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Abstract

Motivation: With the growth of big data, variable selection has become one of the critical challenges in statistics.
Although many methods have been proposed in the literature, their performance in terms of recall (sensitivity) and
precision (predictive positive value) is limited in a context where the number of variables by far exceeds the number
of observations or in a highly correlated setting.

Results: In this article, we propose a general algorithm, which improves the precision of any existing variable selec-
tion method. This algorithm is based on highly intensive simulations and takes into account the correlation structure
of the data. Our algorithm can either produce a confidence index for variable selection or be used in an experimental
design planning perspective. We demonstrate the performance of our algorithm on both simulated and real data.
We then apply it in two different ways to improve biological network reverse-engineering.

Availability and implementation: Code is available as the SelectBoost package on the CRAN, https://cran.r-project.
org/package¼SelectBoost. Some network reverse-engineering functionalities are available in the Patterns CRAN
package, https://cran.r-project.org/package¼Patterns.

Contact: frederic.bertrand@utt.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Technological innovations make it possible to measure large
amounts of data in a single observation. As a consequence,
problems in which the number P of variables is larger than the
number N of observations have become common. As reviewed
by Fan and Li (2006), such situations arise in many fields from
fundamental sciences to social science, and variable selection is
required to tackle these issues. For example, in biology/medicine,
thousands of messenger RNA (mRNA) expressions (Lipshutz
et al., 1999) may be potential predictors of some disease.
Moreover, in such studies, the correlation between variables is
often very strong (Segal et al., 2003), and variable selection

methods often fail to make the distinction between the inform-
ative variables and those which are not. Similarly, inference of
gene regulatory networks from perturbation data can enhance
the insights of a biological system (Morgan et al., 2019). In this
article, we propose a general algorithm that enhances model se-
lection in correlated variables.

First, we will assume a statistical model with a response variable
y ¼ ðy1; . . . ; yNÞ0 (with the symbol ‘’’ as the transposed), a variable
matrix of size N�P, X ¼ ðx1:; . . . ;xP:Þ and a vector of parameters
b ¼ ðb1; . . . ;bPÞ0. Then, we will assume that the vector of parame-
ters b ¼ ðb1; . . . ;bPÞ0 is sparse. In other words, we will assume that
bi ¼ 0 except for a quite small proportion of elements of the vector.
We note S as the set of indices for which bi 6¼ 0 and q < 1 is the
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cardinality of this set S. Without any loss of generality, we will as-
sume that bp 6¼ 0 if and only if p � q.

When dealing with a problem of variable selection, one of the
goals is the estimation of the support, in which you want PðS ¼ ŜÞ
to be close to one, with Ŝ ¼ fk : b̂k 6¼ 0g. Here, our interest is main-
ly as follows, i.e. in identifying the correct support S. This kind of
issue arises in many fields, e.g. in biology, where it is of greatest
interest to discover which specific molecules are involved in a dis-
ease (Fan and Li, 2006).

There is a vast literature dealing with the problem of variable se-
lection in both statistical and machine-learning areas (Fan and Li,
2006; Fan and Lv, 2010). The main variable selection methods can
be gathered in the common framework of penalized likelihood. The
estimate b̂ is then given by:

b̂ ¼ argmin
b2RP

½�‘NðbÞ þ
XP

p¼1

penkðbpÞ�; (1)

where ‘Nð:Þ is the log-likelihood function, penkð:Þ is a penalty func-
tion and k 2 R is the regularization parameter. As the goal is to ob-
tain a sparse estimation of the vector of parameters b, a natural
choice for the penalty function is to use the so-called ‘0 norm (k:k0),
which corresponds to the number of non-vanishing elements of a
vector:

penk : R 7! f0; kg
x 7! f penkðxÞ ¼ k if x 6¼ 0

penkðxÞ ¼ 0 else
;

(2)

which induces
PP
p¼1

penkðbpÞ ¼ kkbk0. For example, when k ¼1, we

get the Akaike Information Criterion (AIC) (Akaike, 1974) and

when k ¼ log ðNÞ
2 , we get the Bayesian Information Criterion (BIC)

(Schwarz, 1978).
Many different penalties can be found in the literature. Solving

this problem with k:k0 as part of the penalty is an NP-hard problem
(Fan and Lv, 2010; Natarajan, 1995). It cannot be used in practice
when P becomes large, even when it is employed with some search
strategy like forward regression, stepwise regression (Hocking,
1976) and genetic algorithms (Koza et al., 1999). Donoho and Elad
(2003) showed that relaxing k:k0 to norm k:k1 ends, under some
assumptions, to the same estimation. This result encourages the use
of a wide range of penalties based on different norms. For example,
the case where penkðbpÞ ¼ kjbpj is the lasso estimator (Tibshirani,
1996) [or equivalently Basis Pursuit Denoising (Chen et al., 2001)]
whereas penkðbpÞ ¼ kb2

p leads to the Ridge estimator (Hoerl and
Kennard, 1970). Nevertheless, the penalty term induces variable se-
lection only if:

min
x�0

dpenkðxÞ
dx

þ x

� �
> 0: (3)

Equation (3) explains why the lasso regression allows for vari-
able selection, while the Ridge regression does not. The lasso regres-
sion is, however, known to lead to a biased estimate (Zou, 2006).
The Smoothly Clipped Absolute Deviation (SCAD) (Fan, 1997),
Minimax Concave Penalty (Zhang, 2010) or adaptive lasso (Zou,
2006) penalties all address this problem. The popularity of such
variable selection methods is linked to fast algorithms like Least-
Angle Regression Selection (Efron et al., 2004), coordinate descent
or Penalized Linear Unbiased Selection (Zhang, 2010).

Nevertheless, the goal of identifying the correct support of the re-
gression is complicated and the reason why variable selection meth-
ods fail to select the set of non-zero variables S can be summarized
in two words: linear correlation. Choosing the lasso regression as a
special case, Zhao and Yu (2006) stated that if an irrelevant predict-
or is highly correlated with the predictors in the true model, lasso
may not be able to distinguish it from the true predictors with any
amount of data and any amount of regularization. Zhao and Yu
(2006) [and simultaneously Zou (2006)] found an almost necessary
and sufficient condition for lasso sign consistency (i.e. selecting the

non-zero variables with the correct sign). This condition is known as
‘irrepresentable condition’:

jX0nSXSðX0SXSÞ
�1sgnðbSÞj < 1; (4)

where XS ¼ ðxijÞi;j2S2 ; XnS ¼ ðxijÞi;j 6¼S2 ; bS ¼ ðbpÞp2S . In other

words, when sgnðbSÞ ¼ 1, this can be seen as the regression of each
variable, which is not in S over the variables, which are in S. As all
variables in the matrix X are centered, the absolute sum of the re-

gression parameters should be smaller than 1 to satisfy this ‘irrepre-
sentable condition’.

Facing this issue, existing variable selection methods can be split
into two categories:

• those which are ‘regularized’ and try to give similar coefficients

to correlated variables [e.g. elastic net (Zou and Hastie, 2005)],
• those which are not ‘regularized’ and pick up one variable among

a set of correlated variables [e.g. the lasso (Tibshirani, 1996)].

The former group can further be split into methods in which
groups of correlation are known, such as the group lasso (Friedman
et al., 2010a; Yuan and Lin, 2006) and those in which groups are

not known as in the elastic net (Zou and Hastie, 2005). The latter
combines the ‘1 and the ‘2 norm and takes advantage of both. Non-
regularized methods will select some co-variables among a group of

correlated variables while regularized methods will select all varia-
bles in the same group with similar coefficients.

The main idea of our algorithm is to consider that any observed
value of a group of linearly correlated variables of the X matrix is

the independent realization of a given random function. This com-
mon random function is then used to perturb the observed values of
the relevant correlated variables. Strictly speaking, the use of noise

to determine the informative variables is not a new idea. For ex-
ample, it has been shown that adding random pseudo-variables

decreases over-fitting (Wu et al., 2007). In the case where P > N,
the pseudo-variables are generated either with a standard normal
distribution Nð0; 1Þ or by using permutations on the matrix X (Wu

et al., 2007). Another approach consists of adding noise to the re-
sponse variable and leads to similar results (Luo et al., 2006). The
rationale of this method is based on the work of Cook and Stefanski

(1994), which introduces the simulation-based algorithm SIMEX
(Cook and Stefanski, 1994). Adding noise to the matrix X has al-

ready been used in the context of microarrays (Chen et al., 2007).
Simsel (Eklund and Zwanzig, 2012) is an algorithm that both adds
noise to variables and uses random pseudo-variables. One new and

inspiring approach is stability selection (Meinshausen and
Bühlmann, 2010) in which the variable selection method is applied

on sub-samples, and informative variables are defined as variables
which have a high probability of being selected. Bootstrapping has
been applied to the lasso on both the response variable and the ma-

trix X with better results in the former case (Bach et al., 2008). A
random lasso, in which variables are weighted with random weights,

has also been introduced (Wang et al., 2011).
In this article, following the idea of using simulation to enhance

the variable selection methods, we propose the SelectBoost algo-
rithm. Unlike other algorithms reviewed above, it takes into account
the correlation structure of the data. Furthermore, our algorithm is

motivated by the fact that in the case of non-regularized variable se-
lection methods, if a group contains variables that are highly corre-
lated together, one of them will be chosen with precision.

2 Materials and methods

The SelectBoost algorithm has been designed in a general framework

in order to avoid to select non-predictive correlated features. The
main goal is to improve the predictive positive value (PPV), i.e. the

proportion of selected variables which truly belong to S.
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2.1 Generate new perturbed design matrix
As we assume that the variables are centered and that kxp:k2 ¼ 1 for
p ¼ 1; . . . ;P, we know that xp: 2 SN�2. Indeed, the normalization
puts the variables on the unit sphere SN�1. The process of centering
can be seen as a projection on the hyperplane HN�1 with the unit
vector as normal vector. Moreover, the intersection between HN�1

and SN�1 is SN�2. We further define the following isomorphism:

/ : HN�1 ! RN�1

hn 7! /ðhnÞ ¼ fn n ¼ 1; . . . ;N � 1;
(5)

where fhngn¼1;...;N�1 is an orthogonal base of HN�1 and
ffngn¼1;...;N�1 is the canonical base of RN�1. We define:

hn ¼

Pn
i¼1

ei � nenþ1

k
Pn
i¼1

ei � nenþ1k
;

with fengn¼1;...;N the canonical base of RN. Note that

/ðSN�2Þ ¼ SN�2, and that is why we can work in RN�1 and then re-

turn in RN.
Here, we make the assumption that a group of correlated varia-

bles are independent realizations of the same multivariate Gaussian
distribution. As the variables are normalized with respect to the ‘2
norm, we will use the von Mises–Fisher distribution (Sra, 2012) in
RN�1 thanks to the isomorphism / in order to generate new per-
turbed design matrix. The probability density function of the von
Mises–Fisher distribution for the random P-dimensional unit vector
x is given by:

fPðx; l; jÞ ¼ ~KPðjÞ exp ðjl0xÞ;

where j � 0; l ¼ ðl1; . . . ; lPÞ0; klk2 ¼ 1; and the normalization
constant ~KPðjÞ is equal to:

~KPðjÞ ¼
jP=2�1

ð2pÞP=2IP=2�1ðjÞ
;

where Iv denotes the modified Bessel function of the first kind and
order v (Abramowitz and Stegun, 1972). We denote by l̂ and ĵ the
maximum likelihood estimators of the l and j parameters.

The multivariate Gaussian distribution assumption is not re-
strictive. As long as the group of correlated variables is independent
realizations of the same distribution, the SelectBoost algorithm can
be applied: either directly to assess the stability of the selected varia-
bles with perturbed datasets with an increasing noise level, which is
the core idea behind the SelectBoost algorithm, or after replacing the
von Mises–Fisher distribution with a more relevant one.

2.2 The SelectBoost algorithm
To use the SelectBoost algorithm, we need a grouping method grc0

depending on a user-provided constant 0 � c0 � 1. This constant
determines the strength of the grouping effect. The grouping method
maps each variable index 1; . . . ;P to an element of Pðf1; . . . ;PgÞ
[with PðSÞ the powerset of the set S, i.e. the set which contains all
the subsets of S]. Concretely, grc0

ðpÞ is the set of all variables, which
are considered to be linked to the variable xp and Xgrc0

ðpÞ is the sub-
matrix of X containing the columns which indices are in grc0

ðpÞ. We
impose the following constraints to the grouping function:

8p 2 f1; . . . Pg : gr1ðpÞ ¼ fpg and gr0ðpÞ ¼ f1; . . . Pg: (6)

Furthermore, we need to have a selection method:

select : RN�P �RN ! f0; 1gP ;

which maps the design matrix X and the response variable y to a 0–
1 vector of length P with 1 at position p if the method selects the
variable p and 0 otherwise. We then use the von Mises–Fisher distri-
bution to generate replacement of the original variables by some
simulations (see Algorithm 1) to create B new design matrices

Xð1Þ; . . . ;XðBÞ. The SelectBoost algorithm then applies the variable
selection method select to each of these matrices and returns a vector
of length P with the frequency of apparition of each variable. The
frequency of apparition of variable xp:, noted fp is assumed to be an
estimator of the probability Pðxp: 2 SÞ for this variable to be in S.
The choice of c0 is crucial. On the one hand, when this constant is
too large, the model is not perturbed enough. On the other hand,
when this constant is too small, variables are chosen at random.

The SelectBoost algorithm returns the vector f ¼ ðf1; . . . ; fPÞ0.
Each of these values has to be compared to a threshold fmin to deter-
mine which variables are selected: we choose to select a variable p if
fp � fmin. The simulation study showed that the choice of the
threshold is critical and the algorithm can be improved if we enforce
that the fp values—as functions of c0—are non-increasing, see
Figure 1 bottom. This additional requirement makes sense: the more
variables the resampling process involves—with smaller c0— the less
a given variable will be selected.

2.3 Choosing the parameters of the algorithm
We first have to choose the grouping function. One of the simplest
ways to define a grouping function grc0

is the following:

grc0
ðpÞ ¼ fq 2 f1; . . . ;Pg j j < xp:;xq: > j � c0g: (7)

In other words, the correlation group of the variable p is deter-
mined by variables whose correlation with xp: is at least c0. In an-
other way, the structure of correlation may further be taken into
account using graph community clustering. Let C be the correlation
matrix of matrix X. Let define C�as follows:

�cij ¼ f
j�cijj if j�cijj > c0 and i 6¼ j
0 otherwise:

Then, we apply a community clustering algorithm on the undir-
ected network with weighted adjacency matrix defined by C�. Using
a graph community clustering algorithm is helpful with large data-
sets while still clustering similar variables together. For instance, the
fast greedy modularity optimization algorithm for finding commu-
nity structure (Clauset et al., 2004) runs in essentially linear time for
many real-world networks given that they are sparse and
hierarchical.

Once the grouping function is chosen, we have to choose param-
eter c0. Due to the constraints in Equation (6), the SelectBoost algo-
rithm results in the initial variable selection method when c0 ¼ 1. As
we will show in the next section, the smaller the parameter c0, the
higher the precision of the resulting selected variables. On the other
hand, it is obvious that the probability of choosing none of the varia-
bles (i.e. resulting in the choice of an empty set) increases as the par-
ameter c0 decreases. In the perspective of experimental planning, the
choice of c0 should result of a compromise between precision and
proportion of active identified variables. Hence, the c0 parameter
can be used to introduce a confidence index cp related to the variable
xp::

Algorithm 1 Pseudo-code for the SelectBoost algorithm

Require: grc0
; select;B; c0 f 0P

for b ¼ 1; . . . ;B do

XðbÞ  X

for p ¼ 1; . . . ;P do

x
ðbÞ
p:  /�1ðrandom�vMFðl̂ð/ðXgrc0

ðpÞÞÞ;ĵð/ðXgrc0
ðpÞÞÞÞ

end for

f fþ selectðXðbÞ; yÞ
end for

f f=B

SelectBoost 661
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cp ¼ 1� min
xp:2Ŝ c0

c0;hence 0 � cp � 1: (8)

3 Numerical studies

We benchmarked the algorithm with a large simulation study with

four data generation processes and three real datasets (Table 1).
Generated datasets are available upon request and real datasets are
available either upon request or online.

1. Simulation with 1000 variables and one linear response. A clus-

ter of 50 variables is linked to the response.

2. Simulation with 1000 variables and one binary response. A clus-

ter of 50 variables is linked to the response.

3. Data are 200 uncorrelated (‘unlinked’) single nucleotide polymor-

phisms (SNPs) with simulated genotypes, in which the first 20 of

them affect the outcome with three covariates; 400 observations;

4. Data are 100 uncorrelated (‘unlinked’) SNPs with simulated gen-

otypes, in which the first 10 of them affect the outcome with two

covariates; 750 observations.

5. The leukemia dataset (Golub et al., 1999) is the preprocessed

data of Dettling (2004) retrieved from the Supplementary

Material accompanying Friedman et al. (2010b).

6. The Huntington dataset is a real dataset with 28 087 variables

observed on 69 individuals. We first applied independent filter-

ing and removed 10 370 variables. We applied the SelectBoost

algorithm to 17 717 variables observed on 69 individuals.

7. The melanoma dataset is the GSE78220 dataset from Hugo

et al. (2016).

For Types 1 and 2, the number of variables is 1000, and

the number of observations is 100. The data are generated from
a cluster simulation (Bair et al., 2006; Bastien et al., 2015).
Only 50 first predictors are linked to the response Y and the
last 950 variables are randomly generated from a standard nor-
mal distribution. For Example 3, the response variable is linear
but was turned into a binary variable (þ1 when Yi > 0 and –1

when Yi < 0).
Examples 1 and 3 are linear regression examples whereas 2, 4, 5,

6 and 7 are logistic regression ones, for which, we will assume a lo-
gistic model with a binary response variable (Peng et al., 2002).

Fig. 1. Top: evolution of the recall, PPV and F-score as a function of 1� c0 for LASSO-based SelectBoost and AICc model selection criterion for Type1 simulated data with a

non-increasing post-processing step and a threshold fmin ¼ 1. If c0 � 0:25 models are empty. Bottom: the distribution of the PPV for a 0.25 threshold and c0 ¼
meanðq90; q100Þ for SPLS-based SelectBoost, Type1 data and raw SelectBoost (left) or SelectBoost with a non-increasing post-processing step (right)
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We provide results for 12 different settings based on 10 different
models, see Supplementary Section S1 for more details.

1. Linear regression (seven types): SPLS [Chun and Keles (2010),

with raw and bootstrap corrected coefficients], LASSO, adaptive

LASSO, enet and adaptive enet with model choice based on in-

formation criteria (AICc, BIC, GCV, Cp), LASSO with model

choice based on 5-fold cross-validation (kmin; k1se) and varbvs

linear (Carbonetto and Stephens, 2012; Guan and Stephens,

2011; Zhou et al., 2013).

2. Logistic regression (five types): logistic LASSO (glmnet based)

with model choice based on 5-fold cross-validation, logistic

LASSO (glmnet based) with model choice based on information

criteria (AICc, BIC), varbvs binomial, SPLSda (Chun and Keles,

2010) and sgpls (Chun and Keles, 2010).

The SelectBoost algorithm is based on correlated resampling and
hence random. We wanted to assess both the stability and perform-
ance of the algorithm. As a consequence, for the four types of simu-
lated data, we focused both on what may be called a repeatability
study (a given dataset was analyzed 100 times to estimate the vari-
ation only due to the fact that the algorithm is random) and a repro-
ducibility study (100 different datasets were generated and analyzed
to estimate the variability due to both data simulation—from the
same data generation—and the fact that the algorithm is random).

The repeatability issue raised was raised, for instance by
Boulesteix (2014) and Magnanensi et al. (2017) for PLS models. For
those models, random split cross-validation is known to have poor
repeatability. We used two types of grouping functions (either deter-
mined by variables whose correlation with xp is at least c0 -gdirect-
or community clustering-based -gcc-).

The cost (memory and time) of the random generation step can
be limited thanks to a sparse correlated resampling feature. The
remaining cost of the algorithm is B�Nc0� Time1 with B the
number of resampling and Nc0 the number of c0 values that are
investigated and Time1 the time to fit the model once.

To demonstrate the performance of the SelectBoost method, we
compared our method with stability selection (Meinshausen and
Bühlmann, 2010) and with a naive version of our algorithm,
naiveSelectBoost. The naiveSelectBoost algorithm works as follows:
estimate b with any variable selection method then if grc0

ðpÞ, as
defined in Equation (7) e.g. is not reduced to p, shrink to 0. The
naiveSelectBoost algorithm is similar to the SelectBoost algorithm,
except that it does not take into account the error, which is made
choosing at random a variable among a set of correlated variables.

We use four indicators to evaluate the abilities of our method on
simulated data. We define:

• recall as the ratio of the number of correctly identified variables

(i.e. b̂i 6¼ 0 and bi 6¼ 0) over the number of variables that should

have been discovered (i.e. bi 6¼ 0).
• precision as the ratio of correctly identified variables (i.e. b̂i 6¼ 0

and bi 6¼ 0) over the number of identified variables (i.e. b̂i 6¼ 0).
• F-score as the following ratio:

2� recall� precision

recallþ precision
�

• selection as the average number of identified variables (i.e.

b̂ i 6¼ 0).

Note that our interest is focused on precision, as our goal is to se-
lect reliable variables. As stated before, when c0 is decreasing toward
zero, we expect a profit in precision and a decrease in recall. We
also compute the F-score, which combines both recall and precision.
As an improvement of precision comes with a decrease in the num-
ber of identified variables, the best method is the one with the high-
est precision for a given level of selection.

3.1 Results of the numerical studies
We show the evolution of the four criteria (recall, precision, F-score
and selection) with regards to the decrease of c0. When c0 ¼ 1, the
SelectBoost algorithm is equivalent to the initial variable selection
method. We introduce a post-processing step to enforce that, for a
given variable, the proportion of selection is non-increasing. It is the
expected behavior since the correlated resampling is not meant to in-
crease the probability of selection for a variable. Such an increase
may happen for small c0 values when a variable that is not linked
with the response is mixed with a variable that is linked to the re-
sponse. For all the simulations, this post-processing step increases
the PPV of the SelectBoost algorithm, see Figure 1. As our primary
focus is PPV, we recommend the use of this post-processing step.
More details can be found in the Supplementary Graphs S7–S174.

We created precision-recall plots to display the effects of the al-
gorithm on the performance of all the models and criteria used for a
given dataset. Identical model fitting criteria share the same colors.
The arrows point toward decreasing c0 values. Direct grouping and
community grouping lead to similar results, Figure 2 and
Supplementary Figures S1, S3 and S4. These Figures also show that
the results for a single dataset repeated 100 times are similar to
results for 100 different datasets. The Zoom l sequence, which is a
10-step regular grid from the q100% quantile—the maximum value—
to q90%—the quantile of order 0.9—achieves high PPV,
Supplementary Figure S299.

Supplementary Figure S5 displays an example of raw SelectBoost
(without the non-increasing post-processing step) for direct group-
ing and 100 different datasets that should be compared to Figure 2.

Fig. 2. Recall-precision curve. All models and criteria non-increasing SelectBoost.

Type 1 data. Direct grouping. A total of 100 different datasets. fmin ¼ 1

Table 1. Summary of the types of datasets used to benchmark the

SelectBoost algorithm

Name Data Individuals Variables

Type1 Simulated 100 1000

Type2 Simulated 100 1000

Type3 Simulated 400 203

Type4 Simulated 750 102

Leukemia Observed 72 3571

Huntington Observed 69 17 717

Melanoma Observed 28 25 268
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This effect is even stronger smaller values for the fmin threshold. The
non-increasing post-processing step greatly improves the results of
the algorithm and leads to monotonic relationships between the re-
call, the precision and the c0 value. PPV benefit less from smaller
values for the fmin threshold, Supplementary Figure S6.

All the results of the simulation study showed the good perform-
ance and stability of the algorithm, which we then applied once to
each of the real datasets. The results of the gdirect and gcc based
SelectBoost are similar, the gcc based being a bit more time consum-
ing than the gdirect one. In the following of this article, we reported
results and figures for gdirect-based SelectBoost.

According to our simulation studies, Supplementary Graphs S7–
S174, one should choose c0 between q90% and q100%, see Figure 1
top. In our simulation studies, we used an 11-steps c0 sequence, but,
according to our results, it could be limited to 6 steps [from
mean(q90%; q100%) to q100%] for the biggest datasets. The value of B
should not be lower than 10. B ¼ 50 or B ¼ 100 will provide more
stable results. As a consequence, the minimal time cost of the
SelectBoost algorithm will be 60 times the time cost of the regular
model fit, which could be afforded in almost every case. The parallel
processing support of the SelectBoost package can help to reduce
this time. Hence, the SelectBoost seems feasible with most of the
datasets and even omics datasets as we did in our simulation study
with the three real datasets.

Hence, to assess the performance of the SelectBoost algorithm,
we performed comprehensive numerical studies. As stated before,
the SelectBoost algorithm can be applied to any existing variable se-
lection method.

Figure 1 top shows the result for the lasso selection with a pen-
alty parameter chosen using information criteria for Type 1 datasets.
In this example, we improve the precision up to 1. Moreover, as
shown by Figures 1 and 3, the proportion of models, for which the
precision reaches one, increases with the decrease of c0. The F-score
increases, remains either stable or shows a small decrease indicating
that the increase of PPV compensates the loss in recall.

In the previous section, we mentioned the possibility of using
SelectBoost to obtain a confidence index, corresponding to one
minus the lowest c0 for which a variable is selected. For each c0, we
plotted the average number of selected variables as a function of the
proportion of correctly identified variables (Fig. 3 and
Supplementary Figs S300–S304). As expected, the proportion of cor-
rectly identified variables increases with the increase of the confi-
dence index and with the decrease of the average number of
identified variables. Therefore, the proportion of non-predictive fea-
tures decreases with the increase of the confidence index.

The SelectBoost algorithm shows its superiority over the naive
SelectBoost algorithm. The error made when choosing a variable
randomly among a set of correlated variables leads to more incorrect
choices of variables. While the intensive simulation of our algorithm
allows taking into account this error, the naiveSelectBoost does not.

Finally, we compare the SelectBoost algorithm with stability se-
lection. Stability selection uses a resampling algorithm to determine
which of the variables included in the model are robust. In our simu-
lation, stability selection shows performance with high precision but
also low recall. Moreover, in contrast to the SelectBoost algorithm,
stability selection does not allow to choose a convenient precision-
PPV trade-off.

The timings of the algorithm can be found on Supplementary
Figures S175–S222.

4 Application to three real datasets

We applied our algorithm to three real datasets. We studied, with re-
spect to the threshold, the number of non-zero variables, the number
of variables selected by SelectBoost and their ratio. We found results
that were concordant with those of the simulated datasets. Figure 4
displays those results for a SGPLS-based SelectBoost of the
Leukemia dataset with a 0.25 threshold (fmin ¼ 0:25). See
Supplementary Figures S247–S298.

We report the results for the RNA-Seq dataset providing mRNA
expressions from Huntington’s disease and neurologically normal
individuals. This dataset was downloaded from the GEO database
under accession number GSE64810 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi? acc¼GSE64810). This dataset contains 20
Huntington’s disease cases and 49 neurologically normal controls
and includes 28 087 genes as explanatory variables. An independent

Fig. 3. Top: The average number of identified variables is plotted as a function of

the proportion of correctly identified variables for Type1 simulated data and all

models. Middle and bottom: effect of the SelectBoost algorithm wrt 1� c0 for adap-

tive elastic net and AICc model selection criterion with c0 in the range ½q90%; q100%�
for 100 different (middle, reproducibility) or 100 identical (bottom, repeatability)

Type3 simulated data with a non-increasing post-processing step and a threshold

fmin ¼ 1. Only results for non-empty models are shown
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filtering (Bourgon et al., 2010) preprocessing step was first per-
formed using data-based filtering for replicated high-throughput
transcriptome sequencing experiments (Rau et al., 2013). Then, we

applied the lasso selection method to this reduced dataset (see Fig. 5
left for the whole path of the solution). We used cross-validation to
choose the appropriate level of penalization [i.e. the k parameter in
Equation (3)].

We then applied our SelectBoost algorithm on the lasso method
with penalty parameter chosen by cross-validation. We use a range
for the c0 parameter starting from 1 to 0.7 with steps of 0.05, which
corresponds to a confidence index from 0 to 0.3. For each step, the
probability of being included in the support S was calculated with
200 simulations as described in Algorithm 1. We set the threshold of
being in the support to 0.95 to avoid numerical instability. We clas-
sify the selected variables into three categories: those that are identi-
fied for each confidence index from 0 to 0.15 (red), those identified
from 0 to 0.25 (orange) and those identified from 0 to 0.3 (green).
The last category contains the most reliable variables selected by the
SelectBoost algorithm because these variables are identified from
low to high confidence index.

With the lasso selection method, 15 variables were selected.
Among them, four genes were identified by SelectBoost into the
three different categories of confidence index (see Fig. 5 right): two
genes for low confidence (red) (ANXA3 and INTS12), one gene for
intermediate confidence (orange) (NUB1) and one gene for high con-
fidence (green) (PUS3).

The interesting point, in these three examples, is that the identi-
fied variables are neither the first variables selected by the lasso nor
the variables with the highest coefficients (see Fig. 5 left). This result
demonstrates that our algorithm can be advantageous to select vari-
ables with high confidence and not just to select variables with the
highest coefficients.

Finally, we decided to assess the differential expression of these
genes between patients and controls, using the limma package
(Linear Models for Microarray and RNA-Seq Data) (Ritchie et al.,
2015). The four identified genes are significantly down-expressed by
neurologically healthy controls confirming the result of a logistic
model with these four genes.

5 Robust reverse-engineering of networks

Sparsity is a well-known feature of most biological networks
(Barabási et al., 2003). An actor can only be regulated by a small
number of other actors, whereas it may regulate any number of
other actors. Hence, variable selection methods, such as the lasso,
ensure that sparsity feature and are often core components of most

Fig. 4. % of non-zero coefficients wrt to c0 for SGPLS-based SelectBoost models of the leukemia datasets and threshold fmin ¼ 0:25

Fig. 5. Colors: the green is for the most reliable variables selected by the SelectBoost

algorithm [confidence index of 0.3; orange is for intermediate confidence (0.25) and

red for low confidence (0.15)]. Left: evolution of the coefficients in the lasso regres-

sion when the regularization parameter k is varying. For the k range shown, the red,

orange and green lines stick to zero. Right: evolution of the probability of being in

the support of the regression when the confidence index is varying. The dotted line

represents the 0.95 threshold
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of the biological network reverse-engineering tools. As a conse-
quence, we propose to apply the SelectBoost algorithm in two differ-
ent ways in order to improve the biological network reverse-
engineering: as a post-processing step after the inference was made
or during the inference itself in order to select the most stable predic-
tors for each node in the network. When used as a post-processing
step, one can assess for any of the inferred links between the actors
of the network, its confidence index against correlated resampling of
the predictors. When used during the inference step, one can infer a
model that is only built with links with a high enough confidence
index. The former is implemented in the SelectBoost package as a
new method for the Cascade package (Jung et al, 2014) . The latter
is implemented in the new Patterns CRAN package as a dedicated
fitting function and is especially useful when trying to find targets
for biological intervention that are strongly related to markers of
some diseases through the reverse-engineered network and useful
and reliable links.

We benchmarked those two uses of the algorithm with a particu-
lar type of biological networks that we have been using for several
years: cascade networks (Vallat et al., 2013).

For the post-inference processing, we first fit a model to a cas-
cade network using the Cascade package inference function. Then,
we compute confidence indices for the inferred links using the
SelectBoost algorithm, more details, as well as the code, of the simu-
lations can be found in the vignette of the package ‘Towards
Confidence Estimates in Cascade Networks using the SelectBoost
Package’, available at https://fbertran.github.io/SelectBoost/articles/
confidence-indices-Cascade-networks.html. An example of those
results is shown in Figure 6 with a cascade network for four time
points and four groups of 25 actors.

For the use of the SelectBoost algorithm during the fitting step of
a cascade network reverse-engineering, we used the Patterns pack-
age. Benchmark results were reported as sensitivity, positive predict-
ive value and F-score, shown in Figure 7; the code, the simulation
details and the remaining results are part of a vignette of the package
‘Benchmarking the SelectBoost Package for Network Reverse
Engineering’, that is available at https://fbertran.github.io/
SelectBoost/articles/benchmarking-SelectBoost-networks.html.

We created an unweighted or a weighted version of the algo-
rithm. The weighted version of the algorithm enables the user to

include weights in the model, which means to favor or disfavor
some links between the actors, in order, for instance, to take into ac-
count biological knowledge.

The results shown in Figure 7 of the simulation study are a com-
parison to a standard set up for stability selection and regular lasso
both for an unweighted version of the algorithms and a highly cor-
rectly weighted version of the same algorithms.

By highly correctly weighted, we mean that we included influen-
tial weights in the model accordingly to the links that existed in the
network that was used for data simulation. This network was
randomized from one simulation to another. This weighted setting
was used to determine if including correct biological knowledge
would help the reverse-engineering algorithm to retrieve the correct
network. If correct biological knowledge is included in the model,
all three fitting functions lead to similar and outstanding results for
the F-score criterion without even requiring the need to search for
an optimal thresholding value as we had to do with the Cascade
package.

For each simulated dataset, vertical dots are displayed to show
the optimal threshold level that should be used to maximize the F-
score. It is computed with respect to the actual values that are un-
known for real datasets. Without weights, SelectBoost shrinks the
range of optimal values when compared to the lasso or stability se-
lection. With correct weights, none of the methods still requires to
use a cut-off value to maximize F-score.

In an unweighted setting, the SelectBoost version of the fitting
process shows better performance than stability selection and the
lasso as long as the cut-off value is <0.4, which is about the double
of the optimal thresholding value.

6 Conclusion

We introduce the SelectBoost algorithm that relies intensive compu-
tations to select variables with high precision (PPV). The user of
SelectBoost can apply this algorithm to produce a confidence index
or choose an appropriate precision-selection trade-off to select vari-
ables with high confidence and avoid selecting non-predictive fea-
tures. The main idea behind our algorithm is to take into account
the correlation structure of the data and thus use intensive computa-
tion to select reliable variables.

The choice of the threshold fmin is critical since such a choice
leads to two effects.

• With a high threshold value—nearing the maximum value of 1—

: an increase of the PPV while limiting the decrease of the F-

score.
• With a low or medium threshold value—nearing the mid value

of 0.5—: an increase in recall while limiting the decrease of the

F-score.

We will want the first property to retrieve the stable core of the
predictors for models that are known to randomly choose between
correlated variables, such as the lasso or adaptive lasso. . Whereas,
we will want the second property for models that scarcely select
variable, such as variable selection model using variational approxi-
mation methods for binary response (varbvs). A non-constant
threshold should be also and investigated by those that would like to
introduce corrections, for instance FDR-like, such as Holm–
Bonferroni, in the variable selection process.

We prove the performance of our algorithm through simulation
studies in various settings. To get the best results, we recommend
the use of c0 in the range of mean(q90%; q100%) to q100% with the
non-increasing post-processing step. It could be useful to decrease
the lower bound to q90% for the smallest datasets. The user should
never use a c0 value too close to the empty model zone to avoid a de-
crease in precision. We succeed in improving the PPV, whenever it
was possible, of all the 12 selection methods with relative stability
on recall and F-score. If the PPV was already nearing 1, then there is
almost no negative effect on the PPV and recall when applying
SelectBoost.

Fig. 6. Post-inference analysis of an inferred cascade network. Dark values are tanta-

mount to low confidence. Bright values are tantamount to high confidence.

Confidence ranges from 0 (lowest) to 1 (highest). The lower triangular part of the

matrix is an area with the highest confidence (1) since we know—and assume so in

the model—that for cascade networks those links must be ¼0
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Our results open the perspective of a precision-selection
trade-off which may be very useful in some situations where many
regressions have to be made (e.g. network reverse-engineering with
one regression made per node of the network). In such a context,
our algorithm may even be used in an experimental design
approach.

The application to three real datasets allowed us to show that
the most reliable variables are not necessarily those with the highest
coefficients. The SelectBoost algorithm is a powerful tool that can
be used in every situation where reliable and robust variable selec-
tion has to be made.
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Fan,J. and Lv,J. (2010) A selective overview of variable selection in high di-

mensional feature space. Stat. Sin., 20, 101–148.

Friedman,J. et al. (2010a) A note on the group lasso and a sparse group lasso.

arXiv preprint arXiv: 1001.0736.

Friedman,J. et al. (2010b) Regularization paths for generalized linear models

via coordinate descent. J. Stat. Softw., 33, 1–22.

Golub,T.R. et al. (1999) Molecular classification -of cancer: class discovery

and class prediction by gene expression monitoring. Science, 286, 531–537.

Guan,Y. and Stephens,M. (2011) Bayesian variable selection regression for

genome-wide association studies and other large-scale problems. Ann. Appl.

Stat., 5, 1780–1815.

Hocking,R.R. (1976) A Biometrics invited paper. The analysis and selection of

variables in linear regression. Biometrics, 32, 1–49.

Hoerl,A.E. and Kennard,R.W. (1970) Ridge regression: biased estimation for

nonorthogonal problems. Technometrics, 12, 55–67.

Hugo,W. et al. (2016) Genomic and transcriptomic features of response to

anti-PD-1 therapy in metastatic melanoma. Cell, 165, 35–44.

Jung,N. et al. (2014) Cascade: a R package to study, predict and simulate the

diffusion of a signal through a temporal gene network. Bioinformatics, 30,

571–573.

Koza,J.R. et al. (1999) Genetic Programming as a Darwinian Invention

Machine. Springer, Heidelberg.

Lipshutz,R.J. et al. (1999) High density synthetic oligonucleotide arrays. Nat.

Genet., 21, 20–24.

Luo,X. et al. (2006) Tuning variable selection procedures by adding noise.

Technometrics, 48, 165–175.

Magnanensi,J. et al. (2017) A new universal resample-stable bootstrap-based

stopping criterion for PLS component construction. Stat. Comput., 27,

757–718.
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