Toward a Meta-Design Method

for Learning Games

About Our Project

adoption remains scarce. To foster their adoption by =19 E our hypothesis is that [UEESRIETET] might

pe suitable. Meta-Design is an advanced participatory design method, in which the design process is centred on the end
users (“owners of problems”). However, end users must continue to have the means to design during the artefact use phase

(Fischer and Herrmann, 2011).

We focused our study on the teaching of [«elpgleiti=tilela=1da i, and the implementation of a meta-design approach for
learning games. We chose Blockly Maze because it is well-tested and free software.

IS to provide tools and methods enabling teachers, more or less comfortable with teaching computer science, to

use Blockly Maze.

Our Methodology

Qur approach, described on the left, is a Design Based

Approach involving teachers.

We modelled three specific aspects of Blockly Maze in
order to provide model-based authoring tools to enable

them to meta-design.

Blockly Games : Maze 6 10 English v es
repeat until
N o the et o
.
move forward
-
, repeat until

do

You have 1 block left.

» Run Program

izl tothe left U v

do

Ve

Screenshot of Blockly Maze

Getting started with Blockly Maze
- Teachers new to programming -

To identify teachers’ needs and expectations

Theoretical Study Field Study
Literature review Interviews of teachers
Concept map

Features and Specifications

: SCenario .
Level Design Design Tracking Tools
Models and Tools
Lewvel Scenario Tracking

Overview of our approach

Blockly Maze?

This learning game developed by Google is meant
to teach programming through the guidance of an
automatic avatar in a maze. It is done by
orogramming with blocks of instructions.

However, BM has several obstacles to foster
adoption by teachers:

1) limited number of levels. It offers 10 levels;

2) non-modifiable scenario. The course is a linear
seguence that the teacher cannot modity;

3) the players’ activity Is not recorded. Teacher
cannot retrieve any performance.

With the help of Meta-Design and Design Based
Research, we wish to solve these issues.

Level Model

<I-:1H modelling Blockly Maze levels, and
providing an authoring tool

The main features of this Blockly Maze-level
model are:

e Simple variables: the maze, the starting
conditions (orientation, number of blocks
available, etc.)

e A complex system: the helpMessages system
based on players actions. Provides a conditions
system and a trigger system.

To contribute veritying this model, we have
successfully described again all the ten Blockly
Maze levels by instantiating them in JSON files
and made Blockly Maze able to read them (pull
request Is going to be submitted to Google).

We are working on an authoring tool based
on this model (and JSON file).

@blockConfig
. \©a lableBlock
int maxBlocks 1..n
Blockly \ ><
©e kl (©) defaultslock
ocC <’l
‘TiIeTyp
© HEeE HALL
Tile Ty pes (][] tileMatri Jete
EN
@ trigg
eeeee
animate
levelFail
init
levelStart ‘\
workspaceChang @ I
run
help
@ conditi /
numberOfStacks @comp aaaaaa
RemainingCapacity
f “greate

NumberOfSteps

NumberOfCollectibles “equal’ or

VariableValue null

LevelSolved
i

PegmanPosition

UML model for Blockly
Maze levels

|

Small S_teps after ﬁpiral

the Corner

Monitoring Model

cI-1H providing feedback on whether a
specific adaptation made by a teacher is
relevant

For our monitoring, we decided to use a
version of XAPI adapted to serious games
(Serrano-Laguna et al., 201/) as a basis for our
tracking system. xAPI allows defining indicators
(statements : triplets actor verb object) which
are stored in a Learning Record Store.

We identified two different levels of monitoring:
e Within the level,
e between the levels.

With the teachers help, we designed statements:

e the time taken to complete the levels (Actor
INitialized level, Actor exited level):

e the completion of the levels (Actor completed
level, Actor unlocked level):

e the use of external support (Actor unfocused
game Windows, Actor focused game
Windows);

e the number of blocks used and the number of
tests of their program ran by the learner (Actor
INnteracted blocks, Actor executed program).

We are currently implementing this xAP
monitoring system in Blockly Maze’s source
code.

Scenario Model
<I-3-1H adapting/improving MoPPliq & APPIliqg

APPLIg enables teachers to prepare and
orovide learners with a succession of levels
(called activities) In a learning game based on
orerequisites and worked on pedagogical
objectives. APPIig is relevant for meta-design
(Marne, 2014).

it is based on MoPPIlig, a model of the scenario,
IN which the activities are black boxes, meant to
let players work on some specific sets of
pedagogical and playful goals. Each activity can
have several output states depending on the set
of goals effectively worked on. Each activity can
also have several input states restricting the
connection possibllities In the scenario.
Therefore, a scenario is described as a seqguence
output state/input state links.

We are improving APPIlig to interact with our
authoring tool for levels and to use the

monitoring tool we are working on.

Activity

<activity>

id_activity
Name

causes

11

Output State

<output_state>

id_output
Name

Description
Logo
Images

1)1

Linked to

Input State

<input_state>

O)n

051 id_scenario

w_input_liy

—0:2% id_input
Name

Goal

<goal>

0/n

id_goal
worked on a_
Type (edu or ludo)

On ';ruur Left,
Right, Then...

Find your Way

Mini Maze | 1 Maze |

e
Mested Steps

it
Right Direction
I S

Meta-DeCT Project

(Meta-Design for Computer Science Teaching)

Team: Bertrand Marne, Mathieu Muratet, Karim Sehaba
bertrand.marne@ens-lyon.fr, mathieu.muratet@lip6.fr, karim.sehaba@liris.cnrs.fr

Description

requires
<goal_link ... />

€4—0;n

MoPPLIg Entity-
Relationship Diagram

1

creenshot of a sample Blockly Maze scenario provided by APPLIg

"\ SCIENCES .--Ur\I‘/er?ITe

SORBONNE —— LUMIGre
UNIVERSITE —Lvyopn 5

	Page 1

