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5.1. Introduction 43 

5.1.1. Epithelial-like structures are not a prerogative of animals 44 

Multicellularity emerged several times independently during the evolution of life (Abedin et 45 

King 2010; Hinman et Cary 2017; King 2004; King, Hittinger, et Carroll 2003; Niklas 2014; 46 

Parfrey et Lahr 2013), and so did epithelial-like tissues (Dickinson, Nelson, et Weis 2011, 2012; 47 

Ganot et al. 2015; Maizel 2018; Miller et al. 2013). In cell biology (Lowe et Anderson 2015), 48 

epithelia are defined generally as a sheet of cells tightly bound together and capable of 49 

coordinated movements during morphogenesis. In the different lineages where they emerged, 50 

they usually shape and line organs (when present), cavities and free external borders, they 51 

control molecule and ion exchanges between the body and the environment and/or between 52 

different compartments of the body involved in vital physiological processes.  53 

Because multicellularity and epithelial-like structures emerged several time independently, the 54 

molecules involved in their composition and patterning are different (Kania, Fendrych, et Friml 55 

2014; Reynolds 2011). Nevertheless, very ancient proteins predating multicellularity can play 56 

a key role in the establishment of epithelial features (Nagawa, Xu, et Yang 2010) such as 57 

Rho/ROP GTPase for polarity because of their conserved involvement in controlling 58 

cytoskeleton and vesicular trafficking, and other ancient proteins can have been co-opted 59 

independently to perform a quite similar result, such as catenins in Ameobozoa and Metazoa 60 

(see section 2). 61 

After this short synopsis, this chapter will focus on the origin and evolution of animal epithelia 62 

only. 63 

 64 

 65 
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5.1.2. The definition of epithelium in Metazoa 66 

Epithelia of animals are usually considered as one of the four fundamental tissue types along 67 

with connective, nervous and muscular tissues (Lowe et Anderson 2015; Yathish et Grace 68 

2018). Epithelial tissues cover all the surfaces of the body exposed to the external environment 69 

and line organs and body cavities (named in this case: Covering and lining epithelia) hence 70 

providing protection and compartmentalization of the body. Epithelia also form much of the 71 

glandular tissue of an animal body (in this case they are named glandular epithelia). During 72 

embryological development, epithelia are patterned early, after cleavage (Tyler 2003). Indeed, 73 

the organization of cells within tissues is the first sign of cell differentiation during 74 

embryogenesis and the epithelial blastoderm is the starting point for morphogenesis during the 75 

development of a wide range of metazoans (Pozzi, Yurchenco, et Iozzo 2017). It is only from 76 

epithelium that mesenchyme arises by epithelial-mesenchymal transition (EMT) during 77 

gastrulation (Tyler 2003). In bilaterian adults, epithelial cells derive from all three major 78 

embryonic layers (endo-, meso-, and ectoderm): for example in vertebrates, the skin, part of the 79 

mouth and nose, and the anus develop from the ectoderm; cells lining the airways and most of 80 

the digestive system originate from the endoderm while the epithelium lining vessels derive 81 

from the mesoderm. Epithelia are fundamental structures controlling permeability and allowing 82 

selective transfer of molecules between animal and its environment and between body 83 

compartments. Epithelial tissues also provide protection from physical, chemical, and 84 

biological agents and allow for coordinated tissue movements. Consequently, disruptions in 85 

epithelial properties cause developmental defects and are responsible for diseases in adult 86 

tissues (Miller et al. 2013; Royer et Lu 2011; Sekiguchi et Yamada 2018).  87 

Currently, as for many other animal morpho-anatomical features, the histological 88 

characteristics defining an epithelium were postulated according to what was found in model 89 

animals, all pertaining to the bilaterian taxa, such as mammalian epithelial cells and Drosophila 90 
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epithelial tissues (for review see Tyler, 2003). From these studies, epithelia have been defined 91 

as layers of cells showing coordinated polarity, with differences in structure and function 92 

between the apical side facing the external medium (or internal cavities) and a basal side in 93 

contact with a basement membrane (BM) made of collagen IV (figure 5.1) (Rodriguez-Boulan 94 

et Nelson 1989). In addition, epithelial cells exhibit cell-cell junctions and cell-matrix contacts 95 

(figure 5.1) which maintain cohesion between cells during morphogenesis processes and allow 96 

the coordination of cell movements by providing a seal between cells (Jefferson, Leung, et Liem 97 

2004).  98 

 99 

Figure 5.1: Schematic drawing summarizing the three features defining animal epithelia : 1) Cell polarity (basal-100 
apical polarity : cell can harbor different features along this polarity axis, for instance cilia in some cells); 2) Cell-101 
cell and cell-matrix junctions found in Bilaterians and their core molecular composition (here only structural 102 
components are noted rather than all the components needed for their trafficking and patterning). Left, junction 103 
types found in protostomes and non-chordates: Septate Junctions (SJs). Right, junction types found in vertebrates: 104 
Desmosomes (DSs), Tight Junctions (TJs). In between and on both sides are junction types found in all bilaterians: 105 
focal Adhesions (FAs), Hemi-Desmosomes (HDs), Gap junctions, Adherens Junctions (AJs); 3) Basement 106 
membrane, a dense sheet of extracellular matrix proteins providing support and increasing cohesiveness of cells.  107 

 108 
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5.1.3. The classification of animal epithelial cell types 109 

Despite this general definition, epithelia can harbor different organizations and structures. In 110 

addition to the distinction based on their general role (compartmentalizing versus glandular 111 

epithelia), epithelial tissues are identified by both the number of layers (simple, stratified or 112 

pseudostratified) and the shape of the cells (squamous, cuboidal or columnar) (summarized in 113 

table 5.1 see Lowe and Anderson 2015 for more details).  114 

 115 

Table 5.1 General classification of animal epithelia according to their organization 116 

  Cell shape 

N
u

m
b

er
 o

f 

ce
ll

 l
a

y
er

s  flat cube parallelepiped irregular 

1 Simple squamous Simple cuboidal Simple columnar pseudostratified 

2 or more Stratified squamous Stratified cuboidal Stratified columnar  

 117 

 118 

These different kinds of epithelial tissue generally perform different functions (absorption, 119 

regulation, excretion, filtration, secretion, protection, detection) according to their body 120 

position and their structural organization. 121 

 122 

5.1.4. The definition of junction types 123 

Junction types involved in the establishment and patterning of epithelia are usually classified 124 

in two major categories: cell-cell junctions and cell-matrix junctions. 125 

In bilaterians, cell-cell junctions include sealing junctions that link cells to form a regulated 126 

barrier: these are tight junctions (TJs) in Chordata and septate junctions (SJs) in Protostomia. 127 

Even though TJs and SJs have the same function they are quite different in morphology and 128 

their molecular composition differ. TJs, the most apical junctions in vertebrates, are composed 129 

of the transmembrane proteins occludin and claudins that are linked to the actin cytoskeleton 130 
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through zonula occludens (ZO) proteins (figure 5.1, for recent reviews see Garcia et al., 2018; 131 

Yathish and Grace, 2018; Zihni et al., 2016). SJs are more basal (Tyler 2003) and contain 132 

claudin-like proteins, contactin (Cont), neurexin IV (Nrx IV) and neuroglian (Nrg) among many 133 

other components (figure 5.1) (for review see Hall and Ward, 2016).  134 

A second type of cell-cell junction, signaling gap junctions allow direct cell-to-cell 135 

communication (Skerrett et Williams 2017; Yathish et Grace 2018) and are composed in 136 

vertebrate and in prostostome lineages of respectively connexin and innexin proteins, two 137 

similar but non homologous proteins (figure 5.1). In other words, two distinct lineages found a 138 

convergent solution to solve the same problem of intercellular communication (Alexopoulos et 139 

al. 2004; Skerrett et Williams 2017).  140 

The third type of cell-cell junctions are anchoring junctions linking cells between them 141 

(adherens junctions (AJs), desmosomes (DSs)). Contrary to DSs (containing the desmosomal 142 

transmembrane cadherin Desmogleins and cytosolic desmoplakins, (Johnson, Najor, et Green 143 

2014; Magie et Martindale 2008; Yathish et Grace 2018) which are restricted to vertebrates and 144 

which provide a link to intermediate filaments through desmoplakin, AJs are present in all 145 

bilaterian taxa and comprise classical cadherins which interact to the actin cytoskeleton through 146 

α-, β- and δ-catenins (figure 5.1) (Garcia, Nelson, et Chavez 2018; Miller et al. 2013; Yathish 147 

et Grace 2018).  148 

Finally concerning cell-matrix junctions, they enable the attachment of epithelial cells to the 149 

underlying basement membrane. These are focal adhesion (FAs) and hemi-desmosomes (HDs). 150 

As well as cell-cell junctions, cell-matrix junctions are needed to achieve collective migration 151 

and coordination of various epithelial morphogenetic processes important during development, 152 

tissue shaping and wound healing. Both FAs and HDs are highly specialized structures based 153 

on interactions between integrins, fibrillar proteins of the extracellular matrix and the internal 154 

intermediate filament or actin network (figure 5.1) (De Pascalis et Etienne-Manneville 2017; 155 
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Magie et Martindale 2008; Miller et al. 2018; Walko, Castañón, et Wiche 2015a). While FAs 156 

are found in non-epithelial cells types (such as, for example, neurons or fibroblasts (Fischer et 157 

al. 2019)), hemidesmosomes (HD) are specific to epithelia (Walko et al., 2015). 158 

It is usually accepted that variations of types and of organization of junctions have allowed the 159 

development and differentiation of tissue types and have played a key role in the evolution of 160 

animal body plans (Abedin et King 2010; Magie et Martindale 2008). 161 

 162 

5.1.5. Cell polarity complexes and cell domains 163 

The precise location of the previously defined junctions is one of the numerous demonstrations 164 

of cell polarity. This polarity is also obvious by the localization and orientation of other cell 165 

features such as the nucleus, cilia or other cell extensions, the cytoskeleton and vesicular 166 

trafficking. The cell is generally divided into three domains: the basal domain facing the 167 

basement membrane, the apical domain facing the external medium or cavity lumens, and, in 168 

between, the lateral domain which is more or less extended depending on the shape of cells 169 

(table 5.1, figures 5.1 and 5.2). This polarized structural and ultrastructural organization of an 170 

epithelial cell is patterned by at least three protein complexes named polarity complexes, each 171 

composed of three interacting proteins (figure 5.2) (Assémat et al. 2008; Le Bivic 2013):  172 

- The apical PAR complex is composed of atypical Protein Kinase C (aPKC), the Partition 173 

defective 3 (PAR3) and Partition defective 6 (PAR6); 174 

- The apical CRUMBS complex made of CRUMBS (CRB), stardust (Sdt, or MPP5 175 

(Membrane Palmitoylated Protein 5) in mammals also known as PALS1 (protein 176 

associated with Lin-7 1) and PALS1-associated tight junction protein (PATJ); 177 

- The lateral SCRIBBLE complex is made with SCRIBBLE (SCRIB), lethal giant larvae 178 

(LGL) and Disc large (DLG). 179 
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 180 

Figure 5.2: Localization and protein composition of the three polarity complexes needed to pattern cell polarity 181 
in epithelial cells: PAR, CRUMBS and SCRIBBLE according to what was described in Le Bivic (2013).  182 

 183 

These polarity complexes interact and regulate each other and are themselves regulated by 184 

signaling pathways in a complex manner (Assémat et al. 2008; Le Bivic 2013). 185 

 186 

5.1.6. Do all metazoans have (the same) epithelia? 187 

There is no doubt that the last common ancestor of all extant animals was multicellular (King 188 

et Rokas 2017). And, whatever the variability in timing, relative importance and order of cell 189 

mechanisms involved between phyla (and sometimes among species of a same phylum (A. 190 

Ereskovsky 2010), in all metazoans, the patterning of an epithelial or epithelial-like cell sheet 191 

is one of the earliest important event occurring during embryogenesis after the acquisition of 192 

multicellularity (more often at the blastula stage). The acquisition of such an epithelial level of 193 

organization is intimately connected with the acquisition of cellular adhesion and cell-194 
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communication toolkits. One of the main questions raised is: did these key cell properties 195 

emerge once or several times? In other words, are all animal epithelia and epithelial-like sheets 196 

homologous among metazoans? And is it possible to trace back the origin and evolution of all 197 

animal epithelial cell types? 198 

To try to answer this question, the first step is to examine the presence/absence in non-bilaterian 199 

taxa of the previously cited three histological criteria defining an animal epithelium (figure 5.3) 200 

in order to: 1) decipher whether the term and definition of “epithelium” refers to equivalent 201 

structures throughout Metazoa, 2) determine, if epithelia are an ancestral character, which of 202 

epithelial features were ancestrally present. 203 

 204 

Figure 5.3: According to histological observations (Fidler et al. 2017; Ganot et al. 2015; Ledger 1975; Sally P. Leys 205 
et Riesgo 2012; Magie et Martindale 2008; Moroz et Kohn 2016; Satterlie et Case 1978; Smith et Reese 2016) the 206 
joint presence of the three criteria supposed to define an epithelium in animals is far from being systematically 207 
conserved in non-bilaterian phyla. For junctions: “seal.” stands for sealing, “adh.” stands for adhesive and 208 
“comm.” For communicating. In this schema, if two symbols are indicated for the same character in one phylum, 209 
it means that the observation can be different depending on the species considered. The status “unlikely 210 
homologous” means that a type of junction harboring histological features compatible with either sealing, 211 
adhesive or communicating properties were described, but that their characteristics suggest that they are from a 212 
different nature that what is found typically in other animals (for sponges: (E. D. M. Adams, Goss, et Leys 2010b; 213 
Sally P. Leys et Hill 2012b; Sally P. Leys et Riesgo 2012; S. P. Leys, Mackie, et Reiswig 2007; S. P. Leys, Nichols, et 214 
Adams 2009); for ctenophores: (Hernandez-Nicaise, Nicaise, et Reese 1989; S. L. Tamm et Tamm 1991; Sidney L. 215 
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Tamm et Tamm 2002)). This schema shows that either many non-bilaterian species do not fit the definition of an 216 
epithelium or that the definition postulated decades ago does not depict and fit the diversity really found across 217 
animal epithelia. 218 

 219 

The first finding is that the organization of epithelial or epithelial-like sheets found in non-220 

bilaterian phyla is much more variable – even in a single phylum – than it is in bilaterians. The 221 

second obvious finding is that, among non-bilaterians, only cnidarian epithelia meets the three 222 

criteria of polarity, basement membrane and junctions (whatever their type) at the same time 223 

(Ganot et al. 2015; Magie et Martindale 2008). In contrast, Placozoa do not meet the accepted 224 

definition of an epithelium (according to the very partial data available so far in this phylum) 225 

because of the absence of a basement membrane (Fidler et al., 2017; Ruthmann et al., 1986). 226 

As far as Ctenophora and Porifera are concerned only some of the species have tissues that fully 227 

meet the definition of epithelium: this is the case for the Homoscleromorpha class in Porifera 228 

(Belahbib et al. 2018; Boute et al. 1996; A. V. Ereskovsky et al. 2009; Sally P. Leys et Hill 229 

2012a; Sally P. Leys et Riesgo 2012), and the genera Beroe and Pleurobrachia in Ctenophora 230 

(according to the partial data available so far in this phylum) (Fidler et al. 2017). It is therefore 231 

very surprising that the presence of a bona fide epithelium was questioned only for sponges. 232 

Indeed, while Porifera were classically excluded from the “Eumetazoa” clade partly because of 233 

the absence of “true” epithelia with a basement membrane, and even several years after Boute 234 

et al. (1996) showed a basement membrane existed in homoscleromorph sponges (A. V. 235 

Ereskovsky et al. 2009), in contrast the term “epithelium” is currently used for Placozoa (Armon 236 

et al. 2018; Smith et Reese 2016) and Ctenophora (Sidney L. Tamm et Tamm 2002). Given 237 

such a terminological inconsistency, there are two solutions: 1) either the present definition of 238 

epithelium with 3 criteria is kept as it is, meaning that Placozoa, some Ctenophora and most 239 

Porifera have to be considered devoid of epithelia; 2) or consider that the epithelium is a 240 

synapomorphy of metazoans whatever the presence or absence of basement membrane. This 241 
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second solution has the positive consequence of taking into account the obvious conservation 242 

of physiological properties (mechanical resistance and occlusion to small molecules) that is 243 

found in epithelia of a demosponge (a group lacking basement membranes), a property that 244 

appears to be shared with bilaterian epithelia that have occluding junctions (E. D. M. Adams, 245 

Goss, et Leys 2010a; Dunn, Leys, et Haddock 2015; Sally P. Leys et Riesgo 2012). 246 

Today, according to most authors, there is no longer any doubt on the presence of functional 247 

epithelia in the last common ancestor of animals that harbor cell polarity, adhesion properties 248 

and basement membrane support (Fidler et al. 2017; King et Rokas 2017; Sally P. Leys et Hill 249 

2012a; Sally P. Leys et Riesgo 2012; Medwig et Matus 2017). We now have to explore how 250 

and when such an epithelium originated and evolved: this is the item of the following section. 251 

Tracing back the evolution of epithelial cell types is not only related to the questionings 252 

concerning germ layer homology, we have also to consider that the similarity of cell features 253 

(here presence of junctions, polarity and basement membrane, as previously mentioned) can 254 

result from convergent evolution by co-option of similar molecular actors or that shared 255 

proteins can have undergone neofunctionalization. In order to try to tackle this issue, the recent 256 

development of comparative whole organism single cell transcriptomic approaches (sc-257 

RNAseq) should enable to define cell type specific core regulatory complex (CoRC) (Arendt 258 

2008; Arendt et al. 2016; Marioni et Arendt 2017). Thanks to the conservation of regulatory 259 

mechanisms, a homologous cell type is expected to remain recognizable across species (Arendt 260 

2005, 2008). We will also discuss this point in section 2. 261 

5.2.The Origin of animal epithelia 262 

In order to understand the origin of this metazoan synapomorphy, it is useful to study the 263 

presence of ‘preadapted’ molecular tools that were present before the emergence of animals. 264 

To do so, even if the data remain scarce, comparative genomics of the closest unicellular 265 
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relatives of metazoans are needed: choanoflagellates as the sister group of metazoans is of 266 

course of particular interest, but other members of Holozoa (such as Filasterea) and Opimoda 267 

(including Opisthokonta and Amoebozoa) can be useful (Ferrer-Bonet et Ruiz-Trillo 2017; 268 

Olson 2013; Richter et King 2013; Richter et al. 2018; Sebé-Pedrós, Degnan, et Ruiz-Trillo 269 

2017).  270 

5.2.1. Some genes encoding for extracellular matrix proteins predate the 271 

emergence of animal epithelia  272 

In bilaterians and cnidarians, epithelial morphogenesis has been shown to rely strongly on 273 

interactions between the epithelial sheet receptors and components of the extracellular matrix 274 

(ECM), including the basement membrane when it is present (Aufschnaiter et al. 2011; Dzamba 275 

et DeSimone 2018; Fidler et al. 2017; Sekiguchi et Yamada 2018).  276 

A few genes encoding for important extracellular matrix proteins or their cellular receptors 277 

predate the emergence of Metazoa: indeed, genes encoding for integrins and integrin adhesion 278 

machinery are present in unicellular relatives of metazoans (see section 2.2) (Abedin and King, 279 

2010; Babonis and Martindale, 2017; Sebé-Pedrós and Ruiz-Trillo, 2010; Sebé-Pedrós et al., 280 

2010; Suga et al., 2013). In both Filasterea (C. owczarzaki) and Choanoflagellata (M. brevicolis 281 

and Salpingoeca rosetta), several proteins including protein domains that are present in animal 282 

ECM proteins (such as for example LAM G, EGF, fibronectin III) are predicted in the genomes 283 

of these organisms.  But these protein domains are not combined in the same way either in 284 

Filasterea and Choanoflagellata, as they are in Metazoa (Fairclough et al. 2013; King et al. 285 

2008; Suga et al. 2013; Williams et al. 2014). This means that most of the proteins found in 286 

animal ECM and basement membrane (for instance the laminin and fibronectin key 287 

components) are metazoan innovations and emerged probably in part by domain shuffling 288 

(Babonis and Martindale, 2017; Fahey and Degnan, 2012; Richter et al., 2018; Suga et al., 2013; 289 
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Williams et al., 2014). Interestingly, most recent studies suggest that a canonical type IV 290 

collagen could have been already present in the common ancestor of filastereans, 291 

choanoflagellates and animals (Fidler et al. 2018; Grau-Bové et al. 2017) therefore suggesting 292 

a more ancient origin of type IV collagen than previously accepted and its neo-functionalization 293 

in metazoans, as it has also been suggested for integrin adhesome or cadherins (King et al., 294 

2008; Sebé-Pedrós and Ruiz-Trillo, 2010; Sebé-Pedrós et al., 2010). In other words, the 295 

characterization of type IV collagen in non-metazoans challenges the previously accepted idea 296 

that spongin short chain collagen (SSCC) is ancestral to type IV collagen (Aouacheria et al. 297 

2006; Sally P. Leys et Riesgo 2012).  298 

 299 

5.2.2. Integrins: an ancient protein family 300 

As previously mentioned, (section 1.4), the key proteins shared by focal adhesions (FAs) and 301 

hemidesmosomes (HDs) are integrins. Until 2010, because genes encoding for integrins were 302 

not retrieved in plant, fungi and choanoflagellate genome surveys, integrins were thought to be 303 

a metazoan innovation. Thanks to genomic surveys in several unicellular opisthokont species, 304 

integrins were shown to be present in the last common ancestor of Filasterea and Metazoa as 305 

well as actors of the integrin machinery (Focal Adhesion kinase and non-receptor protein kinase 306 

Src) (Sebé-Pedrós and Ruiz-Trillo, 2010; Sebé-Pedrós et al., 2010). In addition, both integrin α 307 

and β in these premetazoan taxa possess the amino acid motifs in their cytoplasmic tails 308 

involved in interactions with intracellular scaffolding and signaling proteins therefore 309 

suggesting that they could interact in a similar way as their metazoan homologs. Though the 310 

role of the integrins in unicellular eukaryotes is currently unknown, it has been evidenced very 311 

recently that the Capsaspora integrin are able to recruit human talin. Therefore, this result 312 
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suggests that the regulation of integrins via talin activity is conserved in Holozoa and predates 313 

the emergence of Metazoa (Baade et al. 2019). 314 

On the other hand, to build HD, plectin is required to form bridges between the cytoplasmic 315 

keratin intermediate filament network and the integrins. To date, no plectin has been 316 

characterized so far in non-metazoan lineages but other linker proteins allowing the binding 317 

between integrins and the cytoskeleton are common among unikonts (Sebé-Pedrós et al., 2010).  318 

Altogether, integrins predate the emergence of animal and may play an ancestral role in 319 

signaling. The role in cell-ECM adhesion might have been coopted in metazoans (Sebé-Pedrós 320 

and Ruiz-Trillo, 2010; Sebé-Pedrós et al., 2010). 321 

 322 

5.2.3. Genes encoding for Cell-cell Adhesive proteins predate the emergence of 323 

animal epithelia  324 

In the section 1.4 we described the types of junctions found in bilaterians and their molecular 325 

composition. To date, because actin- based adhesive-like junctions (Ganot et al. 2015; Magie 326 

et Martindale 2008; S. L. Tamm et Tamm 1987) and adherens junctions (A. V. Ereskovsky et 327 

al. 2009; Fahey et Degnan 2010; Sally P. Leys et Riesgo 2012; S. P. Leys, Nichols, et Adams 328 

2009) were described in Ctenophora and Porifera respectively, it was assumed that adherens 329 

junctions (AJs) constitute the ancestral type of junctions of animals. As a consequence, the 330 

cadherins and catenins involved in the establishment of AJs (section 1.4) were searched for in 331 

priority in unicellular relatives of animals.  332 

According to the presently (scarce) available genomic data, it seems that at least three cadherin 333 

families were present in the last common ancestor of Choanozoa (taxa grouping 334 

Choanoflagellata and Metazoa): lefftyrins, coherins and hedglings (Nichols et al. 2012). Among 335 

these families some were lost secondarily in bilaterians or earlier. To date, only one cadherin 336 
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gene was found in the filasterean C. owczarzaki (King et al. 2008; Nichols et al. 2012; Richter 337 

et King 2013). It is now therefore obvious that cadherins predate metazoans. But only 338 

metazoans have bona fide classical cadherins containing the two domains required for its 339 

interaction with catenins (JMD and CBD)(Clarke et al. 2016; Miller et al. 2013; Murray et 340 

Zaidel-Bar 2014). 341 

As far as catenins are concerned, the Amoebozoa Dictyostelium discoideum, possesses catenins 342 

(Aardvark and Ddα-catenin), involved in establishing epithelial-like sheets (Dickinson, Nelson, 343 

et Weis 2011, 2012). Interestingly, Aardvark-related proteins are also present in 344 

choanoflagellates and filastereans (Nichols et al. 2012; Suga et al. 2013). Aardvark and Ddα-345 

catenin are considered close relatives of beta- and alpha- catenins because of shared domain 346 

features (Miller et al. 2013, 2018; Richter et al. 2018; Suga et al. 2013). As a consequence, it 347 

means that the joint presence of cadherins and catenin-related proteins predate the emergence 348 

of Metazoa even if they are predicted to not interact. Unfortunately, there is no experimental 349 

data so far available to establish the function of these proteins in these organisms (Nichols et 350 

al., 2012). But the recent acquisition of a transfection protocol in choanoflagellates is expected 351 

to enable to soon fill this gap (Booth, Szmidt-Middleton, et King 2018).  352 

Concerning genes encoding for proteins involved in other types of junction, none of the 353 

components of gap junctions have been characterized in non-metazoans yet (Moroz et Kohn 354 

2016), while, in contrast, a claudin-like gene was retrieved in Capsaspora and Monosiga 355 

genomes (Ganot et al. 2015) (see figure 5). 356 

5.2.4. Do some genes encoding for members of cell polarity complexes predate the 357 

emergence of animal epithelia? 358 

Though the typical collar cell of choanoflagellates shows an obvious basal-apical cell polarity, 359 

to date the genes encoding for the three metazoan polarity complexes (CRUMBS, SCRIBBLE 360 
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and PAR, figure 2) remain nearly unexplored. Among the various actors involved in polarity 361 

complexes (see section 1.5), only DLG, a member of the SCRIBBLE complex was shown to 362 

predate the emergence of the metazoans and has been found in Choanoflagellata, Filasterea and 363 

Ichthyosporea (Belahbib et al. 2018; Fahey et Degnan 2010; Ganot et al. 2015; Le Bivic 2013; 364 

Murray et Zaidel-Bar 2014; Richter et al. 2018). For now, without no further contrary evidence, 365 

all other components are considered metazoan innovations (figure 5.4). In addition, the key 366 

pathways known to regulate these 3 epithelial polarity complexes (among which Wnt and PCP 367 

pathways) are also considered as metazoan specificities (Babonis and Martindale, 2017). 368 

If metazoans evolved these specific means to control their epithelial cell polarity, it is obvious 369 

that cell polarity is more generally necessary for proper functioning of numerous other cell 370 

types such as, for example, neurons in animals, pollen tubes in plants and hyphae in Fungi. The 371 

achievement of cell polarity is intimately linked to cytokinesis, orientation of mitotic spindles 372 

and asymmetric separation. Some molecular elements controlling cell polarity are known to be 373 

highly conserved across eukaryotes including animals, in epithelial and non-epithelial cell 374 

types, such as MOB proteins and Rho GTPase  (Bornens 2018; Hoff 2014; Lefèbvre et al. 2012; 375 

Slabodnick et al. 2014).  376 

 377 

5.2.5. Main conclusion: cell adhesion and polarity may have emerged several times 378 

during the evolution of Holozoa 379 

According to the previously cited results in Choanoflagellata and Filasterea, the proteins 380 

involved in cell-cell adhesion and cell-matrix adhesion to achieve aggregative/transient 381 

multicellular stages in these organisms are different from what is found in Metazoans. 382 

Nevertheless, key protein domains involved in major cell-cell or cell-matrix protein interactions 383 

are highly conserved in holozoans. It means that, during the evolution of Holozoans 384 

aggregative/multicellular stages probably emerged thanks to intense domain shuffling of shared 385 
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building blocks, as Lego® bricks, and duplication-divergence events in already present gene 386 

families (e.g. cadherins and catenines). Thanks to these ancestral domains and families, the 387 

metazoan lineage evolved specific tools, representing metazoan synapomorphies (such as 388 

polarity complexes, classical E-cadherin and signaling pathways), to achieve permanent 389 

multicellular level of organization with epithelial features.  390 

 391 

5.3. The probably ancestral features of the metazoan epithelium 392 

5.3.1. The composition of the ancestral basement membrane  393 

To date, comprehensive biochemical experiments to determine the protein composition of the 394 

basement membrane of animals have only been carried out in cnidarians and bilaterians (Fidler 395 

et al. 2014, 2018; Halfter et al. 2015). As a consequence, only partial biochemical information 396 

is available for the other animal lineages, and in particular for sponges and ctenophores which 397 

are considered the most basal taxa in the metazoan tree. Most of our present knowledge for 398 

these two phyla therefore relies on indirect hypotheses based of transcriptomic and genomic 399 

surveys. 400 

A few studies have compared the extracellular matrix (ECM) genes found in the genomes of 401 

early-diverging animals such as sponges and cnidarians with that conserved across bilaterians. 402 

These comparisons enabled to identify an ancestral core set of ECM components, receptors and 403 

degrading proteases (J. C. Adams 2013, 2018; Özbek et al. 2010; Tucker et Adams 2014; 404 

Williams et al. 2014). For what is known from bilaterians and cnidarians, the extracellular 405 

matrix is mainly composed of type I collagen, elastin and fibronectins but there is also a great 406 

variety of glycoproteins (as laminin), proteoglycans and different types of collagens (except 407 
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type IV). Its density, fluidity and composition is variable between taxa and between different 408 

tissues of the same taxa (Fidler et al. 2018; Hynes 2012; Kular, Basu, et Sharma 2014).  409 

In contrast, the composition of the basement membrane seems less variable between taxa (even 410 

though slight variation can occur between tissues). Indeed in all cases the main components are 411 

laminins and type IV collagen, interconnected with mainly nidogen and perlecan and, 412 

sometimes, with additional molecules such as agrin (Fidler et al. 2017, 2018; Medwig et Matus 413 

2017; Pozzi, Yurchenco, et Iozzo 2017; Sekiguchi et Yamada 2018). According to genomic 414 

surveys, only genes encoding for type IV collagen and laminin are present in ctenophores and 415 

homoscleromorph sponges. Surprisingly, despite of the absence of the connecting proteins 416 

nidogen and perlecan, they are able to build a basement membrane (at least for Beroe ovata and 417 

Pleurobrachia pileus) (Fidler et al. 2017, 2018).  This finding suggests that these two proteins 418 

(type IV collagen and laminin) are essential and shared components of BM in animals and 419 

therefore constitute the core toolkit already present in the last common ancestor of all extant 420 

metazoans. This also means that the other BM components (perlecan and nidogen) emerged 421 

more recently during metazoan evolution. Future experiments are needed to understand the 422 

differences in the organization and mechanical properties of the BM between 423 

cnidarians/bilaterians and ctenophores/homoscleromorph sponges. 424 

These recent findings in ctenophores and sponges also mean that the absences of BM in some 425 

ctenophores, such as Mmemiopsis leidyi, and in the placozoan Trichoplax adhaerans or of genes 426 

encoding for laminin and type IV collagen (as in demosponges for instance) are secondary 427 

losses. Interestingly, in contrast, the calcareous sponge Sycon coactum possesses genes 428 

encoding for several BM proteins whereas a BM structure has never been observed in this 429 

sponge class (Sally P. Leys et Riesgo 2012; Riesgo et al. 2014). More in-depth domain analyzes 430 

and functional experiments have to be performed to fully understand this apparent discrepancy 431 

between gene content and tissue structure (discussed in Renard et al, 2018).  432 
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5.3.2. The ancestral toolkit to achieve cell polarity depends on non-bilaterian 433 

relationships 434 

Cell polarity is an ancestral feature of animal epithelia (Figure 5.3). It now remains to establish 435 

whether or not the molecular toolkit involved in the establishment of coordinated cell polarity 436 

is the same in non-bilaterian animals as in bilaterians. According to recent gene surveys 437 

(Belahbib et al. 2018; Riesgo et al. 2014), all the genes encoding for the nine proteins involved 438 

in PAR, CRUMBS and SCRIBBLE polarity complexes are present in Cnidaria, Placozoa and 439 

Porifera. Whereas the whole set of genes needed to build a CRUMBS complex is absent in 440 

Ctenophora, as well as the Scribble gene needed to complete the SCRIBBLE complex (table 441 

5.2, figure 5.4). 442 

Table 5.2  Présence (x)/absence(0)  in the four non-bilaterian phyla (Porifera, Ctenophora, Placozoa and 443 

Cnidaria) of genes encoding for proteins involved in the three cell polarity complexes, namely the CRUMBS 444 

complex, the SCRIBBLE complex and the PAR complex (figure 5.2), according to transcriptomic and genomic 445 

surveys (Belahbib et al. 2018; Le Bivic 2013; Riesgo et al. 2014) 446 

  Porifera Ctenophora Placozoa Cnidaria 

PAR PAR 3 x x x x 
PAR 6 x x x x 
aPKC x x x x 

CRUMBS CRB x 0 x x 
PAT J x 0 x x 
PALS1 x 0 x x 

SCRIBBLE SCRIB x 0 x x 
LGL x x x x 
DLG x x x x 

 447 

Because the relative phylogenetic position of Ctenophora and Porifera is still uncertain (Simion 448 

et al., 2017; Whelan et al., 2017; reviewed in King and Rokas, 2017) two scenarios are possible: 449 

either the nine polarity genes (DLG predates the emergence of Metazoa) were present in 450 

common metazoan ancestor then some were lost secondarily in ctenophores, or only 5 of these 451 



 

94 
 

genes were ancestral and the other 4 genes would represent innovations acquired later during 452 

animal evolution (Figures  5.4 and 5.5). Moreover, whatever the scenario considered there is 453 

no experimental evidence so far that neither these proteins are able to form complexes in vivo 454 

in Placozoa and Porifera (even if residue and domain analyzes tend to support this hypothesis, 455 

see Belahbib et al., 2018) nor on their function in these phyla. Interestingly, a very recent 456 

immunolocalization of the PAR proteins in the ctenophore Mnemiopsis leydii strongly 457 

questions the functional conservation of this protein outside the cnidarian-bilaterian lineage 458 

(Salinas-Saavedra et Martindale 2019). 459 

 460 

 461 

Figure 5.4:  Two scenarios for evolution of the three polarity complexes (CRUMBS, PAR and SCRIBBLE complexes) 462 
taking into account the uncertainty of phylogenetic relationships at the base of the animal tree (Porifera or 463 
Ctenophora as sister group of all other metazoans): either the 3 polarity complexes were already present in the 464 
last common ancestor of all extant animals or partially two of them were present. 465 

 466 

 467 
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5.3.3. Were adhesive junctions present ancestrally? 468 

According to the analyses of the different types of junctions present in bilaterians and 469 

cnidarians, it is clear that their common ancestor must have had AJs, gap junctions and SJs, but 470 

the origin of these major innovations remains unknown: 471 

5.3.3.1.Communicating junctions 472 

In bilaterians, gap junctions are either composed of innexin (invertebrates) or connexin 473 

(vertebrates). Whatever the evolutionary origin of these two proteins (homology vs. 474 

convergence), the gap junction they compose show amazing structural and functional 475 

similarities (Skerrett et Williams 2017). In cnidarians, innexin also composes gap junctions 476 

(Alexopoulos et al. 2004; Takaku et al. 2014), it therefore means that innexin-gap-junctions 477 

were already present in the last ancestor of bilaterians and cnidarians. In ctenophores, gap 478 

junctions have been reported (Satterlie et Case 1978) and, interestingly, a gene encoding for 479 

innexin has been characterized in Pleurobrachia (Moroz et Kohn 2016). Nevertheless, given 480 

that innexin can participate to cell-cell communication via the establishment of either gap 481 

junctions or hemichannels (Güiza et al. 2018), the localization of the innexin protein at the level 482 

of gap junction is needed to establish the possible function conservation of innexin in 483 

ctenophores. In contrast, until now, neither the structure nor the innexin genes were reported 484 

yet in sponges and in placozoans (Moroz et Kohn 2016; Smith et Reese 2016). In sponges, a 485 

very different type of communicating junction was described in glass sponges (Hexactinellida), 486 

named plug junctions, clearly unrelated to gap junctions found in other animals (S. P. Leys, 487 

Cheung, et Boury-Esnault 2006; S. P. Leys, Mackie, et Reiswig 2007). Therefore, if we assume 488 

1) that the innexin protein is involved in the formation of gap junctions in ctenophores, and 2) 489 

that the Ctenophora-first hypothesis is the right one, then, gap junctions were present ancestrally 490 
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in animals and lost secondarily in sponges and placozoans. Because none of these hypotheses 491 

have so far been validated, it seems premature to draw such a conclusion.  492 

5.3.3.2. Sealing/Occluding junctions 493 

As far as sealing junctions are concerned, septate junctions are present in Cnidaria. And despite 494 

ultrastructural variations observed by electron microscopy and incomplete information about 495 

their molecular composition, bilaterian and cnidarian SJs are currently considered to be 496 

evolutionary related (Ganot et al. 2015). Again, as for the other structures examined in this 497 

chapter, our knowledge from the three other non-bilaterian phyla is too scarce and therefore 498 

prevents us from elaborating a clear evolutionary scenario for the origin of SJs. In Placozoa, 499 

ladder-like structures reminiscent of the SJs were described (Ruthmann, Behrendt, et Wahl 500 

1986b) but more precise observations are needed to conclude whether or not these structures 501 

are bona fide SJs (Ganot et al. 2015; Smith et Reese 2016).  In ctenophores, no SJs have been 502 

reported so far, although “atypical” junctional structures (without septa) have been 503 

characterized (Hernandez-Nicaise, Nicaise, et Reese 1989; Magie et Martindale 2008). Albeit 504 

sponge epithelia clearly have sealing properties (E. D. M. Adams, Goss, et Leys 2010a), SJs 505 

have been reported by only one study in the calcisponge Sycon ciliatum and later studies failed 506 

to confirm this feature (Eerkes-Medrano et Leys 2006; Ledger 1975; S. P. Leys, Nichols, et 507 

Adams 2009). Interestingly, despite the absence of unquestionable SJ outside the Cnidaria-508 

Bilateria lineage, genes encoding for core components of SJs are present in placozoans and 509 

some of them in sponges and in ctenophores (Ganot et al. 2015; Riesgo et al. 2014): four 510 

proteins (Claudin-like, neuroglian, contactin, neurexin IV) considered as major structural 511 

components of SJs would have predated the emergence of the Bilateria-Cnidaria lineage (figure 512 

5.5). Considering the incongruences between the different analyzes performed so far in 513 

ctenophores and sponges, it is currently impossible to decipher whether these genes were 514 
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present ancestrally or not (Chapman et al. 2010; Fahey et Degnan 2010; Ganot et al. 2015; Sally 515 

P. Leys et Riesgo 2012; Riesgo et al. 2014; Suga et al. 2013). 516 

Thus, much remains to be explored in order to 1) understand how these three non-bilaterian 517 

phyla, namely Placozoa, Ctenophora and Porifera, achieve the sealing of their epithelium, 2) 518 

establish the roles of retrieved genes, and 3) be able to trace back the origin of bilaterian-519 

cnidarian septate junctions. 520 

5.3.3.3. Adhesive junctions 521 

In contrast to the two previous types of junctions, because of the clear description of adherens 522 

junctions or adhesive belts in some sponges (Homoscleromorpha and Calcarea), placozoans 523 

and ctenophores (A. V. Ereskovsky et al. 2009; Fahey et Degnan 2010; Ganot et al. 2015; Sally 524 

P. Leys et Riesgo 2012; S. P. Leys, Nichols, et Adams 2009; Magie et Martindale 2008; 525 

Ruthmann, Behrendt, et Wahl 1986b; Smith et Reese 2016; Smith et al. 2014; S. L. Tamm et 526 

Tamm 1987), until recently it was taken for granted that adhesive junctions represented the 527 

most ancestral type of junctions. Nevertheless recent transcriptomic and genomic surveys 528 

(Belahbib et al. 2018; Riesgo et al. 2014) and deep analyses of key functional domain and 529 

residues (Belahbib et al. 2018) started casting doubt on this common view. Indeed, whereas 530 

only two classes of sponges harbor adherens junctions (Homoscleromorpha and Calcarea), all 531 

four sponge classes possess the genes encoding for the four proteins involved in adherens 532 

junctions namely E-cadherin, alpha, beta-, and delta-catenins (CCC complex, figure 1). 533 

Moreover, the key domains of the E-cadherin needed to establish the CCC complex (GBM and 534 

JMD) are well conserved in three of these classes (while divergent in glass sponges) (Belahbib 535 

et al. 2018); and the first recent biochemical experiments conducted in a demosponge (devoid 536 

of adherens junctions) suggest that this canonical complex is formed in vitro (Schippers, 537 

Nichols, et Wittkopp 2018). Despite the fact that these new data are very exciting and represent 538 
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an undeniable step forward for sponge biology, they unfortunately fail to explain the functional 539 

role of the CCC complex in sponge classes that are devoid of adherens junction-like structures. 540 

It will be important to explore the homology of adherens junctions of homoscleromorph 541 

sponges and of cnidarians/bilaterians. Recently, the involvement of vinculin in cell-cell and 542 

cell-ECM contacts in Oscarella pearsei has been proposed following its tissue localization by 543 

immunolocalization (Miller et al. 2018). This is highly reminiscent of what is known in other 544 

animals (Carisey et Ballestrem 2011; Carisey et al. 2013; Miller et al. 2018), but until E-545 

cadherin is not localized in this class of sponge we will not be able to make the link between 546 

the structure (AJ) and its protein composition. 547 

The most surprising result of the analyses conducted by Belahbib et al (2018) was the high 548 

divergence of the key cytoplasmic domains of the E-cadherin of Ctenophores: these divergences 549 

prevent to predict a possible interaction of this protein with catenins, and casts doubt on the 550 

formation of a CCC complex in this phylum. Again, as for sponges, biochemical and functional 551 

experiments are needed to confirm/infirm in vitro and in vivo these in silico predictions. If this 552 

is confirmed, and depending on the phylogenetic hypothesis considered, this may challenge the 553 

idea that the last common ancestor of animals was already able to form CCC complexes 554 

involved in the formation of adhesive junctions. Indeed the possibility of neofunctionalization 555 

of cadherins and catenins is well illustrated by the case of the emergence of desmosomes in 556 

vertebrates (for review see Green et al., 2020). 557 
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558 
Figure 5.5: Diagram summarizing the emergence (colored arrows) of genes involved in key epithelial features 559 
(junctions, basement membrane and polarity complexes) according to present available data. In the figure, 560 
proteins were located in order to remind their function in cnidarians and bilaterians, even though there is no 561 
evidence of the functional conservation of these proteins outside the cnidarian-bilaterian lineage. The reader 562 
should also note that as far as genes encoding for Neuroglian, Contactin and Neurexin are concerned, their 563 
presence in sponges and ctenophores is unclear because of inconsistencies between analyzes : it makes it hard to 564 
trace back their evolution, but there is no doubt about their presence in the last common ancestor of 565 
Placozoa/Cnidaria and Bilateria. 566 

 567 

 5.3.4. Epithelial regulatory signatures  568 

Comparing similar cell types across different species by sc-RNAseq is in progress since recent 569 

years. This approach is expected to provide insight into the evolution of cellular lineages 570 

(reviewed in Marioni and Arendt, 2017). The general principle of this approach is that: 1) a cell 571 

type is defined by a unique combination of transcription factors, the terminal selectors, that 572 

form a core regulatory complex (CoRC) needed to regulate cell type–specific effector genes 573 

(Arendt et al. 2016; Hobert, Carrera, et Stefanakis 2010); 2) evolutionary relatedness between 574 

cell types should be visible through the sharing of similarities of CoRCs and effectors. 575 
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So far, no study has focused on the evolution of epithelial cell types. Nevertheless a few 576 

transcription factors seem to be highly conserved in some epithelial cells across the animal 577 

kingdom and may be expected to be part of the CoRC needed to regulate the cell fate of at least 578 

some epithelial cell types. This is for example the case of epithelial specific Ets factors (ESE) 579 

that regulate epithelial processes, such as epithelial proliferation and differentiation, in different 580 

mammalian epithelial cell types, notably by modulating terminal differentiation pathways 581 

(Feldman, Sementchenko, et Watson 2003), and that also seem to be specific markers of one of 582 

the epithelial layers found in sponges (pinacocytes forming the pinacoderm layer) (Sebé-Pedrós 583 

et al. 2018). In the same way, the transcription factor Grainyhead that may play a role in 584 

regulating domain-specific effector genes for some epithelial cell types (Achim et al. 2018; 585 

Boglev et al. 2011) has been found recently to be expressed specifically in some epithelial cell 586 

types in the ctenophore Mnemiopsys leydii and the choanoderm (formed by choanocytes) of the 587 

sponge Amphimedon queenslandica (Sebé-Pedrós et al. 2018). 588 

Present data are obviously insufficient to decipher evolutionary relationships between epithelial 589 

cell types between animal lineages, but ongoing projects are expected to provide clues in the 590 

future years. The main difficulties to deal with at such a large evolutionary scale are: 1) 591 

establishing the precise orthology and paralogy relationships of all expressed genes (Altenhoff, 592 

Glover, et Dessimoz 2019), 2) acquiring high-quality reference genomes and gene annotation 593 

for all invertebrate lineages which is far from being the case (Renard et al. 2018), 3) a better 594 

knowledge of cell types especially in non-bilaterian phyla (Sebé-Pedrós et al. 2018) and of their 595 

ability to transdifferentiate (Sogabe, Nakanishi, et Degnan 2016). 596 

 597 

 598 

 599 
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5.4. Conclusions and future challenges 600 

It is now clear that the main features of bilaterian epithelia predate the emergence of the 601 

bilaterian lineage: indeed all these features are clearly shared with cnidarians, meaning that the 602 

last common ancestor of cnidarians and bilaterians already had an epithelium with cell polarity, 603 

basement membrane and 3 types of junctions, and that these features are achieved with the same 604 

molecular toolkit. To trace back the origin of these features it is therefore needed to pay 605 

attention to the three other non-bilaterian phyla, namely sponges, ctenophores and placozoans. 606 

Unfortunately, the knowledge available on these three phyla mainly relies 1) on classical 607 

electron microscopy and 2) on gene surveys. These data describe major discrepancies between 608 

gene content and observed histological features (reviewed in Renard et al., 2018). The other 609 

great lesson learnt in the last years is that even though the basement membrane was probably 610 

present ancestrally, it was lost several times during animal evolution. This finding challenges 611 

the common dogma on the absolute requirement of the presence of this structure to compose 612 

and pattern an epithelium. Indeed, it has been shown in demosponges that the achievement of 613 

epithelial properties can be reached without the presence of a basement membrane (E. D. M. 614 

Adams, Goss, et Leys 2010a). Nevertheless, the different regeneration processes found in 615 

different sponge species (Borisenko et al. 2015; A. V. Ereskovsky et al. 2015) suggest that the 616 

presence or absence of a basement membrane may influence the dynamics of epithelial 617 

morphogenetic processes. Much remains to explore from a functional point of view to 618 

understand the consequences of BM secondary losses in several species. 619 

The present state of the exciting quest is that biochemical and functional experiments are needed 620 

to establish the exact role of the proteins in these three non-bilaterian lineages. Recent papers 621 

show that there are promising growing efforts in this direction. Only these proteomic and 622 

functional data will enable us to decipher whether the basement membrane and the cell polarity 623 
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already present in the last common ancestor of all extant animal relied on the same molecular 624 

actors, and to determine which types of junction were present ancestrally. 625 
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