner and outer radius. A constant mesh spacing of 0.23
mm was used. The simulation is run for 3800 iterations, which
corresponds to more than two round trips of the incident wave,
to establish a standing wave in the waveguide.

The standing wave pattern is retrieved for the CIP
simulation by taking the results once an amplitude peak
in reached for the time-varying stationary wave. As a
comparison, the electric field obtained using a Frequency
Domain electromagnetic solver from a commercial software is
compared to the wave pattern obtained with the CIP method.
The same computational domain is used, using a triangulation
of characteristic length of 0.2 mm. The electromagnetic
fields amplitudes are compared to the standing wave envelope
obtained from the CIP method, as shown in Fig. 8. In addition,

TABLE II
POWER BUDGET FOR THE OPEN-ENDED COAXIAL CABLE.

CIP Frequency Analytic
Domain [27]

Input power [W] 200.0 200.0 200.0

Reflected power [W] 198.5 198.5 198.4

Radiated power [W] 1.5 1.5 1.6
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Fig. 8. Electromagnetic fields in a coaxial cable simulated using the CIP
method and the COMSOL Multiphysics™ [22] software based on the finite-
element method with a CFL = 1.0. The radial cross section is taken at
z = 80 mm, and the longitudinal cross section at the outer surface of the
inner conductor.

the reflected and radiated power are compared as well, as
shown in Table II. In the limit of large wavelength compared
to the coaxial diameter λ � Rout, an analytic formula for
the radiated power exists as presented in Appendix B, and it
is included for comparison [27].

A good agreement is found between the two cases. The
relative error between the CIP radial electric field and the
frequency domain result does not exceed 0.1%. The radi-
ated power obtained with the CIP method also matches the
predicted value from the frequency-domain solver and the
analytic formulation. This fact give us confidence about the
stable nature of the solution obtained by our procedure.
Our time-domain solution successfully reproduced the steady
state solution obtained with a frequency-domain finite-element
method.



IV. CONCLUSION

We have proposed a procedure for computing the propaga-
tion of electromagnetic waves in axisymmetric 2D domains
using the Constrained Interpolation Profile scheme. The main
contribution of this development is the extension of the radial-
scattering algorithm for CFL conditions greater than 1.0 in
cylindrical configurations, as well as a simple treatment of
boundary conditions for the symmetry axis and conducting
walls. For this work, we did not exceed a CFL condition of
2.0, but in principle higher values may be achieved. In the
future, our goal is to explore the CFL limit until which the
procedure can be used based on a Von Neumann stability
analysis. In addition, the CIP scheme described above will
be applied to 2D cylindrical simulations of an ECR plasma
source [20] where the source terms (charge density and plasma
current) will be obtained using a Particle-In-cell code. In
this case where a strong coupling between the plasma and
the electromagnetic fields exists, the divergence conservation
properties of the scheme are important and will be assessed. In
particular, the need for a divergence cleaning method will be
tested. If such were the case, one should note that the Method
of Characteristic used in this approach enable a straightforward
extension to hyperbolic divergence cleaning methods [29].

APPENDIX A
EXPLICIT EXPRESSIONS FOR THE ELECTROMAGNETIC

FIELDS OF A HERTZIAN DIPOLE

Explicit expressions for the electromagnetic fields of an
oscillating z-directed dipole p(t) = pẑ cos (ωt) were derived
and presented in [21] in spherical coordinates. Here r is the
vector pointing to the observation point from the dipole and
θ = ∠(r, z) is the angle with the dipole axis.

Hφ(r) =

[
−k cos (kr − ωt) +

sin (kr − ωt)
r

] [
sin θ

4πr

]
pω

Er(r) =

[
k sin (kr − ωt) +

cos (kr − ωt)
r

] [
2 cos θ

4πε0r2

]
p

Eθ(r) =

[
k sin (kr − ωt) +

cos (kr − ωt)
r

] [
sin θ

4πε0r2

]
p

− pk2 sin θ

4πε0r
cos (kr − ωt)

These expressions were transformed to a cylindrical coor-
dinate system in order to perform the comparison with the
simulations results obtained using the CIP method. The next
formulas are used for the radial and longitudinal electric field:

Er(r, z) =Er(r) sin θ + Eθ(r) cos θ

Ez(r, z) =Er(r) cos θ − Eθ(r) sin θ

APPENDIX B
ANALYTICAL FORMULA FOR THE RADIATED POWER FROM

AN OPEN-ENDED COAXIAL CABLE

In [27], we can find the following analytical expression for
the radiated power Pout from an open-ended coaxial cable:

Pout = Pin
k4(R2

out −R2
in)2

12
√
ε ln
(
Rout

Rin

)
The formula is a function of the input power Pin, the inner

Rin and outer Rout radius, and the wave number k.
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