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Abstract

In chirped pulse experiments, magnitude Fourier transform is used to gener-
ate frequency domain spectra. The application of window function as a tool for
lineshape correction and signal-to-noise ratio (SnR) enhancement is rarely dis-
cussed in chirped spectroscopy, with the only exception of using Kaiser-Bessel
window and trivial rectangular window. We present a specific window function,
called “Voigt-1D” window, designed for chirped pulse spectroscopy. The window
function corrects the magnitude Fourier-transform spectra to Voigt lineshape,
and offers wide tunability to control the SnR and lineshape of the final spec-
tral lines. We derived the mathematical properties of the window function, and
evaluated the performance of the window function in comparison to the Kaiser-
Bessel window on experimental and simulated data sets. Our result shows
that, compared with un-windowed spectra, the Voigt-1D window is
able to produce 100 % SnR enhancement on average.

Keywords: Window function, Chirped pulse, Lineshape correction,
Fourier-transform spectroscopy

1. Introduction

Fourier-transform has been widely used in spectroscopy, such as nuclear mag-
netic resonance (NMR)[1], Fourier-transform microwave spectroscopy[2], and
the Fourier transform chirped pulse spectroscopy[3]. Standard signal process-
ing offers a wide range of tools, such as windowing, filtering, re-sampling, and
wavelet transforms, to extract the spectral information from a noisy signal.
Signal to noise ratio (SnR) and spectral resolution are the two main character-
istics that a spectroscopist would be concerned about. For an exponential free-
induction decay (FID) signal of lifetime τ and data acquisition (DAQ) length
tN , the SnR is proportional to (1 − e−tN/τ )τ/

√
tN , and the maximum SnR
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is achieved at tmax ≈ 1.26τ .[4] Window functions are used to go beyond this
intrinsic SnR – DAQ length relationship. Applying a window function to the
FID can be viewed as applying different weighting factors on different regions
of the FID, thus emphasizing the regions with stronger signal for higher SnR.
[5] There is often compromise, however, between achieving high SnR and high
spectral resolution of a line, because applying window function in the time do-
main is equivalent to convolving the Fourier transform of the window function
with the spectral line in the frequency domain, which broadens the spectral
line. Combined with window functions, more sophisticated methods based on
non-uniform[6] sampling have been applied, mostly in multi-dimensional NMR,
to further increase the SnR without losing spectral resolution.[7, 8]

The invention of chirped pulse Fourier-transform (CP-FT) mi-
crowave spectroscopy [3] allowed extremely rapid and broadband up
to several tens of GHz acquisition of a rotational spectrum. Due to
this double advantage, CP-FT spectroscopy has become actively used
for structural determinations in large and complex molecular systems
(large molecules and clusters) [9, 10], for reaction dynamics and ki-
netics studies [11–13], and for rapid chemical composition analysis
[14, 15]. See also a review paper by Park & Field [16]. The former
requires measurements of heavy atoms isotopic species often in natu-
ral abundance that are represented by weak satellite spectrum in the
vicinity of strong parent isotopic species lines. Although high SnR
is a major goal for detecting weak lines, the spectral resolution at
baseline is often considered as the most important parameter in the
molecular structure determination [9]. The studies of chemical re-
action dynamics and kinetics requires the determination of accurate
spectral lineshape parameters (may be also obtained from the analy-
sis of the time domain FID) [13], and high SnR to detect weak lines
of rare or highly excited reaction products [12]. Finally, the chemical
composition analysis is mostly focused on obtaining highest possible
SnR to detect ppm and ppb concentrations [14]. In addition to the
above mentioned examples, one of the primary applications of rota-
tional and thus of CP-FT spectroscopy is a spectral characterization
of new molecular species aiming for the determination of its Hamil-
tonian parameters. Such study would require high line frequency
measurement accuracy which depends both on SnR and spectral res-
olution usually limited by spectral line full-width at half-maximum
(FWHM). Whereas very high spectral resolution may be achieved
in the microwaves using molecular beam experiments due to effec-
tively cooled molecules, the Doppler broadening becomes important
in millimeter and submillimeter-wave measurements, and in general
in room-temperature spectra.

In contrast to NMR, few studies are focused on the SnR enhancement for
chirped pulse spectroscopy. Although similar to NMR in the fundamental mech-
anism, FID signals in chirped pulse spectroscopy are often more complicated
than those in NMR. Firstly, the chirped pulse excitation, which is a rapid linear
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sweep of radiation frequency of a large bandwidth, induces multiple molecular
transitions, each of which occurs at a slightly different time during the chirp.
This results in a mixture of FID signals with different initial phases that prohibit
one from performing a uniform phase correction and then extract the real part
of the Fourier transform, as routinely used by the NMR community. Instead,
chirped pulse spectroscopists usually use the magnitude Fourier transform of
the FID directly. which combines the real (absorption) and imaginary (disper-
sion) part of the Fourier transform. Although magnitude Fourier trans-
form does not shift the line position, it increases the linewidth of the
Fourier transform spectra and creates wide wings on the line profile,
because of the extra contribution from the dispersion. Mathemati-
cally, it means the line profile changes from a “real Voigt” (real part
of the Faddeeva function) profile to a “complex Voigt” (the magni-
tude of the Faddeeva function) profile. Line asymmetry due to initial
phase is also amplified by the complex Voigt profile because of its large
wings. Secondly, compared to NMR, chirped pulse spectroscopy, especially in
the (sub)millimeter regime, has a much shorter FID that is a hybrid of exponen-
tial and Gaussian decays, due to the increasingly significant Doppler broadening
at higher transition frequencies. The much shorter FID means that the delay
between the pulse excitation and DAQ start time becomes non-negligible.

As a simple yet effective tool, appropriate window functions are expected
to correct the initial phase of the chirp FID and therefore generate symmet-
ric spectral lines. In chirped pulse spectroscopy, however, only a few examples
clearly discussed the effect of window functions[3, 17]. Other studies specified
the usage of window function[18–20] without further discussion. In these stud-
ies, the standard, symmetric Kaiser-Bessel window (short for Kaiser window
hereafter) is the common choice, because of its known capability of sidelobe
suppression. The SnR, however, is sacrificed. Square window is also mentioned
in several studies [3, 13, 17], but it is trivial since adjusting a square window
is equivalent to adjusting the on-site DAQ time settings. The Kaiser window
offers limited flexibility, with only one parameter πα that adjusts the width of
the window function. When πα → 0, it becomes a square window, and when
πα→ +∞, it approximates a Gaussian window. In the chirped pulse literature
that mentioned the use of Kaiser window, πα is set to 8 [3, 17, 20], a value
that produces nearly Gaussian lineshape in the frequency domain.

In order to obtain wider tunability on the spectral SnR and lineshape,
we propose an asymmetric window function specifically designed for treating
chirped pulse data, denoted as the “Voigt-1D” window. The window func-
tion is inspired by the concept of “matched window”[21]. In this
paper, optimal window parameters are chosen to achieve the maxi-
mum SnR at the highest possible spectral resolution. The proposed
window function is able to improve SnR of the Fourier transformed
spectral line, and also correct the lineshape profile of the magnitude
spectrum from complex Voigt to real Voigt. For simplicity, when
“Voigt profile” is used alone without specifying “real” or “complex”
hereafter, it refers to the “real Voigt” profile. The window function in-
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cludes two tuning parameters that can offer much larger flexibility than standard
symmetric window functions. In this article, we present the window function
and its mathematical properties, derive the SnR expression with respect to its
tuning parameters, and then show its performance based on both simulated data
and real experimental data. We also suggest a general guideline for choosing
the window function parameters, so that one can obtain close-to-optimal SnR
and spectral resolution based on the properties of the chirped pulse dataset.

2. Mathematics of the Voigt-1D window

2.1. The window function and its property

The Voigt-1D window is named after “Voigt” and “1D”. “Voigt” means that
it is a product of a Gaussian decay and a Lorentzian decay, which produces
a Voigt profile after Fourier transform. “1D” means it is related to the 1st

derivative of the Voigt profile.
The Voigt-1D window combines the concept of matched window, and the

ability for the FID initial phase correction that removes spectral leakage and
corrects spectral lineshape. If only white Gaussian noise is present in the time
domain signal, a “matched window” takes the same function form of the FID
envelope. We can write the envelope of an FID from a single molecular line as

f(t; a0, b0) = exp
(
−a0t2 − b0t

)
(t ≥ 0) (1)

where t represents the elapsed time from the start point of DAQ, and a0 and b0
are coefficients that correspond to the Gaussian and exponential components of
the decay, respectively. Following Eq. 1, the Voigt-1D window is defined as

w(t; a, b) =
t

M(a, b)
exp

(
− at2 − bt

)
(t ≥ 0) (2)

where a and b are the two tuning parameters, and M(a, b) is the normalization
factor that sets max{w(t)} = 1. To ensure w(t) → 0(t → 0), a must be non-
negative. Figure 1 shows the shape of w(t) with a selective set of parameters.

The Voigt-1D window function is non-negative. As t increases, the function
first monotonically increases from 0, followed by an asymptotic approach back
to 0. For a given pair of a and b, the maximum of w(t) is reached at

tM =


√
b2 + 8a− b

4a
, (a > 0)

1

b
, (a = 0)

(3)

Consequently,

M(a, b) =
4a

√
b2 + 8a− b

exp
(1

2
+
b
√
b2 + 8a− b2

8a

)
, (a > 0)

1

be
, (a = 0)

(4)
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Figure 1: The shape of a Voigt-1D function. (top) The maximum value is fixed at tM = 1;
(center) a is fixed at 1; (bottom) b is fixed at 1.
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The Voigt-1D window has the following properties:

• The window function is the FID envelope f(t) multiplied by t. The Fourier

transform of w(t) is (i/2π)f̂ ′(x), where f̂(x) is the Fourier transform of

the f(t) , and f̂ ′(x) is its first derivative. Using this relationship, we can
show that the lineshape of the magnitude Fourier transform spectrum of
the FID, after being multiplied with the window function, is exactly Voigt
(see supplementary material, Section 1). This property ensures the ability
of lineshape correction of the window function, except for extremely
negative b (b < −2

√
a), where sidelobes start to appear in the

lineshape profile.

• The product of the window function w(t; a, b) and an FID envelope f(t; a0, b0)
is still in the form of the window function w(t; a′, b′), where parameters
are updated as a′ = a+ a0, and b′ = b+ b0. That is,

w(t; a, b)f(t; a0, b0) =

M(a+ a0, b+ b0)

M(a, b)
w(t; a+ a0, b+ b0)

• The ratio between a and b determines the shape of the window function.
For a given tM, a increases as b decreases, and larger a generates a narrower
window shape that approaches a Gaussian window. For a given a or a
given b, the increase of the other parameter result in a smaller tM and also
narrower window. This property shows the wide tunability of the window
function.

• The window function is independent of the FID length. In contrast to
standard symmetric window functions, whose maximum is always at the
center of the FID, the Voigt-1D window simply extends its values when
the FID length is extended. This property ensures the result of windowing
is not affected by experimental adjustments on the DAQ length, making it
ideal for automatic processing of segmented chirped pulse data that cover
multiple frequency bands.

2.2. Metrics for performance measurement

As widely accepted metrics in spectroscopy, SnR and FWHM char-
acterize the intensity and the resolution of spectral lines, respectively.
High SnR and narrow FWHM are often anti-correlated, which cannot
be achieved simultaneously. We choose SnR/FWHM, in addition to
SnR and FWHM, to measure the performance of the Voigt-1D win-
dow, so that maximizing SnR/FWHM reflects the goal of reaching
highest possible SnR with highest possible spectral resolution.

Another implicit performance metric is the sampling density of
the frequency grid, ∆ν, which is the reciprocal of the length of the
time domain signal. In discrete Fourier transform, ∆ν can be im-
proved by zero-padding, i.e., appending certain length of 0 arrays to
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the end of the original signal. The side-effect of zero-padding is to
cause periodic ripples on the baseline due to spectral leakage.

2.3. Evaluation of the performance metrics: SnR

The SnR is evaluated by the ratio of the peak intensity and the
noise level of the spectrum. These quantities can be calculated di-
rectly from mathematical formulae for any FID signal.

The peak intensity of an FID signal f(t) from t = 0 to T is
∫ T
0
f(t)dt. If

the signal is multiplied by a window function w(t), the peak intensity becomes∫ T
0
f(t)w(t)dt.
Assume the noise in the time domain is a pure white Gaussian noise with

standard deviation of σ. The standard deviation of the magnitude Fourier
transform of the noise, from t = 0 to T , is

√
Tσ. If the time domain white

Gaussian noise is multiplied by a window function w(t), the frequency domain

noise has a standard deviation of σ
√∫ T

0
w2(t)dt (see supplementary material,

Section 2). For simplicity, we may assume σ = 1. We may see that the
noise of un-windowed FID grows to infinity as T → +∞, and therefore
the upper bound T needs to be specified for calculating the SnR. On
the other hand, for a window function of which

∫ +∞
0

w2(t)dt is finite,
the noise is also finite even when T → +∞.

Using the equations above, we can write the SnR of a windowed
spectral line as

SnR(T ) =

∫ T
0
f(t)w(t)dt√∫ T
0
w2(t)dt

(5)

From Equation 5, the SnR of a un-windowed spectral line is

SnR(T ) =

∫ T
0
f(t; a0, b0)dt
√
T

=
1− e−b0T

b0
√
T

, (a0 = 0)
√
π

√
4a0T

eb
2
0/4a0

[
erf
(2a0T + b0√

4a0

)
− erf

( b0√
4a0

)]
, (a0 > 0)

(6)

where erf(x) =
2
√
π

∫ x
0
e−t

2

dt is the error function. The maximum SnR is

reached by finding the root of SnR′(T ) = 0. In the a0 = 0 case, the numerical
result is tmax ≈ 1.26/b0, which was stated by Matson [4]. The maximum SnR
at tmax is approximately 0.715 (the a0 = 0 case).

For the Voigt-1D window defined in Eq. 2, we consider the T → +∞ case
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because
∫ +∞
0

w2(t)dt is finite. We define the following two integrals:

P (a, b) =

∫ +∞

0

t exp(−at2 − bt)dt (7)

Q(a, b) =

∫ +∞

0

t2 exp(−2at2 − 2bt)dt (8)

In the general case where a > 0,

P (a, b) =
1

2a
− b
√
π

4
√
a3

erfcx
( b

2
√
a

)
(9)

Q(a, b) =

√
2π(a+ b2)

16
√
a5

erfcx
( b√

2a

)
− b

8a2
(10)

where erfcx(x) = ex
2

(1− erf(x)) is the scaled complementary error function. In
the Lorentzian-limited case where a = 0,

P (0, b) =

∫ +∞

0

te−btdt =
1

b2
(11)

Q(0, b) =

∫ +∞

0

t2e−2btdt =
1

4b3
(12)

With these two integrals, we can write the SnR of a Voigt-1D win-
dowed spectral line, with FID decay parameters (a0, b0) and window
parameters (a, b), as

s(a0, b0, a, b) =
P (a0 + a, b0 + b)√

Q(a, b)
(13)

To find the maximum point of s(a0, b0, a, b) with respect to a and b, numerical
method is necessary because its partial derivatives are transcendental functions
that can only be solved numerically. In our computer code, we used standard
least-square method to find the minimum of the negation of s(a0, b0, a, b)

2.4. Evaluation of the performance metrics: FWHM

The full widths of the spectral lines can only be calculated nu-
merically. To find the full widths at level y, we simulated the spectral
profile f(x), find the numerical points that are closest to f(x) = y, and
then measure the distance between these points. For un-windowed
and Voigt-1D windowed spectra, we can write out the exact equations
of f(x), and therefore can simulate the spectral profile with a fine x
grid numerically. For Kaiser windowed spectra, we do not have the
exact lineshape function, and therefore the spectral profile is gener-
ated by digital Fourier transform, and smoothed by univariate spline
interpolation.
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2.5. Determination of FID initial parameters a0 and b0

The value of the performance metrics are not only the function
of the window function, but also the shape of the original FID that
is controlled by the initial parameters a0 and b0. In the derivations
above, we set the start of DAQ as t = 0. This frame of reference
simplifies the mathematical expressions of the window function and
performance metrics. In real chirped pulse experiments, however, the
chirp excitation has a noticeable duration tcp. In addition, a certain
dead time td is often placed between the end of excitation and the
start of DAQ, so that electronics can be correctly switch on or off,
and transient noises can be blocked. Figure 2 illustrates the relations
between these times. In this frame of reference, the actual start of the
FID of a molecular line is −t0 (t0 > 0) in Figure 2, which is between
−td and −td − tcp and can be calculated if the excitation frequency is
known (see Supplementary Material, Section 3.6).

t0-td-td - tcp -t0

td

t0

tcp

window function w(t)

excitation  

chirp

 DAQ starts

t0-td-td - tcp -t0

td

t0

tcp

window function w(t)

excitation  

chirp

 DAQ starts

t0-td-td - tcp -t0

td

t0

tcp

window function w(t)

excitation  

chirp

 DAQ starts

t0-td-td - tcp -t0

td

t0

tcp

window function w(t)

excitation  

chirp

 DAQ starts

Figure 2: Illustration of the reference frame of time in a chirped pulse experiment.

The presence of t0 affects the shape of the FID envelope. Let bλ
to be the real Lorentzian component of the FID, we may write the
FID envelope as

f(t) = exp(−a0(t+ t0)2 − bλ(t+ t0))

= exp(−a0t2 − (bλ + 2a0t0)t) · exp(−a0t20 − bλt0)
(14)

Compared with Equation 1, we have b0 = bλ + 2a0t0, i.e., the exponen-
tial decay term depends not only on the real broadening effect due to
physics, but also on the Gaussian decay term and delay time t0 due
to mathematical relations. The extra intensity scalar exp(−a0t20− bλt0)
represents the loss of line intensity due to t0, which is discussed by
Gerecht et al.[14]. The effect of t0 is independent of the choice of
frame of reference.

When the FID is Lorentzian dominated, i.e., bλ ≥ a0, the effect
of t0 is not obvious. However, when the FID is Doppler dominated,
the effect can be significant. Doppler dominated FID occurs both in
room-temperature (sub)millimeter chirped pulse spectroscopy, where
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the Doppler broadening of the molecular line is not negligible, and in
jet cooled spectroscopy, both microwave and (sub)millimeter, where
the residual Doppler components from the jet is the main dephasing
mechanism.

The optimization of Voigt-1D window function parameters de-
pends on the FID initial parameters a0 and b0, and therefore implic-
itly depends on t0. For a narrowband chirp, or single line excitation,
t0 can be precisely calculated and therefore this effect can be precisely
accounted for in Equation 13. For a broadband chirp, each line has
its unique t0 that spans the whole chirp excitation, and this effect is
especially significant when a0t0 ≥ bλ. A window function, however,
has an explicit shape that cannot be the optimal choice for all the t0
possibilities. It is inevitable that compromise has to be made, and in
this paper, we choose to use the center point of the chirp excitation,
td + tcp/2, as the “averaged” t0 to determine the window function
parameters.

2.6. Unit convention

In deriving the mathematical expressions, we did not specify the units of t, a,
and b. a has the dimension of time−2, and b has the dimension of time−1. Our
mathematical derivations can be rescaled to any unit system without
altering their properties, as long as at2 and bt are kept dimensionless,
and the ratio b/2

√
a remains unchanged. In our data treatment, we use

µs for t, and therefore a is in MHz2 and b is in MHz.

3. Results and Discussion

3.1. Choice of window parameters based on theoretical SnR

Figure 3 visualizes Eq. 13 and its corresponding FWHM as a function of a
and b for given (a0, b0) pairs. We calculated three sets: (a0, b0) = (1, 0) for pure
Gaussian decay, (a0, b0) = (0, 1) for pure exponential decay, and an intermediate
case (a0, b0) = (0.25, 1), so that b = 2

√
a. Interestingly, the maxima of both

SnR and SnR/FWHM are reached when a = 0, i.e., the Voigt-1D function is
in fact a pure first derivative of the Lorentzian. It can be justified by two
reasons. First, when a = 0, the area under the window function is
the largest (see Figure 1), and therefore the window function collects
the most signal. Second, the FWHM is smaller when a = 0 because
the window function maximizes the Lorentzian component in the line
profile. The b value for maximum SnR/FWHM is approximately half of the b
value for maximum SnR.

Under the guide of Eq. 13 and the numerical methods used to
generate Figure 3, one can find an optimal (a, b) parameter set of the
Voigt-1D window for a particular FID signal, according to the metric
to be optimized. To find this parameter set, the initial parameters
(a0, b0), in other words, the Gaussian (γG) and Lorentzian (γL) FWHM
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of the original FID signal, need to be determined. If fitting the enve-
lope of the FID is convenient, one can retrieve (a0, b0) from the time domain
fit. If not, fitting a complex Voigt profile to the un-windowed frequency domain
spectrum may also lead to a reasonable estimation of a and b. Especially, a
priori one may fix a to π2γ2G/(4 ln 2), assuming that a is completely caused by
Doppler broadening of the molecule. Although no analytical expression
of obtaining the optimal (a, b) parameters can be specified, this pro-
cedure to find optimal parameter sets can be easily programmed or
tabulated to allow automatic processes.

Figure 3 also demonstrates the wide tunability of the Voigt-1D window func-
tion. Around the maxima, there is a wide range of a and b that can yield SnR
and SnR/FWHM values more than 90 % of the theoretical maxima. At a
given SnR, a series of (a, b) pairs can be chosen to produce different FWHM.
In turn, (a, b) pairs on the same contour line in the center row of Figure 3 pro-
duce identical FWHM with different weights of the Gaussian and Lorentzian
components. Such tunability is helpful when we apply the window
function to broadband spectra, where the Doppler component intrin-
sically varies across the whole spectra. We can show that using the
“averaged” window parameters derived from the “averaged” t0 can
produce SnR and SnR/FWHM near the optimal values across the
broadband chirps (See Supplementary Material, Section 4.1).

The flexibility of the Voigt-1D window allows the user to tune the
window away from its “optimal” performance. For example, if high
resolution is the priority, both a and b need to be as small as possible,
because the line width metrics always monotonuously increases as b
increases for any given a, and as a increases for any given b. a = a0 and
b = −2

√
a0 can be a good initial parameter set, and one may further

adjust a and b following the constraint b = −2
√
a for maintaining good

lineshape, until a satisfactory resolution is achieved. In this scenario,
negative b does not infer anything about an exponentially increasing
FID, which is impossible, but servers only as a mathematical treat-
ment to obtain narrow linewidths, at the cost of losing SnR.

3.2. SnR enhancement on single-peak spectra

The performance of the Voigt-1D window was first tested on a set of OCS
lines, consisting of 51 entries. These lines were experimentally measured
using a millimeter wave chirped pulse spectrometer[22] (See Supple-
mentary Material, Section 3.1 for experimental details). In this data
set, each line is the only line within its chirp bandwidth, so that the (a0, b0)
parameters of the FID envelope can be unambiguously modeled. We chose
the lines from the OC34S isotopologue and the v2 = 1 vibrational excited state
of the parent isotopic species, in order to avoid saturation effects on the ground
state lines of the latter. The line frequencies range from the 60 GHz to 300 GHz,
where the lineshape shifts from Lorentzian-dominated to nearly equal weight of
Lorentzian and Gaussian components.
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For each entry, we treated the data with 2 sets of Voigt-1D win-
dow parameters, set (1) optimized for maximizing SnR, and set (2)
optimized for maximizing SnR/FWHM. Before applying the Voigt-
1D window, we retrieved the initial a0 and b0 values of the line by
fitting the time domain FID signal (see supplementary material, Sec-
tion 3.4). In the fit, a0 is fixed to π2γ2G/(4 ln 2), where γG is the Doppler
FWHM of the OCS line, and b0 is fitted from the FID. Afterwards,
the two parameter sets were numerically solved by fixing a = 0, as
demonstrated in Figure 3. The results were compared with 3 sets
of Kaiser window πα values, 0, 4, and 8. πα = 0 is equivalent to
un-windowed spectrum, πα = 8 is heavily windowed for best baseline
resolution, and then πα = 4 is the medium state between un-windowed
and heavily windowed spectra. Before applying the Kaiser windows,
the FID signal was truncated to the length that maximizes theoretical
SnR of the un-windowed spectrum (Equation 6).

Figure 4 shows the SnR (top panel), FWHM (center panel), and
SnR/FWHM (bottom panel) of all 51 entries. In all three plots, the results
of the un-windowed spectra, i.e., Kaiser πα = 0, are shown as gray bars in the
background, providing the reference point for comparison. The enhancement of
the four windows are plotted as line series. 100 % means that the value to be
compared (SnR, FWHM, or SnR/FWHM) of the windowed line is identical to
the un-windowed line. Note that the 51 entries are independent samples, and
therefore the line series are only for visual distinction and does not indicate any
correlation between entries.

The performance of four tested windows are summarized as the following:
(1) The SnR. For almost all entries, the Voigt-1D window produces spectral

lines of higher SnR than the un-windowed lines, which are already of the
highest SnR in theory. This is because the noise in the real FID
signals is not pure white noise, and may vary from shot to shot. The
Voigt-1D window, however, is insensitive to truncation and therefore
can be applied to a long FID record and collect as much information
as possible. Two parameter sets of the Voigt-1D window result in
similar SnR enhancements, which corresponds to the large tunable
parameter space shown in Figure 3. Kaiser windows also improve the
SnR in most cases, but the enhancement is less than that from Voigt-
1D windows. The higher SnR enhancement by Voigt-1D window can
be explained because the Voigt-1D window does not truncate data.
The window shape weights the data points such that the noise is
suppressed, but it still uses all the information of the full data series.
The Kaiser window, on the other hand, has to discard the data after a
certain length in exchange for higher SnR, because the Kaiser window
has a rigid symmetric window shape.

(2) The FWHM. For all entries, the un-windowed spectra present
the smallest FWHM. It is not surprising because applying window
function in the time domain is equivalent to convolving the window
function profile with the spectral line profile. Nevertheless, the Voigt-
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1D set (2) only broadens the line by approximately 25 %. These val-
ues demonstrate that the Voigt-1D set (2) window does not severely
broaden the line in exchange for SnR enhancement. The FWHM
produced by Voigt-1D set (1) is similar to that produced by Kaiser
window with πα = 4. The FWHM is almost doubled. Finally, Kaiser
window with πα = 8 produces 2.5 times broader FWHM.

(3) The SnR/FWHM. Following the discussion of SnR and FWHM, it is
expected that Voigt-1D set (2) produces the optimal SnR/FWHM
among the 4 tested windows. This window proves that a slight line
broadening in exchange for a significant SnR improvement is feasible.
Voigt-1D set (1) is in second place, and has higher SnR/FWHM than
Kaiser πα = 4, because they produce similar FWHMs but Voigt-1D
set (1) produces higher SnR. The Kaiser πα = 8 window has disadvan-
tage in this SnR/FWHM metric, because this window significantly
broadens the spectral lines. Nevertheless, Kaiser πα = 8 will have
better result if the focus is on baseline resolution, which is important
in some applications, such as the identification of isotopologue species
in their natural abundances[9].

In addition, applying the Voigt-1D window can help improving
frequency sampling together with the SnR enhancement, because of
its insensitivity to zero-padding. In the tests discussed above, the
high SnR spectra were obtained by FID truncation, and no zero-
padding was applied. There are only 3–5 points to describe a line in
the frequency domain spectrum. To improve frequency sampling, ex-
tending the FID or zero-padding is necessary. Shown in Equations 7–
13, Voigt-1D window does not lose SnR in zero-padding. Also, since
the window function starts at 0, it suppresses the baseline ripples
due to spectral leakage. These ripples, although are not real noise
in nature, contaminates the spectral baseline and produces effective
larger noise in our SnR calculation. Examples of such ripples can be
found in Figure S2. Therefore, if zero-padding is used, the SnR of
the un-windowed spectra shown in Figure 4 will be lower, and the
SnR enhancement by Voigt-1D window calculated in this way will be
higher than what has been presented. The Kaiser window also sup-
presses these ripples, but only with sufficient large πα values (e.g.,
> 5.6), which broadens the FWHM.

3.3. Preservation of frequency resolution on partially resolved spectra

In some scenarios, the frequency resolution is more important than the SnR.
With the wide tunability of the Voigt-1D window, it is able to produce spectra
with small FWHMs. To evaluate to which degree can the Voigt-1D window pre-
serve the frequency resolution, we measured the J10←9,K = 9 line of CH3CN at
183676 MHz, exhibiting a partially resolved hyperfine structure. The hyperfine
splitting is ∼ 0.8 MHz, and the Doppler-broadening limit of CH3CN is 0.36 MHz
at room temperature. Therefore, the hyperfine splitting is marginally resolvable
under the Doppler-broadening limit.
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Figure 4: Summary of SnR (top), FWHM (center), and SnR/FWHM (bottom) of
51 OCS lines, treated with Voigt-1D windows and Kaiser windows. For Voigt-
1D windows, parameter set (1) was set to maximizing SnR, and set (2) was set
to maximize SnR/FWHM. For Kaiser windows (πα = 0, 4, 8), the FID signal is
truncated to the time that maximizes Equation 13, the theoretical SnR of the
un-windowed spectra. In all panels, the metrics from the un-windowed spectra,
i.e., Kaiser πα = 0, is plotted as gray bars towards the left axis. The metrics of the
rest 4 windows are plotted line point series towards the right axis, on the scale of
the enhancement percentage. The dashed line marks the 0 % enhancement level,
i.e., the value of the metric is equal to the case of the un-windowed spectra.
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Figure 5 shows the FID signal of a 60 MHz chirp around the K = 9 line of
pure CH3CN vapor measured at 4 µbar. The DAQ delay td was set to 256 ns.
According to the CDMS catalog[23], the hyperfine splitting of this line has 3
strong components at 183675.955 (F10←9), 183676.690 (F11←10), and 183676.787
MHz (F9←8), with relative intensity of 0.997, 1.103, and 0.901. Since the F11←10

and F9←8 components are spaced less than 0.1 MHz, they are unresolvable due
to Doppler-broadening. Therefore, we may simplify the splitting structure into
two frequency components which differ by 0.7835 MHz and roughly have a
intensity ratio of 1:2. In Figure 5, the beating of the two frequency components
is visible at a period of 1/0.7835 MHz ≈ 1.28 µs. We can directly fit this
FID as a product of the decay envelope and the beating of two sine waves (see
supplementary material, Section 3.4). We fix a0 = 0.4508 MHz2, and retrieved
b0 = 1.005(16) MHz.
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Figure 5: The FID of the J10←9,K = 9 line of CH3CN at 183676 MHz, fitted to f(t) =
exp(−0.4508t2 − 1.005(16)t). The DAQ delay is 256 ns. The LO frequency of this FID is at
183720 MHz, and the chirp bandwidth is 60 MHz. The blue trace shows the FID signal, the
red trace shows the least-squared fit, and the black trace shows the fit residual (shifted for
clarity).

Although the beating envelope is apparent in the time domain, the
un-windowed spectrum in the frequency domain completely squeezes
the two frequency components into a single peak (Figure 6, top panel).
To resolve the two components, frequency resolution, instead of SnR,
is the primary goal. To begin, we first adjusted the truncation length
(3.3 µs) of the Kaiser window (πα = 8) so that the two peaks are
just about to separate. Then, we calculated the Voigt-1D window pa-
rameters for high resolution, a = a0 = 0.4508 and b = −2

√
a0 = −1.3428.

The fit results of the windowed spectra are also presented in Figure 6.
Both windows are able to resolve the two hyperfine components. In
the presented results, the Kaiser window forms slightly wider FWHM
and also higher SnR than the Voigt-1D window. Since the resolution
power can be continuously tuned by adjusting the window parame-
ters, the Voigt-1D window may be considered having similar perfor-
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mance as the Kaiser window.
It is worth mentioning that, the low frequency beating envelope pro-

duced by two closely separated frequency components does create a pitfall for pa-
rameter selection algorithm of the Voigt-1D windows optimized for highest SnR
or SnR/FWHM. The parameter selection based on the results in Section 2.3,
demonstrated in Figure 3, leads to zero Gaussian component in the Window
function. In this scenario, the window function has a sharp rise at the begin-
ning of the FID, which may coincidentally interfere with the strong beating
FID envelope, As a result, the spectral lineshape can be altered significantly,
presenting asymmetric features. The readers are referred to Section 4.3 in the
supplementary material for a detailed discussion. Nonetheless, by constraining
the b parameter of the Voigt-1D window to −b0, so that the majority of the
exponential decay in the original FID signal is cancelled out by the window
function, we can obtain spectral lines with close-to-optimal SnR and correct
lineshape.

3.4. Overall performance on broadband spectrum

The performance of the Voigt-1D window on room-temperature broadband
chirped pulse spectra are tested by numerical simulation, because the band-
width of our DDS-based chirped pulse spectrometer is limited to
0.5 GHz. Two simulations were performed, one at 2–10 GHz to simu-
late Lorentzian-dominated microwave chirped pulse spectra, and one
at 640–650 GHz to simulate Doppler-dominated submillimeter chirped pulse
spectra. The lines of cis-furfural (C4H3OCHO) [24] were used to simulate the
microwave chirp, and the lines of N-methylformamide (HCONHCH3) [25] were
used to simulate the submillimeter chirp. A Lorentzian FWHM of 0.1 MHz was
used universally for both simulations. More details of the simulation can be
found in supplementary material, Section 3.6. In this simulation, we compared
the results of the two Voigt-1D window parameter sets, and the result of the
Kaiser window (πα = 8).

Figure 7 shows the simulation of the C4H3OCHO spectrum, and Figure 8
shows the simulation of the HCONHCH3 spectrum. In both simulations,
the SnR enhancement of the Voigt-1D window behaves as expected.
The figures show that the noise level of the un-windowed spectra is
similar to the Kaiser windowed spectra, and is slightly higher than
the spectra from Voigt-1D set (2) window. Voigt-1D set (1) window
produces spectra with noticeable lower noise which can be observed
by eye. The dashed square box in Figure 7 also highlights a weaker
line next to a stronger line that is visually more distinct in the Voigt-
1D set (1) windowed spectrum than other spectrum. The lineshape
of the un-windowed magnitude spectra is corrected by the Voigt-1D
window, as well as the Kaiser window. Overall, the peak resolution of
the Voigt-1D set (2) window is similar to the Kaiser window because
of their similar FWHM. In the right bottom panel of Figure 7, a case
shows that Voigt-1D set (2) window performs better in resolving a
closely spaced doublet than the Kaiser window, because it produces
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Figure 6: Fit results of the J10←9,K = 9 spectral line of CH3CN, treated by the Voigt-1D
window and Kaiser window. The spectral intensities are normalized to unity to ease the visual
comparison of the noise level. The black curve shows the spectrum, the red curve
shows the overall fit, and the colored areas (blue and yellow) show the individual
components of the fit. The fit residual is plotted below each spectrum. The red
vertical sticks shows the catalog frequency and intensity of the 3 strong hyperfine components.
The noise level is estimated using the standard deviation of the fitted residuals.
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Figure 7: Simulated broadband chirped pulse spectrum of C4H3OCHO between
2–10 GHz. The top left panel shows the FID, the top right panel shows the
overall spectrum, and the bottom panels show zoomed-in regions. Red sticks
in the bottom panels show the expected transitions from the line catalog. The
maximum line intensity is normalized to unity for all traces so that the SnR can
be directly compared by measuring the noise only. Voigt-1D set (1) uses (a, b) =
(0, 0.9461 MHz) for maximizing SnR, and Voigt-1D set (2) uses (a, b) = (0, 0.3170)
for maximizing SnR/FWHM.

less Gaussian component in the Voigt profile. On the other hand,
Kaiser window produces best baseline resolution, which is especially
useful in identifying lines in the congested regions marked out by
dashed square boxes in Figure 8.

4. Conclusion

In conclusion, we have proposed a specific window function, noted as the
“Voigt-1D” window, for treating the data of chirped pulse experiments. The
window function takes the form w(t; a, b) = t exp(−at2 − bt)/M , where t is
the time variable, a and b are two adjustable parameters, and M is the nor-
malization factor. The window function corrects the spectral lineshape, offers
wide tunability by adjusting its two parameters, suppresses baseline rip-
ples from zero-padding, and is able to generate high SnR spectra with
properly chosen parameters. We have derived the mathematical SnR equa-
tions for a chirped pulse spectral line treated by the Voigt-1D window, and
discussed the guideline of parameter selection based on these mathematical ex-
pressions. The programmable routines to find two optimal parameter
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Figure 8: Simulated broadband chirped pulse spectrum of HCONHCH3 at 640–
650 GHz. The top left panel shows the FID, the top right panel shows the overall
spectrum, and the bottom panels show zoomed-in regions. Red sticks in the bot-
tom panels show the expected transitions from the line catalog. The maximum
line intensity is normalized to 1 for all traces so that the SnR can be directly com-
pared by measuring the noise only. Voigt-1D set (1) uses (a, b) = (0, 15.7789 MHz)
for maximizing SnR, and Voigt-1D set (2) uses (a, b) = (0, 6.5515 MHz) for maxi-
mizing SnR/FWHM.
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sets, one for achieving maximum SnR, and one for achieving maxi-
mum SnR/FWHM, are proposed.

Performance of the Voigt-1D window is evaluated by treating real chirped
pulse experimental data of OCS and CH3CN lines, and by treating simulated
broadband chirped pulse data. The results are compared with un-
windowed magnitude Fourier transform spectra, and with results
treated by Kaiser-Bessel windows, which are commonly used in cur-
rent chirped pulse literature. Our results show that the Voigt-1D
window with maximum SnR/FWHM is able to enhance the SnR by
100 % on average, and sometimes up to 250 % than the un-windowed
magnitude spectra, at a cost of only 25 % wider FWHM. The Voigt-
1D window with maximum SnR can achieve slightly higher SnR en-
hancement at the cost of almost doubling the FWHM of the un-
windowed spectra. Compared with Kaiser window (πα = 4), the SnR
enhancement of the Voigt-1D window is higher, whereas the FWHM
broadening is lower. When resolving closely spaced lines with simi-
lar intensities, the Voigt-1D is able to reach similar, and sometimes
better, performance to the Kaiser window (πα = 8). When baseline
resolution is the primary goal, such as decomposing congested spec-
tra and identifying weak satellite lines on the wings of strong lines,
Kaiser window is still the preferred choice.
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[9] C. Pérez, S. Lobsiger, N. A. Seifert, D. P. Zaleski, B. Temelso, G. C. Shields,
Z. Kisiel, B. H. Pate, Broadband Fourier transform rotational spectroscopy
for structure determination: The water heptamer, Chem. Phys. Lett. 571
(2013) 1 – 15. doi:https://doi.org/10.1016/j.cplett.2013.04.014.

[10] I. Uriarte, F. Reviriego, C. Calabrese, J. Elguero, Z. Kisiel, I. Alkorta,
E. J. Cocinero, Bond length alternation observed experimentally: The case
of 1H-indazole, Chem. Eur. J. 25 (43) (2019) 10172–10178.

[11] B. C. Dian, G. G. Brown, K. O. Douglass, B. H. Pate, Measuring picosec-
ond isomerization kinetics via broadband microwave spectroscopy, Science
320 (5878) (2008) 924–928.

22



[12] K. Prozument, G. B. Park, R. G. Shaver, A. K. Vasiliou, J. M. Oldham,
D. E. David, J. S. Muenter, J. F. Stanton, A. G. Suits, G. B. Ellison,
et al., Chirped-pulse millimeter-wave spectroscopy for dynamics and kinet-
ics studies of pyrolysis reactions, Phys. Chem. Chem. Phys. 16 (30) (2014)
15739–15751.

[13] B. M. Hays, T. Guillaume, T. S. Hearne, I. R. Cooke, D. Gupta, O. A.
Khedaoui, S. D. Le Picard, I. R. Sims, Design and performance of an E-
band chirped pulse spectrometer for kinetics applications: OCS–He pres-
sure broadening, J. Quant. Spectrosc. Radiat. Transfer 250 (2020) 107001.

[14] E. Gerecht, K. O. Douglass, D. F. Plusquellic, Chirped-pulse terahertz
spectroscopy for broadband trace gas sensing, Opt. Express 19 (9) (2011)
8973–8984. doi:10.1364/OE.19.008973.

[15] K. N. Crabtree, M.-A. Martin-Drumel, G. G. Brown, S. A. Gaster, T. M.
Hall, M. C. McCarthy, Microwave spectral taxonomy: A semi-automated
combination of chirped-pulse and cavity Fourier-transform microwave spec-
troscopy, J. Chem. Phys. 144 (12) (2016) 124201.

[16] G. B. Park, R. W. Field, Perspective: The first ten years of broadband
chirped pulse Fourier transform microwave spectroscopy, J. Chem. Phys.
144 (20) (2016) 200901.

[17] A. L. Steber, B. J. Harris, J. L. Neill, B. H. Pate, An arbitrary wave-
form generator based chirped pulse Fourier transform spectrometer op-
erating from 260 to 295GHz, J. Mol. Spectrosc. 280 (2012) 3 – 10.
doi:https://doi.org/10.1016/j.jms.2012.07.015.

[18] J. L. Neill, B. J. Harris, A. L. Steber, K. O. Douglass, D. F. Plusquellic,
B. H. Pate, Segmented chirped-pulse Fourier transform submillimeter spec-
troscopy for broadband gas analysis, Opt. Express 21 (17) (2013) 19743–
19749. doi:10.1364/OE.21.019743.

[19] C. Abeysekera, L. N. Zack, G. B. Park, B. Joalland, J. M. Oldham,
K. Prozument, N. M. Ariyasingha, I. R. Sims, R. W. Field, A. G. Suits, A
chirped-pulse Fourier-transform microwave/pulsed uniform flow spectrome-
ter. II. Performance and applications for reaction dynamics, J. Chem. Phys.
141 (21) (2014) 214203. doi:10.1063/1.4903253.
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