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ABSTRACT
The hypervolume indicator is widely used by multi-objective op-

timization algorithms and for assessing their performance. We

investigate a set of p vectors in the biobjective space that maxi-

mizes the hypervolume indicator with respect to some reference

point, referred to as p-optimal distribution. We prove explicit lower

and upper bounds on the gap between the hypervolumes of the

p-optimal distribution and the∞-optimal distribution (the Pareto

front) as a function of p, of the reference point, and of some Lips-

chitz constants. On a wide class of functions, this optimality gap

can not be smaller than Ω(1/p), thereby establishing a bound on the
optimal convergence speed of any algorithm. For functions with

either bilipschitz or convex Pareto fronts, we also establish an upper

bound and the gap is hence Θ(1/p). The presented bounds are not

only asymptotic. In particular, functions with a linear Pareto front

have the normalized exact gap of 1/(p + 1) for any reference point

dominating the nadir point.

We empirically investigate on a small set of Pareto fronts the

exact optimality gap for values of p up to 1000 and find in all cases

a dependency resembling 1/(p + CONST).
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1 INTRODUCTION
Multi-objective optimization aims at minimizing a vector-valued

function F . Nowadays, a main goal of multi-objective optimization

is to find a good approximation of the Pareto set, the set of all

non-dominated feasible vectors of the search space. When measur-

ing the performance in the objective space, there are at least three

different ways to define the convergence of a multi-objective opti-

mization algorithm towards the Pareto front. First, the F -values of a
subsequence of vectors explored by the algorithm may converge to

a vector of the Pareto front. Proof of such convergence already ex-

ists for many multi-objective algorithms, such as MultiGLODS [5],

Newton’s method [8], the projected gradient method [9] and (1+1)

evolutionary multiobjective algorithms [3], often with a guarantee

on the convergence rate. Second, for evolutionary algorithms, the

set of F -values of the population can converge to a good approxi-

mation of the Pareto front. In the case of evolutionary algorithms

with a hypervolume based selection, ideally, the image of the popu-

lation would converge to a set of p vectors of the objective space

maximizing the hypervolume, with p being the population size. We

call such a set a p-optimal distribution. Finally, a dynamic subset

of the archive can converge to the entire Pareto front, in some

sense which is to be defined. For example, it has been known for

a long time that under the hypothesis of an uncountably infinite

population, the set of all non-dominated vectors explored by an

evolutionary algorithm converges almost surely to the Pareto front

[12].

Set-quality indicators are widely used for assessing the perfor-

mance of multi-objective optimization algorithms. They create a

total order where there only was a partial one. Many indicators

have been invented and are thoroughly used, like the multiplicative

and additive epsilon indicators [16] or the hypervolume indicator.

The hypervolume and its variants such as the weighted hypervol-

ume [13] are the only known strictly Pareto compliant indicators

[15]. The multiplicative epsilon indictor is also called multiplicative

approximation ratio when the Pareto front is used as reference set.

In the biobjective case, it has been proven that the multiplicative

approximation ratio of the set of all vectors explored by the algo-

rithm cannot converge to 1 more rapidly than Ω(1/p), with p being

the number of function evaluations [4]. It is a direct consequence

of Corollary 3.2 in [4], which gives a lower bound of the form

1 + Θ(1/p) of the minimum multiplicative approximation ratio of a

set of p vectors.

In this paper, we derive lower and upper bounds of the form

Θ(1/p) of the difference in hypervolume between a p-optimal distri-

bution and the Pareto front. We call this difference optimality gap.

https://doi.org/10.1145/3449639.3459371
https://doi.org/10.1145/3449639.3459371
https://doi.org/10.1145/3449639.3459371
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For bilipschitz Pareto fronts, we have a tight lower bound on the

optimality gap of the form CONST/(p + 1). The constant depends
on the bilipschitz constants and on the position of the reference

point of the hypervolume indicator with respect to the nadir point.

The lower bound we found is exact in the case of a linear Pareto

front where the reference point dominates the nadir point. In this

case, the constant is simply the hypervolume of the Pareto front. We

generalize this result to Pareto fronts with a bilipschitz subsection

which dominates the reference point. For this wide class of Pareto

fronts (see Figure 6), the rate of convergence of multi-objective

algorithms in terms of hypervolume cannot be better than Ω(1/p).
For bilipschitz or convex Pareto fronts, we prove an upper bound

of the form CONST × (p + 1)/p2. The constant depends on the

extreme values of the Pareto front, on the reference point, and ad-

ditionally on the bilipschitz constants in the bilipschitz case. Since

any convex Pareto front has a bilipschitz subsection, both convex

and bilipschitz Pareto fronts abide by the above lower bound. As

a consequence, for either bilipschitz or convex Pareto fronts, the

optimality gap evolves as Θ(1/p).
We empirically evaluated the optimality gap for p up to 1000 on

six different Pareto fronts, among which three are convex and three

are concave. We observe convergence of p times the optimality

gap to a constant, even for non-bilipschitz and non-convex Pareto

fronts.

The rest of the paper is organized as follows. In Section 2, we de-

fine formally the Pareto front, the hypervolume and the p-optimal

distribution. Additionally, we introduce the concept of gap region.

In Section 3, we derive first lower and upper bounds on the opti-

mality gap, respectively for bilipschitz and for bilipschitz or convex

Pareto fronts. In Section 4, we derive sufficient conditions on the

objective-functions and the search space for the Pareto front to be

convex and bilipschitz. Additionally, we generalize the lower bound

for Pareto fronts with only a bilipschitz subsection. In Section 5, we

examine the empirical optimality gap on six different Pareto fronts.

Notations. We denote the search space by Ω. We denote elements

of Ω by X , which should not be confused with x denoting the first

coordinate of a vector of the Pareto front. A vector of the objective

space, v , is called feasible if v ∈ F (Ω). In order to avoid confusion,

we always use the term area to refer to the Lebesgue-measure in

dimension 2 and never to refer to a part of the objective space.

Further notations are defined in the next section.

2 PRELIMINARIES
We focus on biobjective optimization, which aims at minimizing

two objective functions, F1 and F2 over the search space Ω ⊂ Rn .
We denote F : X ∈ Ω 7→ (F1 (X ), F2 (X )).

2.1 Domination and Pareto front
A vector u ∈ R2 of the objective space is said to weakly dominate

a vector v ∈ R2 when u1 ≤ v1 and u2 ≤ v2. We denote it u ⪯ v . A
vector u is said to dominate a vector v when u ⪯ v and u , v . We

denote itu ≺ v . If a vectoru does not dominate a vectorv , we denote
it u ⊀ v . The Pareto front is the set of all non-dominated feasible

vectors: {u ∈ F (Ω) : ∀v ∈ F (Ω),v ⊀ u}. We will assume here that

the Pareto front has an explicit representation via f , namely that it

can be written as {(x , f (x )) : x ∈ [xmin;xmax]} with xmin , xmax.

By definition of the Pareto front, f must be strictly decreasing. We

say that f is (Lmin,Lmax)-bilipschitz when | f (x ) − f (y) | is between
Lmin × |x −y | and Lmax × |x −y | for all x ,y ∈ R. This is one of the
main assumptions of interest here. We will also consider Pareto

fronts for which f is convex and the (much) wider class of Pareto

fronts with a bilipschitz subsection.

Given a reference point r , we denote the extremes of the part

of the Pareto front dominating r with ũmin,r := (x̃min,r , f (x̃min,r ))
and ũmax,r := (x̃max,r , f (x̃max,r )) where x̃min,r := xmin when r2 ≥

f (xmin) and f −1 (r2) otherwise, and x̃max,r := min(xmax, r1), see
Figure 1. In this paper, we will also assume that the reference point

r is valid, in the sense that there exists a feasible vector of the

objective space dominating r . The nadir point is the vector which

F1

F2

r

ũmax,r

ũmin,r

x̃min,r x̃max,r

Figure 1: Depiction of ũmin,r and ũmax,r with r = (0.7, 0.8) for
the Pareto front associated with the function f : x 7→ 1 −

√
x

for x ∈ [0, 1].

coordinate in each objective is the worst value achieved on the

Pareto front for this objective. It equals (xmax, f (xmin)).

2.2 Hypervolume and p-optimal distribution
The hypervolume is a set-quality indicator which depends on a

reference point r . The hypervolume of a set S is the Lebesgue

measure of the region weakly dominated by S and dominating r
: λ({u ∈ F (Ω) : ∃s ∈ S, s ⪯ u ≺ r }). We denote it HVr (S ). The
hypervolume improvement and hypervolume contribution of a

vector u to a set S quantifies how much adding u to or removing u
from the set S , respectively, affects its hypervolume: HVIr (u, S ) :=
HVr (S ∪ {u}) − HVr (S ) and HVCr (u, S ) := HVIr (u, S \ {u}).

Here, we will study sets of p feasible vectors of the objective

space maximizing the hypervolume. We call them p-optimal distri-
butions and denote them S

p
r . We denote vp,1, . . . ,vp,p the vectors

of S
p
r ordered by increasing F1 values and xp,1, . . . ,xp,p their first

coordinates. We also denote xp,0 := x̃min,r and xp,p+1 := x̃max,r .

2.3 Gap regions
In this paper, we will examine the dependency of the optimality
gap HVr (PF) − HVr (S

p
r ) in p. The optimality gap is the area of

the region of the objective space dominated by the Pareto front PF

but not by the p-optimal distribution S
p
r . We call this region of the

objective space total gap region and denote it Gpr . We can now write

the optimality gap as λ(G
p
r ). Since the p-optimal distribution S

p
r is

a subset of the Pareto front, the total gap region can be decomposed

intop+1 disjoints regions, that we call gap regions, see Figure 2. The
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i-th gap region of S
p
r is the region of the objective space dominated

by the Pareto front and dominating the reference point r
p
i with

r
p
1
:=(xp,1, r2), r

p
p+1:=(r1, f (xp,p )) and r

p
i :=(xp,i , f (xp,i−1)) for all

i ∈ J2,pK. We denote it G
p
r,i .

G3r,1

G3r,2

G3r,3

G3r,4

v3,1

v3,2

v3,3

r3
1

r3
2

r3
3

r3
4

F1

F2 r

G3r

Figure 2: The four gap regions of the 3-optimal distribution
S3r for the concave and bilipschitz function f : x 7→ 1− 0.5x −
0.5x2 for x ∈ [0, 1].

3 THEORETICAL BOUNDS ON THE
OPTIMALITY GAP HVr (PF) −HVr (S

p
r )

In this section, we will prove both upper and lower theoretical

bounds on the optimality gap HVr (PF) −HVr (S
p
r ) when f is bilip-

schitz, and a theoretical upper bound when f is convex. The lower

bound is generalized to a wider class of functions in Section 4.2. All

bounds are equivalent to a constant times 1/p.

3.1 Lower bound on the optimality gap
We will prove that if f is (Lmin,Lmax)-bilipschitz, then the optimal-

ity gap λ(G
p
r ) = HVr (PF) − HVr (S

p
r ) is greater than

1

p+1 times a

constant depending only on the hypervolume of the Pareto front,

on the reference point and on the bilipschitz constants Lmin and

Lmax.

Theorem 1. If f restricted to [x̃min,r , x̃max,r ] is (Lmin,Lmax)-
bilipschitz, then the normalized optimality gap is bounded from below
as

λ(G
p
r )

HVr (PF)
≥

1

p + 1
×

Lmin

Lmax

×
1

1 + 2 × (q1 + q2 + q1 × q2)
(1)

with q1 :=
r1−x̃max,r

x̃max,r−x̃min,r
and q2 :=

r2−f (x̃min,r )
f (x̃min,r )−f (x̃max,r )

.
In particular, when r dominates the nadir point (xmax, f (xmin)),

both q1 and q2 equal 0, and thus the lower bound is simply 1

p+1 ×
Lmin

Lmax

.

Proof. We note cp,i := xp,i − xp,i−1 for i ∈ J1,p + 1K, ∆1
:=

r1 − x̃max,r and ∆2
:= r2 − f (x̃min,r ), see Figure 3.

The optimality gap HVr (PF) − HVr (S
p
r ) is greater than∑p+1

i=1

∫ xp,i
x=xp,i−1

( f (x ) − f (xp,i ))dx . Since the function f is decreas-

ing and its restriction to [x̃min,r , x̃max,r ] is (Lmin,Lmax)-bilipschitz,

f (x ) − f (xp,i ) is greater than Lmin times xp,i − x . Therefore, the

optimality gap λ(S
p
r ) is greater than

1

2
× Lmin ×

∑p+1
i=1 c

2

p,i .

v3,1

v3,2

v3,3

c3,1

c3,2

c3,3

c3,4

x3,1 x3,2 x3,3x3,0 x3,4

∆1

∆2

F1

F2 r

Figure 3: Illustration of the notations of the proof of The-
orem 1 for the convex and bilipschitz function f : x 7→
e

e−1 × e
−x + 1 − e

e−1 for x ∈ [0, 1] and r = (1.2, 1.15).

The hypervolume of the Pareto front is equal to

∆1 × ( f (x̃min,r ) − f (x̃max,r )) + ∆2 × (x̃max,r − x̃min,r )

+ ∆1 × ∆2 +

∫ x̃max,r

x̃min,r

( f (x ) − f (x̃max,r ))dx .

The integral and ∆1 × ( f (x̃min,r ) − f (x̃max,r )) are respectively

smaller than
1

2
×Lmax× (x̃max,r −x̃min,r )

2
and ∆1×Lmax× (x̃max,r −

x̃min,r ). By rewriting x̃max,r −x̃min,r as the sum over i ∈ J1,p+1K of
cp,i , we obtain that the optimality gap divided by the hypervolume

of the Pareto front is greater than

1

2
Lmin ×

∑p+1
i=1 c

2

p,i

1

2
Lmax × (

∑p+1
i=1 cp,i )

2 + (∆1Lmax + ∆2 × (
∑p+1
i=1 cp,i )) + ∆1∆2

.

The terms

∑p+1
i=1 c

2

p,i and
( ∑p

i=0 cp,i
)
2

being respectively ∥cp ∥
2

2
and

∥cp ∥
2

1
with cp := (cp,i )i ∈J1,p+1K ∈ R

p+1
, it is well-known that their

ratio is superior to
1

p+1 . Therefore, the normalized optimality gap

is greater than

1

p + 1
×

Lmin

Lmax + 2 ×
∆1×Lmax∑p+1
i=1 cp,i

+ 2 ×
∆2∑p+1

i=1 cp,i
+ 2 ×

∆1×∆2

(
∑p+1
i=1 cp,i )

2

.

We can rewrite back

∑p+1
i=1 cp,i as x̃max,r − x̃min,r . Additionally,

since f is (Lmin,Lmax)-bilipschitz,
∆2×Lmax

f (x̃max,r )−f (x̃min,r )
is greater than

∆2

x̃max,r−x̃min,r
. □

The larger Lmax/Lmin is, the less information we have on the

shape of (Lmin,Lmax)-bilipschitz Pareto fronts, and the looser is

the bound. The quantities q1 and q2 reflect the distance between
r and the nadir point normalized by the scale of the Pareto front,

respectively in the first and in the second objective. When the nadir

point dominates the reference point r , the bound gets looser as r
moves away from the nadir point. In case of a linear front, we get

the following tight result.
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Corollary 1. When r dominates the nadir point and Lmin =

Lmax, the normalized optimality gap λ (Gpr )
HVr (PF)

equals 1

p+1 , which cor-
responds to the lower bound (1) in Theorem 1.

Proof. - In this case, the Pareto front is linear, and thus S
p
r is

evenly distributed [1, Theorem 6]. As a consequence, the normalized

optimality gap of the p-optimal distribution is exactly 1/(p + 1),
which is the lower bound given by Theorem 1. □

3.2 Upper bound on the optimality gap
We will prove that if f is either (Lmin,Lmax)-bilipschitz or convex,

then the optimality gap is smaller than
p+1
p2 times a constant. The

proof idea is largely inspired by the proof of Theorem 4.4 in [4]. This

theorem gives an upper bound on the multiplicative approximation

ratio of the p-optimal distribution of the form 1+ C
p−4 withC being

a constant depending on the Pareto front.

The following lemma is a natural extension of [4, Lemma 4.3],

where we consider not only the p − 2 inner vectors of the p-optimal

distribution S
p
r but also its two extreme vectors. It states that the

smallest hypervolume contribution of any element in S
p
r is below

1/p2 times a constant depending only on the extreme values of the

Pareto front and on the reference point r .

Lemma 1. For any f such that there exists a p-optimal distribution
S
p
r , we have

min

v ∈Spr
HVCr (v, S

p
r ) ≤

(r1 − x̃min,r ) (r2 − f (x̃max,r ))

p2
. (2)

Proof. We denote ap,i := xp,i − xp,i−1 and bp,i := f (xp,i ) −
f (xp,i−1) for i ∈ J1,p + 1K except for ap,p+1 and bp,0 which are

respectively r1 − xp,p and r2 − f (xp,1), see Figure 4. For all i ∈

v3,1

v3,2

v3,3

a3,1

a3,2

a3,3

a3,4

b3,1

b3,2

b3,3

b3,4

x3,1 x3,2 x3,3
F1

F2 r

HVCr (vi,3, S
3

r )

Figure 4: Illustration of the notations of the proof of
Lemma 1 for f : x 7→ e

e−1 × e
−x + 1 − e

e−1 for x ∈ [0, 1] with
r = (1.1, 1.1) and p = 3.

J1,pK, the hypervolume contribution of vp,i to S
p
r is ap,i+1 × bp,i .

In particular, this implies that for any i the quantity ap,i+1 is

greater than

min
v∈Spr

HVCr (v,S
p
r )

bp,i
. Summing over i , we obtain that

(
∑p
i=1

1

bp,i
)×minv ∈Spr

HVCr (v, S
p
r ) is lower than

∑p
i=1 ap,i+1, and

thus lower than r1 − x̃min,r . Additionally, the harmonic mean of

the vector (bp,i )i ∈J1,pK is lower than its arithmetic mean:

p∑p
i=1

1

bp,i

≤

∑p
i=1 bp,i

p
.

As a consequence,minv ∈Spr
HVCr (v, S

p
r ) is lower than (r1−x̃min,r )

times

∑p+1
i=1 bp,i
p2 , that is

(r1−x̃min,r )×(r2−f (x̃max,r ))
p2 . □

We will also use the lower bounds on the maximum hypervol-

ume of a single vector of the Pareto front for f either convex or

(Lmin,Lmax)-bilipschitz stated in [10]. We recall these results below,

with a slight reformulation, for sake of completeness.

Proposition 1. If f restricted to [x̃min,r , x̃max,r ] is convex, we
have

max

u ∈PF
HVr (u) ≥

1

2

× HVr (PF). (3)

If f restricted to [x̃min,r , x̃max,r ] is (Lmin,Lmax)-bilipschitz, we have

max

u ∈PF
HVr (u) ≥

1

2

×
Lmin

Lmax

× HVr (PF). (4)

For all p, for all i ∈ J1,p + 1K, the hypervolume associated

with the reference point r
p
i of a vector u is equal to HVIr (u, S

p
r )

when u ∈ G
p
r,i and 0 otherwise. Thus, maxu ∈PF HVrpi

(u) equals

maxu ∈Gpr ,i
HVIr (u, S

p
r ). Additionally, the hypervolume associated

with r
p
i of the Pareto front is simply the area of the gap region G

p
r,i .

Using the optimality of the p-optimal distribution, we can deduce

from Lemma 1 and Proposition 1 an upper bound on the area of

any gap region G
p
r,i , and thus an upper bound on the optimality

gap at iteration p.
By applying Proposition 1 in the convex case, we obtain the

following theorem.

Theorem 2. If f restricted to [x̃min,r , x̃max,r ] is convex, then the
optimality gap is bounded from above as

λ(G
p
r ) ≤ 2 × (r1 − x̃min,r ) × (r2 − f (x̃max,r )) ×

p + 1

p2
(5)

Proof. Thep-optimal distribution S
p
r is a set ofp feasible vectors

of the objective space maximizing the hypervolume. As a conse-

quence, for any u ∈ F (Ω), for any v ∈ S
p
r , the hypervolume of

S
p
r \ {v} ∪ {u} is lower than the hypervolume of S

p
r . In other words,

the hypervolume improvement with respect to the set S
p
r \ {v} of

any feasible vector u is lower than the one of v itself. Additionally,

for any feasibleu, the hypervolume improvement ofu to S
p
r is lower

than the hypervolume improvement of u to S
p
r \ {v}. Indeed, they

are equal to the area of the region dominated byu but not by respec-

tively S
p
r and S

p
r \ {v}. As a consequence, for any feasible vector u,

HVIr (u, S
p
r ) is lower than HVIr (v, S

p
r \ {v}), that is HVCr (v, S

p
r ).

Let G
p
r,i be the i-th gap region of S

p
r . By Proposition 1, the area of

G
p
r,i is lower than 2 ×maxu ∈Gpr ,i

HVIr (u, S
p
r ). We just proved that

maxu ∈Gpr ,i
HVIr (u, S

p
r ) is lower than minv ∈Spr

HVCr (v, S
p
r ), and
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thus it is lower than
(r1−x̃min,r ) (r2−f (x̃max,r ))

p2 by Lemma 1. There-

fore, the area of any gap region G
p
r,i of S

p
r is lower than two

times
(r1−x̃min,r ) (r2−f (x̃max,r ))

p2 . Since the optimality gap HVr (PF) −

HVr (S
p
r ) is the sum of the areas of the p + 1 gap regions of S

p
r , we

can conclude. □

By applying Proposition 1 in the bilipschitz case instead of the

convex case, we obtain the following looser upper bound on the

optimality gap.

Theorem 3. If f restricted to [x̃min,r , x̃max,r ] is (Lmin,Lmax)-
bilipschitz, then the optimality gap is bounded from above by

λ(G
p
r ) ≤ 2 ×

Lmax

Lmin

× (r1 − x̃min,r ) × (r2 − f (x̃max,r ))

×
p + 1

p2

(6)

4 SUFFICIENT ASSUMPTIONS AND
GENERALIZATION OF THE LOWER BOUND

In this section, we give sufficient conditions for deriving bounds

on the optimality gap from Theorems 1 and 3. We also generalize

Theorem 1 to Pareto fronts that only need to have some bilipschitz

subsection.

4.1 Sufficient assumptions on the objective
functions

First, we will examine the bilipschitz assumption, under which

we have both a lower and an upper bound on the optimality gap.

It is simple to prove that, as soon as both objective functions F1
and F2 are bilipschitz, the function f characterizing the Pareto

front is bilipschitz too. We will say that Fi is (Lmin,Lmax)-bilipschitz

when for all X ,Y ∈ Ω, the quantity |Fi (Y ) − Fi (X ) | is between
Lmin × ∥Y − X ∥ and Lmax × ∥Y − X ∥.

Proposition 2. If F1 and F2 are respectively (Lmin,1, Lmax,1)-bi-
lipschitz and (Lmin,2, Lmax,2)-bilipschitz.

Then, f is ( Lmin,2

Lmax,1
, Lmax,2

Lmin,1
)-bilipschitz.

Proof. Let x ,y be in [xmin,xmax]. Since the vectors (x , f (x ))
and (y, f (y)) belong to the Pareto front, they are feasible, and thus

there exist X ,Y ∈ Ω such that (x , f (x )) = (F1 (X ), F2 (X )) and
(y, f (y)) = (F1 (Y ), F2 (Y )). Thus, | f (y) − f (x ) | equals |F2 (Y ) −
F2 (X ) |, which is superior to Lmin,2 times ∥Y −X ∥, which is superior

to
Lmin,2

Lmax,1
times |F1 (Y ) − F1 (X ) |, that is |x − y |. Conversely, |x − y |

is superior to
Lmin,1

Lmax,2
times | f (y) − f (x ) |. □

However, as soon as an objective function has a critical point in

the interior of the search space Ω, it is not bilipschitz. In particular,

this is the case when the objective function is derivable and has a

local minimum. In that case, there is no guarantee that f will be

bilipschitz. Setting the reference point such that the optimum in

question is excluded can account for this problem. From a practical

perspective, this is not a strong restriction.

Likewise, the convexity assumption on f is met as soon as both

objective functions F1 and F2 are convex. This is a known result

(see [7, p68]), but since we did not find a proof in the literature, we

include the proof below.

Proposition 3. If the search space Ω and the objective functions
F1 and F2 are convex, then f is convex.

Proof. Let u := (u1,u2) and v := (v1,v2) be two vectors of

the epigraph of f . Since the vectors (u1, f (u1)) and (v1, f (v1))
belong to the Pareto front, they are feasible, and thus there exist

X ,Y ∈ Ω such that (u1, f (u1)) = (F1 (X ), F2 (X )) and (v1, f (v1)) =

(F1 (Y ), F2 (Y )). Let note Z := X+Y
2

. By convexity of Ω, Z also be-

longs to Ω. By convexity of F1, F1 (Z ) is smaller than
F1 (X )+F1 (Y )

2
,

that is
u1+v1

2
. Therefore, f being decreasing, f

(
u1+v1

2

)
is smaller

than f (F1 (Z )), that is F2 (Z ). By convexity of F2, F2 (Z ) is smaller

than
F2 (X )+F2 (Y )

2
, that is

f (u1 )+f (v1 )
2

and thus than
u2+v2

2
since u

and v belong to the epigraph of f . Therefore, u+v
2

also belongs to

epif . We can conclude that the epigraph of f , and thus the function
f itself, are convex. □

Convexity of each objective is a sufficient but not a necessary

condition. For example, the Pareto front of the test problem ZDT1

[14] is convex, while the second objective function is not.

4.2 Generalization of the lower bound to
functions with a bilipschitz subsection

We prove that the optimality gap associated with any reference

point r ′ dominating the reference point r provides a lower bound
on the optimality gap associated with r .

Lemma 2. Given a reference point r ′ that dominates the reference
point r . The optimality gap HVr (PF) − HVr (S

p
r ) associated with r

is bounded from below by the optimality gap HVr ′ (PF) − HVr ′ (S
p
r ′ )

associated with r ′.

u1

u2

u3

F1

F2 r

r ′

Figure 5: Illustration of the proof of Lemma 2.

Proof. For any set S , the difference HVr (PF)−HVr (S ) is greater
than HVr ′ (PF) − HVr ′ (S ), see Figure 5. Indeed, the difference be-
tween the hypervolumes of S and of the Pareto front is the area of

the intersection of the region dominated by the Pareto front but not

by the set S and the region dominating the reference point. Since r ′

dominates r , the region of the objective space dominating r ′ is in-

cluded in the region dominating r . Therefore, HVr (PF) − HVr (S
p
r )
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is greater than HVr ′ (PF) − HVr ′ (S
p
r ), which is itself greater than

HVr ′ (PF) − HVr ′ (S
p
r ′ ) by definition of S

p
r . □

Hence, to get a lower bound on the optimality gap for any ref-

erence point r , it suffices to find a reference point r ′ such that

Theorem 1 applies and r ′ dominates r . As a consequence, as soon as

any part of the Pareto front dominating r is bilipschitz, see Figure 6,
Theorem 1 provides a, generally non-tight, lower bound on the

optimality gap for any reference point that covers at least some

part of a bilipschitz subsection.

Theorem 4. Assume there exists a reference point r ′ dominating
both r and the nadir point such that f restricted to [x̃min,r , x̃max,r ] is
(Lmin,Lmax)-bilipschitz. Then, the optimality gap HVr (PF)−HVr (S

p
r )

is greater than HVr ′ (PF) ×
Lmin

Lmax

× 1

p+1 .

F1

F2 r

Figure 6: An example of Pareto front with a bilipschitz sec-
tion dominating the reference point r . Both continuous sec-
tions are bilipschitz.

In particular, this is the case when the function f is either convex

or concave. Indeed, since f is strictly decreasing, it has finite and

nonzero left and right derivatives everywhere outside the extremes

xmin and xmax. This generalization of the lower bound extends

the scope of the study to non-continuous Pareto fronts such as

piecewise continuous Pareto fronts. Lemma 2 and Theorem 1 also

provide a way to find a lower bound for Pareto fronts which do not

even have an explicit formula, contrary to the assumptions detailed

in the preliminaries. It suffices that a part of the Pareto front has

such a characterization.

5 EXPERIMENTAL RESULTS
In this section, we will compare the dependency in p of the opti-

mality gap HVr (PF) − HVr (S
p
r ) and the theoretical bounds on six

different Pareto fronts.

5.1 Benchmark Pareto fronts
We will look at six different Pareto fronts, among which three are

convex and three are concave, see Figure 7 (a)-(f).

The doublesphere Pareto front (b) corresponds to the objec-

tive functions F1 : X 7→ ∥X − X ∗
1
∥2
2
and F2 : X 7→ ∥X − X ∗

2
∥2
2

with ∥X ∗
1
− X ∗

2
∥2 = 1, see [11]. zdt1 (c) and zdt2 (f) belong to

the ZDT test suite [14] while dtlz2 (e) belongs to the DTLZ test

suite [6]. None of these Pareto fronts are bilipschitz. For this rea-

son, we construct ourselves convex-bil (a) and concave-bil (d) to

F1

F2 r

(a) convex-bil

F1

F2 r

(b) doublesphere

F1

F2 r

(c) zdt1

F1

F2 r

(d) concave-bil

F1

F2 r

(e) dtlz2

F1

F2 r

(f) zdt2

Figure 7: The benchmark Pareto fronts, corresponding to
the functions (a) : f : x 7→ e

e−1 × e
−x + 1 − e

e−1 (b) : f : x 7→

1 + x − 2 ×
√
x (c) : f : x 7→ 1 −

√
x (d) : f : x 7→ 1 − 0.5x − 0.5x2

(e) : f : x 7→
√
1 − x2 (f) : f : x 7→ 1 − x2.

be bilipschitz convex and concave Pareto fronts, respectively. We

can easily build constrained multi-objective optimization problems

whose Pareto fronts are respectively convex-bil and concave-bil.
For example, these Pareto fronts correspond to the problem of min-

imizing F1 : X 7→ X1 and F2 : X 7→ f (X1)+
∑n
i=2 Xi for X ∈ [0, 1]

n

with f : x 7→ e
e−1 × e

−x + 1 − e
e−1 and f : x 7→ 1 − 0.5x − 0.5x2,

respectively. The letter n represents the dimension of the search

space.

We chose these Pareto fronts because they have a known analytic

formula. It allows us to estimate the optimality gap for a p-optimal

distribution for high p in reasonable time with high confidence.

5.2 Computation of a p-optimal distribution
and the optimality gap

Since S
p
r is a subset of the Pareto front, if we know the explicit

representation of the Pareto front {(x , f (x )) : x ∈ [xmin,xmax]}, a

p-optimal distribution S
p
r can be obtained from the first coordinates

of its vectors, that is, xp,i for i ∈ J1,pK. They are a solution of

max

x1, ...,xp ∈[xmin,xmax]

HVr ({(x1, f (x1)), . . . , (xp , f (xp ))}) .

We do not solve this problem directly. We exploit the following

parametrization to solve it faster: δi := xi −xi−1 for all i ∈ J2,p−1K,
δ1 := x1 −xmin and δp := xmax −xp , see Figure 8. For dtlz2, we use
a slightly different parametrization to cancel the bad conditioning:

δ ′p := sgn(δp ) ×
√
|δp |.

We use the algorithm CMA-ES with bounds between 0 and 1.

These bounds do not guarantee that the xi corresponding to the

δi are in [0, 1]. We ensure that a xi outside [0, 1] does not con-

tribute to the hypervolume by setting f (x ) = r2 outside [0, 1].

Additionally, to prevent having a flat fitness for δi such that the cor-

responding xi are outside [0, 1], we add the penalization

∑p
i=1 (x −

1)21xi>1 + x
21xi<0. The source code is available at https://github.

com/eugeniemarescaux/gecco2021.

https://github.com/eugeniemarescaux/gecco2021
https://github.com/eugeniemarescaux/gecco2021
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F1

F2 r

δ1 δ2 δ3

x1 x2 x3

Figure 8: Illustration of the reparametrization of a set of p
points of the Pareto front by δ .

5.3 Results
Figure 9 shows p times the optimality gap of a p-optimal distribu-

tion for p between 1 and 1000. In the same figure, we also plotted

for comparison p times the theoretical lower and upper bounds

described in Section 3. For non-bilipschitz Pareto fronts, we exploit

the generalization of the theoretical lower bound done in Section 4.2.

For Pareto fronts which are neither bilipschitz nor convex, since

there is no known theoretical upper bound, only two curves are rep-

resented. For a reference point r equal to the nadir point (1, 1), i.e.
in the first and third column of Figure 9, we see a close to constant

shift between the curves of the empirical optimality gap and of the

theoretical lower bound. Hence, the optimality gap evolves roughly

as 1/(p + 1) even for the smallest values of p. For a reference point
r equal to (11, 11), i.e. in the second and fourth column of Figure 9,

the shift between the empirical curve and the theoretical bound

curve takes very different values forp small. However, the empirical

curve seems to converge to a horizontal line, which is a marker that

p times the optimality gap of S
p
r converges to a constant. For every

Pareto front, the curve of the empirical optimality gap is almost

horizontal at least for p greater than 10.

In the proof of Theorem 1, more precisely in the first phrase after

the introduction of the notations, we neglected the area of the part

of the total gap region which does not dominate the nadir point. It

could explain why the optimality gap decreases with p in the same

way as the theoretical lower bound for r equal to the nadir point
(1, 1) but not for r equal to (11, 11).

6 CONCLUSION
We have proven that for a wide class of biobjective Pareto fronts,

the hypervolume of all the solutions visited by a biobjective opti-

mization algorithm converges to the hypervolume of the Pareto

front in Ω(1/p). This is true for any algorithm, but also for ob-

jective functions as easy as convex quadratic functions, and for a

search space of any dimension. The maximum rate of convergence

to the entire Pareto front is slow compared to the convergence rate

observed when converging to a single point in the Pareto set or,

likewise, in single-objective optimization.

Several evolutionary algorithms achieve linear convergence on

convex-quadratic functions [2]: their distance to the optimum stays

close to 1/αp for some α > 1 (typical convergence speeds de-

pend on the search space dimension n and α rarely exceeds 1.21/n ).

For random-search algorithms, the precision ϵ evolves on most

functions as Θ(1/p1/n ) with p being here the expected number of

evaluations to reach the ball of radius ϵ , see [2, Theorem 10.8].

A convergence rate which would seem slow for a single-objective

algorithm does not come from an inefficient algorithm or from hard

to optimize objective functions. The slowness is inherent to the set-

quality indicators used. The simplicity of the proof, the fact that the

convergence rate is Ω(1/p) for both the hypervolume indicator and

the multiplicative approximation ratio, and the very general (weak)

assumptions suggest that this is a fundamental limitation on the

convergence rate in multi-objective optimization. This is however

not a very surprising result when considering that, contrary to

single-objective optimization, the goal is not to approximate a single

vector, but an entire set.

We empirically observed on six functions that p times the op-

timality gap converges rapidly to a constant, even for the two

functions for which we have no upper bound. We suspect that the

optimality gap is equivalent to a constant times 1/p on most if not

all biobjective optimization problems with a partially continuous

Pareto front.

In general, theoretical lower bounds are quite useful in algorithm

development. Apart from designing algorithms that actually reach

the lower bound, they can in particular avoid futile but long lasting

attempts to improve algorithms that already reach the bound. This

requires a non-asymptotic bound, as presented in this paper. Yet,

the question arises how the lower bound on the optimality gap

of the p-optimal distribution transfers to a practical algorithm. A

practical algorithm faces at least two additional problems: it can

only approximate any p-optimal distribution (but never reaches it),

and the intersection between p-optimal distributions for different

values of p is often small. Therefore, the presented bounds need

to be carefully combined with bounds on the convergence speed

towards points in the p-optimal distribution. We have currently no

conjecture as to whether a convergence rate ofΘ(1/p) is achievable
by a real biobjective algorithm.

For finite discrete Pareto fronts, we cannot talk of a convergence

rate in θ (1/p) since p is bounded by the size of the Pareto front,

that we will denote N . In that case, it is trivial that for p , N and

for C1 and C2 respectively small and large enough, the optimality

gap of the p-optimal distribution is between C1 × 1/p and C2 × 1/p.
However, we can still expect that for some discrete Pareto fronts the

optimality gap of thep-optimal distribution will resembleCONST ×
1/(p +CONST ) for medium values of p. Indeed, we expect that for
regular discretization of continous Pareto fronts, the impact on

the optimality gap of the lack of precision of the approximation

of a p-optimal distribution is negligable for p ≪ N . Thus, the

optimality gaps for the discrete approximation and for the original

continuous Pareto front should be alike for these values of p. For
example, consider a discrete Pareto front PFd which is the regular

discretization of a continuous linear Pareto front PFc . If N is even,

then the optimality gap for PFd of any p-optimal distribution with p
even is exactly (1/(p + 1) − 1/(N + 1)) ×HVr (PFc ). For p ≪ N , it is

close to 1/(p + 1) ×HVr (PFc ), the optimality gap in the continuous

case.
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(a) convex-bil with r = (1, 1) (b) convex-bil with r = (11, 11) (c) doublesphere with r = (1, 1) (d) doublesphere with r = (11, 11)

(e) zdt1 with r = (1, 1) (f) zdt1 with r = (11, 11) (g) concave-bil with r = (1, 1) (h) concave-bil with r = (11, 11)

(i) dtlz2 with r = (1, 1) (j) dtlz2 with r = (11, 11) (k) zdt1 with r = (1, 1) (l) zdt2 with r = (11, 11)

Figure 9: Comparison betweenp times the empirical optimality gapHVr (PF)−HVr (S
p
r ) and its theoretical bounds on the Pareto

fronts described in Section 5.1. The empirical optimality gap, HVr (PF) − HVr (S
p
r ) is represented in blue and the theoretical

lower and upper bounds are represented in orange and green, respectively.
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