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ABSTRACT

This paper gives a framework for the data-driven estima-
tion of an unsteady fluid flow field. The strategy com-
bines machine learning tools for the reduction, the re-
construction and the prediction of the considered system.
The reduction is performed by linear autoencoding while
support vector regression and dynamical mode decom-
position are respectively used as reconstruction and pre-
diction models. Starting from an initial condition, recon-
structions are frequently assimilated to update erroneuous
predictions. The procedure is tested on four cases with
increasing complexity and robustness is assessed through
training and testing errors. Quantitative results suggests
that reconstruction and prediction models purely learnt
from data can be used for effective data assimilation,
hence enabling the long-term prediction of even complex
fluid flows.

1. INTRODUCTION

In fluid mechanics, each task (modelisation, closure, con-
trol or reduction) can be written as an optimization prob-
lem. However, for high Reynolds number, the convection
term dominates the diffusion term, yielding a nonlinear,
high-dimensional, multi-scale and nonconvex problem.
Solving directly this formulation is challenging even in-
tractable and new methods must be developed. Given the
huge amount of both numerical and experimental data, a
possibility is to use machine learning tools to solve opti-
mization problems purely from data [5]. This paper in-
vestigates such data-driven procedures to estimate a fluid
flow velocity field. In particular, a dynamical mode de-
composition (DMD) model is used in combination with

support vector machine regression (SVR) to continuously
predict four fluid flows: 2D vortex shedding, a spatial
mixing layer, 3D vortex shedding and an urban flow.

2. STATE OF ART

The field to estimate is denoted U;. Two approaches are
possible to obtain the estimate: the reconstruction and the
prediction [6]. In the reconstruction problem, limited
measurements y; at time t are used to recover the velocity
field at the same time (interpolation in space). In the pre-
diction problem, a dynamical model is used to advance
in time the velocity field U;_; (extrapolation in time). For
turbulent flows, the state is high-dimensional because of
the complex spatio-temporal dynamics. However, low di-
mensional features can be extracted, making relevant the
use of dimensionality reduction techniques [21]. Recon-
struction and prediction problems are therefore equiva-
lent to the estimation of the reduced (also called latent)
state, as shown in figure 1.

2.1 Reconstruction

The measurement operator ¢ being likely ill condi-
tioned thus not invertible, the inverse operator 4 = do f
is estimated from data. Three ideas were developed in the
literature. The first approach is the direct reconstruction
[1], evaluating ¢(y) for each new measurement vector.
The flow field is written as a linear combination of ref-
erence modes which can be generic (e.g. Fourier modes)
or tailored to the considered flow (data driven modal de-
composition). The second approach is the regressive re-
construction where the complete operator ¢ is learned
using supervised learning methods. Given a parametric
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Figure 1: Representation of the reconstruction problem
with dimensionality reduction: measurements are used to
recover dynamics of dominant structures.

or nonparametric formulation of ¢, a cost function eval-
uating the error between training examples (snapshots
with associated measurements) and their reconstruction
is minimized. First investigations of this method include
the well-known stochastic estimation [2], where the re-
constructed field is explained by a multi-linear function
of available measurements. The third approach is data-
assimilation where a dynamical model evolves the field
estimate while measurements improve the forecasts [16].
The dynamical model may be a reduced-order approxi-
mation of Navier-Stokes equations, found by a Galerkin
projection onto a data-driven basis or found by model
identification.

2.2 Prediction

The velocity field satisfies a partial differential equation,
namely Navier Stokes equations. To advance the state,
the flow map is introduced, integrating the initial con-
dition from #y to ¢t [11]. Several strategies were devel-
oped to approximate this flow map in a data-driven fash-
ion. A first approach consists in using supervised learn-
ing techniques to learn the input-output relation between
past states and future states. Neural networks are partic-
ularly suitable given their high flexibility to capture non-
linearities. As an example, the reader is referred to [7]
where we use a recurrent neural network with long-short
term memory to continuously predict the chaotic Lorenz
system. A second approach makes extensive use of the
Koopman theory which introduces a linear but infinite di-
mensional operator to advance all possible observations
of the state. Finite approximations of this so called Koop-
man operator give a linear dynamical model that can be
used for prediction and control. Current research focus
on finding a good space of observables where to learn the
approximation or at least limit the spurious behaviour of
identified eigenfunctions [14]. When working with la-
tent state components as observables, the approximation
of the Koopman operator is known to be the dynamical

mode decomposition (DMD) model [22].

2.3 Reduction

Even highly turbulent flows exhibit low dimensional spa-
tial directions called modes. Vortex shedding for wake
flows, Kelvin Helmotz vortices for shear flows and co-
herent structures for boundary layers can be cited as ex-
amples. The extraction of such structures can be per-
formed by linear or nonlinear encoding transformations
e. If the decoding transformation d is known, the estima-
tion of the latent structures dynamics a(r) € R" is enough
to infer the velocity field. The most common reduction
technique is the proper orthogonal decomposition (POD)
[19], which is the name given to principal components
analysis applied to fluid flow data. Extracted modes are
uncorrelated and hierarchically sorted by the data vari-
ability they recover. The simplicity of the implementation
makes the POD a method of choice for dimensionality re-
duction. However, recent improvements in deep learning
have made possible considerable progress in dimension-
ality reduction by using autoencoders. Two neural net-
works are therefore trained simultaneously to optimally
encode and decode data. As a reference example, Xu
et al. [23] took advantage of convolutional networks to
leverage nested nonlinear manifolds and predict transient
flows.

2.4 Work in this paper

This conference paper investigates the use of dynamical
mode decomposition as a dynamical model and support
vector regression as a reconstruction model to estimate
four flow fields with increasing complexity: the flow in
the wake of a 2D cylinder (Re = 200), a spatial mixing
layer (Reynolds base on vorticity thickness Re = 500),
the wake of a 3D cylinder (Re = 20000) and the flow in
the viscinity of a tower placed in an atmospheric bound-
ary layer (Reynolds base on the tower base length Re =
64000). Flow fields are reduced using a linear autoen-
coder and recursive forecasts of the latent state are se-
quentially enforced by the reconstructions. Data assim-
ilation is performed using the models established solely
from data, hence refered as data-driven assimilation. Fig-
ure 2 gives a general overview of the strategy.

3. METHODS AND DATA

This section gives details about notations, simulation data
and mathematics behind the reduction, reconstruction,
prediction and assimilation procedure.

3.1 Simulation data

Simulation data are written as a matrix U € R"*" where
n is the dimension (number of cells multiplied by the
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Figure 2: The proposed framework for the data-driven estimation of a fluid flow field.

number of velocity components) and m is the number of
snapshots. Considering a 70/30 split, m"™" = 0.7m and
m't = 0.3m are respectively the number of training and
testing snapshots. The fluctuant velocity field matrix is
defined as u = U — U where U is the mean flow com-
puted over all snapshots. This tall but skinny matrix is
split into ™" and #'°*! matrices. The case 0 corresponds
to a URANS k — o computation of a 2D cylinder placed
in a uniform flow. The Reynolds number, based on the
cylinder diameter, is Re = 200. The snapshot ensemble
is composed of 125 snapshots written on a 5840 dimen-
sional grid. The case 1 corresponds to a direct numeri-
cal simulation of a 2D spatial mixing layer. The upper
(fast) and lower (slow) stream velocities are respectively
U, =30m/s and U, = 10m/s. The initial vorticity thick-
ness is 0w, = 1m and the inlet profile is a hyperbolic tan-
gent [12]. Stochastic perturbation is added to the inlet
profile to trigger the Kelvin Helmotz instability [13]. A
total number of 2700 snapshots is available, for a domain
containing 3690 cells. The case 2 corresponds to a large
eddy simulation of a square cylinder wake. The Reynolds
number based on the cylinder diameter is Re = 20000 and
the snapshot ensemble contains 1312 snapshots for a do-
main with 48023 cells. The case 3 corresponds to a large
eddy simulation of the flow in the viscinity of a tower.
A vortex method is used to reproduce the inlet turbu-
lent velocity profile. The Reynolds number based on the
tower width is Re = 64000. Estimations are performed
in a transversal plane centered around the tower, which

contains 28432 cells. A total number of 1596 snapshots
is available. Figure 3 gives a visualisation of these flow
fields.

3.2 Dimensionality reduction

The encoder e compresses the data u from an initial space
to a latent space and the decoder d decompresses encoded
data. Given a family of candidate encoders E and de-
coders D, the best e/d pair is determined by:
(¢",d") = argmin €(up.,,d [e(u[:’,])}) (D
(e.d)€EXD
In proper orthogonal decomposition, the encoder and
decoder are unitary matrices obtained from the spectral
decomposition of the training covariance matrix C, =
u'@in [T - This decomposition yields: C,&® = ®A
where the transfer matrix @ € R"*" transforms initial ba-
sis vectors into uncorrelated directions. These modes are
hierarchically sorted according to the variance A;; they
recover. When truncating the transformation to first r
modes, initial data are written in the best r dimensional
subspace to describe variability in #"™". In recent ap-
plications, encoders and decoders are neural networks.
Here, we consider a linear autoencoder i.e., a neural net-
work with one hidden layer and linear activations [18].
The weights and biases in the network are optimized by
minimizing the mean square error between training sam-
ples and their autoencoding (see table 1). The dimension
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Figure 3: Visualisation of the four cases investigated in this communication.
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Table 1: Autoencoding formulas

of the latent state is chosen accordingly with the number
of POD modes required to recover 99% of the variance
for case 0 and 80% for all other cases.

3.3 Sensor placement and reconstruction

Measurements are supposed to be p known locations in
the fluctuant field to estimate. The measurement operator
is a matrix C € RP*" with C;; = 1 if y; = u; and 0 oth-
erwise. Training and testing measurements are therefore
yrain — cyrain gnd yest — ¢yt The spatial location of
sensors is determined by enhanced clustering [10]. First,

cell centres are partitioned into Voronoi cells defined by
their centroids. Second, most energetic clusters are de-
fined as sensors. In this paper, the number of clusters is
set to 500 for all cases and sensors correspond to Voronoi
centroids recovering 80% of the training field variance.
The objective is now to learn the optimal mapping f so
that a”) = f(y) is a good estimate of the actual latent state
a. This is a three-step procedure: choice of a form of a
function, learning procedure to minimise a cost function
and validation. In this paper, a focus is made on support
vector regression (SVR). If this regression is performed
in the latent state space, the estimation for the mode i,

is a[l 4= = B! . V[.. 1.e. a linear combination of measure-

ments. Here, B;, € RP*! ensures at most an € deviation
from true targets and its optimal value is found by solving
the primal formula:

Mirain

in —B/B+B +
Gmin B,ﬁ Z (&+&)

tram BITV“ytraln <e4+ ét vt (2)

lht]

[ < et & v

&taét Z OVt

With slack variables & and £* to penalyze observations
out of the € tube. This regularization is controlled by the
box constraint B. Instead of performing the linear regres-



sion in the latent state space, it can be perform in a higher
even infinite dimensional subspace using the kernel trick.
The estimation of a is therefore a nonlinear combination
a measurements, yielding:

Mirain

o= ¥ (@ —a)GOE ) @)
=

Where G is a kernel function and (¢, ™) are Lagrange
multipliers that intervene in the dual formulation of the
problem. The kernel computes high dimensional interac-
tions between variables y™™ and y without actually trans-
forming variables. The reader is referred to the tutorial of
Smola [20] for a complete derivation of the equation and
the cost function. To ensure that the model is robust on
unseen data, hyperparameters of the SVR (the kernel and
the box constraint) are cross-validated using a random-

ized grid search.

3.4 Dynamical mode decomposition

The dynamical mode decomposition finds the best one-
step ahead linear dynamical model to describe the dy-
namics of data. The DMD matrix K is obtained by the
Moore Penrose inverse:

K= [atrain} +1) [atrain} T 4)

Where [atmin] D is the time shifted version of @™,
This matrix can be used as a linear predictive model:
starting from an initial condition ay,, the h-step ahead re-
cursive forecast of the latent state is given by:

Gprn = K'ay, (5)

The K matrix is a finite approximation of the Koopman
operator. If the dynamics of the latent state is nonlinear,
identified eigenfunctions from left eigenvectors of K are
spurious i.e. they do not evolved as predicted by their
associated eigenvalues [4].

3.5 Data-driven assimilation

For nonlinear systems, the subspace spanned by latent
state components is not Koopman invariant. Therefore,
the dynamical model is erroneous and predictions must
be updated. To make a continuous forecast of the la-
tent state, the idea is to assimilate reconstructions. Three
types of errors must be considered: the error on the initial
condition, the dynamical model error and the reconstruc-
tion error. In this paper, reconstructions are assimilated
each F = 5 new predictions. Covariance matrices of er-
rors are defined as follows:

2 . .
e O=E [(a,ﬁp —KF a,o) } for the recursive predic-
tion using the dynamical mode. This matrix is esti-
mated by a sample covariance, using training data.

e R for the covariance error on measurements. Noise
is independantly applied to each component so that

— 52 wi _
R,-p’,-p =0 with oi, = I, max y[ip7:]]
e Py for the covariance error on the initial condition.
Similarly to R, we define Poir-ir = Gl% with o;, =
Tymax [ag, ;]
The proposed assimilation scheme is based on Kalman
filter [16] equations and is summarized in figure 4.

3.6 Maetrics

To compare actual trajectories and estimated ones (recon-
structed, predicted or assimilated), the normalized mean
square error (NMSE) is used. Denoting s the true trajec-
tory and § the estimated one, the error on component i for
m, samples is:

e R 2
L [ i)

NMSE; = 55— (6)
L [stia =50

A normalized error of zero means that on average, the
error is small compared to the expected variability. The
determination coefficient is also used, which is a ’score”
version of the NMSE metric, defined by:

R? = 1 —NMSE; (7)

Metrics evaluated on training and testing data must be
similar to ensure a good bias-variance trade-off, typically
achieved by cross validation of hyperparameters. The
global metric is determined by averaging over the num-
ber of modes. For the DMD results, training and testing
data sets are split into overlapping trajectories with length
H = 16. The h-step ahead prediction quality is quantified
with a mean score over the number of trajectories while
the global score also averages over the horizon'. For the
assimilation results, metrics are evaluated by averaging
over the ten successive trajectories that can be extracted
from training or testing sets 2.

4. RESULTS

To reduce the dimension from » to r < n, the proper or-
thogonal decomposition and the linear autoencoder are
used. The latent space dimension corresponds to the
number of POD modes required to recover 99% of the
variance for case 0 and 80% for other cases. Table 2

IDMD errors are evaluated on smaller sequences instead of the
whole trajectory because the error would likely be 100% given the er-
roneous nature of the DMD model for nonlinear dynamics

2 Assimilations are evaluated on ten smaller trajectories instead of
the whole trajectory to test the procedure with different initial condi-
tions.
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Figure 4: Data-assimilation procedure using data-driven models.

summarizes reduction results, including dimensions and
autoencoding errors. As expected, the number of spa-
tial modes and the error increases with the complexity
of the flow. Testing errors are higher than training er-
rors for case 2 and case 3 which is symptomatic of over-
fitted modes. To reduce this difference, robust principal
components and cross validated neural network could be
used, but this is out of the scope of this communication.
Figure 5 gives a visualisation of the first POD mode (the
most energetic) and the first LAE mode for the 2D cylin-
der. This comparison suggests that the nonorthogonal re-
duction is more interpretable than the orthogonal reduc-
tion, as supported by Erichson et al. conclusions [9].

Case n r NMSE POD NMSE LAE
0 11 680 5 [0.12 0.12] [0.12 0.12]
1 27 360 11 [8.88 9.59] [9.22 9.95]
2 144069 21 [29.1431.17] [30.29 32.11]
3 85296 139 [24.6939.84] [47.67 57.61]

Table 2: State space and latent space dimensions for each
case and autoencoding errors. Results are written as [train
test] errors (NMSE in %).

The clustering algorithm gives 500 centroids to opti-
mally partition the mesh in an unsupervised fashion. Sen-
sors are defined as the centroids that best describe the

variability in training data. Considering the two (cases
0 and 1) or three (cases 2 and 3) components of the ve-
locity field to estimate, the total number of sensors p is
summarized in table 3. The choice of 500 clusters is ar-
bitrary and could be optimized using heuristic criterions
such as elbow and silouhette but this is not the scope
here. In particular, the number of clusters for the 2D
cylinder is undoubtedly high regarding the simple peri-
odic behaviour of the flow. To learn the mapping be-
tween the measurement space and the latent state space
with SVR, cross validation is performed. Tested hyper-
parameters are randomly chosen in a grid, for a total of
25 combinations and a 70% chance of hitting the opti-
mal hyperparameter space [3]. Each mode is regressed
independantly, yielding a total of 176 learned models to
obtain reconstruction scores in table 3. For case 0, latent
state components are perfectly estimated from measure-
ments which is not surprising given the simplicity of the
flow. Results are much more mitigated for case 3 where
a strong overfit of training data is visible. To support this
idea, figure 6 illustrates the reconstruction of the first la-
tent state component, for the POD and the LAE methods.
Reconstructions of training data (blue points) nearly re-
cover all the expected variance, hence the close to unit
determination score. For testing data, the determination
coefficient (orange points) for each mode clearly respects
the hierarchy imposed by POD reduction: first modes,
corresponding to slow and coherent structures, are easier
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Figure 5: Comparison of a POD mode and a LAE mode for case 0. The vortex shedding is better captured with the

nonorthogonal reduction.

to estimate than higher modes, corresponding to fast and
small structures. At the opposite, the LAE modes are not
hierarchically sorted and the estimation score is similar
for each method. Overfitting being not a desirable prop-
erty for robust fluid flow estimation, SVR doesn’t seem to
be tailored for the urban flow, and other regression tech-
niques should be investigated.

Case p R? POD R>LAE
0 92 [99.33,99.31] [99.5,99.5]
1 122 [98.8496.29] [97.48 94.95]
2 372 [98.7390.92] [97.75 84.56]
3 393 [96.5872.55] [94.5360.11]

Table 3: Reconstruction results for each case. Results are
written as [train test] errors (R? in %).

Concerning the DMD model, normalized errors are
summarized in table 4. The prediction error corresponds
to the error integrated over the H = 16 horizon and the
number of overlapping trajectories with length H in train-
ing or testing data. Interestingly, the latent state obtained
with the LAE reduction for case 0 and case 1 is easier
to predict with a linear model. Besides the global score,
plotting the A-step ahead error as a function of % reveals
how errors accumulate in the recursive process. Figure
7 gives an exemple when predicting testing sequences of
the 3D cylinder with the POD reduction. The dynamics
of the latent state being nonlinear, using the DMD matrix
as a dynamical model for long term prediction is naturally
erroneous, hence the bars of errors. This is confirmed by
the green curves, corresponding to the h-step ahead score
of each identified eigenfunctions. All of them are spu-
rious (meaning they do not evolve as predicted by their
eigenvalues) which is symptomatic of an observable sub-
space which is not Koopman invariant.

To correct predictions from the dynamical model, re-
constructions are assimilated each F = 5 nondimensional
time steps. Noise is applied to the initial condition a( and

Case ‘ Prediction error
| POD LAE
0 [24.01 24.16] [2.022.04]
1 [14.8 14] [8.07 7.89]
2 [75.570.88] [65.4 59.35]
3 [86.68 93.95] [81.390.48]

Table 4: Errors in the recursive prediction of trajectories
with length H = 16. NMSE values are obtained by av-
eraging over the horizon and the number of overlapping
trajectories with length H = 16 in training or testing data.
Results are given as [train test] errors.

the measurement vector y, with intensity levels 1, = 0.1
and I, = 0.2. Global scores are obtained by a mean over
the number of modes and the one (case 0) or ten (other
cases) successive trajectories in testing data. Results are
given in table 5. It appears that using data assimilation
results in a better long-term estimation of the latent state
compared to the sole recursive forecast or the sole recon-
struction at each time step. Figure 8 qualitatively sup-
ports this conclusion for the POD-reduced mixing layer.

Case Dynamics Reconstructions Ass;m_ﬂgﬁon
0 [24.24 2.02] [0.87 1.11] [1.51 1.33]
1 [69.33 54.02] [11.827.87] [6.67 4.08]
2 [81.3872.29]  [49.3333.36]  [42.01 34.17]
3 [96.4294.71]  [78.5781.20]  [76.58 70.90]

Table 5: Comparison of errors for each estimation
method (NMSE in %). These errors are averaged over
the one (case 0) or ten (other cases) trajectories that can
be extracted in the testing data. Results are written as
[POD LAE] errors.
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fied eigenfunction is also shown in green. The red line
corresponds to the testing NMSE in table 4

Appart from the global error, the score as a function
of the mode number can also be investigated. An ex-
emple for the POD-reduced 3D cylinder is shown in fig-

Figure 8: Exemple of the data-driven assimilation proce-
dure on the mixing layer with POD reduction. Recon-
structions are assimilated each F = 5 new predictions to
update recursive forecasts by DMD.

ure 9. The curves quantitatively support the idea that on
average, assimilated trajectories are better estimates than
sole reconstructions or predictions. Concerning the POD-
reduced 2D cylinder, changing the assimilation frequency



is of particular interest. This mode is badly predicted with
a linear model but is perfectly reconstructed with mea-
surements. With F' = 1, the data assimilation procedure
only gives credit to reconstructions (Kalman gain is the
identity matrix) while for greater F, the assimilation is
not enough frequently performed to significantly correct
the mean determination coefficient. Quantitative results
are given in table 6 to support this conclusion.

Comparison of estimation
qualities for case 2 - POD

1.0+

—— Prediction
—--=- Assimilation

0.8 1 —— Reconstruction

0.6

RZ

0.4 4

0.2 4

0.0

Mode number

Figure 9: Comparison of estimation methods for testing
trajectories of case 2 reduced with POD.

F Reconstructions Prediction Assimilation

1 98.13
2 : : 80.30
3 : : 57.31
) 98.94 0.0 e
5 27.03
6 8.12

Table 6: Influence of the data assimilation frequency
when estimating the fifth POD mode for case 0. Values
correspond to the determination coefficient evaluated on
the testing trajectory.

5. CONCLUSION

In this paper, different fluid flow estimation strategies are
investigated on four increasing complexity cases. To re-
duce the dimension of the state to estimate, dominant spa-
tial directions are extracted using the proper orthogonal
decomposition or a linear autoencoder. Despite good re-
sults for the 2D cylinder, the mixing layer and the 3D
cylinder, the reduction method clearly overfits the data for
the urban flow, hence limiting the use of training modes
for testing purposes. Latent states are then estimated by

reconstruction and prediction. The reconstruction con-
sists in using measurements of the fluctuant velocity field
at current time to recover the latent state at the same
time. This can be performed by a support vector regres-
sion, which independantly regresses each component of
the latent state by available measurements. To respect a
trade-off between the biais and the variance, hyperparam-
eters are optimized by cross validation, leading to good
training and testing scores for the 2D cylinder, the spa-
tial mixing layer and the 3D cylinder. Results are much
more mitigated on the urban flow, where modes dynam-
ics are harder to reconstruct. The prediction consists in
using a dynamical model to advance an initial condition
in time. Dynamical mode decomposition is used for that
purpose, to learn the one-step ahead linear model that op-
timally describes the dynamics of data. When used as
a long-term predictive model, errors accumulate because
the latent space is not Koopman invariant. To avoid this
accumulation of errors, data assimilation is then inves-
tigated: reconstructions are sequentially used to update
predictions at a frequency F. By blending the benefits
of the reconstruction and the prediction models, data-
assimilation enables the long-term prediction of the fluid
flow field. The procedure being purely based on machine
learning, it is a promising technique for estimating any
fluid flow field where data is available. Further investi-
gations on academic cases could include generative mod-
eling [17] to account for inlet parameters (e.g. Reynolds
number, turbulent intensity), the use of probabilistic mod-
els such as CROM [12] or the use of balanced truncation
for sensor placement [15]. An extensive study of the re-
construction problem for the first three cases was sub-
mitted to Journal of Computational Physics [8]. For the
reduction part, POD and variationnal autoencodeurs were
considered. For the reconstruction part, linear multitask
regression, SVR, neural network and gradient boosting
decision trees were used. Results suggest that encoding
velocity fields as distributions instead of single points im-
prove robustness when decoding a latent state estimate.
Another conclusion concerns the performance of each re-
construction method: using cross validation enable sim-
ilar results for all methods so that the choice of one re-
gression model towards another depends on the qual-
ity of the data, the interpretability and the cost of im-
plementation/computation. Conclusions drawn from this
study provide valuable informations for the development
of new estimation techniques based on machine learning
and their deployment on complex geometries that can be
encoutered in industrial issues.
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