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ON THE QUENCHED FUNCTIONAL CLT
IN RANDOM SCENERIES

GUY COHEN AND JEAN-PIERRE CONZE

ABSTRACT. We prove a quenched functional central limit theorem (quenched FCLT) for the
sums of a random field (r.f.) along a Z%random walk in different frameworks: probabilistic
(when the r.f. is i.i.d. or a moving average of i.i.d. random variables) and algebraic (when the
r.f. is generated by commuting automorphisms of a torus or by commuting hyperbolic flows on
homogeneous spaces).
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Introduction

Let G be a group acting on a probability space (E, B, 1) by a measure preserving action (g, x) €
G x E — T92 € E. A random walk (Z,,) defined on a probability space (€2, P) with values in
the group G induces a random walk on E. For f € L?(E, B, i1), we can consider the sums along
the random walk: S"1—, f(T%z).

This general framework leads in practice to different situations and methods in the proof of a
central limit theorem (CLT) and a functional central limit theorem (FCLT) along the paths of
the random walk. In particular the proof of the tightness for the FCLT requires specific tools
which it seems interesting to present in examples.

A first situation is that of a random walk in random sceneries (cf. [18], |5]). For d > 1, let
X = (Xy)eza be a strictly Ze-stationary real random field (r.f.). One can assume that the r.v.s
X, are defined on a probability space (E, B, 1) on which commuting measure preserving maps
Ty, ..., Ty act in such a way ! that X, = TX,.

Conversely, given commuting measure preserving invertible maps 71, ..., T; and a measurable
f on a probability space (E,B, u), (T*f)seza is a strictly Z?-stationary random field. If (Z,)
is a random walk in the group Z% then the sums along Z, read 3 }—) Xz = S.7°) T% X, or

"o T?% f. When (X,) is a d-dimensional random field of i.i.d. random variables, we obtain
the classical random walk in random sceneries.

Another kind of examples in the algebraic case can be obtained as follows. Suppose that
G = SL(p,Z) and that (E,B,u) is the torus T?, p > 2, endowed with the Borel o-algebra
and the Lebesgue measure. The map z — Az, where A is a matrix in SL(p,Z), defines
an automorphism of T” which preserves . When a spectral gap property is available for the
transition operator associated to the random walk on G, the previous sums for f in a convenient
class of observables satisfy a CLT (cf.|1], [12]) for P-a.e. w € €.

In the commutative case there is no spectral gap and we use a method based on cumulants.
A first example considered here is the action of commuting matrices in SL(p,Z) acting on
T?, for which we prove for P-a.e. w a functional CLT, extending previous results in [8]. A
second algebraic example comes from commuting flows on homogeneous spaces. Based on the
exponential mixing of all orders proved in |3|, a CLT has been shown in [4] for ergodic sums on
Folner sets when the observables are smooth. Likewise we prove here a CLT and its functional
version for the sums along a random walk.

The result, a functional CLT for the models described above, is presented for a general aperiodic
random walk in dimension d > 1 with a moment of order 2, but the detailed proofs are given
in the case of a centered 2-dimensional r.w. The proofs can be adapted easily to the case of
transient random walks. We say also some words in the i.i.d. case, when the usual random
walk is replaced by a plane Lorentz process generated by a periodic billiard with dispersive
obstacles (cf. [24], [25]).

Beyond the CLT, tightness is a main step in the proof of a FCLT. To show it we use the
method based on the maximal inequality for associated r.v.s due to Newman and Wright [23]

'Underlined letters represent elements of Z? or T¢. We write £ for ({1, ...,¢q) and T¢ for T{*..T4*. The
euclidean norm of £ € Z< is denoted by |£| or ||£]|.
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or, in the algebraic case, the method based on norm estimates for the maximum of partial sums
(cf. Billingsley |2|, Moéricz [22]|). A difficulty which occurs is that the estimates available for
the random walk involve constants depending on the trajectory.

The content of the paper is the following. Section 1 contains results on the variance of sums
along a random walk. The independent case is presented in Section 2. Some facts on cumulants
are recalled in Section 3, then applied to moving averages in Section 4 and to the algebraic
models in Sections 6 and 7. For the tightness in the latter cases, we use the method of maximum
of partial sums in an adapted version presented in Section 5.

This paper extends a previous preprint [10]. We have added the FCLT along a random walk
for flows on homogeneous spaces, using the recent results in [3] and [4] on the multiple mixing
and on the CLT for group actions which are exponentially mixing of all orders. We have also
added some remarks about the non nullity of the variance, in particular the observation that
there is no degeneracy for the sums along a transient random walk.

Acknowledgements. This research started during visits of the first author to the IRMAR
at the University of Rennes 1 and of the second author to the Center for Advanced Studies
in Mathematics at Ben Gurion University. The authors are grateful to their hosts for their
support. They thank B. Bekka, Y. Guivarc’h and M. Lin for helpful discussions.

1. Summation along a r.w. and variance

1.1. Random walks and sums along random walks.

First we recall some definitions and results about the random walks on Z? (see [27], details on
the results recalled here can also be found in [8]).

Let ((;)i>0 be a sequence of i.i.d. random vectors on a probability space (€2, P) with values in
Z* and common probability distribution v. The associated random walk (r.w.) Z = (Z,) in Z4
starting from 0 is defined by Zy :=0, Z,, := (o + ... + (n_1, n > 1.

The r.v.s (; can be viewed as the coordinate maps on (£2, P) obtained as (Z%)% equipped with
the product measure v®Z and with the shift § acting on the coordinates. We have (; = (y o 6"
and the cocycle relation Z,,,» = Z, + Z, 0 0™,¥n,n' > 0.

Let denote by S := {£ € Z% : P(¢, = £) > 0} the support of v and by L the sub-lattice of
Z% generated by S. Without loss of generality, we can assume that Z is reduced which means
that L is cofinite in Z¢. Therefore the vector space generated by L is R? and d is the ‘genuine’
dimension of the random walk 7.

For simplicity, we will assume that L = Z? (then the random walk Z is said to be aperiodic).
Observe that one can replace a reduced r.w. Z by an aperiodic one, again without loss of
generality.

Let D be the sub-lattice of Z¢ generated by {£ — £, £,¢' € S}. We denote by I'; the annulator
in T¢ of D, that is the closed subgroup of T? defined by {t € T? : ¢*™t:t) = 1, ¥r € D} and by
d~y, the Haar probability measure of the group I';. The r.w. is said to be strictly (or strongly)
aperiodic, if D = Z2. For example, the r.w. on Z defined by P({; = +1) = % is aperiodic, but
not strictly aperiodic.
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Sums along random walks

Given a strictly Z?-stationary random field X = (X),czq¢, where the real random variables X,
are defined on a probability space (F, B, u), the process of ‘ergodic sums’ along the random
walk (Z,) is

(1) S X () ZXZk ,n>1,we.

If the random field is represented as X, = Tff7 where T}, ..., T; are commuting measure pre-
serving maps and f € L?(E, B, 1), the sums read:

n—1

(2) ZTZMf > wa(w, O T,

Lez4

where w,,(w, £) (denoted also by w®(¢)) is the local time of the random walk at time n > 1:
(3) wy(w,l) = #{k<n:Zy(w) =1} = Z 17, (w)

Summing along the random walk amounts to take the ergodic sums for the skew product
(wyz) = T(w, ) = (Bw, TWz) on Q x E. Putting Ff(w,z) = F(w,z) = f(z) for an
observable f on F, we get that the ergodic sums of F' for T, read:

n—

1
(4) SpF(w, z) ZF TE (w, ) F(TZ%)g) = (8¢ f)(x).

k=0
A limit theorem in dlstrlbutlon for the sums S¥ f (with respect to the measure p on E) obtained
for P-a.e. w is sometimes called quenched. We will use this terminology % If the random
variables S, F'(w, z) are viewed as defined on Q x E endowed with the probability P X p, a limit
theorem under P x u for theses sums is called annealed.

1.2. Variance for quenched processes.

Let f be a function in L*(E, B, u) with real values. Everywhere we assume (or prove) the
absolute summability of the series of decorrelations

) S 7)< o
Lezd
which implies existence and continuity of the spectral density, the even function given by
(6) r(t) = ) _(THf fyetmes,
Lezd

The computation of the variance [, |> 7 7% f|?du, is related to the number of self-
intersections of the random walk at time n 2 1:

(7) Vplw) =#{0<u,v<n: Z,(w)=Z,(w)} = Z wy(w, £)? / | Z wy, (£) ¥ D)2 gt

Lezd Lezd

2We follow here the terminology of [1] used in several papers. The term ‘quenched’ is also used in the random
scenery when a limit theorem is shown for the distribution with respect to w, conditionally to the scenery X.
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Let us consider the kernels (which are even functions)

®)  K(wp)) =| i FTADE = | Ny (w, ™0 P, K (w)() = Valw) T K (wy) (1)
k=0 Lezd

We say that the summation along the r.w. Z is {-regular, where £ is a probability measure on
T?, if (for P-a.e. w) the normalised kernel (K (w)),>; converges weakly to & when n tends to
infinity, i.e., lim, o0 [ra K(w%) @ dt = &(p) for every continuous function ¢ on T

This property is equivalent to (for P-a.e. w):

) lm [ K(uf))e @0 dt = lim | K(#)(t) cos(2n(p,1)) dt = (p), Vp € Z°.

n—oo Td n—o0 Td -

Another equivalent formulation is

. Va(w,p) 2 d
Jim V@) £(p), Vp € Z°, for a.e. w,
(10) with V(w,p) = #{0<u,v<n: Z,(w) - Zy(w) =p},p€ Al

Using the spectral theorem, if f satisfies (5), &-regularity implies that the (asymptotic) nor-
malised variance is, for a.e. w,

2 NERT ”Z@ezdwn(ﬁ,w)Tng% o o -
(1) o*(f) =lim > o)l =tim | K@) er(t)dt = (o).

It can be shown that the summation along any random walk in Z¢ is &-regular for some measure
¢ (cf. [8]).

After some reminders on recurrence/transience, we summarize below the results on the asymp-
totic variance.

1.2.1. Recurrence/transience.
(ct. [6], 7], [27])
Recall that a r.w. Z = (Z,) is recurrent if Y >° | P(Z, = 0) = +oo and otherwise transient.

Recurrence occurs if and only if P(Z,, = 0 infinitely often) = 1, and transience if and only if
P(Z,, = 0 infinitely often) = 0.

The random walk is said to have a moment of order 2 if 7, ;4 P(¢o = £) [|£]]* < oo.

Assume that Z is reduced in dimension d with a moment of order 2 (for d = 1, a moment of

order 1 suffices). Then for d=1, 2, Z is recurrent if and only if it is centered. For d > 3, it is
always transient.

We denote by U(t) = E[e?"(0b)] ¢ € T4, the characteristic function of the r.w.
Observe that W(t) # 1 for t # 0 in T?, since Z is aperiodic. We put

_ 1P

(12) () = O

fort #0,=0 for t = 0.
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Remark 1.1. ¢ is nonnegative and ®(¢) = 0 only on I';. Hence, using again aperiodicity, it is
positive for a.e. ¢, except when the r.w. is ‘deterministic’ (i.e., if P(¢y = £) = 1 for some £ € Z¢,
so that |¥(£)| = 1 in this case).

A r.w. of genuine dimension d which is aperiodic is transient or recurrent depending on whether
Re(=5) is integrable or not on the d-dimensional unit cube ([27]).

Transient case

In the transient case, one can show:

Theorem 1.2. (|27]) Let Z = (Z,,) be a transient aperiodic random walk in Z°.

a) The function ® is integrable on T and, with a nonnegative constant K, we have

(e}

1(0) = 1y + 3 [P(Z = ) + P(Z, = —0)] = / cos(2(L, 1) @(t) dt + K, VL € 7.

k=1

b1) Suppose d = 1. If my(Z) = +oo, then K = 0. If my(Z) < oo, then Z is non centered
(because it is transient) and K = |3 ,., P(¢o = 0) (]~

by) If d > 1, then K = 0.
¢) Denoting by d&y(t) the measure O(t)dt + Kdo(t), we have, for a.e. w,

)_l

n—1 n—k—1

1
Lo + — 12, 050)=¢ + 12, (03w)=—2]
n 1 5=0

/ %Kﬁj(g) cos(2m(L,t)) dt =

e
I

(13) S0 = / cos(2m(L,1)) déo (2).

n—oo

It follows that the summation along a transient r.w. behaves for the normalisation like the
iteration of a single transformation, is §y-regular (up to a constant factor) and that

n—1
1 w
(1) i |3 71 = [ @) or(t)de + Kops(0)
k=0
From (13), (14) and the expression of @f, ws(t) = > ,cza(T f, f) cos(2m(L, 1)), we deduce:

[ow e xon0) = [onvda® = St [ costonie st -

74

STIOT ) =113 +2D (O P(Zk = 0) (T, £)).

£e7d k>1 ¢ezd

Remark 1.3. (about the variance in the non deterministic transient case) Let f be in L?(E, 1)
with real values and satisfying (5). Suppose that f is not a.e. equal to 0.

a) By Remark 1.1, ® is positive a.e. Therefore [ ® s dt = 0 implies ¢;(t) = 0 a.e. which is is
not possible since [ @pdt = | ..

Therefore the (quenched) asymptotic variance, which is given by (14), is > 0.
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b) Let Fy(w,z) = F(w,x) = f(x). For the map T, acting on the product space Q x E endowed
with the product measure P x p, we have

/T&FqudP:Z(Elzng) (T f) = P(Z, =) (T, ), n > 0.

L Lezd

In the transient case it holds, for every £, > 7, o P(Z), = ) < >, P(Z), = 0) < +00. Therefore
the density of the spectral measure for F; and the map T, is

‘f”z“‘QZ Z]P O)(T*f, f)) cos2rmkt.

k>1 ¢ezd

The asymptotic variance lim,, & || S TE Fy||3 for the annealed model is the same as for the
quenched model and is equal to || f]|5 + 2 Z(Z P(Zy = ) (T*f, f)).

k>1 ¢ezd

It follows that the function Fy on Q x E' (which depends only on the second coordinate), with f
as above and non a.e. null, is never a coboundary in L*(P x p) for T, because the asymptotic
variance is non null. Observe also that F is not even a measurable coboundary, at least when
the CLT holds, which is the case of the situations that we are going to consider here. This
follows from the fact that, for a single measure preserving transformation, if an observable is a
coboundary in the space of measurable functions, then the limiting distribution of the ergodic
sums after normalisation by any sequence tending to infinity is the Dirac mass at 0, which is
excluded here.

Recurrent case

Let us consider now the case d = 2 and a centered random walk Z with a moment of order 2.
By the local limit theorem (LLT), Z is recurrent.

A non standard normalization occurs in the CLT for sums along Z,, as recalled below. There
are Cy, C' finite positive constants * such that (cf. [5] Lemma 2.6, [21] Proposition 1.4 for (15)
and (16), [8] Theorem 4.13 for (17)):

(15) E(V,) ~ Conlogn, Var(V,) < Cn?,
Va
(16) ‘Pn(w> = Co%l(:g)n — 1, for a.e. w,
Va(w,
(17) on(w,p) == C’o%l()gl —1,Vpe 7%, for a.e. w.

Therefore the summation along the r.w. Z is Jp-regular: the normalised kernel satisfies
lim,, [ K(w?)(t)e 2@ dt =1, Vp € Z* and the asymptotic variance is

(18) *(f) = lim(Conlogn) ™! Y THWf|5 =3 (T f) = ¢1(0).

k=0 kezd

31f the r.w. is strongly aperiodic, Cy = (mv/det ¥)~!, where ¥ is the covariance matrix of the increments of
the r.w.
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The results presented below are valid for the cases covered above, excludes only the one-
dimensional recurrent case. We stress that, in the recurrent 2-dimensional case, the variance
can be degenerate, while this does not occur in the transient case unless f = 0.

1.2.2. Number of self-intersections of a 2-dimensional centered r.w.

In this subsection, we study more precisely the case d = 2 and a centered random walk (Z,,)
with a moment of order 2.

If I,J are intervals, the quantity V(w, I, J,p) :=

/ 262’” (Zulw Z e 2milZu(w e’Qmp dt =#{(u,v) el xJ: Z,(w) — Z,(w) = p}

uel veJ
is non negative and increases when [ or .J increases for the inclusion order.

We write simply V(w, I,p) if I = J, V(w,I) for V(w,1,0), V,(w) and V,(w,p) as above for
V (@, [0,n]) and V(w, 0,[, ).

Observe that V(w,J) = 3,z w(w, J,£)?, where w(w, J,£) = 3. ; 17, Notice also that
V(w, [b,b+ k[) = V (0w, [0, k]) = Vi(6bw), for b > 0,k > 1.

Let A, B be in [0,1]. We have:*
V<w7 [RA, TLB],]E) — /( Z 627ri(Zu(w),§>) ( Z efZTri(ZU(w),g)) 6727r2<3§> dt

u€[nA, nB} vE[nA,nB]
v—1
= #{u,v e [0,n(B — A)] Zg 0 Aw) =3 (07 w) = pt = V(0"w, [0,n(B — A)], p).
=0

By (16) and (17) there a set QO of full probability such that

(20) Vo(w) < K(w)nlogn, Vn > 2, where the function K > 0 is finite on ),
(21) for any fixed A €]0,1], V(w, [1,nA],p) ~ ConAlogn, for w € €.
By [5, Lemma 2.5] we have
(22) Euzg wy(w, £) = o(n®), for a.e. w, for every € > 0.
€

n(w, €
For a simple r.w. on Z? Erdds and Taylor [15] have shown: lim sup sup LW‘Z)

n rezz (logn)
The result has been extended by Dembo, Peres, Rosen and Zeitouni [14]. They proved for an
aperiodic centered random walk on Z? with moments of all orders:

wp(w,f) 1
limsup ——— = —.
W (ogn)?
Remark 1.4. In Section 7 we will use the upper bound

wy, (w, £ 1
(23) lim sup Wn(, £) < —.
npez? (logn)? m
4For simplicity, in the formulas above and below, we write nA, nB instead of [nA| or [nA| + 1, |nB], 6
instead of AL}, The equalities are satisfied up to the addition of quantities which are bounded independently
from A, B, n.
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As shown in the proof in [14], it suffices for the validity of (23) to suppose that the 2-dimensional
r.w. is aperiodic. Moreover, the proof of the upper bound is based on the local limit theorem
which uses only the existence of the moments of order 2.

We will need also to bound, for £, {,, ly € 2%, W, (w, £, £y, {3) :=
(24) #{1 <, 11, 19, 13 <N Zj (w)_Zio(w) = ﬁla Zig(w)_Zio(w) = £27 Zi3<w)_Zio(w) = 53}

Lemma 1.5. There exists a positive integrable function Cs such that

(25) Wi(w, £y, Ly, £s) < Cs(w)n (logn)®, ¥n > 1.
Proof. Tt suffices to bound the sum with strict inequality between indices
!
W (w) = > 1z, ~ziy=t, 12020 = 1,0, 12y~ 2= 1,1,
1<ip<t1<i2<i3<n

Using independence and the local limit theorem for the random walk, we find the bound

/Wé(w) d]P(W) S Cl Z (21 ig ig)_l S 02 n (log n)3.

10,1,92,13€[1,n]

p=

Therefore Z / 27P(log(2"))® W, dP < oo. The function C(w) := Y20 27P(log(2F)) > W4, is
p=1

integrable and we have: Wj,(w) < C(w) 2P (log(2F))?, Vp > 1.
Let p,, be such that: 2P»~1 < n < 272, Since W is increasing with n, we obtain:

W (w) € Wy, (w) < C(w) 2P (log(2P))® < C(w) 2n (log(2n))°® < C'(w)n(logn)®. O

Variance for the finite dimensional distributions

The following lemma will be applied to the successive return times of a point w into a set under
the iteration of the shift 6.

Lemma 1.6. Let (y(j),j > 1) be a sequence with values in {0,1} such that lim,, > yd) =
a > 0. If (k.) is the sequence of successive times such that y(k.) = 1, then, for every § > 0,
there is n(8) such that, for n > n(6), kyy1 — k. < dn, for all r € [1,n].

Proof. Since r = 25;1 y(7), we have: k./r = k,./ 25;1 y(j) — a~!. Hence, for every § > 0,
there is ny(0) such that 0 < k.41 — k. < dr, for » > ny(5). Therefore, if n > n4y(d), then
0<kryr— k. <6r <n, for r € [ny(5),n].

If n(9) > ny1(0) is such that k.1 —k, < on(d) for r < ny(J), we get the result of the lemma. O

Lemma 1.7. Let A be a measurable set in Q of positive measure. Let k. = k.(w) be the
successive times such that 0w € A. For w in a set Qy of full measure, for every positive small
enough 9, there is n(d) such that for n > n(9)

1) kpyy — k. < dn, for all r € [1,n]; moreover, k, ~ cn, with c =P(A)™!, when n — oo;

2) there are integers v < 2/8 and 0 = p{™ < p < .. < pi" <n < pq(fjr)l, such that 07" w € A
and 36n < pgi)l — pz(»") < 3on, fori=1,..,v.
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Proof. Since 0§ is ergodic on (€2, P), Birkhoff ergodic theorem implies lim,, < So Tt 1 (0Fw) =
P(A) > 0, for a.e. w and k,/n — P(A)~'. Hence Lemma 1.6 implies 1). For 2), we select in
the sequence (k) an increasing sequence of visit times to the set A satisfying the prescribed
conditions by eliminating successive times which are at a distance < %571. U

Asymptotic orthogonality of the cross terms
Proposition 1.8. For 0 < A< B <C <D <1, p€Z, it holds a.e.

/ Z e2miZv(w).u Z ¢ 2milZu(@uly e=2mie )] gy = ¢, (w) nlogn, with £,(w) — 0.

v=nA w=nC

The above integral is the non negative self-intersection quantity: V(w,[nA,nB], [nC,nD], p).
By (19), V(w, I, J,p) increases when I or J increases. Hence, it suffices to show (26) for the
intervals [1,nA], [nA,n], for 0 < A < 1. The proof below is based on (17) and (21).

Lemma 1.9. There is a set Q C Q such that IP’(Q) =1 and for all w € Q, the following holds:

V(w, [nA,n],p)
. ) Y ) ) L
(27)  limpnp (0w, p) = lim —o=

(28) V(w, [1,nA],[nA,n],p) + V(w, [nA,n], [1,nA],p) = e,(w) nlogn, with ¢,(w) — 0.

=1, for A€]0,1,B=1— A;

Proof. 1) The set Q). For every L > 1and 6 > 0, let A(L,6) :={w : pp(w, p) =1 € [-6,6],¥Vn >
L}. We have limp4oo P(A(L, 6)) = 1. There is L(d) such that P(A(L(4),6)) > 1.

Let (d;) be a sequence tending to 0. We apply Lemma 1.7 to A(L(J;), ;) for each j. By taking
the intersection of the sets of full measure Q4 (rs;),5;,), we get a set €y of full measure. The set

() is the intersection of Q; with the set € (of full measure) for which the law of large numbers
holds for (V,(w)). Let w € €.

2) Proof of (27). We have V(w, [nA,n[,p) = V(0™4w, [0,n(1 — A)[,p) and
V(w’ [1’ TL],]_?) - V(wa [17 TLA[,]_?) - V(wa [TLA7 n]ag)
(29) = V(w, [1,nA[, [nA,n[,p) + V(w,[nA,n],[1,nA],p) >0
Claim: for an absolute constant C; depending on A and p, for every ¢, for n big enough,

V(w,[nA,n],p)
Con(1— A)logn

(30) enp(0™w, p) = €[l —Ci0,1+Cyd).

Let us show the claim. We put B =1 — A and take § €]0, B].

Upper bound: The law of large numbers for V,,(w, p) implies, with |e,, [¢},| < d for n big enough,
Co ' V(w, [1,n],p) = (1 +en)nlogn, C;'V(w,[1,nA],p) = (1 +¢,)nAlogn.

This implies by (29)

V(w, [nA,n],p) < (14+¢e,)nlogn — (1+¢),)nAlogn <1y el
ConBlogn — nBlogn - B B

"1A 1+ A
N R




ON THE QUENCHED FUNCTIONAL CLT IN RANDOM SCENERIES 11

Lower bound: We apply Lemma 1.7 to A(L(6),d). Let na,ny be two consecutive visit times
< n such that ny <nA < n/,. For n big enough, we have 0 < n’y —na < don and

na=nA(l—p,), n'y=nA(1+p)), with 0 < Ap,, Ap], <.
Since w € ), we have for n big enough, with |§’| < 4,
Co ' Viw, [0y, n],p) > (1= 8,)(n —ny) log(n —nly) = (1 —8,)(nB —nAp,) log(nB —nAp;,)

It follows, for 0 (hence pl,) small:

Vi, nl D) (nB—nAp) log(nB —nAg,) _ (B~ Ag)) log(nB) + log(1 — 47}
Co (1 —0")nBlog(nB) — nBlog(nB) B Blog(nB)
A A, & A 20,
>(1—=p) =20 — Sp)—2rr>1— —p —2—L2 - >1-B1(1 :
= Bp") ( B'O")log(nB) - B log(nB) — (1+ log(nB))

As V(w, J, p) increases when the set .J increases, we have by the choice of n4 and n/y:
V(w, [0y, n],p) < V(w, [nA,n],p).

Therefore, for n such that log(nB) > 2, we have
2

V(w, [nA,n],p) 2
ConBlog(nB) z(1-0)(1- E(s) z1-o(+ E)

This shows the lower bound. Altogether with the upper bound, this proves the claim (30).

3) Proof of (28). Let § > 0. According to (29) and (30), for n big enough, we have with

e’ < C40:

V(w, [1,nA],[nA,n],p) + V(w, [nA,n], [1,n4],p) = V(w,[1,n],p) = V(w,[1,nA],p) — V(w, [nA,n],p)
= Co[(1+¢e,)nlogn — (1 +¢))nAlogn — (1 +&)n(l— A)logn < (24 Cy) Codnlogn. O

Let ay,...,as be real numbers and 0 =ty < t; < ... < t;_1 < t; = 1 a subdivision of [0, 1].

For the asymptotic variance of Z;:o a; ijil<k<ntj T%) f which is used later, we need the

following lemma.
Notation: With the convention of footnote 4, we will write Zztzjmj_l instead of Emej,l <h<nt,”

Recall that f has a continuous spectral density ¢;.

Lemma 1.10. For a.e. w and for every partition (t;), we have

s nt; s
(31) (Conlogn) M1 " a; > T3 0p(0)> as(t; —tja).
jzl k:ntj_1 _]=1
Proof. 1) Recall that proving (31) amounts to prove
s nt; s
(Conlogn)™* / 1> a; Y ETEELE o) du— 0p(0) ) ad(ty — 1),
J=1 k=nt;_1 j=1

1) First suppose that ¢y is a trigonometric polynomial p, which allows to use (26) for a finite
set of characters e 2@ Using (18) for the asymptotic variance starting from 0, we have
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(Conlogn) | 2™ 72 f||2 — p(0), for ¢ €]0,1]. By Lemma 1.9,

|tn]
(Conlogn) || Y T#Ef|3 = (t—s) p(0), for 0 <s <t <1.
k=|sn]

Expanding the square and using that the cross terms are asymptotically negligible, we have

nt;

(Conlogn)~ /|Z a; Z 2milZe@) )12 p(y) du

J=1 k=nt; 1
~ (Conlogn)~ Z /| Z A2 o) du) — p(0) D a3(t; — ).
k=nt;_1 j=1
This shows (31) for trigonometric polynomials.

2) For a general continuous spectral density ¢y, for € > 0, let p be a trigonometric polynomial,
such that ||g0f — pllso < €. Remark that

/|Za3 Z 2TUZR @) |2 gy < Z ajaj V(w, [ntj_q1,nt;], [nty_1,nt;],0) < ( Z |a;])? Viu(

Jj=1 k=nt;_1 J,3'=1

Therefore we have:

S

|(C’0n10gn / | Z a; Z > A2 o (w) du — 4(0) Zai(tj - tj—1)|

J=1 k=nt;_1 j=1
< |(Conlogn)~ / | Z a; Z 2™ @W12 () du — p(0) Za?(tj —tj-1)|
Jj=1 k= nt] 1 j=1

+e[(Conlogn)~ /|Za] Z 2w |2du—i—z

7j=1 kntjl

By the remark, the above quantity inside [ ] is less than (Z;Zl la;|)? (Conlogn) =V, (w) +
> i1 a3(t; — tj_1), which is bounded uniformly with respect to n by (20). Therefore we can
conclude for a general continuous spectral density by step 1). [l

Remarks 1.11. 1) In Lemma 1.7, the dynamical system (£2,6,P) can be replaced by any
ergodic dynamical system.

2) If the spectral density is constant (i.e., when the Xj’s are pairwise orthogonal), (26) and
(31) are a consequence of the law of large numbers for the number of self-intersections, that is
COV;’;—& — 1. The law of large numbers for V,,(w, p), p # 0, is not needed.

3) A result analogous to Proposition 1.8 is valid if the r.w. Z is transient: for 0 < A < B <
C<D<1,peZ,

(32) / Z i Zu(w Z e~ 2milZu (@) W)y _27”@@)} du = €, (w) n, with g,(w) — 0.

v=nA w=nC
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4) The quenched FCLT shown in the different examples below is valid for a set of w’s of P-
measure 1 given by the results of this Section 1. This set does not depend on the Z4-dynamical
systems considered in the further sections. The joint distribution on €2 x E is used only when
the annealed model is mentioned when Bolthausen’s result is recalled in Section 2.

1.2.3. Formulation of the quenched FCLT.

(For the reminders below, see Theorem 7.5, p. 84 in [2|, as well as Theorems 15.1 and 15.5 in
the first edition of this book.)

Let (Y,(t),t € [0,1]) be a process on (F,u) with values in the space C[0,1] of real valued
continuous functions on [0, 1] or in the space DJ0, 1] of right continuous real valued functions
on [0, 1] with left limits, endowed with the uniform norm.

Let (W(t),t € [0,1]) be the Wiener process on [0,1]. To show a functional limit theorem
(FCLT) for (Y, (¢),t € [0,1]), i.e., weak convergence to the Wiener process, it suffices to prove
the two following properties (“==" denotes the convergence in distribution):

1) Convergence of the finite dimensional distributions:

Vo=to<ti <..<t, =1, (Yo(tr),.., Yu(ty) = (Wy,..., W),
n—oo

a property which follows (by the Cramér-Wold device) from
(33) > i1 ai(Ya(ty) = Ya(tio1)) == N(0,3°0_, a3(t; — tj1)), ¥(a;)i<j<r € R.

2) Tightness of the process: The condition of tightness reads:

(34) Ve >0, lim limsupu(z € E: sup |Y,(z,t') — Y, (z,t)| >¢) =0.

5—0t n [t/—t|<5
Let (Z,) be a random walk on (2, P) with values in Z% d > 1, and let X = (Xy(2))seze =
(Tt f(x))geza be a d-dimensional random field defined on a probability space (E, B, u). We take
sums along Z,, introducing so another alea w (which will be fixed in the quenched setting).

A quenched FCLT is satisfied by the sums along 7, if, for P-a.e. w, the functional central limit
theorem holds for the process (Sf;’n)f(x)) (cf. Notation (1)) after normalisation.

For d = 2, it means that, for P-a.e. w, the functional central limit theorem holds for the
normalised process

GeX (x)

[nt]

(35) (Ya(w, 2,1))teo1) := (W)te[o,l]'

2. Random walk in random scenery

We consider in this section d = 2 and the random walk in random scenery S%X(z), that is the
process (Y;,) defined by (35) when X is a 2-dimensional random field of i.i.d. real variables with
E(X?) = 1 and mean 0 on a probability space (E, B, u).

As the random field is i.i.d centered with E(XZ2) = 1, the corresponding spectral density is
constant and identically = 1.
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It was shown by E. Bolthausen [5] that this process satisfies an annealed FCLT: with respect
to the probability P x p, the law of Y,, converges weakly to the Wiener measure.

We show a quenched FCLT for the r.f. X (and when X is a r.f. of moving averages of i.i.d.
random variables in Section 4). As for the annealed FCLT in [5] and for Theorem 2.2 in [13] for
a 1-dimensional stable r.w., the proof of Theorem 2.2 below is based on the maximal inequality
shown by Newman and Wright [23] for associated r.v.s.

Definition 2.1. (cf. [16]) Recall that real random variables Xi,...,X,, are associated if, for
every n > 1, for all non-decreasing (in each coordinate) functions f,g : R” — R, we have
Cov(f(X1,...,Xn), g(X1,...,X,)) >0 (if the covariance exists).

Non-decreasing functions of a family of associated random variables are associated [16]. Inde-
pendent variables are associated. A family made out of a family of associated (in particular
independent) variables with possible repetition is associated.

It follows that, if (X,,£ € Z?), are associated r.v.s, in particular independent, then the r.v.s
(X2, (w), k > 0), are associated for every w € (.

SN (x
Theorem 2.2. If E(X2) = 1, for P-a.e. w, the process (Y, (w,,t) = ( ) (7)

tefo,1] /—nlogn)te[o,l]
. . . B 2 -1
satisfies a FCLT with asymptotic variance o = (mv/det 3)~ .

Proof. 1) For the convergence of the finite dimensional distributions, the proof, relying on
Cramér-Wold’s theorem and Lindeberg’s CLT, is as in [5]. Another proof, based on truncation
and cumulants, can be given, like for the more general case of moving averages in Section 4.

2) Tightness of the process (Yy)
The following is shown in [23, p. 673]:

Let Uy, Us, ... be centered associated random variables with finite second order moment. Put
Sk = Z?Zl U;, for k > 1. Then, for every A > 0 and n > 1, we have

(36) p(max [Se] = A[ISull2) < 20(1Sul = (A = V2) [1Sal2).

1<k<n
Inequality (36) can be applied for every fixed w to U; = Xz and to the sums S; =
ST X7, for any interval J = [b,b+ k] C [0,n]. We also note that E(S3) = || Xo|3 V(w, J).
a) First, let us assume that E(Xg) < oco. With K(w) given by (20), we have

icJ 0#L, ¢

(37) <4E(Xy) V(w, J)? <4E(Xy) (K(0'w))? (klog k)*.

1> Xz, =3E(X)? > wlw, J.4)  wlw, J.6,)* + E(X3) > w(w, J,0)*

Let Cy be a constant > 0 such that P{w : K(w) < Cy} > 0. Using Lemma 1.7, for 6 €]0, 1]
and n big enough, there are times 0 = p; < ps < ... < p, < N < pyi1, With v < 2/0, such that
K(0rw) < Cy and %571 < piv1 —pi < %571, fori=1,...,v.
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Let t; = %11', A= Ji = pie il my = 2(pis1 — pi) < On. By (20) and (37), with
C = (2C})z, we have:

(38) [ Z Xz, ll2 < C | Xoll2 (n.6 log(nd))?,
] Pi—
Pi )
(39) I Xzl < ClIXolla (n6 log(nd))?, Vi
J=pi-1

_e®
8 C?[| Xoll3"

Using (36), we get (with 0@ = || D X2y ll2 and A := ey/nlog n/oW), by Chebyshev’s
inequality (for a moment of order 4) and (39):

We can assume that § < 1 This implies the inequality \; — v/2 > %)\i used below.

Lsn] k
p(osup | Y Xzl =ev/nlogn) =p( max | > Xzl > No®)
ti1Ssshi Jj=[ti—1n] pimishspi J=pi-1

<2M12Xz(w > (A —V2) 0! <2u|ZXZ = )\0)

J=pi— J=pi—
01 ) 52
(10) <2 Z Xl 2 geviogn) < 20 Pl S5 OO0 < gact i
ogn
J=pi— 16

Observe now that (cf. |2, Theorem 7.4, p. 83])
Lsn]

p( sup |Yo(t) = Yu(s)| > 3e) < Zu sup Z Xz, | > ev/Conlogn).

[t'—t[<o ti_1<s<t;

j=l[ti-1n|
Hence, by (40) we get
262 ct )
Y, (t) — >3 <322 X, = 64— || Xolls =
u(ltlsilié\ (1) = Yals)| 2 32) <32 || olli 5= cz 1%olls

b) Now we use a truncation. For L > 0, let

XE = X Lyxg<ry — B(Xe Lgny<ny)s XE o= Xi — X = Xp 10y — E(Xe Lxgsry),
[tn] [tn]

A 1 . ~ - 1 5
YE{t) = —— Xz dYLrt) =Y,(t) - Yit) = —m—— XZ o
n() \/m; Zj(w)an n() () n() \/W; Zj;(w)

Since we have still sums of associated random variables, all what we have done above (including
(36)) holds for both sums, except that for the unbounded part of the truncation we only have
a moment of order 2. We use Chebyshev’s inequality (for a moment of order 2) and (38) to
control the unbounded truncated part:

nd log(nd) ~ J
wl Z X7, )] \/nlogn) < HXLHZ— <ACPIXG 3 -

J=pi— 1gn
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Hence, for n large, the sum over ¢ of the above measures at left is comparable for some constant
C’ to

el

g2 g2

" enge < COIREDR
O3 IRHE < S
=1

Applying the inequality pu(|f +g| > &) < u(|f] > £) + p(lgl > 5) to Y (t) = VE(t) + V;E(t), we
obtain the bound:

C* LY X2
u( sup [Ya(t) = Ya(t)] = 30) < 208 L0 4y ol
|t/ —t|<5 Cs ¢ £

We need, for fixed € > 0, lims o+ limsup,, p(supjy_y<s [Ya(t') — Yo (t)| > 3¢) = 0.

Let n > 0. First we take L such that 4C’ ”Xgﬁ < 31, then ¢ such that 210%2 %‘s < in. O

0

A model based on the Lorentz process

We sketch briefly how to obtain a version of a FCLT when the random walk is replaced by
the movement of a particle in a dispersing periodic billiard. We refer to [24] and [25] for more
details on this model.

Let be given a “billiard table” in the plane, union of Z2-periodically distributed obstacles with
pairwise disjoint closures. We consider a point particle moving in the complementary @ of the
billiard table in R? with unit speed and elastic reflection off the obstacles. By sampling the
flow at the successive times of impact with the obstacles, we obtain a Poincaré’s section of the
billiard flow, the billiard transformation.

We assume that the obstacles are strictly convex with pairwise disjoint closures and boundaries
of class C" ™! with curvature > 0 (Sinai’s billiard or Lorentz’s process). Moreover we make the
hypothesis of finite horizon (the time between two subsequent reflections is uniformly bounded).

Suppose that to each obstacle is associated a real random variable with zero expectation,
positive and finite variance, independent of the motion of the particle and that the family of
these r.v.s is i.i.d.

Like in an infinite “pinball” with random gain, at each collision with an obstacle, the particle
wins the amount given by the random variable associated with the obstacle which is met. Let
W, be the total amount won by the particle after n reflections. An annealed FCLT for W, has

Wi,
been shown by F. Péne ([24]): there exists §y > 0 such that ]

Gonl converges weakly to the
snlogn

standard Wiener process.

In order to prove a quenched version, we use [24, Proposition 7|, in place of (22) for the r.w.,
and |25, Corollary 4] (the main and most difficult step), which gives for the self-intersections of
the billiard transformation a law of large numbers replacing (16). Then, by 1) in Remarks 1.11
and by the preceding method for the r.w. in random sceneries, we obtain the quenched version
of the FCLT for this model.
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3. Cumulants and CLT

For the models of random fields in Sections 4, 6, 7, we need to recall some tools, in particular
the method of cumulants which can be used to prove a CLT for dynamical systems satisfying
a mixing property of all orders.

In 1960, Leonov ([19], [20]) applied it to a single algebraic endomorphism of a compact abelian
group. In [8], [9], it was applied to multidimensional actions given by algebraic endomorphisms
in the connected case and in some non connected cases. Recently the method of cumulants has
been used in [4] to prove a CLT for multiple mixing actions with exponential rate. Using the
tightness criterium given in Section 5, we will obtain a functional version in these examples.

3.1. Moments and cumulants.

For r > 1, let Xy, ..., X, be r real centered bounded random variables. We denote by J, the set
{1,...,r}. For any subset I = {i1,...,i,} C J,, we put m(/) := E(X;,...X;,). The cumulant of
order r is

(41) C(Xy,..,X,) = S (=0 p =D m(h)--m(T).
Q={I,...Ip}€Q
Putting s(/) := C(X;,, ..., X;,) for I = {i1,...,i,}, we have
(42) E(Xy - X,) = m(J)= >  s(h)--s(I),
Q=A{I1,....I,}€Q

where in both formulas, Q is the set of partitions Q) = {I4, I, ..., I, } of J, into p < r nonempty
subsets, with p varying from 1 to r.

For a single random variable Y, the cumulant of order r is defined by C")(Y) := C((Y, ..., Y),),
where (Y, ..., Y), is the vector with r components equal to Y. If Y is centered, we have ||Y||2
C(Y) and

(43) E(Y*) = 3E(Y?)? + CW(Y).

In the next sections, we are going to consider random fields obtained by a measure preserving
action (T" h € H) of a group H (with a left-invariant metric d on H) on a probability space
(E,B,u). If f be a measurable bounded centered function on (E, i), the composed function
foT"is denoted by T"f. For H = (hy, ..., h,) in H", we can apply the definition of moments
and cumulants to (T™ f, ..., T f).

Notation 3.1. For the purpose of Section 7, we introduce some notations as in [4]. Let H be
in H" and I, J non empty subsets of J.. We set

d"(H) := maxd(h;, hy), d'(H) := maxd(hl,h ), dry(H) := min d(h;,h;)
2

i,J€1 iel,jed
Let @ be a partition of J,., with |Q] > 2. We set

Q .
d¥(H) := maxd'(H), do(H) = i drg(H),

and, for 0 < a < f3,
AB):={H eH :d"(H) < B}, Agla,B):={H € H" :d°(H) < a and do(H) > B}.
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The elements of a configuration H = (hq, hs, ..., h,) in A() can be viewed as ‘clustered’, since
(h1, hay ... hy) € A(B) implies (hg, ..., h,.) C Ba(h1,8)"~" The configurations in Ag(a, ) for
some partition ) and 0 < o < 3 are made of ‘well-separated’ clusters.

Moment of order 4

The moment of order 4 plays a special role in the proof of tightness.

Let J = [b,b + k| be an interval. We will bound the moment of order 4 of Y = EJ.EJ TZ ) f
by using (43) and by bounding the cumulant of order 4: CW (3., T%®) f). We have:

COD THW )| < H(w,bk) = > |C(THW) f, 174 [ 77 | 77 f)].
jeJ s,t,v,weJ

Observe that H is super-additive in the sense of the definition given later in Section 5.

Partitions of {1,2,3,4}

In Formula (41) of cumulants, the contribution of a partition such that one of its atoms is a
singleton is 0, and so does not appear. The partitions of {1,2,3,4} without atoms reduced to

a singleton are {{1,2,3,4}}, {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}}.

The cumulant of order 4 of (Thi f, Th+ f, T" f T" f) reads:

(44) C(T™ f, T f, T f, T f) = B(T™ f T f T" f T" f)

—  [B@M ST R(T ST )+ BT f T ) R(T™ f T f) + E(T™ f T fYR(T™ f T f)).

Well separated configurations

The following proposition is a key step in the proof of the CLT shown in [4].

-----

Bo=0<pB1 <381 <fa<...<fr1 <3821 < B,

we have
r—1

(45) H = A(ﬁr) U (U U AQ<36]'7 6j+1))'
J=0|Q|>2

Below, as an illustration, we give a proof for r = 4.

Proof. (r = 4) We represent an element of H by e and, given two elements a,b € H, draw ee
or e e depending on whether they are close or far from each other.

Given a set H = {t,u,v,w} with 4 elements in H, we will show that (up to a permutation) H
belongs to one of the configuration types Sy = eeee, S| — eee o S, —ee e S;—ee o o,
orSy=e e e e

The configurations of type Sy are the ‘clustered’ configurations. This is quantified by saying
that these configurations are in A(S) for some 8 > 0. The configurations of type Sy are the
configurations with pairwise distant elements. They correspond to Ag(0, ) for some f.

We show that H is either
of type Sy, with d(x,y) < B4, for every z,y in H,
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or of type Sy, with d(x,y) > Sy, for every x # y in H,
or of one of the types Si, Ss, S3.
If H is not of type Sy or Sy, there are distinct elements, let call them ¢, u, w, such that d(t,u) <
p1 and d(t,w) > By, which implies

(46) d(t,u) < B, d(t,w) > B4 > B3, d(u, w) > By — 1 > PBs.

One of the following cases occurs:

1) (type Sy =eee @) d(v,t) < 20, which implies:

d(v,u) <28y + B1 < 3Bs, d(v,w) > By — 28y > 303 — 20 > Ps.

In this case, for the partition Q = {{t,u,v},{w}}, we get d¥(H) < 33, and do(H) > fs.
2) d(v,t) > 205, which implies: d(v,u) > 25y — 1 > [,

2a) (type Sy =ee o) d(v,w) < P, which implies:

d(v,t) > d(t,w) — d(v,w) > By — B2 > 305 — o > [,

d(v,t) > d(t,w) — d(v,w) > By — B — B2 > 333 — 1 — o > Bs.

For Q = {{t,u}, {v,w}}, we get d°(H) < 33, and dg(H) > Ss.

2b) (type Sz =ee o o) d(v,w) > Py :

For Q = {{t,u}, {v}, {w}}, we get d%(H) < 36, and do(H) > fo. .

3.2. A sufficient condition for the CLT.

Let us recall a criterium in terms of cumulants for the CLT (cf. [20, Th. 7|, [8, Th. 6.2]). It
is convenient to formulate the criterium by using a summation sequence, w = (wy,),>1, i.e., for
each n a function w, : £ € Z — w,(£) € R, with 0 < 37,z [wn(£)| < +o0.

| 2 geza wn () 2mieD)|2
S geza [wa(O)2

As for the summation along a random walk which is a special case, we say that the summation
is &-regular for a probability measure £ on T¢, if the normalised kernel (K (w,),>1) converges
weakly to &, i.e.,

The associated normalized non-negative kernel is K (wy,)(t) = , te T

(47) lim K(w,) @dt = £(p), for every continuous function ¢ on T¢.

n— oo Td

This implies that for f, under Condition (5), the asymptotic variance for the normalised sums
is

I e O T
o = lim
wlf) =l (O

Theorem 3.3. If (w,),>1 s a summation sequence on Z% such that (47) holds for a probability
measure & on T?, the condition

= &(py)-

(15) S wnll) (L) T, T ) = o(Y w2(0)F), V>3
(Uyoonl,) () tezd
(49) implies (Z Z w, () f(TE) :>N(O E(er))-

274 74
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The following result (cf. |8, Lemma 6.6]) shows that mixing of all orders implies the asymptotic
nullity of the cumulants.

Proposition 3.4. Let (T4 ( € 7Z9) be a Z%-measure preserving action on a probability space
(E, ). If it is mizing of order r > 2, then, for any f € LF(X),

(50) lim C(Tuf,...,T%f) = 0.

max;j [|{;—£; || =00

Remark that (50) does not give the quantitative estimate (48). Nevertheless, in Section 6,
(50) will be sufficient for an action by automorphisms of a connected compact abelian group
(in particular of a torus) which is mixing, when f is a trigonometric polynomial. For general

exponentially mixing actions, a quantitative formulation is needed as in [4], using Proposition
3.2.

Array of sequences and finite dimensional distributions

For s > 1 and j = 1,...,s, let (w,;,n > 1) be s summation sequences, satisfying (47) with
respectively § = ;, where the {;’s are probability measures on Te.

Using Theorem 3.3, we are going to deduce from the following two conditions the asymptotic
normality (after normalization) of the vectorial process (dezd W1 (0) TEf ooy Y pega Was(£) TEf):

- asymptotic orthogonality:

/ Z wn] 27” ét Z wng 7271’1 (¢, t)) 6—271—1'@,;) di

Lezd Le74
(51) =0 Z‘wn] |2+Z‘wn3 VJ #7, VPEZd
Lezd Lezd

- convergence to 0 of the normalized cumulants of order > 3:

> i (), (L) C(THf, . T f)

(Ly,L,) €(ZH)T
(52) =o(> Z lwn (OP)™2, V(iy,rdy) € {1, ..., 87, ¥r > 3.
ez j=1
Proposition 3.5. Under Conditions (51) and (52), the vectorial process
( Dveza W (O T D pega was(O TS

(dezd |w"1(£)|2)% o (dezd |wn,s(£)|2)% >n21

is asymptotically distributed as N(0,J,), where J, is the s-dimensional diagonal matriz with
diagonal (§;(¢r),7=1,...,s).

Proof. The hypothesis (51) implies, for s non zero real parameters ay, ..., as:

(63) (a2 Y fwas (O D0 D ajwns(0) 2P S (362 Y a2

J €74 Lezd g J J
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Putting w2 ({) = ayw,1(£) + ... + asw, (£), by the Cramér-Wold theorem, to conclude it
suffices to show

D peza wit s (OTEf i ;
(54) — — 5 — = N0, ) i)/ D a)).
(a1§:gezdyu%J(£>|'+-"+'as§:gezd |wn,s(£)]?)> j=1 j=1
By (52), the sum Z Z Wiy (€)W, (£,) C(TH f, ..., T f) satisfies (48)
i1 yeensir €1y} (£, il,) €(ZA)T
and the result follows from Theorem 3.3. O

We will use also the following lemma. Let (w,),>1 be a summation sequence on Z such that
(47) holds for a probability measure £ on T?. For f € L*(u), we put oy, (f) := || 22, wn(€) Tf 2.
We can suppose £(¢y) > 0, since otherwise the limiting distribution is do.

Lemma 3.6. Let f, fr, k > 1 be in L*(n) and satisfying (5) such that ||¢;—f, |lec — 0. Then

Zﬁezd Wn, (@ Tﬁf’c . ) dezd Wn, (E) Tﬁf
() = N(0,1), Vk > 1, implies o) = N(0,1).

Proof. Let us consider the processes defined respectively by
U= (30 wi0)72 Y wal) T, U= (Y wi(0) 72 Y wa(O) T,
Lezd ez 74 Lezd
By (47) we have:
(3 w0 I w0 T = [ Rwdprdt = ¢lor)

Lezd Lezd

Observe that, if € is a probability measure on T¢, f — (f((pf))% satisfies the triangular inequal-

ity; hence g(gpfk) > §(¢f) - é-(SOf_fk)' Since €(S0f_fk> < ||(10f—fk-||00 — 0, this implies é(@fk) 7& 0
for k big enough.

The hypotheses imply “UF = N(0,£(yy,))” for every k. Moreover, since
n—oo

lim [ |0~ e = tim [ R gt = 60510 < s
we have limsup,, u[|UF — U, | > 6] < 6 2limsup,, [ |UF — U, |3 du = 0, for every 5> 0.
—00

Therefore, using [2, Theorem 3.2], the conclusion “U,, =N (0,&(¢y))” follows. O
n—oo

4. Moving averages of i.i.d. random variables

Let (X¢)pez2 be ar.f. of centered ii.d. real random variables on a probability space (E, B, p)
such that || Xo|[ = 1. Let (ay)4ez2 be an array of real numbers such that 3 ;. [a,| < oo and

let == (Z¢)sez2 be the random field defined by Zy(z) = >~ 72 agXo—o().

The correlation is p=(£) = (Z ag Xy g, Z agX_g) = Z aq aq—¢. We have

q€eZ? q'€2? qeZ?

SU1E=O1 < 30D lagllago = (3 lagl)? < +oc.

¢ gez? q€Z?
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The continuous spectral density of the process is w=(t) = [_ a, ™4 |2 The asymptotic
variance for the summation along the r.w. (with the normalisation by Conlogn) is (3-,cz0 ag)”
that we suppose # 0. -

Using the method of associated r.v.s we obtain a quenched FCLT for Sfr;i (cf. Notation (1)):

Theorem 4.1. Let (24, ( € Z?) be the random field defined by moving averages as above. Under
Spn) (@) )
V/nlogn’t=0
asymptotic variance 0° = | 37 ;> ag|*(1Vdet X) 7!

the assumption qup lag| < oo, the process ( satisfies a quenched FCLT with

Proof. 1) Convergence of the finite dimensional distributions

a) First we assume that the random variables X, ¢ € Z? are bounded. Moreover let us
consider first a finite sum F' = > _ca,X,, where S is a finite subset of Z?. The case of the
series, Zg = ) .42 asX,, will follow by an approximation argument.

52X (z)
As we have seen, for Y, (w,z,t) = %, we have to show:

Vo=to <t <..<t,=1, (Yalt),...,Yu(t,) = (Wi, ..., W).

n—oo
For it, we use Proposition 3.5. Condition (51) follows from Lemma 1.10. Let us check (52).
There is M such that the cumulant C(T5 F, ..., T F) = 0, if max; ; ||(;, —£,]] > M, because if M

is big enough, there is a random variable T% I which is independent from o-algebra generated
by the others in the collection T4 F, ..., T% F (by finiteness of S).

ntu+1
Let w)(w,£) Z lz,—¢, for u = 0,...,7 — 1. Then we have w;;(w,{) < wy(w,£) and, since
=nty
sup |C(T41F,T42F,...,Tf F)| < oot
gl:"wﬁr
| > C(THF, TeF, ... T F)| wit (w, £,) wi2(w, ). w (w, £,)
max; j [|€;—£; (| <M
<y > C(TF, T 5 F, . T F)| T]wik(w. £+ 5,)
£ lgylleesll, 1M, §,=0 k=1
<0y 2 et <oy 3 JJwle i,
€ lgylhnllg ISM, 5, =0 k=1 € gylhnllg ISM, 5, =0 k=1

The right hand side is less than a finite sum of sums of the form 3, ;4 [ [} wa(w, £+, ) with
{j,d }e?

By (22), for every e > 0, there is C.(w) a.e. finite such that sup, w,(w,£) < C.(w)n®. For
r > 3, take e < 57=5;. We have then 3=, ;0 [Ti; wa(w, £+ j,) < Ce(w)™ nfr=tn = o(n"/?)
and (52) is sat1sﬁed

Using Lemma 3.6, the result can be extended to a general sum ) | ¢ as X, such that )
0.

s€ES |CL§‘ <
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b) Now if we assume only the condition || Xy||2 < oo, we apply a truncation argument to the
independent r.v.s X, and use again Lemma 3.6.

2) Tightness Let af = max(ay,0), a; = max(—a,,0). Observe that the random variables

D geze G Xe—q(T) = 3 ep2 a1 X—q(x), for L € 7?2, are associated (as non decreasing functions

of associated r.v.s), as well as D geze g Xo—g(x), for £ € 72,

Therefore tightness can be proved separately for both processes. Now, again we use a truncation
of the independent r.v.s X,. For L > 0, we put

~

Xi = X 1gxg<ny — B Lxg<ny),

X = Xy = X = X Lgxony — B(XG Lo rp).
The r.vs (3,cz0 a;ﬁ)z',g(m),ﬁ € Z?) are still associated, as well as (3.7 a/, X _o(2),L € Z?).
Moreover, we control the norms in L?(u) and L*(u), since by the triangular inequality, it holds:

B B
1Y af Xzyw-gllua < O a1 Xz, lus,
i=A

J=A qez? qEeZ?
B ~ B ~
1> af Xzw-allne < O a1 Xzl
J=A qeZ? q€72 j=A

Now the proof is like the proof of tightness in Theorem 2.2. 0

5. Tightness and 4th-moment

In this section, we show a criterium of tightness based on the 4th-moment.

Let n > 1. We say that a nonnegative function Gy = (Go(b,k)), defined for b, k such that
0 <b< b+ k <n,is super-additive if Go(b,0) = 0 and

(55) Go(b, k) + Go(b+ K, 0) < Go(b,k+£), ¥b > 0,VEk, ¢ > 1 such that b+ k + ¢ < n.

Let (W}) be a sequence of real or complex random variables on a probability space (E, u). We
set

b+k
Sng = E Wr, Mb,n = Imax |Sb,k"
1<k<n
r=b+1

The following result is adapted from [22]:

Theorem 5.1. (F. Moricz) Let n > 1. Suppose that there exists Gy a super-additive function
such that

(56) E.(|Svxl*) < Ga(b, k), Vb, k such that 0 <b<b+k <n.
Then, with the constant Cyuae = (1 — 2_i)_4,
(57) E, (|Myn|') < Crnaw G2(b,0), Wb < n.
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Let X = (X)pez2 be a strictly stationary real random field on a probability space (E, i), where
the X,’s have zero mean and finite second moment. Setting S%(z) = .. ; Xz, (2) if J is an
interval, we deduce from (57) a criterium for tightness adapted to the sums along a random
walk.

Proposition 5.2. Let G(w, .,.), H(w,.,.) be super-additive functions such that for a parameter
v and Ki(w), Ky(w) a.e. finite functions on (Q,P),

(58)  G(w,b, k) < Ki(0°w) klogk, H(w,b k) < Ko(6°w) k (logk)?, G(w,b, k) > k.

Suppose that the r.v.s Xy are bounded and satisfy

(59) E,(|S9%)%) < G(w, b, k) + n? (logn)~ Y H(w, b, k),¥J = [b,b+ k| C [1,n], for a.e. w.
Then, for every e >0, Y,(w,x,t) = \/rTgn Z[nt] X7z,(w) satisfies

(60) lim limsuppu(x € E: sup |Yy(w,z,t") — Y, (w,z,t)] >¢) =0.
d—0+t n [t/ —t|<6
Proof. 1) Let ¢ > 0, A, = [nz(logn) 2|+1, v = v, > A, L, = (2] v = v, =[5 ]An—I—A
The integer v, will be chosen of order dn. Since A, is an integer > 1, we have v < /. We can
write, with the convention that "', = 0:

k u—1 (r+1)A uAp+k—1
max E X, < max g X max E E X )+ X
0§k§v| : Zyew)] 0<k<v | L@ ™ e | 1<k<A, Zite(w E : Zje(w)]
7=0 r=0 j=rlA, j=uln,
u—1 (T‘+1)An_1 ulAp+k—1
< max 5 g Xz + max g X,
T 0<u<Ln,1<k<A, | Zysel@) 0<u<Ln,1<k<Ap | Zysel@)
B o r=0 j=rAn - - j=ul,
ulAp+k—1
= max X, + max X
oJax 1> Xz, ocucBE, A > Zire(@)|
j=0 Jj=ulp,

Let A, and A, be respectively defined as the first and the second term above. This previous
inequality implies

A 1 ~
(61)  p(max |Z X7 > ey/nlogn) < u(A, > zey/nlogn) + u(A, > ~e/nlogn).

0<k<v

—_

(\]
(]

For A,, since the X,’s are bounded (uniformly in £ by stationarity), by the choice of A,, there
is Ny (e, d) such that (A, > tev/nlogn) =0, for n > Ni(g, ).

For A, we will apply Theorem 5.1 to W, = ZgrtlAA"_l Z,4e(w)s With

(62) Go(b, k) := G(w,c+ bA,, kA,) + (logn) "™ H(w, e+ bA,, kA,),

which is super-additive as G and H.

Since G(w, ¢+ bAn, kA,) > kA, > A, = [n2(logn)~2], we have for k > 1:

G2(w, ¢+ bA,, kA,) 4+ n2 (logn) "V H(w, ¢ + bAn, kA,) < G2(b, k).
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Therefore, by (59),

b+k (b+k+1)Ap—1
Bl Y W) =Eu(| Y Xzl <Golb k) Vb >0,Vk>1,
r=b+1 j=0b+1)A,

which implies by (57) of Theorem 5.1:
(b+k+1)An—1
2
Eu(lr?l?g{p| Z XZ j4e(w) | ) < Cmax GO(b7p> ) Vb > O»Vp > 1.
j=(b+1)An
Putting K (w) := max(K;(w), K»(w)) and using (58), we get the bound
ulp,

|max | Z Xz, c@llli € Cmaz [G(w, e, LuAy) + (logn) 7 H(w, e, L,A,)]?

(63) < Crax K(Qc )2 LAy log(L,Ay) + (logn) " (L,A) (log(L,A)) Y.

2) For M > 0 big enough, the set Qy := {w: K(w) < M} has a probability P(Q,) > 5. We
apply Lemma 1.7 to Qy,. Given 6 > 0, there is Ny(d) such that for n > Ny(d), we can find
a sequence 0 = p1, < p2n, < ... < Py < N < Pyi1y of Visit times of 0%w in Q; under the
iteration of the shift 6, such that %5n < Pitin — Pin < %5n and v < 2/§. By construction,
K(0rinw) < M, Vi.

With ¢ = pin, Vn = Vin = pisin — Pin < 200, Ly = [VA:] (so that L; ,A, < 36n), we deduce

from the upper bound (63) (for n big enough and using 0 < log(dn) < logn, if n > 6 1):
ulnp
I max \ Z X2y s i < CraeM [Vin log v, + (logn) " v, (log vi,))?
7=0

< CraeM [gén log(on) + (logn) ™7+ g5n(log(5n))7]2 < Chnae M [36nlog n)?.

This implies that there is a constant C' such that, for n > Ny(9), for i =1,...,v

1 Crnaz M (36nlog n)? _4 2
p, oz | Z Zisl| 2 gEVRlogn) S AT TR S O

This allows to bound the term p(A, > 1eyv/nlogn) in (61): Putting ¢; = p;,/n, we obtain, for
n > max(Ny (e, d), Na(d)),

J
p( sup |V, (t) =Y, (¢)] > 3¢e) < Z sup Y, (s) = Yo(tii1)| > ) <2Ce*6%v < 2C o O

|t/ —t| <8 b 1<s<t1

Remark 5.3. Let be given for each s in a set of indices S a process X*® = (X, )pez2 satisfying
the hypotheses of the proposition, with the same uniform bound and the same G, H,~. Then,
if Xp =3, a,X],with }__|a,] <1, therf X = (X,) satisfies the conditions of the proposition
and therefore the conclusion (60). This follows from Minkowski inequality:

155505 < ladl155 1) Z|a5 (w, b, k)* +n? (logn)~0) H(w,b, k)]

= O lad)[G(w,b, k)’ +nz (logn)~ O H(w, b, k)].

S

=

)
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6. Automorphisms of a torus

We consider now a random field generated by the action of commuting automorphisms on a
torus. Let us first present the model. We will give the details of the proof for d = 2.

Actions by endomorphisms on a compact abelian group: Let G be a compact abelian group
with Haar measure p. The group of characters of GG is denoted by G and the set of non trivial
characters by G**. The Fourier coefficients of a function f in L'(G, 1) (denoted also f(k) when
G is a torus) are cp(x) := fG X fdu, x € G.

Every surjective endomorphism of G defines a measure preserving transformation on (G, i) and
a dual injective endomorphism on G.

Let (Ti,...,T;) be a finite family of d commuting surjective endomorphisms of G and T* =
TH..T{, for £ = ({4, ...,04) € N We obtain a N-action (T% ¢ € Z%) on G, which is totally
ergodic if and only if the dual action is free.

Let ACy(G) denote the space of real functions on G with absolutely convergent Fourier series
and p(f) = 0, endowed with the norm: || f[lc:= > caler(x)| < +o0.

Recall that the action on G is mixing of all orders when it is totally ergodic and G is connected.

Proposition 6.1. If f is in ACy(G), the spectral density ¢y is continuous on T and ||pflee <
| fII2. For every e > 0 there is a trigonometric polynomial P such that ||of—pllee < €.

Proof. Since by total ergodicity the characters T%y for £ € Z? are pairwise distinct, we have

DT AT YD el 0l < D O e (TN el < (Y [es (b0

Lezd Lezd XEG‘* xeé’* Lezd XEG‘*

Therefore, if f is in ACo(G), then 7,50 [(TAf, f)| < 0o, the spectral density is continuous and
l¢flle < e. By this inequality, we can take for P the restriction of the Fourier series of f to a
finite set £ in G, where & is such that ||p;_p|s < (eré\g ler(0)])? < e. O

For compact abelian groups which are connected (cf. [8]) or which belong to a special family of
non connected groups (cf. [9]), a CLT has been shown for summation either over sets or along
a random walk. Our aim is to extend this latter result to a functional CLT at least in the case
of automorphisms of a torus.

Matrices and automorphisms of a torus:
Now we will restrict to the special case of G = T?, p > 1.

Every A in the semigroup M*(p, Z) of non singular p X p matrices with coefficients in Z defines
a surjective endomorphism of T? and a measure preserving transformation on (T”, ). It defines
also a dual endomorphism of the group of characters T¢ identified with Z¢ (this is the action
by the transposed matrix, but since we compose commuting matrices, for simplicity we do not
write the transposition). The linear operator on C? defined by A is denoted by A.

When A is in the group GL(p,7Z) of matrices with coefficients in Z and determinant +1, it
defines an automorphism of T?. Recall that the action of A € M*(p,Z) on (T?, 1) is ergodic if
and only if A has no eigenvalue root of unity.
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Here we present the proof for the case of automorphisms and for d = 2 (in the recurrent case
for the random walk). Let (A;, Ay) be two commuting matrices in GL(p, Z) and AL = A A2,
for £ = ({1,0y) € Z%. Tt defines a Z2-action (A% £ € Z?) on (T?, i), which is totally ergodic if
and only if A% has no eigenvalue root of unity for £ # 0.

Explicit totally ergodic Z*-actions can be computed (cf. [8]) like the example below (see the
book of H. Cohen on computational algebraic number theory [11]):

-3 -3 1 11 -1
Ai=110 9 -=3|, Ay=[-10 -1 1
—30 —26 9 0 2 -1

We will need an algebraic result based on the following theorem on S-unit equations ([26]):

Theorem 6.2. (|17, Th. 1.1|) Let K be an algebraically closed field of characteristic 0 and for
r > 2, let I, be a subgroup of the multiplicative group (K*)" of finite rank. For any (a4, ...,a,) €
(K*)", the number of solutions x = (x1,...,x,) € I, of the equation ayzy + ... + a,x, = 1 such
that no proper subsum of a1xy + ... + a,x, vanishes, is finite.

Corollary 6.3. Suppose that the Z>-action (AL, £ € 72) is totally ergodic. The set F of triples
(£, 05, 05) € (Z2)® for which there is v € Z* \ {0} such that

without vanishing proper sub-sum, is finite.

Proof. There exists a decomposition of £ = C” into vectorial subspaces C? = @, E} which are
simultaneously invariant by A;, i = 1, 2, and such that there is a basis By in which A; restricted
to Ej is represented in a triangular form with an eigenvalue of A; on the diagonal.

This follows from the fact that the commuting matrices A; have a common non trivial space
W of eigenvectors, and then by an induction on the dimension of the vector space, applying
the induction hypothesis to the action of the quotient map of A; on E/W.

For v € Zr \ {0}, there is ko such that the component 7o of v in Ej, is # 0. Let &y be the
dimension of Ey,. In the basis By, = {€ky.1,--+s €ho.s0} Of Eky, we denote the coordinates of 7

by (7, ...,7%). There is & € {1, ..., 0o} such that 74 = 0, Vi < &, and v, := 7.0 # 0.

Due to the triangular form, for j = 1,2, we have Aﬁm) = aio’j 736 eros, + ¢, 0), VU € Z,

where ay, ; is an eigenvalue of A; and where ((j,¢) belongs to the subspace generated by
{eko,§6+17 ey 6k0,§0}'

14 AN 2

Using the notation ay, = aj,; o, 5, if au1 (resp. oy ) is an eigenvalue of A; (resp. Aj), if (64)

U u
holds, then (gﬁt — gﬁf} + g%; Jvy = vy. This equation is still without vanishing proper sub-sum,
because of the assumption of total ergodicity. By Theorem 6.2 applied to the multiplicative
group (of finite rank) generated by ay,;, j = 1,2, the number of solutions of the previous

equation is finite. Hence the result, since kq takes a finite number of values. [l

Random walks and quenched CLT

Our aim is to replace the r.f. of i.i.d. variables (X, ¢ € Z?) discussed in Section 2 by the random
field generated by an observable f on a torus T” under the action of commuting automorphisms.



28 GUY COHEN AND JEAN-PIERRE CONZE

More precisely, we consider £ — A% a totally ergodic Z2-action by algebraic automorphisms of
T?, p > 1, defined by commuting p X p matrices A;, A with integer entries, determinant +1
such that the eigenvalues of AL = A% AL are # 1, if £ = (41, 45) # (0,0).

The composition with a function f defined on T” is denoted by ALf as well as T¢f. We consider
the random field (X, = ALf, £ € Z?), with f € ACy(T?).

A sufficient condition for f with 0 integral to be in ACy(T?) is | f(k)| = O(||k||~?), with 8 > p.
For a.e. w the following asymptotic variance exists:

HZAZk I3 =Co > (TEf ),

kezd

lim
n nlo n

where the constant Y is defined in Subsection 1.2.

The following quenched FCLT extends for the torus the CLT proved in [8]. Remark that the
CLT is proved therein for a general compact abelian group. The extension to a functional
version of the CLT holds in this general case when f is a trigonometric polynomial.

Theorem 6.4. Let (Z,,) be a 2-dimensional reduced centered random walk with a finite moment
of order 2 and let f be a real function in ACy(TP) with spectral density ¢y and p;(0) # 0.

Denoting by S¢(f) = > p_, A% f the sums along the r.w., the process (\/TgnSLmJ (f) o
satisfies the FCLT for a.e. w.

Proof. 1) Convergence of the finite dimensional distributions

la) First suppose that f is a trigonometric polynomial: f =", . cx(f) Xx, where (xx, k € A)
is a finite set of characters on T” and x, the trivial character.

We use Proposition 3.5: (51) follows from (26) and Lemma 1.10. For (52), we have to show
(65) C(")(ZEGZQ wy(w, £) TEF) = o((nlogn)™/?), ¥r > 3, for a.e. w.

We apply Theorem 3.3. Let us check (48). For r fixed, the function (ny,...,n,) = m¢(ny,...,n,) =
fX T™f ... T% fdy takes a finite number of values, since my is a sum with coefficients 0 or 1
of the products ¢y, ...c, with k; in a finite set. The cumulants of a given order take also a finite
number of values according to (42).

Therefore, since mixing of all orders implies lim C(T4 f,..., T% f) = 0 by Proposition

max;,j [|¢;—£;||—o0

3.4, there is M, such that C(T4 f,..., T f) = 0 if max;; [|{; — £,|| > M,. The end of the proof
is then like in Theorem 4.1.

1b) For f € ACy(T*), using Proposition 6.1 and Lemma 3.6, the convergence follows by approxi-
mation of f by a sequence of trigonometric polynomials f7, in such a way that limy, ||¢s_y, || = 0.

2) Moment of order j and tightness

We use Proposition 5.2. Taking into account Remark 5.3, it suffices for the tightness to take
for f a character and show that the bounds are independent of the character.

Let x, be a character on the torus T, y, : © — exp(27mi(v, x)), where v € Z* \ {0}.
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For an interval J = [b,b+ k| C [1,n], we have:
| S8 ATl = (i1, iz, ) € T4 (A% — A% 4 A% — AZ)y = 0},
This number is less than 2G?(w, b, k) + H(w, b, k), with
G(w,b k) = #{(ir,i2) € J*: (A% — A%2)y = 0},
H(w,b k) = #{(i1,i2,43,44) € J*: (A%1 — A% + A% — A%a)y = 0},
where above in H we count the number of solutions without vanishing proper sub-sums.

By assumption of total ergodicity, if (A% — A%i2)y = 0, then Z;, = Z,,, so that G is the number
of self-intersections of the r.w. on [b,b+ k]: G(w,b, k) =V (w,[b,b+ k[) = Vi.(0°w). A bound of
these quantities is given by (20).

For H, by Corollary 6.3, there is a finite set F' (independent of v) such that
H(w, b, k) < #{(ir, 42, 13,14) € J* - (Zz' (W) = Ziy(w), Zi,(w) — Ziy(w), Zig(w) — Zm(w)) € F}.
Therefore, with the notation (24), H(w,b, k) < Z(£1,£2,£3)€F Wi (0w, £y, Ly, Ls).

By (25) in Lemma 1.5, there exists a positive integrable function C5 such that W, (w, £, £y, £5) <
C3(w)n (logn)®, Vn > 1, which implies H(w,b, k) < (Card F') Cs3(6°w) k (log k)®. Remark that
the bounds do not depend on the character, but only on the matrices Ay, A,.

Since G and H are super-additive (Condition (55)), the tightness property follows now from
Proposition 5.2 with v = 5. U

Remarks 6.5. 1) An analogous result is valid for any transient random walk in dimension
d > 1, with the standard normalisation by /n. In this case, if the observable is non null a.e.,
the asymptotic variance for the sums along the r.w. is different from 0 (cf. Subsection 1.2).

2) For automorphisms of a torus T”, in the recurrent 2-dimensional model studied above, if f
satisfies the regularity condition |c;(k)| = O(]|k||="), with 3 > p , then the asymptotic variance
is given by ¢(0) and it is null, if and only if f is a mixed coboundary: there are continuous
functions uy, ug such that f = (I — Ay)uy + (I — Az)ug (cf. [8]).

7. Exponential mixing of all orders

7.1. FCLT and exponential mixing of all orders.

Our last example is given by commuting translations on homogeneous spaces. It relies on
recent results on the exponential mixing of all orders for flows on homogeneous spaces shown
in [3] and their application to the CLT in [4]. Closely following the latter reference, we recall
first the notion of exponential mixing of all orders for a group action by measure preserving
transformations.

Exponential mixing of all orders

Let H be a group with a left invariant distance d. Let h — T" be a homomorphism of H in
the group of measure preserving invertible transformations of a probability space (E, B, ). We
denote by A a sub-algebra in L°°(E, i) which is H-invariant. Let N = (N;) be a family of
semi-norms on 4, indexed by positive integers s.
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Hypothesis 7.1. The following conditions are assumed to hold for all s > 1 and all f,g € A
with constant factors depending only on s (all denoted by Cs):

1) No(f) < CeNsy1(f); 2) [[fllze < Cs No(f); 3) No(fg) < Cs Noqa(f) Noga(9);
4) there exists s > 0 such that No(T"f) < C, &N (f), Vh € H.

Let r > 2 be an integer. For H = (hq, ..., h,) € H", we set d,(H) := min,,; d(h;, h;).

Definition 7.2. We say that the H-action on (E, u) is exponentially mizing of order r, with
respect to d and (A,N'), if there exist constants C,.s,6, > 0 and an integer s, > 0 such that for
all s > s, and fi,..., [, € A,

(66) (17 ) = Tl < Cra e D T Nl ),
i=1 i=1 i=1
for all H = (hy,...,h,) € H". The constant C' depends only on r and s.

We may assume that (; is increasing with s, J, decreasing with r and ¢, < r(, Vr,s.

In what follows, we will consider, for d > 2, a measure preserving Z%action on a probability
space (E, B, i) generated by d commuting invertible maps 71, ..., T;. Therefore the group H in
Definition 7.2 is going to be the group Z? still denoted also by H.

If (Z,) is a random walk on Z?, then we get a random walk (7)) on the group of measure
preserving invertible transformations on (F, B, ).

With a distance on Z¢ associated to a norm equivalent to the Euclidean norm, the volume of
a big ball is of order the number of integral points in the ball. It is important to relate this
distance to the distance d of Definition 7.2. We will assume that the action satisfies:

Hypothesis 7.3. For an H-invariant sub-algebra A in L°(FE,u) and a family N = (N) of
semi-norms on A, we assume that the Z%-action on (E, B, u) is exponentially mizing of order
r for every r > 2 in the sense of Definition 7.2 with a distance d equivalent to the Euclidean
distance.

With this assumption, for simplicity of notation we can assume that the distance d in Definition
7.2 applied to Z? is the Euclidean distance on Z<.

Spectral density and cumulants

Let f be a centered function in A. Its spectral density is w; = > 70 ar eriet)

(T“f, f). The absolute summability Y, |as| < oo is a consequence of (66) for r = 2.

y with ay =

Moreover, there exists so and a constant C' such that |||l < CN, (f)2.
Let J = [b,b+ k] C [1,n]. With the notation of 1.2.2, we have

JIS T = [ 13O0 gy 0) i < 3 fad Vi 1.0 = Gl ),

jeJ jeJ Lezd

For a fixed w, the bound G(w, b, k) is super-additive. By (43), we have

(7 B ST 11 = 3( [ (D T4 02 du)” + €O T4 )

jeJ jeJ jeJ
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The next proposition shows that the cumulants C(T™ f, ..., T"" f) are small for all well-separated
r-tuples H = (hq, ..., h,). The constants ¢, and ¢, are those of Definition 7.2.

Proposition 7.4. (Proposition 6.1 in [4]) For r > 2, let Q be a partition of {1,2,...,r} with
|Q] > 2 and let s be an integer > s, +1r. Then, if H € Ag(a, 5) with 0 < o < 3, for f centered
in A we have

(68) IC(T™ f,...,T™ f)| < CemOrBmrat) N (f)".
where the constant C' depends only on r and s.

Proof. (r = 4) Let us give the proof for r = 4 and in the case of the configurations H of
type S; = ee e e thatis (up to a permutation): {{h;, hi}, {he},{h.}} with, for some j,
d(hi, hi,) < 3B; and d(hg, {h;, h}) > Bjs1, d(hy, {hi, b }) > Bjsa, d(he, hy) > Bt
We may write the formula for the cumulants in the following way:

C(T"f, T" f, T" f, T" f) = (A) = (B) = (C) — (D), with

(A) =E(TMfT™ fT" fT™ f), (B) = E(T™ fT™ f)E(T™ fT™ f),

(C) =E@™ fT" fYE(T™ f T f), (D) = E(T™ f T"" f)E(T"™ f T" f).

We use the exponential mixing of order 2 for (B),(C),(D) and of order 3 for (A). More
precisely, we have (A) = E((f T " f) The=hi f Th=hi f) and

NS(f Thk_hif) < CNS-H(f) Ns—&-l(Thk_hif) < 063@ ﬁjNS—&-l(f) Ns+1(f)'
Therefore, by the 3-mixing applied to fTh=hi f The=hi f Thr=hi f we have
(4) < 0B oobm N (PN O

Let us now fix v > 0. We define §; by Sy = 0 and §,41 = 3r3;(s/d, + v, for j > 0.
As 6, < r(s, we have 3,11 > 33;. Moreover 3, = 722;3(31” (/00 ) = vyCrs.

Let v = >,v(£)d, be a positive finite measure on H = Z¢ with mass ||v|. Let B(h,R) be
the euclidean ball of center h and radius R. The following bound on cumulants is given in [4]
(cf. Proposition 7.4 above and (45)). The first term at right in (69) comes from the clustered
configurations and the second term from the well separated configurations. The constants s,
and 0, are introduced in Definition 7.2.

Proposition 7.5. (Proposition 5.2 in [4]) For every r > 3 and s > s, +r, there exist C, 5 and
¢rs > 0 (not depending on v) such that, for all v >0 and f € A,

(69) CP (v f)l < CT,S(A v(B(h, )™ dv(h) + e |v]") No(f)"

Under the assumption of exponential mixing of all orders, it is shown in [4] that the CLT holds
for v, x f, when f € A and (v,,) a sequence of measures satisfying a certain condition.

In our framework, v is the measure v* = Z;:& 07,(w), Where (Z;);>0 is a r.w. on Z?. Its mass
is ||v¥|| = n. The convolution “v * f” in (69) for v means “Z;:OI f(T%w) )y,

Let us assume that the r.w. Z is a centered random walk on Z? with moments of order 2. By
(23) (cf. Remark 1.4 in 1.2.2), it holds with a constant K (w) finite for a.e. w, uniformly in
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h € H:
Ve (B(h,ey)) = #{j < n: Z;(w) € B(h,cy)} < sup,wy(w,£) Card(B(h, ¢y)) < K(w)(cy)? log” n.

Due to Hypothesis 7.3 and by (69), this implies that there is a constant C; (depending only on
r and s) such that

CO (v )] < Cr{E (@) (log n)*" D (ey)*0 Vi 4 e ") Ny(f)".

Taking v = % logn, the first term above gives the bound (c%)z(’”_l) (logn)*"=Yn and the

second term is n. It follows, for a constant C5 depending on r and s:
CO () * )] < CoNy(f)" K (w) ™ (logn)* V.

Likewise for an interval J = [b,b+ k] and v§ = .. 0z,(), We get

j€J
CT (W5 f) < Ca No(f)" K(0°w)™" (log k)" V k.

So we get the same type of upper bound for the cumulants as for the automorphisms of the
torus. Therefore we have convergence of the finite dimensional distributions and tightness.

For a Z2-action satisfying the exponential mixing condition on an algebra of functions as pre-
sented at the beginning of this section, we can state now a functional version of a CLT result
for the summation along a random walk.

Theorem 7.6. Let (Z,) be a 2-dimensional aperiodic centered random walk with moments of
order 2. Let f be a real centered function in A with spectral density oy such that ¢(0) #
0. Under Hypothesis 7.3, denoting by S¢(f) = > ,_, T%) f the sums along the r.w., the

process(ﬁsmﬂ(f))te[m] satisfies the FCLT for a.e. w.

Remarks 7.7. 1) As suggested in a referee’s remark, the above result can be extended to a
space of functions larger than A. For r = 4, by Proposition 7.5, there is s4 such that (69) holds
for g € A. Let A; be the space obtained as closure of A for the norm Ng,.

Let us sketch a proof of the extension of Theorem 7.6 to functions f € A;. By 7.2 we still have
fast decorrelation for f € A;. We can use Lemma 3.6 for f € A; and (g,) a sequence in A
such that || f — gnlln,, — 0 (hence also |[p;_g,[|c — 0 by (66) and hypothesis 7.1). Therefore
f in A; satisfies the convergence of the finite dimensional distributions, as the functions g, in
A. Moreover, by (69) the estimate for the cumulant of order 4, which is satisfied by functions
in A, still holds for A; and this, as above, implies tightness.

2) The result is formulated for Z?, but an analogous result with a normalisation in /n can
be proved for a transient random walk in dimension > 3 with the same method. To do it,
we use the bound (67) for the 4th moment. In the transient case, the first term behaves
like n? because of (14). The second term behaves as n(logn)*"=Y by using Prop. 7.3 and
Theorem 13 in Erdos-Taylor [15] (which can be extended to a r.w. as for the upper bound
in [14], according to Remark 1.4). Observe also that Proposition 5.2 can be adapted to the
normalisation corresponding to the transient case.

7.2. Translations on homogeneous spaces.

The following example is an action which is exponentially mixing of all orders on an algebra A
of functions according to [3].
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We take the group G = SL(n,R) and a lattice I' in G, i.e., a discrete subgroup such that
G/I" has a finite volume for the measure p induced by the Haar measure of G, for example
SL(n, Z). The space E is the quotient G/I". The action on E will be given by left multiplication
gl' — hgl' where h is in the diagonal subgroup D of G.

The algebra A in the example is the algebra of C*°-functions with compact support on G/T’,
and N is a family of Sobolev norms as in [3].

Let us explicit the distance in the example.
Left invariant pseudo-metric on G = SL(n,R)

Recall that there is a distance on D, induced by a canonical left invariant distance on G. The
left invariant distance dg defined on G is comparable on D to the ‘pseudo-metric’ 4(.,.) defined
as follows:

For A € G, let |||A]|| = max,o Hmu be the norm of the n X n matrix A as operator on R"

endowed with the euclidian norm. Since the determinant is 1, A has an eigenvalue of modulus
> 1, which implies |||A]|| > 1. For A, B € G, we put (4, B) = log(|||A™! BJ||).

Clearly, §(A, B) > 0, the triangular inequality is satisfied by sub-multiplicativity of the operator
norm, and ¢ is left invariant on G. If ||| A]|| = 1, the iterates of A are bounded, so all eigenvalues
must have a modulus < 1. As the determinant is 1, the modulus of the eigenvalues is 1. Now
considering the Jordan form of A over C, it must be diagonal. Finally we conclude that
{A :|||A]|| = 1} is the orthogonal group in G.

We take two elements A; = exp(U;), Ay = exp(Us), where Uy, Us, in the sub-algebra © corre-
sponding to D in the Lie algebra & of G, are such that Uy, U; generate a 2-dimensional vectorial
space of ©. The group (AT A2, (¢1,0,) € Z?) yields a totally ergodic action on G//T.

ap 0 0 1 0 0
For instance in SL(3, R), we can take with a;,as >1: A;=10 1 0 |, Ao=[0 ax O
0 0 a;t 0 0 ay'

The distance dg(A% A%, 1d) is equivalent to [|£]] = (€2 + ¢2)2. The measure v,(B(Id, R)) is
the counting measure with some weight applied to the ball, therefore up to the weight it is the
number of elements of the form h‘'h%? in the ball, and finally the (weighted) number of integers
= (l1,03) of norm < R.

By what precedes, Hypothesis 7.3 is satisfied and Theorem 7.6 yields a functional CLT in the
class of centered compactly supported C*°-functions for the action of a 2-dimensional random
walk on the diagonal subgroup on G/I.

A result analogous to Theorem 7.6 holds for the sums along a transient random walk: the only
change is the estimate of the number of self-intersection (normalisation by \/n).

In Theorem 7.6, in particular in the example provided by homogeneous spaces, as in the CLT
in [4], the statement says nothing about the non-nullity of the variance, for a 2-dimensional
recurrent r.w. The question of degeneracy of the asymptotic variance (for a recurrent r.w.) is
the same as for the sums over squares: it depends of the nullity of ¢(0). This contrasts with the
action of commuting automorphisms of a torus, for which (as recalled in Remark 6.5.2) there
is a description of the degenerate case in terms of mixed coboundaries.
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In the case of a transient random walk on Z?, as noticed in Subsection 1.2, if the observable is
non null a.e., the asymptotic variance for the sums along a transient r.w. is different from 0.
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