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Abstract. Land models, which have been developed by the
modeling community in the past few decades to predict fu-
ture states of ecosystems and climate, have to be critically
evaluated for their performance skills of simulating ecosys-
tem responses and feedback to climate change. Benchmark-
ing is an emerging procedure to measure performance of
models against a set of defined standards. This paper pro-
poses a benchmarking framework for evaluation of land
model performances and, meanwhile, highlights major chal-
lenges at this infant stage of benchmark analysis. The frame-
work includes (1) targeted aspects of model performance

to be evaluated, (2) a set of benchmarks as defined refer-
ences to test model performance, (3) metrics to measure and
compare performance skills among models so as to identify
model strengths and deficiencies, and (4) model improve-
ment. Land models are required to simulate exchange of wa-
ter, energy, carbon and sometimes other trace gases between
the atmosphere and land surface, and should be evaluated
for their simulations of biophysical processes, biogeochem-
ical cycles, and vegetation dynamics in response to climate
change across broad temporal and spatial scales. Thus, one
major challenge is to select and define a limited number of
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benchmarks to effectively evaluate land model performance.
The second challenge is to develop metrics of measuring mis-
matches between models and benchmarks. The metrics may
include (1) a priori thresholds of acceptable model perfor-
mance and (2) a scoring system to combine data–model mis-
matches for various processes at different temporal and spa-
tial scales. The benchmark analyses should identify clues of
weak model performance to guide future development, thus
enabling improved predictions of future states of ecosystems
and climate. The near-future research effort should be on de-
velopment of a set of widely acceptable benchmarks that can
be used to objectively, effectively, and reliably evaluate fun-
damental properties of land models to improve their predic-
tion performance skills.

1 Introduction

Over the past two decades, tremendous progress has been
achieved in the development of land models and their inclu-
sion in Earth system models (ESMs). State-of-the-art land
models now account for biophysical processes (exchanges
of water and energy) and biogeochemical cycles of car-
bon, nitrogen, and trace gases (Oleson, 2010; Wang et al.,
2010; Zaehle et al., 2010). They also simulate vegetation
dynamics (Sitch et al., 2003) and disturbances (Thonicke
et al., 2010). When coupled to ESMs, land models now
allow simulation of land–atmosphere physical interactions
(Bonan, 2008) and climate–carbon feedbacks (Bonan and
Levis, 2010; Friedlingstein et al., 2006). These models are
now widely used for policy relevant assessment of climate
change and its impact on ecosystems or terrestrial resources,
and more recently on allowable anthropogenic CO2 emis-
sions compatible with a given concentration pathway (Arora
et al., 2011). However, there is still very limited knowledge
of the performance skills of these land models, especially
when embedded in ESMs. Without quantification of the per-
formance skills of land models, their prediction of future
states of ecosystems and climate cannot be widely accepted.

Model performance has traditionally been evaluated via
comparison with common knowledge, observed data sets,
and other models. “Validation” against observed data is tra-
ditionally the most common approach to model evaluation
(Oreskes, 2003; Rykiel, 1996). However, a land model typ-
ically simulates hundreds or thousands of biophysical, bio-
geochemical, and ecological processes at regional and global
scales over hundreds of years. It would be unrealistic to ex-
pect validation of so many processes at all spatial and tem-
poral scales independently, even if observations were avail-
able. The complex behavior of these interacting processes
can only be realistically understood if we holistically as-
sess land models and their major components. As a conse-
quence, there have been many international model intercom-
parison projects. For example, the Project for Intercompari-

son of Land surface Parameterization Schemes (PILPS) fo-
cused on simulation of the water and energy balance (Pitman,
2003). The Carbon Cycle Model Linkage Project (CCMLP)
evaluated simulation of the terrestrial carbon cycle (McGuire
et al., 2001). The Coupled Carbon Cycle Climate Model In-
tercomparison Project (C4MIP) compared simulation of the
climate–carbon cycle coupling among 11 models (Friedling-
stein et al., 2006). Nevertheless, there have been a very few, if
any, attempts to systematically evaluate land models against
data from a range of observation networks and experiments
in a comprehensive, objective and transparent manner (Cad-
ule et al., 2010; Randerson et al., 2009).

The International Land Model Benchmarking (ILAMB)
project (http://www.ilamb.org/) has recently been launched
to promote model–data comparison to evaluate and improve
the performance of land models. ILAMB aims to (1) develop
internationally accepted benchmarks for land model perfor-
mance, (2) promote the use of these benchmarks by the in-
ternational community for model comparison, (3) strengthen
linkages between experimental, remote sensing, and climate
modeling communities, (4) design new model tests, and
(5) support the design and development of a new, open
source, benchmarking software system for use by the interna-
tional community. ILAMB has the potential to stimulate ob-
servation and experimental communities to design new mea-
surement campaigns to improve models and reduce uncer-
tainties associated with key processes in land models.

As a part of the ILAMB project, here we propose a frame-
work for benchmark analysis and highlight its major chal-
lenges and future research opportunities. The framework is
intended to define terms related to benchmark analysis and
to facilitate communication among practitioners in this area
of research, as well as with those who are entering into this
field of research. The framework for benchmark analysis we
propose consists of four major elements, which are (1) iden-
tification of key aspects of land models that require evalua-
tion, (2) definition of benchmarks against which model per-
formance skills can be quantified, (3) creation of metrics to
measure model performance, and (4) approaches to identify
and rectify model deficiencies. The most central but chal-
lenging part of developing this framework is to define a set of
a few yet effective benchmarks with a metrics system to mea-
sure model performances. A stepwise procedure to conduct
individual benchmark analysis can follow relevant published
papers, such as Randerson et al. (2009).

2 Benchmark analysis: a general framework

In a general sense, benchmark analysis is a standardized eval-
uation of one system’s performance against defined refer-
ences (i.e., benchmarks) that can be used to diagnose the
system’s strengths and deficiencies for future improvement.
Benchmark analyses have been widely applied in economics,
meteorology, computer sciences, business, and engineering.
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In business, for example, benchmark analysis provides a
systematic approach to improving production efficiency and
profitability through identifying, understanding, and adapt-
ing the successful business practices and processes used by
other companies in terms of quality, time and cost (Fifer,
1988). In engineering, benchmark analysis is used to mea-
sure efficiency, productivity, and quality against a reference
or benchmark performance of a standardized instrument (Ja-
masb and Pollitt, 2003). In meteorology, benchmark analy-
sis facilitates testing the accuracy, efficiency, and efficacy of
meteorological model formulations and assumptions against
measurements (Bryan and Fritsch, 2002). In computer sci-
ences, benchmark analysis is used to examine the perfor-
mance of a processor, code structure, features of processor
architecture, and optimization of compiler against a number
of standard tests to gain insight into how the processor or
code compares with alternative approaches and how it can
be improved (Simon and McGalliard, 2009; Ghosh and Son-
akiya, 1998).

Benchmark analysis is urgently needed to evaluate land
models against observations and experimental manipulations
as it allows us to identify uncertainties in predictions as well
as guide the priorities for model development (Blyth et al.,
2011). Several land model benchmarking studies have been
attempted but have used only a subset of available obser-
vations or have been applied to a small number of mod-
els. For example, the Carbon-LAnd Model Intercompari-
son Project (C-LAMP) compared two biogeochemistry mod-
els integrated within the Community Land Model (CLM)-
Carnegie-Ames-Stanford Approach′ (CASA′) and carbon–
nitrogen (CN) with nine different classes of observations
(Randerson et al., 2009). The Joint UK Land Environment
Simulator (JULES) was evaluated for its performance against
surface energy flux measurements from 10 flux network
(FLUXNET) sites with a range of climate conditions and
biome types (Blyth et al., 2011). Three global models of the
coupled carbon–climate system were evaluated against at-
mospheric CO2 concentration from a network of stations to
quantify each model’s ability to reproduce the global growth
rate, the seasonal cycle, the El Niño-Southern Oscillation
(ENSO) forced interannual variability of atmospheric CO2,
and the sensitivity to climatic variations (Cadule et al., 2010).
The evaluation procedures so far have been developed in-
dependently by small groups of researchers, and as a con-
sequence have emphasized different types of observational
constraints and evaluation metrics. It is essential to develop
a widely accepted, consistent and comprehensive framework
for benchmark analysis.

A comprehensive benchmarking framework has at least
four elements: (1) targeted aspects of model performance to
be evaluated, (2) benchmarks as defined references to eval-
uate model performance, (3) a scoring system of metrics to
measure relative performances among models, and (4) diag-
nostic approaches to identification of model strengths and de-
ficiencies for future improvement (Fig. 1). First, a land model
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Fig. 1. Schematic diagram of the benchmarking framework for
evaluating land models. The framework includes four major com-
ponents: (1) defining model aspects to be evaluated, (2) selecting
benchmarks as standardized references to test models, (3) devel-
oping a scoring system to measure model performance skills, and
(4) stimulating model improvement.

typically simulates biophysical processes, hydrological pro-
cesses, biogeochemical cycles, and vegetation dynamics. For
each of the component processes, the land model has to rep-
resent basic system dynamics well (i.e., baseline simulation)
and simulate their responses and feedback to climate change
and disturbances (i.e., response simulation). Any benchmark
analysis has to be clear on what aspects of the land models
are being evaluated. Second, the most critical component of
any benchmark analysis is to define benchmarks, which have
to be objective, effective, and reliable for evaluating model
performance. Third, a scoring system is needed to set crite-
ria for a model to pass the benchmark test and measure rela-
tive performance among models. Fourth, benchmark analysis
should identify needed model improvements and areas where
the model is sufficiently robust for accurate simulations. The
four elements of the benchmarking framework are discussed
in detail in the following sections.

3 Aspects of land models to be evaluated by means of
benchmarking

Land models typically simulate the surface energy balance,
hydrological processes, biogeochemical cycles, and vegeta-
tion dynamics. Although individual studies may evaluate a
few aspects of model performance, a comprehensive frame-
work is required to evaluate all of these major components
when land models are integrated with Earth System Mod-
els (ESMs). Unlike models used for weather prediction, the
land components of ESMs are usually designed to predict
longer-term future states of ecosystems and climate. The per-
formance of a model should therefore be evaluated for its

www.biogeosciences.net/9/3857/2012/ Biogeosciences, 9, 3857–3874, 2012
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baseline simulations over broad spatial and temporal scales,
and include evaluations of modeled responses and feedbacks
of land processes to global change and different types of dis-
turbance.

Scientists have to establish some level of confidence in
land models’ baseline simulations of pre-industrial ecosys-
tem processes before they can be used to study ecosystem
responses and feedback to climate change. The baseline state
for biogeochemical cycles includes simulated global totals,
spatial distributions, and temporal dynamics of gross pri-
mary production, net primary production, vegetation and soil
carbon stocks, ecosystem respiration, litter production, lit-
ter mass, net ecosystem production, and land-use and land-
cover patterns. The baseline state for biophysical processes
includes shortwave and longwave radiation, sensible and la-
tent heat fluxes, surface temperature, evaporation, transpira-
tion, snow cover and snow depth, active layer dynamics in
permafrost regions, and runoff. The baseline state for vege-
tation dynamics includes pre-industrial vegetation distribu-
tions, and changes in vegetation distribution from the last
glacial maximum through the Holocene. Most baseline pre-
industrial control simulations are validated against common
knowledge and evaluated against benchmarks, for example,
for their representation of diurnal and seasonal variations
(Fig. 2). Another key baseline performance requirement is
that land processes reach and maintain steady state, usu-
ally through spin-up, before the models are used to simulate
ecosystem responses and feedback to climate change.

To reliably predict future states of ecosystems under a
changed environment, land models have to realistically sim-
ulate responses of land processes to disturbances and global
change. Natural and anthropogenic disturbances can signif-
icantly alter biogeochemical processes, biophysical proper-
ties, and vegetation dynamics. Several land models have in-
corporated algorithms to simulate individual events of fire
and land-use changes (Thonicke et al., 2010; Prentice et al.,
2011). Natural disturbances occur at different frequencies
with varying severity on diverse spatial scales in different re-
gions and thus can be characterized by disturbance regimes
(Luo and Weng, 2011). Climate change can regulate and, in
turn, be affected by disturbance regimes. How to simulate
and benchmark the responses and feedback of disturbance
regimes to climate change still remains a great challenge (see
Weng et al., 2012). In this context, improved regional- to
global-scale time series of burned area, insect outbreaks, hur-
ricane damage, wind blow downs, and logging are needed to
reduced uncertainties in existing parameterizations.

Major global change factors include rising atmospheric
CO2 concentration, increasing land use, surface air temper-
ature, altered precipitation amounts and patterns, and nitro-
gen (N) deposition. Most land models often use the Farquhar
leaf photosynthesis model (Farquhar et al., 1980) and one
stomatal conductance formulation to simulate instantaneous
increases in carbon influx in response to increasing [CO2],
but there is much greater variation in the extent to which
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Fig. 2. Benchmark analysis of Community Land Model (CLM)
CASA′ and CN versions against the seasonal cycle observations
from NOAA at (a) Mould Bay, Canada,(b) Storhofdi, Iceland,
(c) Carr, Colorado,(d) Azores Islands,(e) Sand Island, Midway,
and (f) Kumakahi, Hawaii. The annual cycle of CO2 is regulated
by plant phenology, photosynthesis, allocation, and decomposition
processes. A well functioning model has to match the observations,
but it is possible to get the right answer for the wrong reasons.
Thus, multiple constraints and parallel use of functional relation-
ships are needed for benchmark analysis (adopted from Randerson
et al., 2009).

current models account for long-term acclimation of photo-
synthetic and respiratory parameters to global change. Al-
most all land models simulate ecosystem responses to cli-
mate warming primarily via the kinetic sensitivity of photo-
synthesis and respiration to temperature and have not fully
considered warming-induced changes in phenology and the
length of growing seasons, nutrient availability, ecosystem
water dynamics and species composition (Luo, 2007). Ex-
pected changes in the precipitation regime, for example, in-
cluding changes in frequency, intensity, amount, and spa-
tial distribution as predicted by climate models, will modify
species composition and ecosystem function through multi-
ple interacting pathways (Knapp et al., 2008), few of which
are currently represented in land models. A few global land
models have been designed to simulate ecosystem responses
to nitrogen deposition (Thornton et al., 2007; Wang et al.,
2010; Zaehle et al., 2010), mainly by means of its simula-
tion of plant growth or modification of decomposition rates.

Biogeosciences, 9, 3857–3874, 2012 www.biogeosciences.net/9/3857/2012/
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Many indirect effects of nitrogen on ecosystem structure and
function or long-term changes in total ecosystem nitrogen
content (Lu et al., 2011a; Yang et al., 2011) have not been
integrated in most land models.

Feedbacks occur among land processes themselves and
between ecosystems and the atmosphere. For example, soil
nitrogen availability influences leaf area expansion, plant
growth, and ecosystem carbon cycle. Carbon sequestration in
plant biomass and soil feeds back not only to short-term min-
eral nitrogen availability but potentially also stimulates long-
term accumulation of total ecosystem nitrogen content (Luo
et al., 2006). Nitrogen availability may also influence albedo
(Ollinger et al., 2008) and thus land surface energy and water
balances and ultimately feedbacks with the climate system.
There are numerous feedback processes within land models
and in their coupling with climate models. However, it is not
straightforward to disentangle these processes and therefore
to evaluate feedback mechanisms in benchmark analysis.

While complex land models have numerous aspects to be
evaluated, our understanding of their common structures and
fundamental properties can make benchmark analysis much
more effective. Taking carbon cycle as an example. Land
models share some common structures despite their vast dif-
ferences. Virtually all models simulate four common prop-
erties of carbon cycling: (1) photosynthesis as the primary
pathway of C entering an ecosystem, (2) compartmental-
ization of carbon cycle into distinct pools, (3) donor pool-
dominated C transfers, and (4) the first-order decay of lit-
ter and soil organic matter to release CO2 (Luo and Weng,
2011). The four properties can be well described by a first-
order line differential equation:{ dX(t)

dt
= ξ(t)AX(t) + BU(t)

X(0) = X0
, (1)

whereX(t) is the C pool size,A is the C transfer matrix,U
is the photosynthetic input,B is a vector of partitioning co-
efficients,X(0) is the initial value of the C pool, andξ is an
environmental scalar. With these equations, ecosystem car-
bon storage capacity equals carbon inputs multiplied by res-
idence time (Fig. 3) (Xia et al., 2012), and thus carbon-cycle
feedbacks to climate change can be quantified by analyzing
relative changes in carbon influx into ecosystems and resi-
dence times (Luo et al., 2003). Thus, C input flow and resi-
dence times are critical parameters to consider in benchmark
analysis. It will substantially simplify benchmark analysis if
we can develop similar analytical frameworks for biophysi-
cal processes and dynamic vegetation model components.

4 Benchmarks as defined references

A comprehensive benchmarking framework has a set of de-
fined benchmarks against which land model performance
can be evaluated (Table 1). It is challenging to define a few
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Fig. 3. Determination of carbon (C) influx (i.e., NPP) and resi-
dence time (τE) on ecosystem carbon storage capacity in various
biomes simulated by the Community Atmosphere–Biosphere–Land
Exchange (CABLE) model. 95% of values from all grid cells are
plotted in the shaded areas with means at the dots. The hyper-
bolic curves represent constant values (shown across the curves)
of ecosystem carbon storage capacity. ENF – evergreen needleleaf
forest, EBF – evergreen broadleaf forest, DNF – deciduous needle-
leaf forest, DBF – deciduous broadleaf forest, Shrub – shrubland,
C3G – C3 grassland, C4G – C4 grassland, and Barrens – semiarid
barrens (adopted from Xia et al., 2012).

benchmarks that can be used objectively, effectively, and re-
liably to evaluate model performance.

4.1 Criteria of benchmarks

What would be qualified to be benchmarks has not been care-
fully discussed in the research community, although several
studies have evaluated performances of land models against
available data. In general, a benchmark has to meet the fol-
lowing criteria: objectivity, effectiveness, and reliability for
evaluating model performance. First, an objective benchmark
likely derives from data or data products because data can ob-
jectively reflect biogeochemical, biophysical, and vegetation
processes in the real world that land models attempt to sim-
ulate. In some instances, models of previous versions or sta-
tistical models can be used as benchmarks to gauge improve-
ments in model performance. Second, a benchmark should
be effective for evaluating model performance. Such a bench-
mark usually reflects fundamental properties of the systems.
Carbon influxes and residence times, for example, determine
carbon storage capacity in an ecosystem (Fig. 3) (Luo et al.,
2003; Xia et al., 2012). Thus, long-term and large-scale data
sets of carbon influx (e.g., net primary production – NPP)

www.biogeosciences.net/9/3857/2012/ Biogeosciences, 9, 3857–3874, 2012
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Table 1.Types of benchmarks to be used for evaluating model performance.

Type Description Example Pros Cons

Direct
observations

Data from instrument
readings with some
processing

Atmospheric trace gas
mixing ratios, tempera-
ture, soil respiration

Records of system
states

Limited spatial and
temporal coverage

Experimental
results

Data at two or more
levels of treatments

Response ratios of bio-
mass and soil moisture

Effects of climate
changes

Step changes in treat-
ments, site idiosyncrasy

Data–model
products

Interpolation and extra-
polation of data accord-
ing to some functions

Global distribution of
GPP calculated from
satellite and flux data

Extended spatial and
temporal coverage with
estimated errors

Artifacts may be intro-
duced by the extrapola-
tion functions, especially
outside the observation
ranges

Functional
relationships
or patterns

Derived or emerged from
data

NPP vs. precipitation,
soil respiration vs.
temperature

Evaluation of environ-
mental scalars and
response functions

Not absolute values of
the variables

and ecosystem residence times would be very effective in
evaluating performance skill of carbon cycle models. Third,
benchmarks also should be reliable. In general, the more vari-
able a data set, the less reliable the benchmark. It is therefore
important to evaluate uncertainty of the data set that will be
used as a benchmark.

In addition, benchmarks should be selected to reduce equi-
finality as much as possible. Although extensive data sets
are available for benchmarking land models, equifinality re-
mains a major issue in model evaluation (Tang and Zhuang,
2008; Luo et al., 2009). That is, the available data streams
are insufficient to constrain model parameterization (Weng
and Luo, 2011; Wang et al., 2001; Carvalhais et al., 2010) or
to distinguish between different modeling structures (Frank
et al., 1998). Increases in the number, type, and location of
observations used in model calibration and evaluation would
ideally mitigate the equifinality issue. Therefore, effective
benchmarks should draw upon a broad set of independent
observations spanning multiple temporal and spatial scales
(Randerson et al., 2009; Zhou and Luo, 2008).

4.2 Sources of benchmarks

Benchmarks could be comprised of direct observations (Mit-
telmann and Preussner, 2006), results from manipulative ex-
periments, data–model products, or derived functional rela-
tionships or patterns from data (Table 1). Direct observations
and experimental results reflect recorded states of ecosys-
tems when the measurements were made and are generally
accepted to be the most reliable benchmarks for model per-
formance. Direct measurements include atmospheric CO2
mixing ratio, biomass, litter, soil carbon stocks, species com-
position, streamflow, snow cover and soil water content.
Comparisons with models need to recognize that even the
most direct measurements have had some level of processing,
up-scaling, and assumptions to generate the final estimates.

For example, biomass data of trees are usually derived from
allometric equations being applied to actual measured diam-
eter at breast height and tree height (Chave et al., 2005).

Direct measurements are usually made at specific points of
time and space. Evaluating land model performance over the
globe and hundreds of years needs benchmarks with exten-
sive spatiotemporal representations of many processes (Sitch
et al., 2008). Data–model products with well-quantified er-
rors, which are generated according to some functional rela-
tionships to extend data’s spatial and temporal scales via in-
terpolation and extrapolation, can become useful for bench-
marking. For example, evapotranspiration (ET) estimates
derived from remote sensing measurements of various en-
ergy components together with the energy balance equation
(Fisher et al., 2008; Mu et al., 2007; Vinukollu et al., 2011;
Jin et al., 2011) offers broad spatial and long temporal data
sets for benchmark analysis.

Land models can also be evaluated on their simulated pat-
terns or relationships instead of absolute values of particular
variables against benchmarks. This approach is particularly
effective when uncertainties in data due to both random and
systematic errors are unknown or prognostic climate may in-
duce biases in ecosystem function. For example, the south–
north increase in the amplitude of the seasonal cycle in atmo-
spheric CO2 (Prentice et al., 2000) and latitudinal gradients
in the satellite observed fraction of absorbed radiation (Za-
ehle et al., 2010) both give information about the geographic
distribution of vegetation production. Similarly, the spatial
relationship between annual NPP and annual precipitation in
a global network of monitoring stations provides more infor-
mation about the sensitivity of NPP to climate than a compar-
ison of these data on the basis of vegetation types (Randerson
et al., 2009) (Fig. 4). Correlations between El Niño related
climate anomalies and growth rate of atmospheric CO2 can
be used to examine consistency between the observed and
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Fig. 4.Functional relationship between net primary production with
precipitation used in a benchmark analysis for coupled models that
account for possible biases in model climate (adopted from Rander-
son et al., 2009).

simulated ecosystem responses to climate change (Cadule et
al., 2010) (Fig. 5).

Model performance is also sometimes evaluated against
standardized simulation results of a well-accepted model
(Dai et al., 2003), the model ensemble mean (Chen et
al., 1997), or statistically-based model results (Abramowitz,
2005). For example, a statistically-based artificial neural net-
work has been used to compare the performance of process-
based land models and can help define a benchmark level
of performance that land models can be targeted to achieve
relative to the information contained in the meteorological
forcing of the surface fluxes (Abramowitz, 2005).

4.3 Candidate benchmarks for evaluation of various
aspects of land models

Benchmarks are needed to evaluate biophysical processes,
biogeochemical cycles, and vegetation dynamics of land
models. Exchange of water and energy between land sur-
face and atmosphere exerts controls on regional and global
climate. In general, the available net radiation at the land
surface is partitioned into ground, sensible, and latent heat
fluxes, which drive the hydrological cycle via latent heat
flux. Benchmarking energy and water exchange requires es-
timates of precipitation, shortwave and longwave radiation
components, latent and sensible heat fluxes, runoff, and soil
moisture and temperatures. Examples of global-scale refer-
ence data sets are shown in Table 2. Manipulative experi-
ments can also be used to evaluate modeled responses of
water and energy to global change (Wu et al., 2011). Data
sets from over 100 sites on soil and permafrost data and ac-
tive layer depths from the Circumpolar Active Layer Mon-
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Fig. 5.CO2–temperature relationships used in a benchmark analysis
to show the positive and negative anomalies of atmospheric CO2
growth rate as a function of anomalies of eastern tropical Pacific
sea surface temperature (SST) (adopted from Cadule et al., 2010).

itoring (CALM; http://nsidc.org/data/ggd313.html) program
(Brown et al., 2003) are candidate benchmarks for evaluating
model simulation of high-latitude ecosystems.

Data sets that are often used for benchmarking biogeo-
chemical cycle models include atmospheric CO2 records on
seasonal to centennial time scales (Dargaville et al., 2002;
Heimann et al., 1998) and satellite data at seasonal or longer
time scales (Blyth et al., 2010; Maignan et al., 2011; Ran-
derson et al., 2009). Other available data sets for biogeo-
chemical cycle benchmarking include global gross primary
production (GPP), NPP, soil respiration, ecosystem respira-
tion, plant biomass, litter pool, litter decomposition rates,
and soil carbon data products (Table 3). Recently, better es-
timates of high-latitude soil carbon stocks have been assem-
bled (Tarnocai et al., 2009). Data sets of methane emissions
at various sites have been used to test a methane model (Ri-
ley et al., 2011). Preference is always given, where possible,
for longer time series data sets, as they offer the potential to
detect how the land surface responds to low frequency modes
of climate variation (e.g., Piao et al., 2011 on normalized dif-
ference vegetation index (NDVI) greening and browning in
boreal areas). Data sets on nutrient cycling and state variable
at site, regional, and global scales can be used to benchmark
global carbon–nitrogen models (Wang et al., 2010; Zaehle et
al., 2010).

In addition, global change experiments offer the poten-
tial to benchmark biogeochemical cycle responses to ele-
vated CO2, warming, precipitation, and nitrogen fertilization
or deposition (Table 3). Free-air CO2 enrichment (FACE) ex-
periments are a good example of manipulative experiments
that have provided useful benchmarks for land surface mod-
els (Randerson et al., 2009). These experiments provided
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Table 2.Candidate benchmarks to be used to evaluate biophysical processes.

Variable/factor
Benchmark

Evaluation
Data set Temporal Spatial Reference

frequency coverage

Baseline states and fluxes

Latent Fisher et al., 2008
heat flux Gridded map 8-day to yearly

Global
Jung et al., 2010 Heat flux and ET

(ET) Mu et al., 2011

Surface albedo Gridded map 16-day to yearly Global
Moody et al., 2005, 2008 Energy–water

partitioning
Runoff Gridded map Monthly to yearly

Global
Dai et al., 2009 Water cycle

Surface and
Gridded map Monthly to yearly Global

FLUXNET, CRU, Energy
soil temperature GISS, and NCDC balance
Soil moisture Gridded map Monthly to yearly Global Owe et al., 2008; Dorigo et al., 2011 Water cycle

Snow cover Gridded map Monthly to yearly Global
AVHRR, MODIS, Energy
GlobSow partitioning

Snow depth/SWE Gridded map Monthly to yearly Regional NA CMC Water cycle

Responses of state and rate variables to disturbances and global change

Elevated CO2
Response

Weekly–yearly Site Morgan et al., 2004 Water cycleratio

Warming
Response

Weekly–yearly Site Bell et al., 2010
Soil water

ratio dynamics

integrative measures of ecosystem response to future concen-
trations of atmospheric CO2 (e.g., NPP, N uptake, stand tran-
spiration) over multiple years, as well as detailed descriptions
of contributory processes (e.g., photosynthesis, fine-root pro-
duction, stomatal conductance) (Norby and Zak, 2011). The
average response of the 11 models in the C4MIP project
(Friedlingstein et al., 2006) was consistent with the FACE
results, although individual models varied widely. However,
most of the experiments may not have been run long enough
to quantify slow feedback processes (Luo et al., 2011b),
such as progressive N limitation that may downregulate NPP
(Norby et al., 2010).

Vegetation is usually represented in ESMs by some combi-
nation of 7–17 plant functional types (PFTs) in land models.
The composition and abundance of PFTs can either be pre-
scribed as time-invariant fields or can evolve with time as a
result of changes in disturbance, mortality, recruitment, com-
petition, or land-use change. Although different land models
have their own set of PFTs, pre-industrial vegetation types
are very important for benchmarking model performance
(Table 4). In addition, it is also critical to have data sets of
vegetation responses to disturbance and global change. There
are some limited data available for quantifying vegetation
responses to warming, N deposition, fire, and land use and
change (Table 4).

While many of the available data sets described above may
be suitable candidates for benchmarks, they have to be effec-
tive and reliable for evaluating model performance by the in-
ternational science community. In this context, it is essential

to develop a consensus by experts on defining and selecting
benchmarks for use by the international community.

5 Benchmarking metrics

A comprehensive benchmarking study usually scrutinizes
model performance from multiple perspectives. Thus, a suite
of metrics across several variables should be synthesized
to holistically measure model performance at the relevant
spatial and temporal scales at which the model operates
(Abramowitz et al., 2008; Cadule et al., 2010; Randerson
et al., 2009; Taylor, 2001). Choices of which measures of
performance to use and how to synthesize the measures can
significantly affect the outcome of measuring performance
skills among models. Defining a metrics system, therefore, is
a key step in any benchmark analysis.

Many statistical measures (e.g., continental-scale daily
root-mean-square error (RMSE) , global mean annual devia-
tion from observed values, and global monthly correlations)
are available to quantify mismatches between modeled and
multiple observed variables (Janssen and Heuberger, 1995;
Smith and Rose, 1995). For example, Schwalm et al. (2010)
used Taylor skill, bias, and observational uncertainty to mea-
sure performance of 22 terrestrial ecosystem models against
observations from 44 FLUXNET sites (Fig. 6). How to com-
bine them to holistically represent model performance skill
is still an unresolved issue in benchmark analysis.
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Table 3.Candidate benchmarks to be used to evaluate biogeochemical cycles.

Variable/factor
Benchmark

Evaluation
Data set Temporal Spatial Reference

frequency coverage

Baseline states and fluxes

GPP Gridded map
Monthly

Global
Jung et al., 2011

Carbon influxto yearly Frankenberg et al., 2011

NPP Gridded map Yearly Global Prince and Zheng, 2011 Carbon influx
Soil

Gridded map Yearly Global
Bond-Lamberty and

Carbon effluxrespiration Thomson, 2010
Ecosystem

Gridded map Yearly Global Jung et al., 2011 Carbon effluxrespiration
Gridded map

Global
Olson et al., 1983;

Carbon poolPlant Rodell et al., 2005;
biomass Saatchi et al., 2007;

Woodhouse, 2006
Litter pool Gridded map Global Matthews, 1997 Carbon pool
Litter Various

Boyero et al., 2011 Rate processdecay rate sites
Batjes, 2002; Post et al.,

Soil carbon Gridded map Global 1982; Zinke et al., 1986; Carbon pool
FAO, 2009

FAPAR∗ Gridded map
Monthly Regional Gobron et al., 2004; Carbon influx
to yearly to global Yuan et al., 2011

Responses of state and rate variables to disturbances and global change

Elevated CO2
Response Various Luo et al., 2006; Responses of carbon
ratio regions Norby and Iversen, 2006 and nitrogen processes

Warming
Response Various Rustad et al., 2001; Responses of
ratio regions Wu et al., 2011 carbon processes

N deposition
Janssens et al., 2010;

Response Various Liu and Greaver, 2010; Carbon and
ratio regions Lu et al., 2011a, b nitrogen cycles

Thomas et al., 2010

Fire
Monthly Wan et al., 2001; Carbon cycle
to yearly van der Werf et al., 2004, 2006 Nitrogen cycle

Insect
Yearly

Kurz et al., 2008a, b;
Carbon cycleoutbreak Chen et al., 2010

∗ FAPAR denotes fraction of absorbed photosynthetically active radiation.

Many techniques have been explored by the data assim-
ilation research community to combine metrics of measur-
ing mismatches of modeled variables with multiple observa-
tions (Trudinger et al., 2007). Some of these techniques may
be very useful for benchmark analysis. It is essential to de-
fine a cost function that describes data–model mismatches
using multiple observations for data assimilation (Table 5).
Standard deviations of individual observations were used as
weights for model mismatches with data sets whose absolute
values differed by several orders of magnitude (Luo et al.,
2003) and also successfully in regional data assimilation with
spatially distributed data (Zhou and Luo, 2008). Normaliza-
tion by standard deviations of various data sets can effec-

tively account for uncertainties in reference data sets. Other
weighting functions include a simple sum of mismatches be-
tween modeled and observed variables, the standard devia-
tion of residuals after a preliminary run of the calculation,
the average value of observations, and a linear function of
the observation values (Trudinger et al., 2007).

Besides the statistical methods, the C-LAMP system (Ran-
derson et al., 2009) gave metrics for model performance that
depended on a qualitative assessment of the importance of
the process being tested. To make such an assessment more
objective, an analytic framework has recently been devel-
oped to trace modeled ecosystem carbon storage capacity
to (1) a product of NPP and ecosystem residence time (τE).

www.biogeosciences.net/9/3857/2012/ Biogeosciences, 9, 3857–3874, 2012
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Table 4.Candidate benchmarks to be used to evaluate processes of vegetation dynamics.

Variable/factor
Benchmark

Evaluation
Data set Temporal Spatial Reference

frequency coverage

Baseline states and fluxes

Pre-industrial
Vegetation map Once Global Notaro et al., 2005

Initial values
vegetation types of vegetation

Canopy height Gridded map Once Global
Lefsky, 2010; Vegetation
Simard et al., 2011 dynamics

Responses of state and rate variables to disturbances and global change

Warming Response ratio Yearly Site Sherry et al., 2007 Phenology

N deposition Response ratio Yearly
Various

Thomas et al., 2010regions

Fire
Burned area, Seasonal

Global Giglio et al., 2010
Global

vegetation change and yearly burned area
Land use Changes in global

Yearly Global
Wang et al., 2006 Plant functional

and change vegetation cover MODIS PFT fraction type

Wood harvest
Biomass Annual

Global Hurtt et al., 2006
Land-use change

removal mean
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Fig. 6. Model skill metrics for 22 terrestrial ecosystem models. Skill metrics are Taylor skill (S), normalized mean absolute error (NMAE),
and reduced chi-squared statistic (χ2). Taylor skill is used to represent the degree to which simulations matched the temporal evolution of
monthly NEE; NMAE quantifies bias, i.e., the “average distance” between observations and simulations in units of observed mean NEE;χ2

is used to quantify the squared difference between paired model and data points over observational error normalized by degree of freedom.
Better model–data agreement corresponds to the upper left corner. Benchmark represents perfect model–data agreement:S = 1, NMAE = 0,
andχ2

= 1. Gray interpolated surface added and model names attached to improve readability. Model details are given in Schwalm et
al. (2010).

The latter is further traced to (2) baseline carbon residence
times, (3) environmental scalars (ξ ) modifying baseline car-
bon residence time into actual ecosystem residence time, and
(4) environmental forcings (Xia et al., 2012). The framework
has the potential to help define weighting factors for various

benchmarks in a metrics system for measuring carbon cycle
model performance.

The research community also may decide upon a priori
threshold levels of model performance to meet minimal re-
quirements before a benchmark analysis of multiple models
is conducted. Such a threshold would need to be justified
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Table 5.Comparison of evaluation procedures between benchmark
analysis and data assimilation.

Procedure Benchmark Data assimilation
analysis

Targets Model aspects to Parameters to be estimated or
be evaluated model structures to be chosen

References Benchmarks Multiple data sets
Criteria Scoring systems Cost functions
Outcomes Suggesting model Estimates of parameter and/or

improvement selections of model structures

according to criteria of why a model below the threshold
is not acceptable. Such thresholds may be viewed as a nec-
essary, but not sufficient, condition for a fully functioning
model, because complex models may perform well on partic-
ular metrics as a result of compensating errors (that is, getting
the right answers for the wrong reasons).

The ranking of land models should be tailored to the spe-
cific objective of benchmark analysis. For instance, land
surface models operating within mesoscale meteorology or
weather forecast models must be particularly robust at sim-
ulating energy and moisture fluxes, while land models cou-
pled to Earth system models should simulate those energy
and water fluxes but also accurately represent ecosystem re-
sponses to changes in atmospheric composition and climate
over decadal to centennial time scales. Thus, metrics that
measure disagreements between simulated and observed en-
ergy and water fluxes should be weighed more in a mesoscale
meteorological study than in a decadal to centennial climate
change study.

6 The role of benchmarking in model improvement

One of the ultimate goals of a benchmark analysis is to
provide clues for diagnosing systematic model errors and
thereby aid model development, although it need not be an
essential part of a benchmarking activity. The clues for model
improvement usually come from identified poor performance
of a land model in its simulations of processes and/or ecosys-
tem composition at different temporal and spatial scales.
Model improvement is usually implemented through changes
in model structure, parameterization, initial values, or input
variables.

The average physiological properties of plant functional
types are traditionally conceived as model “parameters”. Pa-
rameter error may therefore arise when the values chosen for
model parameters do not correspond to true underlying val-
ues. Thus, benchmarking land models against plant trait data
sets might be useful in assessing whether model parameters
fall within realistic ranges. Such data sets include the GLOP-
NET leaf trait data set (Reich et al., 2007; Wright et al., 2005)
and the TRY data set (Kattge et al., 2009). The TRY data set,

for example, provides probability density functions of pho-
tosynthetic capacity based on 723 data points for observed
carboxylation capacity (Vcmax) and 1966 data points of ob-
served leaf nitrogen. Implementing these new, higher values
of observationally constrainedVcmax in the CLM4.0 model
resulted in a significant overestimate of canopy photosynthe-
sis, compared to estimates of photosynthesis derived from
FLUXNET observations (Bonan et al., 2011). The magnitude
of the overestimation of GPP (∼ 500 g C m−2 yr−1, between
30◦ and 60◦ latitude) identified several fundamental issues
related to the formulation of the canopy model in CLM4.0.

Model structure error arises when key causal dependen-
cies in the system being modeled are missing or represented
incorrectly in the model. Based on biogeochemical prin-
ciples of carbon–nitrogen coupling, for example, Hungate
et al. (2003) conducted a plausibility analysis to illustrate
that carbon sequestration may be considerably overestimated
without the inclusion of nitrogen processes (Fig. 7). Without
the carbon–nitrogen feedback, models fail to capture the ex-
perimentally observed positive responses of NPP to warming
in cool climates (Zaehle and Friend, 2010). Generally, model
structural errors are likely to reveal themselves through
sufficiently comprehensive benchmarking and usually can-
not be resolved by tuning or optimizing parameter values
(Abramowitz, 2005; Abramowitz et al., 2006, 2007). Nev-
ertheless, over-parameterizations of related processes may
mask structural deficiencies. A poor representation of the
seasonal cycle of heterotrophic respiration in high latitudes
by the Hadley Centre model (Cadule et al., 2010) was caused
by soil temperature becoming much too low in the winter.
Simply improving the seasonal cycle by adjusting the tem-
perature function of respiration would have given the right
answer for the wrong reason and materially affected the sen-
sitivity to future changes. Understanding the processes (too
little insulation of soil temperatures by the snow pack) en-
abled resolving the error without changing the long-term sen-
sitivity. The C-LAMP benchmark analysis of CLM-CASA′

and CN against atmospheric CO2 measurements, eddy-flux
data, MODIS observations, and TRANSCOM results sug-
gested the need to improve model representation of seasonal
and interannual variability of the carbon cycle (Fig. 2).

7 Relevant issues

There are a few general issues that are worthy of discussion
on benchmark analysis. One issue is on model predictions
vs. performance skill as measured by a benchmark analysis.
While an increase in performance gained through benchmark
analysis will likely lead to an increase in predictive ability
of a model for short-range predictions, it might not be suffi-
cient to guarantee improved long-term projections of ecosys-
tem responses to climate change, because observations on
past ecosystem dynamics cannot fully constrain model re-
sponses to future climate conditions that have never been
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Fig. 7. Nitrogen constraints of carbon sequestration. The original
analysis by Hungate et al. (2003) was based on some biogeochemi-
cal principles to reveal major deficiencies in global biogeochemical
models. The analysis may not be considered as a typical benchmark
analysis, but it played a role in stimulating global modeling groups
to incorporate nitrogen processes into their models. However, rela-
tive performance skills of land models as measured by the bench-
mark analysis vary with additional considerations of data sets, as
illustrated in analysis on flexibility of C : N ratio by Wang and Houl-
ton (2009). Moreover, nitrogen capital in the terrestrial ecosystem is
considerably dynamic in response to rising atmospheric CO2 con-
centration (Luo et al., 2006), rendering less limitation of ecosystem
carbon sequestration.

observed. Nevertheless, comparing models and observations
over a wide range of conditions increases the chance to cap-
ture important nonlinearities and contingent responses that
may control future behavior (Luo et al., 2011a). Also, future
states of land ecosystems are determined not only by internal
processes, which are usually evaluated by benchmark anal-
ysis, but also by external forces. The latter dominates long-
term land dynamics so that predictions are clearly bounded
by scenario-based, what-if analysis. Embedding land models
within Earth system models, however, can help assess feed-
backs between internal processes of land ecosystems and var-
ious scenarios of climate and land-use changes.

Another issue is related to the feasibility of building a
community-wide benchmarking system. Land model bench-
marking has reached a critical juncture, with several recent
parallel efforts to evaluate different aspects of model per-
formance. One future direction that may minimize duplica-
tion of effort is to develop a community-wide benchmark-
ing system supported by multiple modeling and experimen-
tal teams. For a community-wide system to function well,
it will need to be built using open source software and us-
ing only freely available observations with a traceable lin-
eage. The software system could be used to diagnose im-
pacts of model development, guide synthesis efforts, iden-
tify gaps in existing observations needed for model valida-
tion, and reduce the human capital costs of making future

model–data comparisons (Randerson et al., 2009). This is
the approach being taken by the International Land Model
Benchmarking Project (ILAMB) that will initially develop
benchmarks for CMIP5 models participating in the IPCC
5th Assessment Report. An expectation of the first ILAMB
benchmark is that it will be modified and expanded for use in
future model intercomparison projects. Ultimately, a robust
benchmarking system, when combined with information on
model feedback strengths, may reduce uncertainties associ-
ated with emissions estimates required for greenhouse gas
stabilization over the 21st century or other future climate pro-
jections. Such an open source, community-wide platform for
model–data intercomparison also speeds up model develop-
ment and strengthens ties between modeling and measure-
ment communities. Important next steps include the design
and analysis of land-use change simulations (in both uncou-
pled and coupled modes), and the entrainment of additional
ecological and Earth system observations.

Lastly, benchmark analysis shares objectives and proce-
dures with data assimilation in many ways (Table 5). Data
assimilation is a formal approach to infuse data into models
for improving parameterization and adjusting model struc-
tures (Luo et al., 2011a; Peng et al., 2011; Raupach et al.,
2005; Wang et al., 2009). Data assimilation projects a misfit
between model and observed quantities in the space of pa-
rameters, and quantifies the level of constraints on each pa-
rameter with associated uncertainties. It provides quantitative
information, instead of performance criteria that should be
met in comparing model output with data, to decide whether
a model has a satisfactory behavior or not. However, data
assimilation is computationally very costly and, as a con-
sequence, cannot be easily implemented to directly improve
the comprehensive, global-scale land models. A combination
of benchmarking and data assimilation may facilitate land
model improvement. Benchmarking can be used to pinpoint
model deficiencies, which can become targeted aspects of a
model to be improved via data assimilation.

8 Concluding remarks

This paper proposed a four-component framework for bench-
marking land models. The components are: (1) identifica-
tion of aspects of models to be evaluated, (2) selection of
benchmarks as standardized references to test models, (3) a
scoring system to measure model performance skills, and
(4) to evaluate model strengths and deficiencies for model
improvement. This framework consists of mostly common-
sense principles. To implement it effectively, however, we
have to address a few challenging issues. First, land mod-
els have incorporated more and more relevant processes to
simulate land responses to global change as realistically as
possible. As a consequence, it becomes almost impossible to
evaluate so numerous processes individually. We have to un-
derstand fundamental properties of the models to crystalize
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key aspects of models or identify a few traceable compo-
nents (e.g., Xia et al., 2012) to be evaluated. Second, global
networks of observation and experimental studies offer more
and more long-term, broadly spatial data sets, which become
candidates of benchmarks for model evaluation. Even so,
many data sets have limited information content, leading to
equifinality issues for model evaluation. We have to evaluate
various data sets to develop widely acceptable benchmarks
against which model performance can be reliably, effectively,
and objectively evaluated. Third, a robust scoring system is
essential to compare performance skills among models. It
is still challenging to develop a scoring system that can ef-
fectively synthesize various aspects of model performance
skills. Development of an effective scoring system has to use
various statistical approaches to evaluate the relative impor-
tance of the evaluated processes toward the targeted perfor-
mances of the models. Fourth, benchmark analysis will be-
come much more effective in identifying model strengths and
deficiencies aimed at model improvement when it combines
other model analysis and improvement approaches, such as
model intercomparison and data assimilation.

Benchmark analysis has the potential to rank land mod-
els according to their performance skills and thus to convey
confidence to the public, to improve land models for more re-
alistic simulations and accurate predictions, and to stimulate
closer interactions and collaboration between modeling and
observation communities.
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Maignan, F., Bŕeon, F.-M., Chevallier, F., Viovy, N., Ciais, P., Gar-
rec, C., Trules, J., and Mancip, M.: Evaluation of a Global Veg-
etation Model using time series of satellite vegetation indices,
Geosci. Model Dev., 4, 1103–1114,doi:10.5194/gmd-4-1103-
2011, 2011.

Matthews, E.: Global litter production, pools, and turnover times:
Estimates from measurement data and regression models, J. Geo-
phys. Res.-Atmos., 102, 18771–18800, 1997.

McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G.,
Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W.,
Meier, R. A., Melillo, J. M., Moore, B., Prentice, I. C., Ra-
mankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L.
J., and Wittenberg, U.: Carbon balance of the terrestrial biosphere
in the twentieth century: Analyses of CO2, climate and land use
effects with four process-based ecosystem models, Global Bio-
geochem. Cy., 15, 183–206, 2001.

Mittelmann, H. D. and Preussner, A.: A server for automated perfor-
mance analysis of benchmarking data, Optim. Method. Softw.,
21, 105–120, 2006.

Moody, E. G., King, M. D., Platnick, S., Schaaf, C. B., and Gao,
F.: Spatially complete global spectral surface albedos: Value-
added datasets derived from terra MODIS land products, IEEE
T. Geosci. Remote, 43, 144–158, 2005.

www.biogeosciences.net/9/3857/2012/ Biogeosciences, 9, 3857–3874, 2012

http://dx.doi.org/10.1029/2010JG001566
http://dx.doi.org/10.1029/2010gl043622
http://dx.doi.org/10.1029/2002gb001923
http://dx.doi.org/10.5194/gmd-4-1103-2011
http://dx.doi.org/10.5194/gmd-4-1103-2011


3872 Y. Q. Luo et al.: A framework for benchmarking land models

Moody, E. G., King, M. D., Schaaf, C. B., and Platnick, S.: MODIS-
Derived Spatially Complete Surface Albedo Products: Spatial
and Temporal Pixel Distribution and Zonal Averages, J. Appl.
Meteorol. Clim., 47, 2879–2894, 2008.

Morgan, J. A., Pataki, D. E., Korner, C., Clark, H., Del Grosso, S.
J., Grunzweig, J. M., Knapp, A. K., Mosier, A. R., Newton, P.
C. D., Niklaus, P. A., Nippert, J. B., Nowak, R. S., Parton, W.
J., Polley, H. W., and Shaw, M. R.: Water relations in grassland
and desert ecosystems exposed to elevated atmospheric CO2, Oe-
cologia, 140, 11–25, 2004.

Mu, Q., Heinsch, F. A., Zhao, M., and Running, S. W.: Development
of a global evapotranspiration algorithm based on MODIS and
global meteorology data, Remote Sens. Environ., 111, 519–536,
2007.

Mu, Q., Zhao, M., and Running, S. W.: Improvements to a MODIS
global terrestrial evapotranspiration algorithm, Remote Sens. En-
viron., 115, 1781–1800, 2011.

Norby, R. J. and Iversen, C. M.: Nitrogen uptake, distribution,
turnover, and efficiency of use in a CO2-enriched sweetgum for-
est, Ecology, 87, 5–14, 2006.

Norby, R. J. and Zak, D. R.: Ecological lessons from free-air CO2
enrichment (FACE) experiments, Annu. Rev. Ecol. Evol. S., 42,
181–203, 2011.

Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., and
McMurtrie, R. E.: CO2 enhancement of forest productivity con-
strained by limited nitrogen availability, P. Natl. Acad. Sci., 107,
19368–19373, 2010.

Notaro, M., Liu, Z. Y., Gallimore, R., Vavrus, S. J., Kutzbach, J. E.,
Prentice, I. C., and Jacob, R. L.: Simulated and observed prein-
dustrial to modern vegetation and climate changes, J. Climate,
18, 3650–3671, 2005.

Oleson, K. W.: Technical description of version 4.0 of the Com-
munity Land Model (CLM), NCAR Technical Note NCAR/TN-
478+STR, National Center for Atmospheric Research, Boulder,
CO, 2010.

Ollinger, S. V., Richardson, A. D., Martin, M. E., Hollinger, D.
Y., Frolking, S. E., Reich, P. B., Plourde, L. C., Katul, G. G.,
Munger, J. W., Oren, R., Smithb, M. L., U, K. T. P., Bolstad, P.
V., Cook, B. D., Day, M. C., Martin, T. A., Monson, R. K., and
Schmid, H. P.: Canopy nitrogen, carbon assimilation, and albedo
in temperate and boreal forests: Functional relations and poten-
tial climate feedbacks, P. Natl. Acad. Sci. USA, 105, 19336–
19341, 2008.

Olson, J. S., Watts, J. A., and Allison, L. J.: Carbon in Live Vege-
tation of Major World Ecosystems, Oak Ridge National Labora-
tory, Oak Ridge, Tennessee, 152, 1983.

Oreskes, N.: The role of quantitative models in science, in: Models
in Ecosystem Science, edited by: Canham, C. D., Cole, J. J., and
Lauenroth, W. K., Princeton University Press, Princeton, 13–31,
2003.

Owe, M., De Jeu, R. A. M., and Holmes, T. R. H.: Multi-
Sensor Historical Climatology of Satellite-Derived Global
Land Surface Moisture, J. Geophys. Res., 113, F01002,
doi:1029/2007JF000769, 2008.

Peng, C., Guiot, J., Wu, H., Jiang, H., and Luo, Y.: Integrating mod-
els with data in ecology and palaeoecology: advances towards a
model-data fusion approach, Ecol. Lett., 14, 522–536, 2011.

Piao, S., Wang, X., Ciais, P., Zhu, B., Wang, T., and Liu, J.: Changes
in satellite-derived vegetation growth trend in temperate and bo-

real Eurasia from 1982 to 2006, Glob. Change Biol., 17, 3228–
3239, 2011.

Pitman, A. J.: The evolution of, and revolution in, land surface
schemes designed for climate models, Int. J. Climatol., 23, 479–
510, 2003.

Post, W. M., Emanuel, W. R., Zinke, P. J., and Stangenberger, A.
G.: Soil carbon pools and world life zones, Nature, 298, 156–
159, 1982.

Prentice, I. C., Jolly, D., and BIOME 6000 Participants: Mid-
Holocene and glacial-maximum vegetation geography of the
northern continents and Africa, J. Biogeogr., 27, 507–519, 2000.

Prentice, I. C., Kelley, D. I., Foster, P. N., Friedlingstein, P., Har-
rison, S. P., and Bartlein, P. J.: Modeling fire and the terres-
trial carbon balance, Global Biogeochem. Cy., 25, GB3005,
doi:10.1029/2010GB003906, 2011.

Prince, S. D. and Zheng, D.: ISLSCP II Global Primary Produc-
tion Data Initiative Gridded NPP Data, in: ISLSCP Initiative II
Collection, Data set, edited by: Hall, F. G., Collatz, G., Mee-
son, B., Los, S., de Colstoun, E. B., and Landis, D., available at:
http://daac.ornl.gov/from Oak Ridge National Laboratory Dis-
tributed Active Archive Center, Oak Ridge, Tennessee, USA,
doi:10.3334/ORNLDAAC/1023, 2011.

Randerson, J. T., Hoffman, F. M., Thornton, P. E., Mahowald, N.
M., Lindsay, K., Lee, Y.-H., Nevison, C. D., Doney, S. C., Bo-
nan, G., Stoeckli, R., Covey, C., Running, S. W., and Fung, I.
Y.: Systematic assessment of terrestrial biogeochemistry in cou-
pled climate-carbon models, Glob. Change Biol., 15, 2462–2484,
2009.

Raupach, M. R., Rayner, P. J., Barrett, D. J., DeFries, R. S.,
Heimann, M., Ojima, D. S., Quegan, S., and Schmullius, C.
C.: Model-data synthesis in terrestrial carbon observation: meth-
ods, data requirements and data uncertainty specifications, Glob.
Change Biol., 11, 378–397, 2005.

Reich, P. B., Wright, I. J., and Lusk, C. H.: Predicting leaf physi-
ology from simple plant and climate attributes: A global GLOP-
NET analysis, Ecol. Appl., 17, 1982–1988, 2007.

Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn,
M. S., Meng, L., Mahowald, N. M., and Hess, P.: Barriers to pre-
dicting changes in global terrestrial methane fluxes: analyses us-
ing CLM4Me, a methane biogeochemistry model integrated in
CESM, Biogeosciences, 8, 1925–1953,doi:10.5194/bg-8-1925-
2011, 2011.

Rodell, M., Chao, B. F., Au, A. Y., Kimball, J. S., and McDonald, K.
C.: Global biomass variation and its geodynamic effects: 1982–
1998, Earth Interact., 9, 1–19, 2005.

Rustad, L. E., Campbell, J. L., Marion, G. M., Norby, R. J.,
Mitchell, M. J., Hartley, A. E., Cornelissen, J. H. C., Gurevitch,
J., and Gcte, N.: A Meta-Analysis of the Response of Soil Res-
piration, Net Nitrogen Mineralization, and Aboveground Plant
Growth to Experimental Ecosystem Warming, Oecologia, 126,
543–562, 2001.

Rykiel, E. J.: Testing ecological models: The meaning of validation,
Ecol. Model., 90, 229–244, 1996.

Saatchi, S. S., Houghton, R. A., Alvala, R. C. D. S., Soares, J. V.,
and Yu, Y.: Distribution of aboveground live biomass in the Ama-
zon basin, Glob. Change Biol., 13, 816–837, 2007.

Schwalm, C. R., Williams, C. A., Schaefer, K., Anderson, R., Arain,
M. A., Baker, I., Barr, A., Black, T. A., Chen, G., Chen, J. M.,
Ciais, P., Davis, K. J., Desai, A., Dietze, M., Dragoni, D., Fischer,

Biogeosciences, 9, 3857–3874, 2012 www.biogeosciences.net/9/3857/2012/

http://dx.doi.org/10.1029/2010GB003906
http://daac.ornl.gov/
http://dx.doi.org/10.3334/ORNLDAAC/1023
http://dx.doi.org/10.5194/bg-8-1925-2011
http://dx.doi.org/10.5194/bg-8-1925-2011


Y. Q. Luo et al.: A framework for benchmarking land models 3873

M. L., Flanagan, L. B., Grant, R., Gu, L., Hollinger, D., Izau-
rralde, R. C., Kucharik, C., Lafleur, P., Law, B. E., Li, L., Li,
Z., Liu, S., Lokupitiya, E., Luo, Y., Ma, S., Margolis, H., Mata-
mala, R., McCaughey, H., Monson, R. K., Oechel, W. C., Peng,
C., Poulter, B., Price, D. T., Riciutto, D. M., Riley, W., Sahoo,
A. K., Sprintsin, M., Sun, J., Tian, H., Tonitto, C., Verbeeck,
H., and Verma, S. B.: A model data intercomparison of CO2 ex-
change across North America: Results from the North American
Carbon Program site synthesis, J. Geophys. Res., 115, G00H05,
doi:10.1029/2009JG001229, 2010.

Sherry, R. A., Zhou, X., Gu, S., Arnone, J. A., III, Schimel, D. S.,
Verburg, P. S., Wallace, L. L., and Luo, Y.: Divergence of repro-
ductive phenology under climate warming, P. Natl. Acad. Sci.
USA, 104, 198–202, 2007.

Simard, M., Pinto, N., Fisher, J. B., and Baccini, A.: Mapping for-
est canopy height globally with spaceborne LiDAR, J. Geophys.
Res.–Biogeo., 116, G04021,doi:10.1029/2011JG001708, 2011.

Simon, T. A. and McGalliard, J.: Observation and analysis of the
multicore performance impact on scientific applications, Con-
curr. Comp.-Pract. E., 21, 2213–2231, 2009.

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A.,
Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T.,
Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynam-
ics, plant geography and terrestrial carbon cycling in the LPJ dy-
namic global vegetation model, Glob. Change Biol., 9, 161–185,
2003.

Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao,
S. L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C.
D., Prentice, I. C., and Woodward, F. I.: Evaluation of the ter-
restrial carbon cycle, future plant geography and climate-carbon
cycle feedbacks using five Dynamic Global Vegetation Models
(DGVMs), Glob. Change Biol., 14, 2015–2039, 2008.

Smith, E. P. and Rose, K. A.: Model goodness-of-fit analysis using
regression and related techniques, Ecol. Model., 77, 49–64, 1995.

Tang, J. and Zhuang, Q.: Equifinality in parameterization
of process-based biogeochemistry models: A significant
uncertainty source to the estimation of regional car-
bon dynamics, J. Geophys. Res.-Biogeo., 113, G04010,
doi:10.1029/2008jg000757, 2008.

Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhi-
tova, G., and Zimov, S.: Soil organic carbon pools in the north-
ern circumpolar permafrost region, Global Biogeochem. Cy., 23,
Gb2023,doi:10.1029/2008gb003327, 2009.

Taylor, K. E.: Summarizing multiple aspects of model performance
in a single diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
2001.

Thomas, R. Q., Canham, C. D., Weathers, K. C., and Goodale, C. L.:
Increased tree carbon storage in response to nitrogen deposition
in the US, Nat. Geosci., 3, 13–17, 2010.

Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong,
L., and Carmona-Moreno, C.: The influence of vegetation, fire
spread and fire behaviour on biomass burning and trace gas emis-
sions: results from a process-based model, Biogeosciences, 7,
1991–2011,doi:10.5194/bg-7-1991-2010, 2010.

Thornton, P. E., Lamarque, J.-F., Rosenbloom, N. A., and
Mahowald, N. M.: Influence of carbon-nitrogen cycle cou-
pling on land model response to CO2 fertilization and
climate variability, Global Biogeochem. Cy., 21, GB4018,
doi:10.1029/2006gb002868, 2007.

Trudinger, C. M., Raupach, M. R., Rayner, P. J., Kattge, J., Liu,
Q., Pak, B., Reichstein, M., Renzullo, L., Richardson, A. D.,
Roxburgh, S. H., Styles, J., Wang, Y. P., Briggs, P., Barrett, D.,
and Nikolova, S.: OptIC project: An intercomparison of opti-
mization techniques for parameter estimation in terrestrial bio-
geochemical models, J. Geophys. Res.-Biogeo., 112, G02027,
doi:10.1029/2006jg000367, 2007.

van der Werf, G. R., Randerson, J. T., Collatz, G. J., Giglio, L.,
Kasibhatla, P. S., Arellano, A. F., Olsen, S. C., and Kasischke,
E. S.: Continental-scale partitioning of fire emissions during the
1997 to 2001 El Nino/La Nina period, Science, 303, 73–76, 2004.

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J.,
Kasibhatla, P. S., and Arellano Jr., A. F.: Interannual variabil-
ity in global biomass burning emissions from 1997 to 2004, At-
mos. Chem. Phys., 6, 3423–3441,doi:10.5194/acp-6-3423-2006,
2006.

Vinukollu, R. K., Wood, E. F., Ferguson, C. R., and Fisher, J. B.:
Global estimates of evapotranspiration for climate studies using
multi-sensor remote sensing data: Evaluation of three process-
based approaches, Remote Sens. Environ., 115, 801–823, 2011.

Wan, S. Q., Hui, D. F., and Luo, Y. Q.: Fire effects on nitrogen
pools and dynamics in terrestrial ecosystems: A meta-analysis,
Ecol. Appl., 11, 1349–1365, 2001.

Wang, Y. P. and Houlton, B. Z.: Nitrogen constraints on
terrestrial carbon uptake: Implications for the global
carbon-climate feedback, Geophys. Res. Lett., 36, L24403,
doi:10.1029/2009GL041009, 2009.

Wang, Y.-P., Leuning, R., Cleugh, H. A., and Coppin, P. A.: Parame-
ter estimation in surface exchange models using nonlinear inver-
sion: how many parameters can we estimate and which measure-
ments are most useful?, Glob. Change Biol., 7, 495–510, 2001.

Wang, A., Price, D. T., and Arora, V.: Estimating changes in global
vegetation cover (1850–2100) for use in climate models, Global
Biogeochem. Cy., 20, GB3028,doi:10.1029/2005GB002514,
2006.

Wang, Y.-P., Trudinger, C. M., and Enting, I. G.: A review of appli-
cations of model-data fusion to studies of terrestrial carbon fluxes
at different scales, Agr. Forest Meteorol., 149, 1829–1842, 2009.

Wang, Y. P., Law, R. M., and Pak, B.: A global model of carbon,
nitrogen and phosphorus cycles for the terrestrial biosphere, Bio-
geosciences, 7, 2261–2282,doi:10.5194/bg-7-2261-2010, 2010.

Weng, E. and Luo, Y.: Relative information contributions of model
vs. data to short- and long-term forecasts of forest carbon dynam-
ics, Ecol. Appl., 21, 1490–1505, 2011.

Weng, E., Luo, Y., Wang, W., Weng, H., Hayes, D., McGuire,
A. D., Hastings, A., and Schimel, D. S.: Ecosystem car-
bon storage capacity as affected by disturbance regimes: A
general theoretical model, J. Geophys. Res., 117, G03014,
doi:10.1029/2012JG002040, 2012.

Woodhouse, I. H.: Predicting backscatter-biomass and height-
biomass trends using a macroecology model, IEEE T. Geosci.
Remote, 44, 871–877, 2006.

Wright, I. J., Reich, P. B., Cornelissen, J. H. C., Falster, D. S.,
Groom, P. K., Hikosaka, K., Lee, W., Lusk, C. H., Niinemets, U.,
Oleksyn, J., Osada, N., Poorter, H., Warton, D. I., and Westoby,
M.: Modulation of leaf economic traits and trait relationships by
climate, Global Ecol. Biogeogr., 14, 411–421, 2005.

Wu, Z., Dijkstra, P., Koch, G. W., Penuelas, J., and Hungate,
B. A.: Responses of terrestrial ecosystems to temperature and

www.biogeosciences.net/9/3857/2012/ Biogeosciences, 9, 3857–3874, 2012

http://dx.doi.org/10.1029/2009JG001229
http://dx.doi.org/10.1029/2011JG001708
http://dx.doi.org/10.1029/2008jg000757
http://dx.doi.org/10.1029/2008gb003327
http://dx.doi.org/10.5194/bg-7-1991-2010
http://dx.doi.org/10.1029/2006gb002868
http://dx.doi.org/10.1029/2006jg000367
http://dx.doi.org/10.5194/acp-6-3423-2006
http://dx.doi.org/10.1029/2009GL041009
http://dx.doi.org/10.1029/2005GB002514
http://dx.doi.org/10.5194/bg-7-2261-2010
http://dx.doi.org/10.1029/2012JG002040


3874 Y. Q. Luo et al.: A framework for benchmarking land models

precipitation change: a meta-analysis of experimental manipula-
tion, Glob. Change Biol., 17, 927–942, 2011.

Xia, J., Luo, Y., and Wang, Y.: Traceable components of terres-
trial carbon storage capacity in biogeochemical models, Glob.
Change Biol., in review, 2012.

Yang, Y., Luo, Y., and Finzi, A. C.: Carbon and nitrogen dynamics
during forest stand development: a global synthesis, New Phytol.,
190, 977–989, 2011.

Yuan, H., Dai, Y., Xiao, Z., Ji, D., and Shangguan, W.: Reprocessing
the MODIS Leaf Area Index Products for Land Surface and Cli-
mate Modelling, Remote Sens. Environ., 115, 1171–1187, 2011.

Zaehle, S. and Friend, A. D.: Carbon and nitrogen cycle dynamics
in the O-CN land surface model: 1. Model description, site-scale
evaluation, and sensitivity to parameter estimates, Global Bio-
geochem. Cy., 24, Gb1005,doi:10.1029/2009gb003521, 2010.

Zaehle, S., Friedlingstein, P., and Friend, A. D.: Terrestrial nitrogen
feedbacks may accelerate future climate change, Geophys. Res.
Lett., 37, L01401,doi:10.1029/2009gl041345, 2010.

Zhou, T. and Luo, Y.: Spatial patterns of ecosystem carbon res-
idence time and NPP-driven carbon uptake in the contermi-
nous United States, Global Biogeochem. Cy., 22, GB3032,
doi:10.1029/2007gb002939, 2008.

Zinke, P. J., Stangenberger, A. G., Post, W. M., Emanuel, W. R.,
and Olson, J. S.: Worldwide Organic Soil Carbon and Nitro-
gen Data, NDP-018, Oak Ridge National Laboratory, Oak Ridge,
Tennessee USA, 146, 1986.

Biogeosciences, 9, 3857–3874, 2012 www.biogeosciences.net/9/3857/2012/

http://dx.doi.org/10.1029/2009gb003521
http://dx.doi.org/10.1029/2009gl041345
http://dx.doi.org/10.1029/2007gb002939

