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FEYNMAN-KAC FORMULA UNDER A FINITE ENTROPY
CONDITION

CHRISTIAN LEONARD

ABSTRACT. Motivated by entropic optimal transport, we investigate an extended notion
of solution to the parabolic equation (0; + b-V + A,/2 + V)g = 0 with a final boundary
condition. It is well-known that the viscosity solution g of this PDE is represented by the
Feynman-Kac formula when the drift b, the diffusion matrix a and the scalar potential
V' are regular enough and not growing too fast.

In this article, b and V' are not assumed to be regular and their growth is controlled
by a finite entropy condition, allowing for instance V to belong to some Kato class.
We show that the Feynman-Kac formula represents a solution, in an extended sense,
to the parabolic equation. This notion of solution is trajectorial and expressed with
the semimartingale extension of the Markov generator b-V + A,/2. Our probabilistic
approach relies on stochastic derivatives, semimartingales, Girsanov’s theorem and the
Hamilton-Jacobi-Bellman equation satisfied by log g.
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1. INTRODUCTION

Let us call for practical use in this article, Feynman-Kac equation the linear parabolic
equation

{(at+A+V)g=o, 0<t<T, (FK)

g(T7 .) = 4gr, l= Tu

where the numerical function g : [0, 7] x R — R is the unknown, V' : [0,T] xR" - Ris a
scalar potential seen as a multiplicative operator, g7 : R" — [0, 0) is a given nonnegative

Date: April, 2021.
2010 Mathematics Subject Classification. 35K20, 60H30, 60J60.
Key words and phrases. Diffusion processes, Feynman-Kac formula, Hamilton-Jacobi-Bellman equa-
tion, relative entropy, extended generator, stochastic derivative, entropic optimal transport, Kato class.
This research is partially granted by Labex MME-DII (ANR11-LBX-0023-01).
1



2

function, and A is the Markov diffusion generator
A:=b-V+A,/2

whose coefficients are a velocity field b : [0,7] x R” — R™ and a diffusion matrix field
a:[0,7] x R" — S, taking its values in the set S, of nonnegative symmetric n x n-
matrices. We denote for simplicity A, := ZKM@ a;;0;0; where a = (a;;)1<i j<n-

When the fields a, b and V' are regular enough and not growing too fast, it is a consequence
of 1td’s formula that a solution to this equation is given by the Feynman-Kac formula

g(t,x) = Er lexp (J V(s, Xs) ds) gr(Xr) | Xi = x] : reR"0<t<T, (1.1)
[t,T]

where X is the canonical process, R is the law of a Markov process with generator A,
and we denote by Ex the expectation with respect to the measure R and Eg(s | ») the
corresponding conditional expectation. This formula is named after R. Feynman and M.
Kac for their contributions [13, 20, 21| in the late 40’s. Defining

Stu(z) = Eg [exp UM V(s, X,) ds) u(X,) | X, = x] .0

N

r<t<T, (12)

for any function u on R™ such that this expression is meaningful, we see that g, = Skgr,
and the collection of linear operators (S} )o<r<t<7 is the Feynman-Kac semigroup. The
stationary version of equation (FK)

(b-V+A,/2+V)g=0,

when b, a, V' and g do not depend on t, is the stationary Schrédinger equation.
The logarithmic transformation

P :=logyg (1.3)
links (FK) to the Hamilton-Jacobi-Bellman equation

e V(O +A)Y+V =0, 0<t<T,
(T, *) = Yo, t=T,

(formally, divide (FK) by g and replace g by e¥, provided that g > 0). It was a keystone of
Schrédinger’s original derivation of his eponym equation® because it permits to primarily
work with some nonlinear Hamilton-Jacobi-Bellman (HJB) equation which is well-suited
to carry both features of particle mechanics and wave evolution, and then to transform
it into Schrodinger’s linear equation. It is also of importance in the theory of controlled
Markov processes, see [15, Ch. 6].

Typical results about classical —i.e. C1* — solutions of (HJB) require that a is uniformly
positive definite and that a, b,V and gr are Cg’2, see [23, 12]. We also know that when
a,b,V and gr are continuous, but a might not be uniformly positive definite, and the
solution g of (FK) is also continuous (the Feller property of A implies this continuity in
several cases), then v := log g where ¢ is given by the Feynman-Kac formula (1.1) is the
viscosity solution of (HJB), see [15, thm.II.5.1].

On the other hand, Kac proved in [20] (in one dimension) that if V' is an upper and
locally bounded measurable function and A = 02 is the generator of the Brownian motion,
then g given by (1.1) solves (FK) in some weak sense. It was discovered later with A = A
the generator of the Brownian motion in R™ that when V' belongs the Kato class (a set
of lowly regular measurable functions which might not be locally bounded but with some

(HIB)

!Beware, with our notation the role of the wave function ¥ is played by g, not 1, see (1.17) below.
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integrability properties), see Definition 6.22, that the Feynman-Kac operator S; defined
at (1.2) is a continuous operator from L” to LP with 1 < p < « and that g given by (1.1)
is continuous, see [6, Ch. 3].

The “Feynman-Kac transform” of R which is the path measure defined by

P:ZLQ(X@eXp(J; V(uAQMﬁ)gTLXT)R (1.4)

0,77

where fp : R" — [0,00) is another nonnegative function, is a generalization of Doob’s h-
transform of R [10, 11], which is recovered by choosing fo = 1,V = 0 and taking gr = h.
When the solution g of (FK) is C'?, with standard stochastic calculus arguments one
proves [32, 15] that P is the law of a Markov diffusion process with the same matrix field
a as R, and drift field

b” = b + aV. (1.5)

The path measure P is the solution to the Schrédinger problem (1.14) below, a topic
also called entropic optimal transport which is tightly related to optimal transport, and is
currently an active field of research. More will be said about entropic optimal transport
in a moment in this introductory section.

Main results of the article. In this article, we propose an extended notion of solution to
the Feynman-Kac equation (FK) involving the extended generator of the Markov measure
R, and we show with probabilistic technics that g defined by (1.1) solves the extension (1.8)
below of the Feynman-Kac equation (FK). The diffusion matrix field a is supposed to be
regular (typically a = oo* with o locally Lipschitz) and invertible, but the coefficients b, V'
and the datum gy are neither assumed to be reqular, nor locally bounded. This extended
notion of solution is trajectorial and is properly defined in terms of extended generators
of Markov measures, a notion which is directly connected to the notion of semimartingale
which plays a central role in this article. The main hypothesis of this article is that the
relative entropy of P with respect to the reference path measure R is finite, i.e.

HaﬂRy:z%kg(%g)<al (1.6)

We prove in addition that g admits some generalized spatial derivative %g and extend
(1.5): P is the law of a Markov diffusion process with the same matrix field a as R, and
drift field

b” = b+ aVy, (1.7)

with %w = %(g) /g. The rigorous statement of this formula requires some "almost every-
where" cautions, see Theorem 5.9 for the exact result. The main interest of this result
is that it holds even when not much is known a priori about the regularity of g. For
instance, if V' is in the Kato class (a natural assumption in theoretical physics), g might
be continuous but one does not know that it is differentiable in general.

The rule of the game in this article is to prohibit regularity hypotheses on V' and gr
stronger than the finite entropy condition (1.6). This is suggested by our main motivation
which is the entropic optimal transport. But it also appears that this finite entropy
assumption is very efficient to derive low regularity results.
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First result. Theorem 5.24 is our first main result. Its approximate statement is as follows.
Suppose that

(i) a and b are such that R is the “unique” solution to the martingale problem MP(a,b)
(see definition (4.3) and assumption (4.7)),
(i) a is locally bounded and invertible,
(i11) a, b,V and gy are such that H(P|R) < oo, where P is defined at (1.4).

Then, g defined by (1.1) belongs to the domain dom LT of the extended generator LFF
of R localized by P (see Definition 3.6) and

[(LEP +V)g](t, X,) =0, dtdP-a.e. (1.8)

Remarks 1.9.

(a) The tricky part of this result is: g € dom L&".

(b) The hypothesis: H(P|R) < o0, is an integrability assumption on the data a,b, g and
V' which requires almost no regularity from V' and gr.

(c) The extended generator £%" is localized by P, see Definition 3.6, and (1.8) is only
valid dtdP-almost everywhere, rather than dtdR-a.e. a priori. It is partly because of
this self-reference to the observed path measure P, that it is possible to get rid of
some regularity and growth restrictions on gr and V.

(d) We require that the growths of b and a are such that the reference path measure
R exists and their regularities are sufficient for R to be the “unique” solution to
its martingale problem - typically Lipschitz regularity. But some entropic argument
allows us to depart from the regularity of b, see Section 6.

(e) On the other hand, the additional hypothesis that a is invertible is important for
our approach to work: It is there to ensure the Brownian martingale representation
theorem which implies that the domain of the extended generators of R and P are
algebras which are stable by C? transformations, see Lemma 4.22.

Second result. Theorem 5.9 which extends (HJB) and (1.5) is our second main result. Its
approximate statement is as follows.

Under the same assumptions as before, the function ¢ = logg where g is given by the
Feynman-Kac formula (1.1) solves the following extended HJB equation

(LRFp + |VRPY22 + V)(t,X,) =0,  dtdP-a.e. (1.10)

with Y = log gr, Pr-a.e.
The Feynman-Kac measure P solves the martingale problem MP(a, b”) where

b” = b+ aViry. (1.11)

Martingale problems are defined at Definition 2.6 — we slightly depart from the standard
definition, sce Remark 2.7-(c). The existence of VA7) and its definition are stated at
Proposition 4.24 which is an extended It6 formula. When ¢ is differentiable, we have:
VEPY = V.

In fact, our first result (Theorem 5.24) about equation (FK) is a corollary of the above
extended HJB equation.

Third result. A sufficient condition on a,b,V, fo and gr is stated at Theorem 6.26 for
H(P|R) to be finite. As it is rather technical, we do not propose in this introduction an
approximate description of this set of assumptions. However, let us say that it is large
enough to include potentials V' in the Kato class. Therefore we are in position to apply our
previous results about the FK and HJB equations and the FK-transform P. In particular,
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the representation (1.5) of the drift of P which is inaccessible when V' is a generic element
of the Kato class (g is only known to be continuous in most favorable situations) admits
the extension (1.11).

Fourth set of results. Our last results are of different nature than previous ones. They
state that stochastic derivatives and extended generators are essentially the same. This
already well-known assertion (since Nelson’s monograph [31] and its use by Follmer in
a series of works [16, 17, 18|) is the content of Propositions 2.18 and 2.21. The proofs
of Proposition 2.18, and also Theorem 5.9, deeply rely on the convolution Lemma 2.11.
This technical lemma permits to fill some gaps in the already published literature on the
subject. We had to put on a solid ground the use of stochastic derivatives to compute
extended generators because it is central in the approach of the present paper.

In addition, the convolution Lemma 2.11 is used in an essential manner when deriving
time reversal formulas in the recent article [2].

Comments and remaining questions about L-solutions. For practical use in this
subsection, let us call L-solution the type of solution encountered at (1.8) and (1.10).
We present some problems which are not treated in this article, and make a couple of
comments.

(i) As already noticed, if the Feynman-Kac formula defines a function g which is con-
tinuous, then g and v are viscosity solutions of (FK) and (HJB). We do not know
whether they remain viscosity solutions when they are discontinuous, under the only
hypothesis that H(P|R) is finite.

(ii) Because the notion of L-solution is trajectorial, it is more precise than any notion
of solution in a PDE sense. The specificity of a pathwise representation in a proba-
bilistic context is twofold: one can play with stopping times or with couplings, and
sometimes both. Looking at

g(t,z) = Eg [1{t<7} exp (J V (s, Xs) ds) anal(X7) | Xy = :17] ,
[t,7]

where 7 is a stopping time, is tempting. Similarly, one may ask whether couplings
are of some use when looking at comparison principles or functional inequalities.

(iii) On the other hand, this advantage is balanced by some drawbacks. In particular,
the powerful stability properties of viscosity solutions along convergence schemes
might not be recovered via L-solutions. Typically, in case of a vanishing viscosity
convergence, because the supports of diffusion path measures with different diffusion
matrices are disjoint, a trajectorial solution does not permit us to use pointwise
convergence.

(iv) The notion of L-solution relies on the existence of some Markov path measure R.
This is restrictive in comparison to the general definition of viscosity solution which
only requires the existence of some semigroup obeying the maximum principle [15,
Ch.2|.

(v) Replacing the diffusion measure R by the law of a time-continuous Markov process
with jumps would lead us to a similar extended notion of solution to a nonlocal
PDE: (¢; + A+ V)g =0, with A a Markov generator expressed with a jump kernel,
and to the associated nonlocal HJB equation.

Standard approaches for computing the generator of P. There are three main
ways to look at the dynamics of P. They rely on (i) Markov semigroups, (ii) Dirichlet
forms and (iii) semimartingales.
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Markov semigroups. Let P € P() be a Markov measure and (T, )o<s<i<r be its semi-
group on some Banach function space (U, | - |¢). For instance U may be the space of all
bounded Borel measurable functions equipped with the topology of uniform convergence.

Its infinitesimal generator is A" = (A[)ejo,r) With
1
APu(z) = | - ||o- hhm+ EEP[U(XH-h) —u(X,) | X, =z], wuedomA” (1.12)
—0

where the domain dom A" of A is precisely the set of all functions u € U such that the
above strong limit exists for all ¢ € [0, 1) and x € R™. One can prove rather easily (see [32,
Ch. VIIL§3| for instance, in the diffusion case) that when V' is zero and g is positive and
regular enough, the generator A of the Markov semigroup associated with P is given for
regular enough functions u© on R”, by

['(gs, u)
Gt
where I' is the carré du champ operator, defined for all functions u, v such that u,v and

the product uv belong to the domain dom A® of A, by

[(u,v) = A% (uwv) — uA®v — vAR.
For Eq. (1.13) to be meaningful, it is necessary that for all ¢ € [0,7T], g; and the product
giu belong to dom A®. But with a non-regular potential V, g might be non-regular as

well. There is no reason why ¢, and g,u are in dom A in general. Clearly, one must drop
the semigroup approach and work with Dirichlet forms or semimartingales.

APu(z) = ARu(x) +

(t,z), (t,z)e|0,T]xR" (1.13)

Dirichlet forms. The Dirichlet form theory is natural for constructing irregular processes
and has been employed in similar contexts, see [1|. But it is made-to-measure for reversible
processes and not fully efficient when going beyond reversibility.

Semimartingales. Working with semimartingales means that instead of the infinitesimal
semigroup generators A® and A”. we consider extended generators in the sense of the
Strasbourg school [9], see Definition 2.3 below. This natural idea has already been imple-
mented by P.-A. Meyer and W.A. Zheng [29, 30] in the context of stochastic mechanics
and also by P. Cattiaux and the author in [3, 4] for solving related entropy minimization
problems. But we still had to face the remaining problem of giving some sense to I'(g;, u)
in (1.13). Consequently, restrictive assumptions were imposed: reversibility in [30], and
in [4]: the standard hypothesis that the domains of the extended generators of R and
P contain “large” sub-algebras. In practice this requirement is uneasy to satisfy, except
for standard regular processes. It is all right for the reference measure R, but typically
when V' blows up, P is singular and this large sub-algebra assumption does not seem to
be accessible with standard arguments. Moreover, there is no known criterion for this
property to be inherited from R by P when P « R. In contrast, extended generators and
considerations about the carré du champ allow us to overcome this obstacle in the present
article, see Lemma 4.22 which is based on Lemma A.2.

Entropic optimal transport. Let us present our primary motivation for proving the
main results of this paper.
In the early 30’s, Schrodinger [33, 34| addressed the entropy minimization problem

inf{H(Q|R"); Q path measure such that Qy = o, Qr = iz} (1.14)

where the couple (Qo, Qr) of initial and final marginals of @ is prescribed to be equal
to some fixed (ug, pir), and the reference measure is RV := exp (S[o 7] V(t, Xy) dt) R. He
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essentially showed that formula (1.4) gives the general shape of the solution P to (1.14)
and that the marginal P, of P at time ¢t admits the Radon-Nikodym derivative

W _ o) (1.15)

where g solves (FK) and fi(z) = Ej [fo(Xo)eXP <S[g¢]

forward-time analogue of (FK)

{(—at+ﬂ+V)f=O, 0<t<T,
f(07.):f07 t:O,

which again is a Feynman-Kac equation with A=bV+A, /2 where the vector field b is
the drift of the time reversal of R.

He noticed a striking analogy (in his own words) between the solution of the thermody-
namical problem (1.14) described by the product formula (1.15) and Born’s formula

V(S,Xs)d8> | X = :17] solves a

(1.16)

dp _
— = U2 (x) = Uy(2) Wy (z
L 0P () = W) )
where p; is the probability of presence of some quantum system at time ¢ and V¥ is the

wave function describing its evolution, solution of his eponym equation:
2 2

g — h —

and ¥ is the complex conjugate of W. To see this analogy, remark that with V' instead of
—V, taking 7 = it, we have —id; = 0,. It follows that equation (1.16) is an analogue of
the Schrédinger equation for W, while the time-reversed equation (FK) is an analogue of
the Schrodinger equation for W.

Not only does the Feynman-Kac transform P defined at (1.4) provide us with interesting
analogies with quantum mechanics, but its family of bridges P(e | X, = x, X; = y) is the
classical thermodynamics analogue of the propagator appearing in Feynman’s approach
to quantum mechanics [14]: the ill-defined Feynman integral is replaced by a stochastic
integral. It is the purpose of Euclidean quantum mechanics (EQM) introduced by Zam-
brini [38, 5, 39] to transpose well-established results in stochastic analysis of variational
processes to standard quantum mechanics, and the other way round.

Future work. The time-symmetry of formula (1.4) suggests that equation (1.16) is as
important as its backward-in-time analogue (FK) while studying entropic optimal trans-
port. This is crucial in many aspects of entropic optimal transport and EQM. Some
consequences of this symmetry will be explored somewhere else. In particular, Conforti
has proved in [7] that, assuming that f; and ¢, are regular enough and not growing too
fast, the dynamics of the time marginals (P;)o<i<7 of the path measure P is governed by
some Newton equation in the Wasserstein space. Our aim in a future work is to relax
these assumptions and to extend this result under the finite entropy condition (1.6). A
first step of this program is the recent article [2] about time reversal of diffusion processes
under a finite entropy condition.

Literature. Schrodinger [33, 34 only considered the case where R is the law of a reversible
Brownian motion and V' = 0. His arguments for deriving (1.15) are profound but not
rigorous (at this time the axioms of probability theory were unsettled and the Wiener pro-
cess was unknown), but the impressive strength of the physicist’s arguments is sufficient



8

to convince the reader. The extension to a non-zero potential V' under the hypothe-
sis that the solutions f and g of the Feynman-Kac equations in both directions of time
are regular enough was performed by Zambrini [38]. The entropy minimization problem
(1.14) is called the Schridinger problem. Its actual writing in terms of entropy, as well
as its formulation as a large deviation problem for the empirical measure of a system of
particles is due to Follmer [18]. More about this active field of research, in particular its
tight connection with optimal transport, can be found in the survey paper [27].

Outline of the present approach. A key feature of our approach is the logarithmic
transformation (1.3) because it enables us to take advantage of a connection between
(HJB) and Girsanov’s theory. More precisely, elementary stochastic calculus gives the
following expression of the Radon-Nikodym derivative of P defined at (1.4) with respect

to R:

dP
— = fo(Xo)exp V(t, Xy)dt | gr(Xr)
’ (1.18)

= fo(Xo0)g0(Xo) exp <¢T(XT) — Yo(Xo) — f[a,T] [e™¥(0, + A)e”](t, Xy) dt) ,
where
(t.a) = logg(t,a) = log B [xp f[ VX ) r(xe) | X 2|, (119

provided that a, b, gr and V' satisfy some growth conditions and that v is reqular enough
to apply It6’s formula and give sense to (d; + A)e¥. At first sight the identity (1.18) is
reminiscent to (HJB), and indeed it establishes a strong link between (FK) and (HJB).
The main problem we have to face is to develop this simple idea, when one does not know
much about the a priori regularity of . In particular, (J; + A)e? is a priori undefined.

A good thing to do is to compare the above expression of dP/dR with the one obtained
by Girsanov’s theory. Indeed, this provides us with valuable informations on v, and
therefore on the solution of (FK). This is possible at the price of working with eztended
generators instead of standard generators of Markov semi-groups, allowing us to extend
It6’s formula to the domain of the extended generator under the important requirement
that (1.6): H(P|R) < o, holds.

This entropy estimate is in fact a finite energy condition which carries some control of
the generalized derivative %zﬁ of 1 which takes part of an extended It6 formula (this is the
place where it is needed that a is invertible to make sure that the martingale representation
theorem is valid). On the other hand, Girsanov’s theory tells us that %1/1 is precisely the
additional drift which “translates” R to P, see (1.7). For a better understanding of the
key point of the present strategy which takes advantage of Girsanov’s formula to allow us
to get rid of an a priori regularity of the solution g, see Remark 5.25.

Outline of the paper. The specific features of the present extension of the Feynman-
Kac equation (FK) are introduced at Section 4 which contains both standard results
about finite entropy diffusion path measures, and a bit of new material designed for our
purpose (especially the extended It6 formula at Proposition 4.24). This material is based
on extended generators, a standard notion which is revisited at Section 2, using Nelson
stochastic derivatives, very much in the spirit of the seminal paper [17] by H. Follmer
(see also [18] and more recently [2]), and generalized at Section 3. Using the preliminary
material established in the first four sections, Section 5 is dedicated to the proofs of our
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main results. At Section 6, sufficient conditions are established on the coefficients of
equation (FK) for H(P|R) to be finite.

2. STOCHASTIC DERIVATIVES. MAIN RESULTS

After reviewing basic notions of semimartingale theory in a general setting (cadlag paths
in a Polish space), we prove at Propositions 2.18 and 2.21 that under some integrability
condition, the extended generator and the stochastic derivative of a Markov measure
coincide. This is Nelson’s way of looking at diffusion generators [31].

The aim of the present section is to provide rigorous proofs of these general results.
To our knowledge, although these notions, in connection with the notion of martingale
problem, were introduced in the late sixties [31, 24, 35|, such detailed proofs do not appear
in the literature. However, the guideline they provide and the recognition of the relevance
of these notions for our purpose are fully credited to Follmer [17]. Our main technical
tool is the convolution Lemma 2.11.

Notation and setting. The set of all probability measures on a measurable set A is
denoted by P(A) and the set of all nonnegative o-finite measures on A is M(A). The
push-forward of a measure q € M(A) by the measurable map f : A — B is fuq(s) :=

q(f € ) € M(B).
The state space X is assumed to be Polish and is equipped with its Borel o-field. The
path space is the set

Q = D([0,T], X)

of all cadlag X-valued trajectories w = (wy)sefo,r) € Q2. It is equipped with the canonical o-
field: o(X¢;t € [0,T]) which is generated by the canonical process X = (X;)seqo,r] defined
for each t € [0,7] and w € Q by

Xt(W) = Wt € X.
We denote Q :=[0,T] x , X := [0,T]x X, and for any t € [0, 7],
715 = (t, Xt) S ?,
and any function u : [0,T]xX — R,
u(X) : (t,w) e Q> u(t,w) e R.
We call any positive measure ) € M(Q2) on Q a path measure. For any T < [0,T], we
denote X7 = (Xi)ier and the push-forward measure Q)7 = (X7)xQ. In particular, for
any 0<r<s< T, X[r,s] = (Xt)r<t<57 Q[r,s] = (X[T,S]>#Qa and Qt = (Xt)#Q € M(‘X)
denotes the law of the position X; at time ¢. If @ € P(Q2) is a probability measure, then
Qt S P(X) o
For any 0 <t < T, Q) := Lebyp 7 ® Q is the product measure
Q(dtdw) := dtQ(dw), dtdw < Q
and we denote
q(dtdz) := dtQ,(dz), dtdr c X.
For any @ € P(2), we denote
[Q] := (Qi;0 <t <T) e P(x)7

its time marginal flow.
For any random time 7, we denote Y,” := Y}, and YZ =t AT, Xinr)-
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Filtration. The forward filtration associated with ) € M(QQ) is the Q-completion of the
canonical filtration. It fulfills the so-called “usual hypotheses™ it is right continuous and
contains the ()-null sets. Under this hypothesis it is known that any ()-martingale admits
a cadlag version, see for instance [28]. We shall choose this version in all cases.

For a better readability, we write Eg(e | X7) instead of Eg(e | X7,Ng), dropping the
Q-null sets Ng in the conditioning argument.

Basic notions. We recall the definitions of Markov measure, extended generator and
stochastic derivative.

Definition 2.1 (Markov measure). A path measure QQ such that Q is o-finite for allt is
called a conditionable path measure. A path measure @ € M(QQ) is said to be Markov if it
is conditionable and for any 0 <t < T, Q(Xpum € » | Xjo) = QX € « | Xy).

The reason for requiring () to be conditionable is that it allows for defining the con-
ditional expectations Eg(s | X7) for any 7 < [0,T] even in the case where ) is an
unbounded measure, see [26, Def. 1.10].

Let @) be a path measure. Recall that a process M is called a local QQ-martingale if there
exists a sequence (7y)g>1 of [0, 7] U {oo}-valued stopping times such that limg_,., 7, = 0,
(-a.e. and for each k > 1, the stopped process M7 is a uniformly integrable ()-martingale.
A process Y is called a special QQ-semimartingale it Y = B + M, (Q-a.e. where B is a
predictable bounded variation process and M is a local ()-martingale.

Definition 2.2 (Nice semimartingale). A process Y is called a nice* Q-semimartingale
if Y = B+ M where M s a local Q-martingale and the bounded variation process B has
absolutely continuous sample paths (Q-a.e.

The notion of extended generator was introduced by H. Kunita [24] and extensively
used by P. A. Meyer and his collaborators, see [9]. Here is a variant of his definition.

Definition 2.3 (Extended generator of a path measure). Let Q) € M(2) be a conditionable
path measure. A measurable function u on X is said to be in the domain of the extended
generator of Q) if there exists an adapted process (v(t,X[o,t]); 0 <t < T) such that
S[O’T] [v(t, Xjo,q)|dt < o, Q-a.e. and the process

ME i u(X) — u(Xy) — J o(s, Xppg)ds, 0<t<T,
[0.¢]

1s a local QQ-martingale. We denote
LOu(t,w) = v(t, wio,g)

and call LC the extended generator of Q. The domain of the extended generator of @ is
denoted by dom L%.

Remark 2.4 (Special case where @) is Markov). It is proved at Corollary 3.16 that when
Q is Markov, £%u only depends on the current position: LPu(t,w) = LPu(t,w;). It is also
shown at Corollary 2.23 that under some hypotheses

£Q = at + gt7
if (Gy)o<i<r is the generator of the semigroup associated to the Markov measure Q).

We go on with technical considerations.

2This is a “local” definition in the sense that this notion probably appears somewhere else with another
name.
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Remarks 2.5.

(a) For any measurable function u on X in dom £?, the process u(X) is a nice Q-
semimartingale.

(b) The adapted process t — S[Q q v(s, X[o,s]) ds is predictable since it is continuous.

(c) M" admits a cadlag Q-version as a local Q-martingale (we always choose this regular
version).

(d) The notation v = Lu almost rightly suggests that v is a function of u. Indeed, when u
is in dom £, the Doob-Meyer decomposition of the special semimartingale u(X,) into
its predictable bounded variation part § v, ds and its local martingale part is unique.
But one can modify v = L% on a small (zero-potential) set without breaking the
martingale property. As a consequence, u — L%u is a multivalued operator and
u — L% is a quasi-everywhere linear operation.

Extended generators are connected with martingale problems which were introduced
by Stroock and Varadhan [35, 36, 37|.

Definition 2.6 (Martingale problem). Let C be a class of measurable real functions u on
X and for each u € C, let Lu : Q — R be some adapted process. Take also a positive
o-finite measure pig € M(X).
One says that the conditionable path measure Q) € M(Q2) is a solution to the martingale
problem

MP(C7 £; MO)
if Qo = po € M(X) and for all u € C, Q(S[QT] |Lu(t,wpo)|dt = c©) = 0 and the process
M= u(X,;) — u(Xg) — S[O,t] Lu(s, X[o,51) ds is a local Q-martingale.

Remarks 2.7.

(a) As in Definition 2.3, the local martingale M" admits a cadlag @Q-version.

(b) Playing with the definitions, it is clear that any path measure @) € M(f) is a solution
to MP(C, £L?; Qo) where L% is the extended generator of @ and C is any nonempty
subset of dom L.

(c) In any standard definition of a martingale problem, it is assumed that for any u € C
and all w € €, we have: S[O’T] |Lu(t,wpoy)|dt < oo (and not only @Q-a.e. as above).
This will not be convenient for our purpose because when looking at @ € P(€2) such
that the relative entropy H(Q|R) with respect to some reference path measure R is
finite, the extended generator £% of @ is only defined Q-a.e., see (4.10) below for
instance.

Our aim is to show at Proposition 2.18 that the extended generator can be computed
by means of a stochastic derivative. Nelson’s definition [31] of the stochastic derivative is
the following.

Definition 2.8 (Stochastic derivative). Let Q) € M(S2) be a conditionable path measure
and u 