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ROBUST CONTROL OF CONVECTIVE INSTABILITIES IN A 2D SUPERSONIC BOUNDARY LAYER USING A FEEDBACK SETUP

Transition to turbulence in a boundary layer at supersonic speeds leads to an increase in heat flux and skin friction, becoming a constraint for aircraft design. The present study deals with linear growth control of the second Mack mode in a 2D boundary layer at Ma ∞ = 4.5. Beyond its compressible component, the novelty of this study is twofold: to obtain a robust controller by using a feedback sensor placed downstream of the actuator and to use modern synthesis methods to guarantee both stability and performance robustness. This differs from most previous research in the case of the incompressible boundary layer flow which focused on performance using a feedforward setup. Although these two designs both manage not to exceed a given local perturbation energy threshold over a distance downstream of the actuator, the feedback setup offers the best solution for the robustness to performance due to its ability to perform in off-design conditions.

INTRODUCTION

Transition to turbulence in a boundary layer results in increased wall friction, penalizing aircraft drag. At very high speed, the generated heat is significant and becomes a major constraint for the design of supersonic/hypersonic vehicles [START_REF] Juliano | Quiet tunnel measurements of hifire-5 boundary-layer transition[END_REF]. The transition to turbulence of parietal flows is initiated by the amplification of external disturbances of various kinds (roughness, sound waves, freestream turbulence, etc.) which may be mitigated using control. In the case of a flat plate, many supersonic studies employ a predetermined active action [START_REF] Gad El Hak | Flow control: The future[END_REF]: some take advantage of the sensitivity of the Mack modes [START_REF] Mack | Boundary-Layer Linear Stability Theory[END_REF] to temperature [START_REF] Malik | Prediction and control of transition in supersonic and hypersonic boundary layers[END_REF] while others resort to the generation of streaks to counter transient instabilities [START_REF] Sharma | Control of oblique-type breakdown in a supersonic boundary layer employing streaks[END_REF]. The present study deals with reactive control [START_REF] Gad El Hak | Flow control: The future[END_REF] of linear growth of the second Mack mode in a 2D boundary layer (which may lead to turbulence in a 3D setup) at Ma ∞ = 4.5, which has not been addressed in the literature, to the best of our knowledge. Unlike Tollmien-Schlichting (TS) waves which arise from a viscous instability, the second Mack mode comes from an inviscid instability [START_REF] Mack | Boundary-Layer Linear Stability Theory[END_REF]. Reactive control differs from other strategies by the fact that the control action is adjusted according to sensor measurements. Compared to predetermined active or passive methods, better performance in terms of disturbance reduction can be obtained at the cost of greater implementation complexity. The flat plate case falls into the category of noise-amplifier flows: contrary to oscillator flows [START_REF] Barbagallo | Closedloop control of an open cavity flow using reducedorder models[END_REF][START_REF] Åkervik | Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes[END_REF], which dynamics is intrinsic, noise-amplifier flows are sensitive to external disturbances [START_REF] Bagheri | Inputoutput analysis, model reduction and control of the flat-plate boundary layer[END_REF][START_REF] Barbagallo | Closed-loop control of unsteadiness over a rounded backward-facing step[END_REF] which are spatially amplified in the direction of the flow. In addition to this, in the case of the flat plate, the amplification phenomena cover a wide bandwidth; each frequency is amplified on a certain portion of the plate (high frequencies are amplified upstream of the domain while low frequencies are found further downstream) before being filtered by the flow, which greatly complicates the construction of a control law.

The synthesis step, which consists in designing the control law, is only feasible for models of small dimensions due to the cost in memory of synthesis methods which is proportional to the number of degrees of freedom. Fluidic problems have a typical range of 10 5 to 10 8 degrees of freedom, thus, most fluidic control problems go through a reduction of the model before the synthe-sis step. The main requirement in the reduction step is to correctly capture the input/output dynamics; the controller is built from the reduced order models (ROMs) and tested on the complete state a posteriori [START_REF] Sasaki | Closed-loop control of a free shear flow: a framework using the parabolized stability equations[END_REF]. This "reduce-then-design" strategy, where the control law is designed off-line, was dominated in the 60s and the 70s by the linear-quadratic-Gaussian (LQG) synthesis [START_REF] Skogestad | Multivariable Feedback Control: Analysis and Design[END_REF]. However, this synthesis can provide controllers with low stability margins [START_REF] Doyle | Guaranteed margins for LQG regulators[END_REF][START_REF] Sipp | Linear closed-loop control of fluid instabilities and noise-induced perturbations: A review of approaches and tools[END_REF]. The use of the loop-transferrecovery (LTR) method makes it possible to overcome this lack of stability robustness of the LQG method by overwhelming the control signal entering the estimator [START_REF] Sipp | Linear closed-loop control of fluid instabilities and noise-induced perturbations: A review of approaches and tools[END_REF][START_REF] Skogestad | Multivariable Feedback Control: Analysis and Design[END_REF]. However, in addition to degrading the performance of the system, this method may fail for systems with delays [START_REF] Sipp | Linear closed-loop control of fluid instabilities and noise-induced perturbations: A review of approaches and tools[END_REF], such as noise-amplifier flows [START_REF] Belson | Feedback control of instabilities in the two-dimensional blasius boundary layer: The role of sensors and actuators[END_REF]. Modern robust synthesis methods compensate these drawbacks, as the structured mixed H 2 /H ∞ synthesis [START_REF] Apkarian | Nonsmooth H ∞ synthesis[END_REF] used in this study, which possesses many advantages. Firstly, the advantage of a structured synthesis consists in limiting the controller order and imposing its structure upfront, unlike methods that solve Riccati equations (as LQG) which lead to high order controllers, of the same order as the plant, making it difficult to use in practice and forcing to go through a post processing to reduce the number of controller states [START_REF] Apkarian | LMI and nonsmooth optimization techniques for controller design[END_REF]. Secondly, modern robust synthesis makes it possible to satisfy several specifications by constraining several transfer functions simultaneously, contrary to LQG which minimizes a single quadratic criterion based on performance and cost. Despite its advantages, modern robust synthesis methods have been mainly employed in the case of oscillator flows [START_REF] Jones | Modelling for robust feedback control of fluid flows[END_REF][START_REF] Leclercq | Linear iterative method for closed-loop control of quasiperiodic flows[END_REF], noise-amplifier flow studies mostly using the optimal LQG framework [START_REF] Bagheri | Inputoutput analysis, model reduction and control of the flat-plate boundary layer[END_REF][START_REF] Barbagallo | Closed-loop control of unsteadiness over a rounded backward-facing step[END_REF][START_REF] Juillet | Control of amplifier flows using subspace identification techniques[END_REF].

The control of noise-amplifier flows has been fairly widely studied, either in feedforward [START_REF] Bagheri | Inputoutput analysis, model reduction and control of the flat-plate boundary layer[END_REF][START_REF] Hervé | A physics-based approach to flow control using system identification[END_REF][START_REF] Juillet | Control of amplifier flows using subspace identification techniques[END_REF] or in feedback [START_REF] Barbagallo | Closed-loop control of unsteadiness over a rounded backward-facing step[END_REF][START_REF] Belson | Feedback control of instabilities in the two-dimensional blasius boundary layer: The role of sensors and actuators[END_REF] (see Fig. 1). The fundamental difference between these two configurations lies in the position of the estimation sensor with respect to the actuator: in the feedforward configuration (respectively feedback), the measurement sensor is placed upstream (respectively downstream) of the actuator. This difference in relative position between sensor and actuator implies that, since the flow is unstable in the convective sense, a sensor located sufficiently upstream of the actuator perceives negligible effect from the actuator [START_REF] Belson | Feedback control of instabilities in the two-dimensional blasius boundary layer: The role of sensors and actuators[END_REF]. These studies suggest that the feedforward design presents excellent performance in terms of disturbance rejection when their impact on the system is perfectly model [START_REF] Bagheri | Inputoutput analysis, model reduction and control of the flat-plate boundary layer[END_REF][START_REF] Hervé | A physics-based approach to flow control using system identification[END_REF][START_REF] Semeraro | Feedback control of three-dimensional optimal disturbances using reduced-order models[END_REF][START_REF] Skogestad | Multivariable Feedback Control: Analysis and Design[END_REF], whereas the feedback setup presents weaker performance [START_REF] Belson | Feedback control of instabilities in the two-dimensional blasius boundary layer: The role of sensors and actuators[END_REF][START_REF] Juillet | Control of amplifier flows using subspace identification techniques[END_REF]. Indeed, the convective nature of the flow implies delays in the detection of disturbances for feedback designs, which limits the bandwidth of the controller [START_REF] Skogestad | Feedback: Still the simplest and best solution[END_REF][START_REF] Skogestad | Multivariable Feedback Control: Analysis and Design[END_REF] and affects the performance/stability trade-off [START_REF] Belson | Feedback control of instabilities in the two-dimensional blasius boundary layer: The role of sensors and actuators[END_REF][START_REF] Juillet | Control of amplifier flows using subspace identification techniques[END_REF]. Subsequently, despite its ability to be robust to unknown disturbances or uncertainties on the model [START_REF] Belson | Feedback control of instabilities in the two-dimensional blasius boundary layer: The role of sensors and actuators[END_REF][START_REF] Skogestad | Multivariable Feedback Control: Analysis and Design[END_REF], feedback designs are not widely used for noiseamplifier flows and feedforward configurations combined with a LQG synthesis dominate the literature, particularly in the incompressible flat plate control studies [START_REF] Bagheri | Inputoutput analysis, model reduction and control of the flat-plate boundary layer[END_REF][START_REF] Morra | A realizable data-driven approach to delay bypass transition with control theory[END_REF][START_REF] Sasaki | On the role of actuation for the control of streaky structures in boundary layers[END_REF][START_REF] Sasaki | On the wavecancelling nature of boundary layer flow control[END_REF][START_REF] Semeraro | Feedback control of three-dimensional optimal disturbances using reduced-order models[END_REF]. However, the use of a feedforward design raises the problem of robustness to performance, which can be defined as the control law's ability to remain efficient in terms of amplitude reduction despite modelling errors or inflow condition variations around the reference case. This problem has been little addressed in the flat plate literature, with a few notable exceptions. Belson et al. [START_REF] Belson | Feedback control of instabilities in the two-dimensional blasius boundary layer: The role of sensors and actuators[END_REF] managed to setup a feedback structure to control viscous instabilities associated to TS waves. They used a simple proportional-integral (PI) controller to overcome the robustness to stability problem inherent in feedback design but the tuning of their PI parameters is realized by an iterative process, which prevents using this approach in a systematic way. Fabbiane et al. [START_REF] Fabbiane | Adaptive and model-based control theory applied to convectively unstable flows[END_REF] used an adaptive feedforward method where the controller structure changes with the flow conditions, allowing to improve robustness to performance compared to a simple fixed LQG synthesis. However, this method is not robust to abrupt changes in conditions, the controller adjusting its structure in a quasi-static fashion. Thus, the novelties of the present work are to use a reactive setup to control inviscid instabilities related to the second Mack mode, to obtain a fixed robust controller thanks to feedback design and to present a generic methodology for the control of noise-amplifier flows by using modern robust synthesis methods allowing to simultaneously satisfy several specifications.

THEORETICAL FORMULATION

Governing equations

We consider discretized the Navier-Stokes equations describing an unsteady 2D flow of a compressible ideal gas above a flat plate:

dq dt = N (q), (1) 
with q = [ρ, ρu, ρE] T the vector of conservative variables, N the discretized Navier-Stokes operator, ρ the fluid density, u the velocity vector, E = p ρ(γ-1) + 0.5u.u the total energy, p the pressure, γ the ratio of specific heats. The dynamic viscosity µ is computed via Sutherland's law from the local temperature T = p ρr with r the perfect gas constant. A constant Prandtl number Pr is assumed. Numerical values considered in this study will be given in Sec. 3.1.

Control formalism

The purpose of the control action is to reduce the amplitude of disturbances which would have naturally devel-oped, and thus to maintain the flow as close as possible to its equilibrium, called the base flow and denoted q. We decompose our flow into the sum of this base flow q and an infinitesimal perturbation q . This decomposition is explained by the fact that we focus on small amplitude disturbances which are at the origin of the transition scenario. By injecting this formulation into Eq. 1 and by adding a forcing vector f, we get after linearization:

dq dt = Aq + f, (2) 
where the Jacobian operator A is given as

A = ∂ N ∂ q q.
The forcing vector f is decomposed into a disturbance vector B w (x, y) representing the external noise (acoustic noise, roughness, freestream turbulence, etc.) and a vector B u (x, y) modeling the actuator, respectively modulated by scalar amplitudes w(t) and u(t). To model the measurement, we introduce an estimation sensor y and a measurement matrix C y which extracts the desired physical measurement from the state vector q . In the same way, a performance sensor z and a performance matrix C z are introduced. The performance sensor z is used to evaluate the performance of our control by serving as an objective for the control design. The state-space representation of our complete system reads:

dq dt = Aq + B u u(t) + B w w(t), (3) 
y(t) = C y q , (4) 
z(t) = C z q . ( 5 
)
The impact of the disturbances on the sensors, in the absence of a control action, is represented by the transfers T yw and T z i w , with z i the different components of the vector z. The impact of the control action on the sensors, in the absence of disturbances, is represented by the transfers T yu and T z i u . The controller transfer function is noted K. The control action is understood as follows: the measure y is transformed by the controller K into a control signal u which is used by the actuator so as to minimize the outputs z i following the excitation by the exogenous input w. The block diagram of feedforward and feedback configurations is shown in Fig. 1 and the SISO (Single Input Single Output) [START_REF] Skogestad | Multivariable Feedback Control: Analysis and Design[END_REF] transfer functions of the controlled system (noted with the subscript c) are thus:

y(s) w(s) = (T yw ) c = (1 -T yu K) -1 T yw , (6) 
z i (s) w(s) = (T z i w ) c = T z i u K(1 -T yu K) -1 T yw + T z i w , (7) 
with s ∈ C (the Laplace variable) and T yu = 0 in a feedforward setup. One of the feedback interests is to desensitize the looped system to modeling errors or to variations in system characteristics, which is enabled by the sensitivity function S(s). Formally, the sensitivity function represents the transfer function between a plant output disturbance g (see Fig. 1) which may represent a modeling error and the sensor y:

S(s) = y(s) g(s) = (1 -T yu K) -1 . (8) 
To prevent the closed loop from being unstable, a frequent choice is to ensure that the inverse of the modulus margin ||S(s)|| ∞ (which meaning will be given below) is lower than 2 [START_REF] Skogestad | Multivariable Feedback Control: Analysis and Design[END_REF]. The H ∞ norm is defined for an arbitrary transfer function

G as ||G(s)|| ∞ = sup ω∈R σ max (G( jω)) and
represents the maximum gain of the frequency response. By directly measuring the minimal distance between the Nyquist plot and the critical point after which the feedback loop becomes unstable, ||S(s)|| -1 ∞ appears to be a more reliable measure for quantifying the stability margin available [START_REF] Skogestad | Multivariable Feedback Control: Analysis and Design[END_REF]. In feedforward design, S(s) = 1 and the error g is thus never amplified nor damped, which explains the unconditional stability and the poor results in terms of robustness to performance of this configuration.

NUMERICAL SETUP

Computational domain

A diagram of the computational domain is represented in Fig. 2: it consists of a 2D rectangular domain where the lower boundary is an adiabatic flat plate of length L x = 2002δ * 0 with δ * 0 the compressible displacement thickness at the input of the domain. The boundary conditions are conventional: a far-field condition on the upper boundary which extrapolates the state of the adjacent cell if the flow leaves the domain or uses the infinite state otherwise; a supersonic exit condition which extrapolates the state of the adjacent cell; a supersonic entry condition where the complete state is imposed and matches a self-similar boundary layer profile. A sponge area is applied to the downstream and upper boundary conditions to minimize reflections [START_REF] Franko | Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers[END_REF]. This sponge area consists 

< Re x = ρ ∞ U ∞ x µ ∞ < 4.1 × 10 6 .
It is composed of 3200×220 cells: the mesh is uniform in the x direction while a geometric law is used in the y direction to solve strong gradients near the wall. This 2D mesh is validated on the results of [START_REF] Ma | Receptivity of a supersonic boundary layer over a flat plate. part 1. wave structures and interactions[END_REF]. It aims to capture the structures associated with the second Mack mode which are characterized by shorter wavelengths and higher frequencies than 2D structures of the first mode [START_REF] Mack | Boundary-Layer Linear Stability Theory[END_REF].

Flow solver

The simulations are performed using the finite volume code elsA [START_REF] Cambier | The Onera elsA CFD sofware: input from research and feedback from industry[END_REF]. An upwind AUSM + up scheme is used for the spatial discretization of the convective fluxes [START_REF] Liou | A sequel to AUSM, Part II: Ausm +up for all speeds[END_REF]. It is associated with a third order MUSCL extrapolation method [START_REF] Van Leer | Towards the ultimate conservative difference scheme. V. A second-order sequel to godunov's method[END_REF]. The viscous fluxes are obtained by a second order centered scheme. The unsteady simulations are performed with an implicit time Gear second order scheme with a time-step of dt = 2.5 × 10 -8 s and 4 sub-iterations. The elsA software being a non-linear solver, disturbance amplitude is chosen to ensure to remain linear.

Numerical parameters for control

The choice of the type and position of the actuator and sensors is essential to ensure effective flow control. The noise and the actuator are modeled by volume forcing in the momentum equations with a divergence free spatial support commonly used in the control literature [START_REF] Bagheri | Inputoutput analysis, model reduction and control of the flat-plate boundary layer[END_REF][START_REF] Belson | Feedback control of instabilities in the two-dimensional blasius boundary layer: The role of sensors and actuators[END_REF][START_REF] Semeraro | Feedback control of three-dimensional optimal disturbances using reduced-order models[END_REF]:

h(x 0 , y 0 , σ x , σ y ) = (y -y 0 )σ x /σ y -(x -x 0 )σ y /σ x exp - x-x 0 σx 2 - y-y 0 σy 2 . ( 9 
)
The initial disturbance is centered in a locally stable area for all frequencies:

B w = h(4.1δ * 0 , δ * 0 , 1.5δ * 0 , 0.15δ * 0 ). (10) 
The forcing field amplitude is taken so as to ensure that perturbations remain linear until the end of the computational domain. Regarding the spatial field of the actuator, we have:

B u = h(867.2δ * 0 , 7.79δ * 0 , 1.5δ * 0 , 0.5δ * 0 ). (11) 
Both forcing fields are centered around the generalised inflection point y s defined as ∂ ∂ y ( ρ∂U ∂ y ) y s = 0 [START_REF] Mack | Boundary-Layer Linear Stability Theory[END_REF], which drives the inviscid instabilities of the second Mack mode. This choice follows a 2D global optimal forcing and response analysis: thanks to the global resolvent operator [START_REF] Bugeat | 3D global optimal forcing and response of the supersonic boundary layer[END_REF], a direct relation between the spatial structure of a harmonic forcing f (x, y,t) = f(x, y)e iωt applied to the system and its response q (x, y,t) = q(x, y)e iωt is established. For a given frequency and among all the possible forcings, it is relevant to examine the one (called optimal forcing) which maximizes the gain

µ 2 (ω) = sup f || q|| 2 E || f|| 2 F with ||.|| 2 E and ||.|| 2
F respectively the Chu energy and the energy of the momentum forcing itself [START_REF] Bugeat | 3D global optimal forcing and response of the supersonic boundary layer[END_REF]. For the most amplified frequency f = 85000 Hz on the domain according to the gain µ 2 , in order to maximize the receptivity to external and actuator disturbances, it is relevant to apply the forcing fields (see Fig. 3a) around the generalised inflection point (denoted with a dashed line). In the context of our flat plate study, the disturbances are amplified while being convected along the plate. Hence, for a feedback design, the estimation sensor y has to be close enough to the actuator to avoid sending outdated information and limit the effective delay impacting the maximum achievable performance [START_REF] Barbagallo | Closed-loop control of unsteadiness over a rounded backward-facing step[END_REF][START_REF] Belson | Feedback control of instabilities in the two-dimensional blasius boundary layer: The role of sensors and actuators[END_REF][START_REF] Juillet | Control of amplifier flows using subspace identification techniques[END_REF]. With regard to the performance sensor z, one possible choice can be to take a global performance sensor approximating the disturbance energy in the flow using POD modes [START_REF] Belson | Feedback control of instabilities in the two-dimensional blasius boundary layer: The role of sensors and actuators[END_REF][START_REF] Semeraro | Feedback control of three-dimensional optimal disturbances using reduced-order models[END_REF]. However, the disturbance energy growing as it convects due to the increasing amplification rate over an increasingly large spatial support, such a performance sensor would then essentially account for the fluctuating energy downstream of the domain, abandoning the structures further upstream in the case of a very large computational domain. The transition to turbulence appearing locally above a certain perturbation energy threshold, we emphasize the need to choose local rather than global performance sensor. This translates into the need to take an individual interest in the different sensors z i to obtain a suitable frequency representation in different abscissas of the plate to avoid an unwanted waterbed effect [START_REF] Skogestad | Multivariable Feedback Control: Analysis and Design[END_REF]. Indeed, reducing the amplitude of disturbances in one part of the frequency spectrum can lead to increasing it in the other part, which could predominate in other abscissas of the plate. We choose sensors y and z i as wall pressure fluctuation sensors, this quantity taking its most important values on the plate, as shown by the optimal response profiles in Fig 3b . Another possible choice, according to this result, could have been to take skin-friction fluctuation sensors or temperature fluctuation sensors located at the inflection point. The sensor y is fixed at x = 801.2δ * 0 and x = 885.7δ * 0 for feedforward and feedback configurations, respectively. With regard to the sensors z i , five sensors are used and are placed at x 1 = 933.2δ * 0 , x 2 = 1029.4δ * 0 , x 3 = 1125.6δ * 0 , x 4 = 1317.9δ * 0 and x 5 = 1766.7δ * 0 . The choice of these streamwise positions will be explained in more detail in Sec. 5.2.

REDUCED ORDER MODELS

Data-based models

In this study, ROMs are obtained by a subspace identification method called ERA (Eigensystem Realization Algorithm) which consists in recording the impulse responses of the outputs for each of the inputs and to perform a singular value decomposition to compress the state [START_REF] Juang | An eigensystem realization algorithm for modal parameter identification and model reduction[END_REF]. This method has been used several times in the case of the flat plate in 2D [START_REF] Belson | Feedback control of instabilities in the two-dimensional blasius boundary layer: The role of sensors and actuators[END_REF] or 3D [START_REF] Morra | A realizable data-driven approach to delay bypass transition with control theory[END_REF][START_REF] Sasaki | On the role of actuation for the control of streaky structures in boundary layers[END_REF][START_REF] Sasaki | On the wavecancelling nature of boundary layer flow control[END_REF] configurations.

Identification for noise-amplifier flows

In this study, the identification is based on the fact that the main purpose of the control action is to minimize the H 2 norm of the transfer T z i w for the different performance sensors z i (see Sec. 5.1). We recall that for a SISO system, the H 2 norm is given by

||G(s)|| 2 = 1 2π +∞ -∞ |G( jω)| 2 dω 1/2 . ( 12 
)
This norm is not modified by a delay:

||G(s)|| 2 = ||e -τs G (s)|| 2 = ||G (s)|| 2 , (13) 
with τ the dead time delay of the transfer and G (s) the system without this delay. Thus, by taking advantage of this property and taking into account the objectives of the synthesis during the identification step, some of the input/output delays linked to the convective nature of the flow may be discarded:

||(T z i w ) c || 2 = ||T z i u KST yw + T z i w || 2 ,
= ||(e -τ z i u s T z i u )KS(e -τ yw s T yw )

+ (e -τ z i w s T z i w )|| 2 ,

= ||T z i u K 1 1 -e -τ yu s T yu K S T yw e -τ yu s + T z i w || 2 . ( 14 
)
The same approach can be applied to a feedforward design with the result below:

||(T z i w ) c || 2 = ||T z i u KT yw + T z i w e -τ uy s || 2 . ( 15 
)
Thus, the only required delay for the synthesis is linked to the actuator/measurement sensor distance. Consequently, the identification of the different transfer functions is realized by removing the dead time in the impulse response, which amounts to shifting the time axis. Regarding the residual delay, it is directly identified with ERA. Removing unnecessary delays leads to a significant reduction in the size of the identified model, which is beneficial both for the identification and the subsequent synthesis step.

Indeed, the T z 5 u transfer function for the farthest performance sensor z 5 with its dead time can be identified with a model of order 220. In that respect, the global order of the ROM, which is the sum of the orders of each transfer function, would reach ∼ 1000 states due in part to the delay contained in T z 5 w which represents the greatest one; the duration of a controller synthesis scaling with the number of states, we understand the importance of removing unnecessary delays. The requirement of removing dead times appears when the domain is extended and we also need to identify high frequencies (compared to the input/output dead times frequency scale) related to second Mack mode. Fig. 4 shows good agreement between the real signal from the linear simulation for one of the performance sensors z i and that obtained after the identification process with an order of 40. The ROM constructed (with the residual delay identified) captures most of the dynamics. 

SYNTHESIS AND RESULTS

Structured mixed H 2 /H ∞ synthesis

In this study, a structured mixed H 2 /H ∞ synthesis (Matlab function systune) [START_REF] Apkarian | Nonsmooth H ∞ synthesis[END_REF] is used. We limit the controller order to 5 and impose a strictly proper controller involving a natural roll-off of the high frequencies of -20 dB/dec in order to be robust to noise on the estimation sensor y naturally present in every experimental setup. The algorithm then solves the following constrained minimization problem: minimize max i=1,...,5

(||(T z i w ) c || 2 , l||K|| ∞ ) subject to ||S|| ∞ < 2, ( 16 
)
while keeping the controller K stable. The minimization of H 2 norms allows a reduction of the output energy for the five performance sensors z . The minimization of H ∞ norm on the controller allows to limit the cost of the control and the scalar parameter l is used to give more or less importance to this constraint. The H ∞ constraint on the sensitivity function maintains adequate stability margins. In the case of a feedforward design, this constraint disappears, as the sensitivity function is absent from the problem. This modern robust synthesis approach is perfectly suited for our problem by minimizing the energy of sensors at different abscissa of the flat plate and therefore taking into account the local character of transition to turbulence. By minimizing the maximum value between several functions, a non-smooth optimization is realized; as non-smooth optimization is computationally intensive (compared to LQG), it is all the more important to obtain ROMs with the least possible states (see Sec. 4.2) because multiple random controller initializations are required to deal with the non-convex nature of the cost functional [START_REF] Apkarian | LMI and nonsmooth optimization techniques for controller design[END_REF], giving in our case simulations of a few tens of minutes.

Position of the sensors

The position of the sensor y has been greatly studied in the case of noise-amplifier flows [START_REF] Belson | Feedback control of instabilities in the two-dimensional blasius boundary layer: The role of sensors and actuators[END_REF][START_REF] Juillet | Control of amplifier flows using subspace identification techniques[END_REF][START_REF] Sasaki | Closed-loop control of a free shear flow: a framework using the parabolized stability equations[END_REF] because it plays an important role in the performance, particularly in a feedback design. To obtain the position of the sensor y, a quick analysis is carried out; it consists in looking at the impact of the actuator/measurement sensor distance on the maximum achievable performance in terms of reduction on the performance sensor z 5 , which is the furthest downstream of the flat plate, regardless of the control cost. The minimization problem Eq. 16 is therefore written as

minimize||(T z 5 w ) c || 2 subject to||S|| ∞ < 2. ( 17 
)
On the one hand, the actuator/measurement sensor distance influences very strongly the maximum performance achievable for feedback designs (see Fig. 5). On the other hand, feedforward designs are relatively unaffected by this distance over a certain range and they perform better than feedback ones, which is consistent with the results of the incompressible literature [START_REF] Belson | Feedback control of instabilities in the two-dimensional blasius boundary layer: The role of sensors and actuators[END_REF][START_REF] Juillet | Control of amplifier flows using subspace identification techniques[END_REF]. However, this result does not provide any information regarding robustness to performance. To obtain significant performance in terms of amplitude reduction, it is decided to place the sensor y at x = 801.2δ * 0 and at x = 885.7δ * 0 for feedforward and feedback configurations, respectively. In regards to the performance sensor z i positions, it is important to place several sensors to have an adapted representation of the frequencies which are the most amplified between the actuator and the end of the computational domain considered. As shown in Fig. 6, the most energetic frequencies on the performance sensor z 1 (blue lines) closest to the actuator are filtered by the flow and are no longer present on the farthest performance sensor z 5 (red lines) which is dominated by lower frequencies which are naturally amplified along the plate. Furthermore, the frequency content on z 1 differs quite clearly when it is generated by the actuator u (dashed lines) or by the external disturbance w (solid lines); indeed, the magnitude variation between frequencies is not the same between these two cases, suggesting different amplification rates. As this phenomenon does not appear on more distant sensors (as z 5 ), it could be attributed to a non-modal transient growth. Thus, the position of the performance sensors is explained by the need to correctly detect all the frequencies being naturally amplified along the plate and to have enough sensors near the actuator to capture non-modal transient growth.

Stability robustness

In the case of feedback design, it is interesting to see how robust in stability the resulting controller can be. According to the Nyquist's stability criterion [START_REF] Skogestad | Multivariable Feedback Control: Analysis and Design[END_REF], -T yu K being globally stable, the closed loop system is stable if and only if the Nyquist plot of -T yu K does not circle the critical point (-1, 0). The Nyquist plot allows therefore to quantify the available stability margins related to the distance to the critical point. The gain and phase margins (noted GM and PM) represent respectively the minimum amount of gain and phase variations required to lose stability. In our flat plate case, the gain and phase margins respectively stand for an estimation error in the instability's amplification rate and convection speed which can lead to an instability of the feedback loop [START_REF] Sipp | Linear closed-loop control of fluid instabilities and noise-induced perturbations: A review of approaches and tools[END_REF]. Fig. 7 shows the Nyquist plot of the loop gains -T yu K and -T yu ±5% K with T yu ±5% the transfer function after a variation of the upstream speed at the entry of the domain U ∞ of ±5%. The modulus margin ||S|| -1 ∞ (black dotted line), representing the minimal distance between the Nyquist plot and the critical point (-1, 0), is equal to 0.512 for the reference case and logically respects the H ∞ constraint on the sensitivity function imposed in the minimization problem (see Eq. 16). The variations of the upstream speed alter slightly the stability margins compared to those obtained in the reference case: the phase margin stays infinite and the gain and modulus margins fluctuate respectively by a maximum of 6% and 4%. A 5% increase of the upstream velocity implies higher amplification rates leading to smaller modulus and gain margins, whereas a 5% decrease in speed appears more favourable with higher margins. In view of the small impact of the inflow speed variation of ±5% on the margins, the feedback design may be stable on an even larger speed variation. Therefore, thanks to the modern robust synthesis used, the robustness to stability for the feedback design is not a problem and we will examine the robustness to performance.

Performance robustness

Both controllers resulting from a feedforward and a feedback design are implemented in the elsA software. The control action results in a significant reduction in the local H 2 norm of the transfers T z(x)w at each abscissa of the plate (see Fig. 8a) for both feedfoward and feedback configurations (with z(x) a wall pressure fluctuation sensor at the abscissa x not necessarily used during the synthesis step). Moreover, both configurations do not exceed the energy threshold located at the position of the actuator. This should make it possible to delay the transition to turbulence due to the second Mack mode over a large portion of the domain in a 3D setup provided the choice of our performance sensors be relevant to the transition problem. It should be noted that after the position of the last performance sensor z 5 , the local H 2 norm immediately starts to increase again, showing that if frequencies are not part of the constrained frequency spectrum during the synthesis, they can be amplified and impact the results downstream of the domain. As expected by the result in Sec. 5.2, the feedforward design minimizes even more the local H 2 norm than the feedback one, meaning that this design potentially has the ability to delay the transition to turbulence over an even longer domain. However, the strength and usefulness of the feedback design over a feedforward one lies in its ability to maintain correct performance to variations in system characteristics, made possible by the closed loop. A variation of the upstream speed at the entry of the domain U ∞ of ±5% highlights this phenomenon: the feedforward design fails to maintain the performance requirement unlike feedback one (see Fig. 8b). Speed variations are indeed particularly problematic because they imply different delays in the convection of the perturbations: the feedforward setup seems to activate out of phase, leading to an increase in the local H 2 norm. This may then lead to a faster transition to turbulence, which is the opposite of the desired objective. Feedback design, on the other hand, despite degraded off-design performance, manages to reduce the local H 2 norm compared to the case without control over a fairly large distance on the flat plate. The 

CONCLUSION & PERSPECTIVES

A robust reactive control method has been studied to control the linear growth of the second Mack mode in a 2D boundary layer on a flat plate at Ma ∞ = 4.5. A specific identification methodology to dispense with unnecessary dead times coupled to modern robust synthesis essential for building a feedback design have been used. This modern synthesis method shapes the spatial evolution of different local energy measures as we go downstream, which seems a reasonable approach to delay transition to turbulence. After implementing the laws in the elsA solver, it results than feedforward and feedback designs both manage not to exceed a certain energy thresh-old. Nevertheless, feedforward setup is completely unable to follow inflow condition variations while the feedback setup keeps reasonable performance over a large velocity variation of ±5%. Thus, in the case of a fixed controller structure, the feedback appears to be the best solution, a result which looks contrary to conventional wisdom which is a feedforward setup for noise-amplifier flows. These results can nevertheless be further improved by using other more complex synthesis techniques making it possible to improve the robustness to performance by taking into account the transfer functions after a variation of the upstream speed at the entry of the domain directly during the synthesis step. In addition, the robustness of the feedback controller to non-linearities will be tested, which will be essential in order to delay transition to turbulence.

Figure 1 :

 1 Figure 1: Block diagram of feedforward and feedback configurations. In a feedforward setup, T yu = 0.

Figure 2 :

 2 Figure 2: Diagram of the computational domain. Inputs and outputs are in red and blue, respectively.

Figure 3 :

 3 Figure 3: Profiles of the optimal a) forcing components at x = 867.2δ * 0 normalized by the maximum value of | f x | b) response at x = 1766.7δ * 0 normalized by their respective maximum values. The dashed lines represent the generalised inflection point position at the x abscissa considered.

Figure 4 :

 4 Figure 4: Comparison between the plant and the ROM impulse responses of the z 5 wall pressure fluctuation sensor at x = 1766.7δ * 0 . Note that the time axis of the plant impulse response is shifted and that the ROM contains the residual delay linked to the actuator/measurement sensor distance.

2 Figure 5 :

 25 Figure 5: Evolution of the maximum performance achievable on the sensor z 5 at x = 1766.67δ * 0 as a function of the position of the measurement sensor y. The dotted line represents the actuator position and the green and red shaded areas represent feedforward and feedback configurations, respectively.
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Figure 6 :

 6 Figure 6: Transfer functions from w (solid lines) and u (dashed lines) to z 1 (blue lines) and z 5 (red lines), placed respectively at x 1 = 933.2δ * 0 and x 5 = 1766.7δ * 0 .

Figure 7 :

 7 Figure 7: Nyquist plot of -T yu K (solid blue line) and -T yu ±5% K (dashed and dotted red lines). The black dotted line represents the modulus margin ||S|| -1 ∞ . The black dashed line represents the gain difference before instability and is linked to the gain margin GM a) Global view. b) Zoom near the critical point (-1,0).

Figure 8 : 9 .Figure 9 :

 899 Figure 8: Local H 2 norm of the transfer T zw from upstream noise w to wall pressure fluctuation probes z(x). The vertical magenta and orange dotted lines represent, respectively, the position of the actuator (with the sensor y nearby) and the performance sensors z i used for the synthesis. The values are normalized by the H 2 norm value of the uncontrolled system at the actuator position. a) Reference case with the horizontal energy threshold in black dotted line b) Performance evolution according to variations of +0.05U ∞ and -0.05U ∞ in dotted and dashed lines, respectively.
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