
HAL Id: hal-03205773
https://hal.science/hal-03205773

Submitted on 22 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Arctic Curve of the Free-Fermion Six-Vertex Model in
an L-Shaped Domain

F. Colomo, A. G Pronko, A. Sportiello

To cite this version:
F. Colomo, A. G Pronko, A. Sportiello. Arctic Curve of the Free-Fermion Six-Vertex Model in an
L-Shaped Domain. Journal of Statistical Physics, 2019, 174 (1), pp.1-27. �10.1007/s10955-018-2170-2�.
�hal-03205773�

https://hal.science/hal-03205773
https://hal.archives-ouvertes.fr


ar
X

iv
:1

80
7.

07
54

9v
3 

 [
m

at
h-

ph
] 

 2
6 

Se
p 

20
18

Arctic curve of the free-fermion six-vertex model

in an L-shaped domain

F. Colomo, A. G. Pronko, and A. Sportiello

Abstract. We consider the six-vertex model in an L-shaped domain of the
square lattice, with domain wall boundary conditions, in the case of free-
fermion vertex weights. We describe how the recently developed ‘Tangent
method’ can be used to determine the form of the arctic curve. The obtained
result is in agreement with numerics.

1. Introduction

The thermodynamics of the six-vertex model with fixed boundary conditions
has attracted much attention in recent years, in particular, as an example of a sys-
tem exhibiting (in an appropriate scaling limit) spatial phase separation phenomena
[1–12]. The model can be regarded as a nontrivial generalization of dimer models,
and in particular, under specific geometry and boundary conditions, of the famous
problem of domino tilings of the Aztec diamond, where the celebrated Arctic Circle
phenomenon was discovered [13].

Among the many questions concerning this kind of effects, the shape of the
phase separating curves (known as arctic curves) is of prime interest on its own
right [14–29], and also in view of its relevance in relation with quantum quenches
and nonequilibrium transport in one-dimensional quantum spin chains [9, 30, 31],
and with spin-ice models [32].

In the case of the six-vertex model, within the various possible choices of fixed
boundary conditions, domain wall boundary conditions [33] are the most studied.
The arctic curve is known essentially only for the case of a square domain [5,34,35],
although some recent progress has been made about the derivation of the arctic
curve for the model in domains of more generic shape, from the knowledge of
some suitable boundary correlation function, and of its asymptotic behaviour in
the scaling limit [36].

In the present paper we consider the six-vertex model in an L-shaped domain.
The partition function of the model has been evaluated in [37]. At the free-fermion
point, it can be expressed as the partition function of some discrete log-gas [38,39].
The corresponding free energy has been studied in [40, 41].

The analytic determination of the arctic curve of the model in an L-shaped
domain, even only at the free-fermion point, is a nontrivial problem. In the free-
fermion case, one could in principle use the general approach developed for dimer
models in [18–20]. These papers establish the existence of the arctic curve, and its
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analyticity, under general hypotheses which apply also here. They also provide a
method for the analytic determination of the curve. However, while their method
is quite amenable in the case of a triangular lattice (lozenge tilings), it becomes
rather cumbersome for the square lattice (domino tilings).

Here, instead, we resort to the recently developed ‘Tangent method’ [36]. For
this we need to calculate a suitable boundary correlation function of the six-vertex
model in an L-shaped domain, and to estimate its asymptotic behaviour in the
scaling limit. While most of the derivation can be carried out for generic choices of
the Boltzmann weights, at the moment we are able to perform the aforementioned
asymptotic evaluation only at the free-fermion point, the crucial limitation being
the absence of an equivalent of the following Proposition 3.1 in the generic case.

The paper is organized as follows. We start by defining the model and in-
troduce the correlation functions of interest for our purposes. Next we recall the
Tangent method, which allows to determine the arctic curve from the knowledge
of the asymptotic behaviour of some specific boundary correlation function. This
is evaluated in terms of the so-called generalized emptiness formation probability
(GEFP), introduced in [42], and expressed here, at the free-fermion point, in terms
of the one-point correlation function of a discrete log-gas model. The asymptotic
behaviour of the boundary correlation function is then evaluated, by resorting to
standard techniques of random matrix models. Finally, using the Tangent method,
the arctic curve of the model is obtained. We also show that the result is in excellent
agreement with the numerical evaluation of the limit shape at finite size.

2. The six-vertex model on an L-shaped domain

In this section we recall basic facts about the six-vertex model with domain
wall boundary conditions on an L-shaped domain. We define the GEFP, a rather
general correlation function of the six-vertex model on the usual N × N lattice
with domain wall boundary conditions, which can be specialized to describe the
partition function and some useful correlation functions in the case of the L-shaped
domain. We formulate the problem of determination of the arctic curve arising in
the scaling limit and set up some notation for parametrising the geometry of the
domain.

2.1. The lattice, configurations and weights. The states of the six-vertex
model are configurations of arrows pointing along the edges of a square lattice, and
satisfying the condition that at each vertex the numbers of incoming and outgoing
arrows are equal. This condition, known as ice rule, selects six possible vertex con-
figurations. These are listed in Fig. 1, together with the corresponding Boltzmann
weights, wi, i = 1, . . . , 6.

The L-shaped domain can be defined as a square domain with a rectangular
portion removed from one of the corners, see Fig. 2a. Specifically, the square domain
is the finite square lattice obtained from the intersection of N horizontal and N

w1 w2 w3 w4 w5 w6

Figure 1. The six vertex configurations and their weights.
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Figure 2. The L-shaped domain with domain wall boundary con-
ditions: (a) The domain with a cut-off corner, (b) Equivalent arrow
configuration on the original lattice. Here N = 7, r = 4, and s = 2.

vertical lines (we will just say ‘the N ×N lattice’ for ‘the N ×N square domain of
the square lattice’). The L-shaped domain is obtained by removing a rectangular
portion of the lattice, of size s × (N − r), from the top-left corner of the square.
The interesting range is r + s ≤ N since otherwise there are no admissible arrow
configurations.

For future convenience, we label the vertices of the square domain as follows:
we associate the lattice coordinates (j, k) to the vertex at the intersection between
the jth vertical line, counting from the right, and the kth horizontal line, counting
from top. Correspondingly, the vertices of the L-shaped domain have labels (j, k),
with j = 1, . . . , r for k = 1, . . . , s, and j = 1, . . . , N for k = s+ 1, . . . , N .

We impose domain wall boundary conditions by fixing all horizontal (respec-
tively, vertical) arrows on external edges as outgoing (incoming). For s = 0, one has
the usual N ×N lattice with domain wall boundary conditions, introduced in [33].
We denote the partition function of the six-vertex model in the L-shaped domain
with domain wall boundary conditions by ZN,r,s. When s or N − r is zero, we use
the standard notation ZN .

Under the choice of domain wall boundary conditions, due to the ice rule,
there is an obvious correspondence between the six-vertex model on the L-shaped
domain and the model on the N ×N square lattice, conditioned to have all vertex
configurations of type 2 in the top-left s× (N − r) rectangle, see Fig. 2b.

It is well known that (see, e.g., [6]), in presence of domain wall boundary
conditions, one can restrict with no loss of generality to Boltzmann weights that
are invariant under reversal of arrows, that is w1 = w2, w3 = w4, and w5 = w6.
In this paper we consider only the case in which they also obey the free-fermion
condition w1w2 + w3w4 = w5w6. In this case, and up to a global rescaling, one is
left with a single real parameter, and we adopt the following parameterization of
the Boltzmann weights:

w1 = w2 =
√
1− α, w3 = w4 =

√
α, w5 = w6 = 1, α ∈ [0, 1]. (2.1)
3



r1r2r3

Figure 3. The configuration of arrows on the N×N lattice, whose
probability is described by the GEFP. Here N = 7, s = 3, and
(r1, r2, r3) = (3, 4, 6).

The construction above can be translated into the language of dimer models,
using the well-known correspondence between the six-vertex model with domain
wall boundary conditions and the domino tilings of the Aztec diamond [43]. The
case of the six-vertex model on an N×N square lattice with domain wall boundary
conditions corresponds to the Aztec diamond of order N ; analogously, the model
on the L-shaped domain corresponds to the Aztec diamond with a cut-off corner
[40].

2.2. The GEFP and boundary correlation function. In [42], a rather
general and flexible nonlocal correlation function, called generalized emptiness for-

mation probability (GEFP), was introduced. For the six-vertex model on a square
domain, it describes the probability of having an s-tuple of horizontal edges (one
edge per line, in the first s horizontal lines, with corresponding column indices
forming a weakly ordered sequence) all in a given state.

More precisely, enumerating the horizontal lines of the N ×N lattice from the
top and the vertical lines from the right, we choose s edges, e1, . . . , es, 1 ≤ s ≤ N ,
with edge ek, k = 1, . . . , s, located on the kth horizontal line, and between the
rkth and (rk + 1)th vertical lines. We require the rk’s to form a weakly increasing

sequence 1 ≤ r1 ≤ · · · ≤ rs ≤ N . We denote by G
(r1,...,rs)
N,s the probability of

observing all arrows on the horizontal edges e1, . . . , es to be pointing left, see Fig. 3a.
Clearly, this is also the probability of having vertex configurations of type 2 at all
sites (j, k) with rk < j ≤ N , k = 1, . . . , s.

In [42] a multiple integral representation was derived for the GEFP (see equa-
tions (5.4) and (5.6) in that paper). Under the free-fermion condition and with
parameterization (2.1), this representation reads

G
(r1,...,rs)
N,s = (−1)s

∮

C0

· · ·
∮

C0

s∏

j=1

(αzj + 1− α)N−j

z
rj
j (zj − 1)s−j+1

∏

1≤j<k≤s

(zj−zk)
dsz

(2πi)s
. (2.2)

In the special case r1 = · · · = rs = r the GEFP reduces to the usual emptiness
formation probability (EFP) of the six-vertex model with domain wall boundary
conditions, introduced in [34].

We emphasize that, although the GEFP has been defined for the model on a
square domain, by suitably specializing the values of the rj ’s, it actually provides
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l

Figure 4. Boundary correlation function H
(l)
N,r,s in the case N =

7, r = 4, s = 2, and l = 3.

closed form expressions for the partition function and some correlation functions
of the model on certain classes of more general domains. For example, the EFP
essentially describes the quotient of the partition functions of the model on the
L-shaped domain and the original N × N lattice, namely, the following relations
holds:

ZN,r,s =
ZN

w
s(N−r)
2

G
(r,...,r)
N =

1

(1− α)s(N−r)/2
G

(r,...,r)
N . (2.3)

Here the first equality is valid for arbitrary weights while the second is specific for
the case of free-fermion weights, with parameterization (2.1), when the partition
functions evaluates simply to ZN = 1. Thus (2.2), due to (2.3), also provides a
multiple integral representation for the partition function.

Below we shall be interested in a particular boundary correlation function for
the six-vertex model in an L-shaped domain. To define this function let us consider
the first row of vertical edges, between the first two horizontal lines. We note
that, as a consequence of the ice-rule and domain wall boundary conditions, the

corresponding arrows are all pointing down, except one. We denote by H
(l)
N,r,s

the probability of observing this sole up arrow exactly on the lth vertical edge,
l = 1, . . . , r, see Fig. 4. We introduce the corresponding generating function,

hN,r,s(w) =

r∑

l=1

H
(l)
N,r,sw

l−1, hN,r,s(1) = 1. (2.4)

This function plays a crucial role in what follows.

It is clear that the boundary correlation function H
(l)
N,r,s is closely connected

to the GEFP, upon suitable specialization of the rj ’s. Indeed, for l ≤ r, the

quotient G
(l,r,...,r)
N,s /G

(r,r,...,r)
N,s gives the probability of observing, for the model on the

L-shaped domain, a left-pointing arrow on the first horizontal edge in the lth column.

The boundary correlation function H
(l)
N,r,s is nothing but the lattice derivative in l

of this probability:

H
(l)
N,r,s =

1

G
(r,...,r)
N,s

[
G

(l,r,...,r)
N,s −G

(l−1,r,...,r)
N,s

]
, l = 1, . . . , r. (2.5)

The generating function hN,r,s(w) can similarly be expressed in terms of the GEFP,
with some simplifications occurring at the level of the integrand in (2.2).
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An analogous quantity could be defined for the refinement position on a different
boundary side: in the (s + 1)th row of vertical edges, restricted to the last N − r
columns, there is at most one arrow pointing up (and in fact, in the limit of large
N , almost surely one). In order to investigate the associated statistics, one may

study the lattice derivative (in l) of the correlation function G
(r,...,r,l)
N,s+1 /G

(r,...,r)
N,s , with

r ≤ l ≤ N . As in this paper we are considering only the free-fermionic case, in
which the exact knowledge of a portion of the curve implies the knowledge of all the
curve, by analytic continuation, we can avoid the study of this second combination
(although, in fact, at the level of the study of the log-gas, this would require only
minor modifications).

2.3. Scaling limit, Arctic ellipse, and two regimes. The phase separa-
tion phenomena in the six-vertex model take place in the scaling limit, which is
performed by sending N → ∞, and simultaneously rescaling the lattice coordinates
(j, k) such that: j/N = x, k/N = y, with (x, y) ∈ [0, 1]2 now being continuous co-
ordinates. In the case of the L-shaped domain, the parameters r and s are rescaled
as well, and we set

R =
r

s
, Q =

N − r − s

s
, (2.6)

where R ≥ 1 (in order for the statistical ensemble to be nontrivial) and, without
loss of generality, Q ≥ 0 (the case Q < 0 may be obtained by symmetry). We use
s, rather than N , as the main scaling parameter since the former naturally appears
in the discrete log-gas description of the model.

The R and Q fully describe the geometry of L-shaped region in the scaling limit.
An alternate useful parametrization is given by the coordinates of the bottom-right
vertex of the rectangular cut-off corner of the L-shaped domain:

ξx =
R

R+Q+ 1
, ξy =

1

R+Q+ 1
. (2.7)

Thus, in the scaling limit, the L-shaped domain is rescaled into the region {[0, ξx]×
[0, ξy]} ∪ {[0, 1]× [ξy, 1]} of the R

2 plane, see Fig. 5. Note that the coordinates x
and y have origin in correspondence of the top-right vertex of the L-shaped domain,
and are oriented leftward and downward, respectively. This unconventional choice
is done in order to match with the labeling of the rows and columns in the discrete
lattice.

It is known [40,41] that the model undergoes a third-order phase transition as
the cut-off rectangle is large enough to touch the Arctic ellipse of the model on the
original (unmodified) lattice. More precisely, the phase transition occurs, for given
values of Q and α, at R = Rc(Q,α):

Rc =

(
1 +

√
α(1 +Q)

)2

1− α
. (2.8)

This curve splits the space of parameters (R,Q, α) ∈ [1,∞)× [0,∞)× [0, 1] into two
regions, which we call Regime I, when R ∈ [Rc,∞), and Regime II, R ∈ [1, Rc].

In terms of the coordinates ξx and ξy, the value Rc corresponds to one arc of
the ellipse

(1− x− y)2

1− α
+

(x− y)2

α
= 1, (2.9)
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Figure 5. The portion of the R
2 plane corresponding to the L-

shaped domain in the scaling limit.

(a) (b)

Figure 6. The two regimes: (a) Regime I, (b) Regime II.

tangent to the four sides of the unit square, and specifically to that arc which
connects tangency points (x, y) = (α, 0) and (x, y) = (1, 1 − α). This arc is also

described by the equation
√
y =

√
(1− α)x −

√
α(1− x).

In other words, (2.9) is nothing but the Arctic ellipse of the original six-vertex
model (at the free-fermion point). Then, Regime I corresponds to the situation
where the cut-off rectangle lies totally outside the Arctic ellipse; in Regime II the
cut-off rectangle ‘penetrates’ the interior of the Arctic ellipse, see Fig. 6. In the
former case the arctic curve is not modified by the restricted geometry, while in
latter case it must be deformed into some new curve, whose determination is the
goal here.

In the case of the L-shaped domain with domain wall boundary conditions,
phase separation phenomena and the emergence of a nontrivial limit shape should
be expected, on the basis of the general results of [18–20]. On top of this, the
phenomenon is clearly observed in numerics, see Fig. 7. The numerics presented in
this picture has been generated basing on the generalized domino shuffling algorithm
[44], see Appendix A for details.

The analytic determination of the arctic curve of the model is a nontrivial
problem. In the free-fermion case, one could in principle resort to the general

7



Figure 7. Illustration of the edge-inclusion probabilities, in the
domain with N = 300 and s = N − r = 132, done according to
the ‘Limit shape’ procedure described in Appendix A. In black, the
plot of the arctic curve (4.17) with the same ratios r/N and s/N .

approach developed for dimer models in [18–20]. However, for the square lattice,
the characteristic polynomial of the corresponding Kasteleyn matrix is of degree
higher than one, and makes it difficult to work out explicit results beyond the case
of the square domain.

Here we shall resort to the Tangent method, that determines the Arctic curve
of the six-vertex model in a generic domain as the geometric caustic of a family of
straight lines, that are completely determined by the behaviour of the boundary
correlation function in the scaling limit [36]. We emphasize that this paper provides
just one application of the general method, which instead applies, in principle, to
a wide class of domains and to generic Boltzmann weights.

3. The Tangent method

In the section we illustrate how the Tangent method may be applied to the
six-vertex model on an L-shaped domain with domain wall boundary conditions.
Our main object of study is the one-point boundary correlation function, whose as-
ymptotic behaviour in the scaling limit determines the arctic curve. The boundary
correlation function may be represented in terms of a discrete log-gas. Correspond-
ingly, we show that its scaling limit behaviour is described by (the functional inverse
of) the resolvent associated to the discrete log-gas in the thermodynamic limit.

3.1. Parametric equation for the arctic curve. In the case of the L-
shaped domain, the Tangent method gives the following recipe: the arc of the
arctic curve subtended by the corner with lattice coordinates (r, 1), i.e., (ξx, 0) in

8



the scaling limit, can be expressed in parametric form x = x(w), y = y(w), with
w ∈ [1,∞), as the solution of the linear system of equations

F (w;x, y) = 0, ∂wF (w;x, y) = 0, (3.1)

with

F (w;x, y) = x−M(w)y − Φ(w), M(w) ≡ w

(w − 1)(αw + 1− α)
. (3.2)

Here the function Φ(w) = Φ(w;R,Q, α) is defined as follows:

Φ(w) = lim
N,r,s→∞

1

N
w∂w log hN,r,s(w), (3.3)

where hN,r,s(w) is the generating function of the boundary correlation function

H
(l)
N,r,s, see (2.4).
Note that the recipe may be equivalently formulated as follows: the above

considered arc of arctic curve is the geometric caustic of the one-parameter family
(3.2) of straight lines in the (x, y)-plane, in the parameter w ∈ [1,∞). Also, the
values w = 1, and w → ∞ correspond to the two points of contact of the considered
arc with the two sides of the L-shaped domain: {(x, 0), x ∈ [0, ξx]} and {(ξx, y), y ∈
[0, ξy]}, respectively.

The above recipe follows from the ‘path description’ of the six-vertex model,
and can be applied to all those models whose configurations can be rephrased in
terms of (directed) non-intersecting lattice paths (although the paths are allowed
to ‘osculate’, that is, they may have a contact-point interaction). The path descrip-
tion highlights some conservation law of the models and displays their underlying
fermionic (but not necessarily free-fermionic) character.

These paths can also be interpreted as level lines of a certain height function,
whose value at the boundary is fixed. This height function, in the scaling limit,
may converge to some limit shape. Frozen regions are associated to portions of the
limit shape which are flat. In this picture, and under the mild assumption that
the typical distance between consecutive paths is o(N), it is clear that the limiting
behaviour of the outmost path describes (some portion of) the arctic curve. The
idea is then to condition one end-point of the most external lattice path to some
distant lattice point. In the scaling limit, the path is expected to follow only a
portion of the outer shell of path (that is, the arctic curve), then to escape it
tangentially, and, free from the influence of other paths (as the paths only interact
locally), to continue toward the prescribed end-point along a straight line.

This heuristic picture has an analytic counterpart at the level of the boundary
correlation function associated to prescribing the position of the end-point, and
modulo the very reasonable and strongly supported, but still unproven, tangency
assumption, may be developed rigorously. A standard saddle-point analysis leads to
the Tangent method’s recipe. According to the above interpretation, for each value
of w ∈ [1,∞), in the scaling limit, the slope of the straight portion of the out-most
path is 1/M(w), while the quantity Φ(w) is essentially the value of concentration

in l for the boundary correlation function H
(l)
N,r,s; that is, in the generating function

hN,r,s(w) (see (2.4)), the most relevant summands are concentrated around l =

Φ(w), within a window of the order
√
N . For a full description of the Tangent

method, with many examples, see [36]. For further applications, see [28, 29].
9



In principle, the above procedure should be performed for each corner of the
domain, to determine the corresponding subtended arc of the arctic curve. How-
ever, in the considered case of free-fermion Boltzmann weights, the arctic curve is
known to be algebraic [18], allowing for the possibility of extending one arc to a
full component of the arctic curve, just by analytic continuation. In our case this
accounts to extending the range of parameter w to the whole real axis, and taking
both determinations in a certain square root expression.

Clearly, the implementation of the Tangent method requires the explicit knowl-

edge of Φ(w), and thus the calculation of the boundary correlation function H
(l)
N,r,s,

and the evaluation of the asymptotic behaviour of the corresponding generating
function in the scaling limit. This is our main task below.

3.2. Discrete log-gas representation. Different representations, in terms

of multiple integrals, or of determinants, can be worked out for H
(l)
N,r,s, and for

the corresponding generating function, hN,r,s(w). The most convenient one for our
purposes is in terms of a discrete log-gas:

Proposition 3.1. For the generating function hN,r,s(w) the following repre-

sentation is valid:

hN,r,s(w) =
wr−1IN,r,s(u)

IN,r,s(1)
. (3.4)

Here, the variables u and w are related by

u =
αw + 1− α

w
, (3.5)

and the function IN,r,s(u) is given as

IN,r,s(u) =

r−1∑

m1,...,ms=0

s∏

j=1

µα
N−r−s(mj)

∏

1≤j<k≤s

(mk −mj)
2

×
∮

Cm1,...,ms

σ(u, z)∏s
j=1(z −mj)

dz

2πi
, (3.6)

where

µα
q (m) = αm

(
q +m

q

)
, m ∈ N0, (3.7)

and

σ(u, z) = (s− 1)!
ur+s−z−2

(1− u)s−1
. (3.8)

The integration in (3.6) is over a simple counterclockwise oriented contour enclosing

all mj’s, and no other singularity of the integrand.

The proof of proposition 3.1 is provided in appendix B, and it goes along the
lines of what is done in [39] in absence of refinement, that is, for the quantity
IN,r,s(1).

Concerning the statements of Proposition 3.1 several remarks are in order.
First, we note that w = (1 − α)/(u − α), and so w → 1 as u → 1, hence (3.4)
reproduces the normalization condition hN,r,s(1) = 1, see (2.4).
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Second, even though the function σ(u, z) is singular as u → 1, the integral in
(3.6) is regular at u = 1. Indeed, for any fixed s, the integral over z in (3.6) can be
estimated as u → 1 as follows:
∮

Cm1,...,ms

σ(u, z)∏s
j=1(z −mj)

dz

2πi
= (s− 1)!

us+r−2

(1 − u)s−1

∮

Cm1,...,ms

e−z log u

∏s
j=1(z −mj)

dz

2πi

∼ us+r−2

(1− u)s−1
(− log u)s−1 ∼ 1. (3.9)

Third, the quantity IN,r,s(1) reads

IN,r,s(1) =

r−1∑

m1,...,ms=0

s∏

j=1

µα
N−r−s(mj)

∏

1≤j<k≤s

(mk −mj)
2. (3.10)

From this expression it follows that IN,r,s ≡ IN,r,s(1) can be viewed as the partition
function of a discrete log-gas confined within a finite interval, note the condition 0 ≤
mj < r, j = 1, . . . , s, for the particle coordinates. Correspondingly, the quantity
IN,r,s(u) can be viewed as a particular correlation function of the discrete log-gas
defined by (3.10). The discrete weight (3.7) is that of the Meixner polynomials.
The partition function and free energy of this log-gas with discrete measure (3.7)
have been studied in details in [38], see also [45]. The role and consequences of the
condition 0 ≤ mj < r, j = 1, . . . , s on the behaviour of the free energy have been
discussed in [40, 41].

3.3. Relation between Φ(w) and the resolvent of the log-gas. To pro-
ceed further, we need to evaluate the quantity Φ(w) defined in (3.3). Recalling
(3.4), we may write

Φ(w) =
1

R+Q+ 1

(
R+ w

∂u

∂w
lim

N,r,s→∞

1

s
∂u log IN,r,s(u)

)
, (3.11)

and thus we need to estimate the large s behaviour of the correlation function
IN,r,s(u) for the discrete log-gas with measure (3.7) in a scaling limit with r/s and
N/s fixed.

Let us focus first on the partition function IN,r,s of the same discrete log-gas.
Its large s behaviour may be determined in the saddle-point approximation. The
standard procedure is to rescale the eigenvalues by a factor s, namely mj → szj.
After rescaling, the sums in (3.10) can be reinterpreted as Riemann sums, and, in
the large-s limit, replaced by integrals:

IN,r,s ∝
∫ R

0

· · ·
∫ R

0

dz1 · · · dzs
s∏

j=1

µα
N−r−s(⌊szj⌋)

∏

1≤j<k≤s

(zk − zj)
2 (3.12)

Now the usual saddle-point analysis for Random Matrix models can be applied,
provided that one imposes a suitable additional constraint accounting for the dis-
creteness of the mj ’s [46], see [40, 41] for full details on the specific example of
(3.10). The solution {z̃j}j=1,...,s of the set of saddle-point equations associated to
the multiple integrals in (3.12) is encoded in the resolvent W (z), defined as

W (z) = lim
s→∞

1

s

s∑

j=1

1

z − z̃j
. (3.13)
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In the case of IN,s,r(u), rescaling the log-gas ‘coordinates’ mj → szj and simulta-
neously replacing z → sz, we get

IN,r,s(u) ∝
∫ R

0

· · ·
∫ R

0

dz1 · · · dzs
s∏

j=1

µα
N−r−s(⌊szj⌋)

∏

1≤j<k≤s

(zk − zj)
2

×
∮

Cz1,...,zs

σ(u, sz)∏s
j=1(z − zj)

dz, (3.14)

The crucial point is that the set of saddle-point equations for the zj ’s remains
the same as for the case of IN,r,s, and the corresponding solution is still encoded
in W (z). However, there is an additional saddle-point equation, relative to the
variable z, which, recalling (3.8), reads

− log u = W (z̃). (3.15)

In other words, the saddle-point value for the extra integration variable is given by
the functional inverse of the resolvent:

z̃ = W−1(− logu). (3.16)

The inversion relation (3.16) appears in several settings, see, e.g., [47].
Differentiating the logarithm of (3.14) with respect to u, we find

∂u log IN,r,s(u) = 〈∂u log σ(u, sz)〉 (3.17)

where brackets 〈·〉 denote the expectation value with respect to the measure asso-
ciated to IN,r,s(u), see (3.14). Taking into account that

∂u log σ(u, sz) =
s

1− u
+

s+ r − sz

u
(3.18)

and using that in the scaling limit 〈z〉 = z̃, we get

lim
N,r,s→∞

1

s
∂u log IN,r,s(u) =

1

1− u
+

1 +R−W−1(− log u)

u
, (3.19)

where we also have made use of (3.16). Finally, using (3.11) and (3.4), we get

Φ(w) =
1

(R +Q+ 1)u

[
Rα+

u− α

u− 1
+ (u− α)W−1(− log u)

]
, (3.20)

where variables u and w are related by (3.5).
Thus, the evaluation of Φ(w) has boiled down to that of (the functional in-

verse of) W (z), that is the resolvent associated to the discrete log-gas (3.10). The
expressions of this resolvent for the various regimes has been worked out in [40,41].

4. Equation for the arctic curve

In this section we focus on details of derivation of the arctic curve using the
results of Ref. [41] on the explicit form of the resolvent W (z). We consider various
cases, in order of increasing complexity: we start with Regime I, next we consider
Regime II for a symmetric domain (the cut-off rectangle is a square) that corre-
sponds to Q = 0, and, finally, we treat the case of Regime II in full generality
(Q ≥ 0).

12



4.1. Regime I. In this case, R > Rc, and R does not enter the expression of
the resolvent, which reads (see [40]):

W (z) = − log
√
α− log

√
a(z − b) +

√
b(z − a)√

(b− a)z

∓ log

√
(a+Q)(z − b) +

√
(b +Q)(z − a)√

(b− a)z
, (4.1)

where

a =

(
1−

√
α(1 +Q)

)2

1− α
, b =

(
1 +

√
α(1 +Q)

)2

1− α
. (4.2)

In (4.1) the choice of the sign depends on the value of the parameter Q, with the
critical value Qc = α−1 − 1 corresponding to the case where a = 0; the minus
sign corresponds to Q < Qc and the plus sign to Q > Qc. Solving equation
− logu = W (z) for z, we get the following solution valid in both cases:

z = − [1− α(1 +Q)]u+ αQ

(u− 1)(u− α)
, Q ∈ [0,∞). (4.3)

The function (3.20) reads

Φ(w) =
α

u
=

αw

αw + 1− α
. (4.4)

Note that dependence from Q and R cancel out in the expression of Φ(w). Plugging
the result into (3.2) and solving of the linear system (3.1) yields

x =
αw2

αw2 + 1− α
, y =

α(1− α)(w − 1)2

αw2 + 1− α
. (4.5)

Here, according to the recipe prescribed in Section 3.1 the parameter w should
run over the interval [1,∞). Actually, the rectangular portion removed from the
top-left corner to build the L-shaped domain constitutes a forbidden region for the
family of lines (3.2). As a result, the parameter w is, by construction, allowed to
run only over the interval [1, w0), where w0 is the largest of the two solutions of:

(w − 1)(αw + 1− α)ξx − wξy − αw(w − 1) = 0. (4.6)

Condition (4.6) selects, within the family of lines (3.2), with Φ(w) given by (4.4),
the two lines lines passing through the point of coordinates (ξx, ξy).

Apart from this technical detail, the already mentioned fact that in the presently
considered free-fermion case the arctic curve is guaranteed to be algebraic [18] allows
anyway to extend the range of w to the whole real axis, w ∈ R, and correspondingly
to describe the whole arctic curve. Indeed, eliminating w in (4.5) yields the Arctic
ellipse (2.9), as expected for the Regime I.

The implicit form of equation of the arctic curve, given by (2.9) can also be
directly recovered by considering the polynomial P (u) = u(u − 1)F (w), where
F (w) = F (w;x, y) is the function defined in (3.2). Explicitly, P (u) reads

P (u) = u(u− 1)x+ (u− α)y − α(u − 1). (4.7)

Since system (3.1) implements the condition that two zeroes of the function F (w)
should coincide, we can directly impose this condition by requiring that the dis-
criminant of P (u) vanish. This immediately gives (2.9).
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4.2. Regime II, symmetric domain. In Regime II the resolvent W (z) has
in general a rather complicate expression, and it is convenient to focus first on the
case of a symmetric domain, where the cut-off rectangle is actually a square. In
this case s = N − r, that is Q = 0. The Regime II means that the other geometric
parameter R is in the range

R : 1 ≤ R < Rc, Rc =
1 +

√
α

1−√
α
. (4.8)

The resolvent reads (see [40]):

W (z) = − log
√
α+ log

z

z −R
− 2 log

√
a(z − b) +

√
b(z − a)√

(R− a)(z − b) +
√
(R− b)(z − a)

, (4.9)

where

a =

(√
R+ 1−

√
(R− 1)

√
α
)2

2(1 +
√
α)

, b =

(√
R+ 1 +

√
(R− 1)

√
α
)2

2(1 +
√
α)

. (4.10)

The relation − log u = W (z) can be written in the form:

u =
√
α

(√
(R− a)(z − b)−

√
(R− b)(z − a)

)(√
b(z − a) +

√
a(z − b)

)
(√

(R− a)(z − b) +
√
(R− b)(z − a)

)(√
b(z − a)−

√
a(z − b)

) . (4.11)

Using (4.10) and taking into account (4.8), one can simplify it to

u =
√
α
(1 +

√
α)
(√

(z − a)(z − b)−
√
ab
)
+ (1−√

α)z

(1 +
√
α)
(√

(z − a)(z − b) +
√
ab
)
− (1−√

α)z
(4.12)

Solving for z, we get two solutions:

z =
R

2
− (1− α)u

2(u− α)(u − 1)
± (u−√

α)
√

R2(u− α)(u − 1) + (1 +
√
α)2u

2(u− α)(u − 1)
. (4.13)

Apparently, these solutions represent two branches of the same functionW−1(− log u),
which determines the arctic curve; a particular choice of the sign in (4.13) corre-
sponds to a portion of the arctic curve, via the function (see (3.20))

Φ(w) =
1

(R+ 1)u

[
Rα+

u− α

u− 1
+ (u− α)z

]
, (4.14)

which reads

Φ(w) =
α

2u
+

ξx
2

+
ξy(u− α)

2u(u− 1)
±

(u−√
α)
√
ξ2x(u − α)(u − 1) + ξ2y(1 +

√
α)2u

2u(u− 1)
.

(4.15)
Here, we have employed the notations for the coordinates of the bottom-right vertex
of the cut-off rectangle, ξx = R/(R + 1), ξy = 1/(R + 1), see (2.7), and we also
recall that the variables u and w are related by (3.5).

To investigate the resulting arctic curve, let us denote by Φ+(w) and Φ−(w)
the function in (4.15) taken with the plus and minus signs, respectively. Consider
two different parametric families of straight lines:

F±(w) = x−M(w)y − Φ±(w). (4.16)
14



Figure 8. Plot of the two components C− and C+, in red (grey
in b/w printing) and black, respectively, as given in (4.17); here
α = 0.3 (corresponding to Rc ≃ 3.42), and R = 1.5. The dashed
line shows, for comparison, the Arctic ellipse (2.9).

Solving the corresponding system of equations (3.1) in x and y, we obtain

x±(w) = −M(w)Φ′
±(w)

M ′(w)
+ Φ±(w),

y±(w) = −Φ′
±(w)

M ′(w)
,

(4.17)

where the prime denotes differentiation with respect to w. This is the paramet-
ric form of the two branches C+ and C− of the arctic curve, given respectively by
(x+(w), y+(w)) and (x−(w), y−(w)), with w ∈ R. These expressions make it pos-
sible to produce plots of the arctic curve; Fig. 8 shows an example for particular
values of the parameters. In Fig. 9, another example of the curve, corresponding
to a different choice of parameters is plotted against numerics. See Appendix A for
further details.

The obtained arctic curve has six points of contact with the boundary of the L-
shaped domain, and two cusps, for a total of eight special points. Starting from the
bottom side of the boundary, and proceeding counterclockwise, the first four points
correspond to the values w = −(1−α)/α, 0, 1, ∞, in (x+(w), y+(w)), while the next
four correspond to the same values of w, in (x−(w), y−(w)). It is apparent from
inspection of formula (3.2) that these values of w indeed correspond to (alternately
in cyclic order) vanishing or diverging values for the slope of the arctic curve.

The equation of the arctic curve can also be obtained in an implicit form. Be-
cause of the geometry of the curve, it is convenient to introduce diagonal coordinates

z1 = x− y, z2 = 1− x− y. (4.18)
15



Figure 9. In grey, numerical determination of the arctic curve, in
the domain with N = 300 and s = N − r = 132, done according
to the ‘Arctic Curve’ procedure described in Appendix A. In black,
the plot of the arctic curve (4.17) with the same ratios r/N and
s/N .

Introduce the functions (we use here the variable u in the argument):

F̃±(u) ≡ 2u(u− 1)F±(w(u)). (4.19)

Explicitly, these functions read

F̃±(u) = (z1 − z2 − ξx)u(u− 1)− (z1 + z2 + ξy)(u − α) + (u− α)u

± (u−
√
α)
√
ξ2x(u − α)(u − 1) + ξ2y(1 +

√
α)2u. (4.20)

Consider the following polynomial of degree 4 in u:

P (u) = F̃+(u)F̃−(u). (4.21)

Clearly, the equation for the arctic curve can be derived by requiring that this
polynomial has vanishing discriminant. More precisely, denoting by D(P ) the dis-
criminant of P (u), it is fairly easy to see from the formulas above, that D(P ) is a
polynomial of degree 8 in z1, z2. Moreover, one can easily verify (using a symbolic
manipulation software) that it has the following structure:

D(P ) =

(
z1 −

1 +
√
α

2
+ ξy

)2

A(z1, z2), (4.22)

where A(z1, z2) is a polynomial of degree 6 in z1 and z2. The equation A(z1, z2) = 0
is the desired implicit equation of the arctic curve.

The straight line of equation described by the first factor in (4.22) is precisely
that sole line which is tangent to the arctic curve at two distinct points. Indeed,
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let w0 ∈ [1,∞) be the (unique) solution to the condition M(w0) = 1, we have

w0 =
2Rc

Rc − 1
, Φ±(w0) =

RRc − 1

(R+ 1)(Rc + 1)
=

1 +
√
α

2
− ξy. (4.23)

This component arises as a side effect of the Tangent method.
The explicit expression for A(z1, z2) which is of degree 6 in z1 and z2 is rather

lengthy and reported in appendix C (some of its 28 coefficients appear to be zero,
but most of them are complicate polynomials in R, α). At R = 1, corresponding
to ξx = ξy = 1/2, that is to a cut-off square of side 1/2, the equation A(z1, z2) = 0
factorizes into two Arctic ellipses and two coinciding straight lines, tangent to both
of them, as expected.

4.3. Regime II, generic domain. We now turn to the case Q > 0, where
the cut-off portion is a rectangle rather than a square. In this case, in Regime II,
the resolvent reads

W (z) = − log
√
α+ 2

log
√
(R − a)(z − b) +

√
(R − b)(z − a)√

(b− a)(z −R)

− log

√
(a+Q)(z − b) +

√
(a+Q)(z − a)√

(b− a)z

∓ log

√
a(z − b) +

√
a(z − a)√

(b− a)z
, (4.24)

where the parameters a and b, 0 ≤ a < b ≤ R, are to be found from the equations1:

√
α

√
R− a−

√
R− b√

R− a+
√
R− b

√
b±√

a√
b+Q−√

a+Q
= 1,

±
√
ab+

√
(a+Q)(b+Q)−Q

2
+
√
(R− a)(R − b) = 1.

(4.25)

Here, the ± signs correspond to what is called in Ref. [41] the Regime IIA, Q ≤ Qc,
and Regime IIB, Q > Qc, respectively, where the value Q = Qc is determined by
the condition a = 0. In contrast to the Q = 0 case, explicit expressions for a and b
at Q 6= 0 are cumbersome functions of R, Q and α, and in the most compact form
they can be written as

a = A+ +A− − 2
√
A+A−, b = A+ +A− + 2

√
A+A−. (4.26)

where

A+ = (R +Q+ 1)
(1 + η)(1 +Rη) [1 + (R+Q)η]

[2 +Q+ (2R+Q)η]
2 ,

A− = (R − 1)
(1− η)(1 +Q+Rη) [1 +Q+ (R+Q)η]

[2 +Q+ (2R+Q)η]2
.

(4.27)

and the parameter η ∈ [0, 1] is a suitable root of the (quartic) equation

α
(1 + η)2(1 +Q+Rη) [1 + (R +Q)η]

(1− η)2(1 +Rη) [1 +Q+ (R +Q)η]
= 1. (4.28)

1In [41] there is a misprint in (2.20), (2.22) and (3.8): In the first factor of the first equation
the replacement a ↔ b should be made.
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For the values of the parameters R, Q and α belonging to the Regime II (i.e., for
R < Rc, where Rc = Rc(Q,α) is given by (2.8)) such a root always exists and it is
unique [41].

The equation − logu = W (z) reads

u =
√
α

√
(R − a)(z − b)−

√
(R − b)(z − a)√

(R − a)(z − b) +
√
(R − b)(z − a)

×
√
(b+Q)(z − a) +

√
(a+Q)(z − b)√

b(z − a)∓
√
a(z − b)

, (4.29)

that is
u√
α

=
K2

√
(z − a)(z − b) +K1z +K0

L2

√
(z − a)(z − b) + L1z + L0

, (4.30)

where

K2 =
√
(R − a)(b+Q)−

√
(R− b)(a+Q),

K1 =
√
(R − a)(a+Q)−

√
(R− b)(b +Q),

K0 = a
√
(R − b)(b+Q)− b

√
(R− a)(a+Q),

L2 =
√
(R − a)b∓

√
(R− b)a,

L1 =
√
(R − b)b∓

√
(R− a)a,

L0 = ±b
√
(R − a)a− a

√
(R − b)b.

(4.31)

Solving (4.30) for z, we get

z =
M0M1 +

(
a+b
2

)
M2

2 ±M2

√
(aM1 +M0)(bM1 +M0) +

(
b−a
2

)2
M2

2

M2
2 −M2

1

, (4.32)

where Mi = Mi(u) are linear functions of u:

Mi = Li
u√
α
−Ki, i = 0, 1, 2. (4.33)

Using the first equation in (4.25), it can be shown that

M2
2 −M2

1 =
(b− a)2

α
(u− α)(u − 1). (4.34)

Hence, for the function Φ(w) defined by (3.20), we obtain the following expression:

Φ(w) =
1

(R +Q+ 1)u(u− 1)

{
(Rα+ 1)u− α(R + 1) + α

M0M1 +
(
a+b
2

)
M2

2

(b− a)2

±
√
αM2

2(b− a)

√
4α(aM1 +M0)(bM1 +M0)

(b − a)2
+ αM2

2

}
. (4.35)

Here, some terms can be simplified; for example, using just (4.31), one may find
that

α
M0M1 +

(
a+b
2

)
M2

2

(b− a)2
= Ru2 + c1u+ α(R −Q), (4.36)

where, however, the coefficient of the linear term, c1, in contrast to other coefficients
possesses a rather bulky expression even when (4.26) is invoked. The same can be
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inferred about the coefficients of the quadratic polynomial in u standing under the
square root sign in (4.35).

Nevertheless, the expression (4.35) describes the arctic curve for a generic L-
shaped domain. All considerations made above in the Q = 0 case extends to the
present case (Q ≥ 0) as well, concerning both parametric and implicit form of the
curve.

Namely, denote Φ+(w) and Φ−(w) the function in (4.35) taken with the plus
and minus signs, respectively, and consider two different parametric families of
straight lines described by (4.16). Then (4.17) provides a parametric form of two
branches of the whole arctic curve. In producing plots of the Arctic curve, the only
difference with the Q = 0 case is that now one has first to obtain values of the
parameters a and b from (4.26), by solving equation (4.28) for at a given set of the
main parameters R, Q, and α, and next to plug all the values into (4.31), which
determine the linear functions Mi = Mi(u) defined by (4.33).

Lastly, one can also address the problem of finding an equation which describes
the arctic curve in implicit (rather then in parametric) form. Here, again this
equation can be found from the condition of vanishing of the discriminant of the
corresponding quartic polynomial P (u), constructed from the functions F±(w) by
(4.20) and (4.21). The discriminant D(P ), similarly to (4.22), factors into two
straight lines and the arctic curve A(z1, z2), which is of degree 6.
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Appendix A. Comparison with finite-size results

In this paper we have determined the arctic curve of a free-fermionic model.
As a result of the simplifications occurring in this case, with respect to what it
would be for a generic six-vertex model prediction, it is much easier to perform a
comparison of the result with informations obtained by alternative methods.

In particular, through the correspondence with a model of dimer coverings on a
bipartite planar graph, at finite size, a suitable 1-point function in the bulk can be
calculated, either from the inverse Kasteleyn matrix, or, more efficiently, through a
method, devised by Propp, as part of the Urban Renewal, or Generalised Domino
Shuffling, algorithm for the exact sampling of configurations (see [44], Section 3).

Our geometry is particularly adapted to the use of Propp’s algorithm. With
respect to the graphical notation in [44] (see in particular Section 1.2), we shall just
initialise the weights as in a graph of the form shown in Fig. 10. Then, from the
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Figure 10. The Aztec Diamond graph related to the L-shaped domain.

algorithm we obtain the edge-inclusion probabilities, that is, the probabilities pij ,
qij , rij and sij that the edges in the plaquette of coordinates (i, j), and position
NW, NE, SW and SE, respectively, are occupied in an uniformly chosen perfect
matching compatible with the domain shape (again notations are chosen as to
match with those in [44]). Frozen regions correspond to coordinates (i, j) such
that the quadruples (pij , qij , rij , sij) are equal to (1, 0, 0, 0), (0, 1, 0, 0), etc., up to
corrections exponentially small in the size of the domain. We represent graphically
these four functions in a compact way, with two different strategies, aiming at
representing the arctic curve, or, instead, the limit shape.

In the first case, consider the combination

xij =
1

2
(1 + pij − qij − rij + sij), (A.1)

associated to each plaquette, that is valued in [0, 1], and is near to 0 or to 1 in
the frozen regions (it is the local fraction of dimers which are oriented diagonally,
instead that anti-diagonally). We plot in gray the plaquettes (i, j) such that xij

is valued in [ε, 1 − ε], where ε = N−2/3. The scaling of this threshold marks the
change of regime between typical and atypical local fluctuations of the arctic curve
[38]. The choice of the multiplicative constant 1 is of no special significance, and
any other finite constant would have produced similar results. The comparison with
our analytic prediction, shown in Figure 9, is remarkably good (everywhere within
one lattice spacing).

In the second case, a more refined visualization of the edge-inclusion probabili-
ties is obtained by associating to a plaquette the complex number

zij =
√
pij + i

√
qij − i

√
rij −

√
sij . (A.2)

This quantity is valued in the disk of radius 1, and is exponentially near to 1, i, −1
or −i, if the plaquette is in a frozen region. We make a coloured plot of the domain,
with hue determined according to the argument of zij , and brightness determined
according to the absolute value of zij (so that the colour is near to white in the
liquid region). The data are shown in Figure 7.
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Appendix B. Proof of Proposition 3.1

We present here the derivation of representation (3.4) for the generating func-
tion hN,r,s(w), which is defined by (2.4) and (2.5). It can be written as

hN,r,s(w) =
FN,r,s(w)

FN,r,s(1)
, (B.1)

where

FN,r,s(w) =

r∑

r1=1

(
G

(r1,r,...,r)
N,s −G

(r1−1,r,...,r)
N,s

)
wr1−1. (B.2)

Note that FN,r,s(1) = G
(r,...,r)
N,s is the EFP of the six-vertex model with domain wall

boundary conditions (FN,r,s(1) ≡ F
(r,s)
N , in the notation of [37]). Change of the

integration variables zj 7→ xj = (αzj + 1− α)/zj , j = 1, . . . , s, in (2.2) yields

G
(r1,...,rs)
N,s = (−1)

s(s−1)
2

s∏

j=1

(1− α)N−rj

×
∮

C∞

· · ·
∮

C∞

s∏

j=1

xN−j
j

(xj − α)N−rj (xj − 1)s−j+1

∏

1≤j<k≤s

(xk − xj)
dsx

(2πi)s
, (B.3)

where C∞ denotes a circular contour of large radius around the origin (thus enclos-
ing the points x = α and x = 1). Hence,

FN,r,s(w) = (−1)
s(s−1)

2 (1− α)(N−r)swr−1

×
∮

C∞

· · ·
∮

C∞

xN−1
1

(x1 − α)N−r(x1 − 1)s−1(x1 − u)

×
s∏

j=2

xN−j
j

(xj − α)N−r(xj − 1)s−j+1

∏

1≤j<k≤s

(xk − xj)
dsx

(2πi)s
, (B.4)

where u = (αw + 1− α)/w. Using

det
[
(xs−k+1 − α)s−j

]
j,k=1,...,s

=
∏

1≤j<k≤s

(xk − xj) (B.5)

we can write FN,r,s(w) in the form of an s× s determinant

FN,r,s(w) = (−1)
s(s−1)

2 (1− α)s(s+q)wr−1 detA(u), (B.6)

where the matrix A(u) contains dependence on u only in the last column

Ajk(u) =





∮

C∞

xr+q+k−1

(x− α)q+j(x − 1)k
dx

2πi
k 6= s

∮

C∞

xr+q+s−1

(x− α)q+j(x − 1)s−1(x− u)

dx

2πi
k = s,

(B.7)

and where we have set N = r + s+ q, q ≥ 0.
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To proceed with (B.6), it is useful to consider first the case w = 1, that corre-
sponds to u = 1. Using

∮

C∞

xc

(x− α)a(x− β)b
dx

2πi
=

1

(a− 1)!(b− 1)!
∂a−1
α ∂b−1

β

∮

C∞

xc

(x− α)(x − β)

dx

2πi

=

c−b∑

m=a−1

(
m

a− 1

)(
c−m− 1

b− 1

)
αm−a+1βc−m−b, a, b, c ∈ N, (B.8)

for the entries of the matrix A ≡ A(1), upon setting β = 1, a = q + j, b = k, and
c = r + q + k − 1 and making the change m 7→ m+ q, we get

Ajk =
r−1∑

m=j−1

(
m+ q

q + j − 1

)(
r + k − 2−m

k − 1

)
αm−j+1. (B.9)

Consider now entries of a given column; since
(

m+ q

q + j − 1

)
=

q!

(q + j − 1)!

(
m+ q

q

)
(m)j−1, (B.10)

where (m)a := m(m− 1) . . . (m− a+ 1) denotes the falling factorial, we have

Ajk =
q!

(q + j − 1)!αj−1
Ãjk (B.11)

where

Ãjk =

r−1∑

m=0

(
m+ q

q

)
(m)j−1

(
r + k − 2−m

k − 1

)
αm, (B.12)

and hence

detA =
(q!)s

∏s−1
j=0(q + j)!

α−
s(s−1)

2 det Ã. (B.13)

The determinant of Ã evaluates as follows

det Ã =

r−1∑

m1,...,ms=0

s∏

k=1

(
mk + q

q

)(
r + k − 2−mk

k − 1

)∏

l<k

(mk −ml)α
m1+...+ms

=
(−1)

s(s−1)
2

∏s
j=0 j!

r−1∑

m1,...,ms=0

s∏

k=1

(
mk + q

q

)∏

l<k

(mk −ml)
2αm1+...+ms , (B.14)

where we have used the fact that (m)j−1 is a monic polynomial of degree j − 1 in

m, and, similarly, that
(
r+k−2−m

k−1

)
is a polynomial of degree k − 1 in m, with the

leading coefficient (−1)k−1/(k − 1)!. In total, our calculation amounts to

FN,r,s(1) =
(q!)s

∏s−1
j=0(q + j)!

∏s
j=0 j!

(1− α)s(s+q)

α
s(s−1)

2

×
r−1∑

m1,...,ms=0

s∏

j=1

(
mj + q

q

)∏

l<k

(mk −ml)
2αm1+...+ms . (B.15)
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Note that this representation may equivalently be written as

FN,r,s(1) =
(q!)s

∏s−1
j=0(q + j)!j!

(1− α)s(s+q)

α
s(s−1)

2

det

[
r−1∑

m=0

(
m+ q

q

)
mj+k−2αm

]

j,k=1,...,s

,

(B.16)
in agreement with [38, 39].

Consider now the case of generic w. To apply the derivation above with a
minimal modification, consider instead of the matrix A(u) some matrix B(u), which
differs from A(u) only in the entries of the last column,

Bjs(u) =

∮

C∞

xr+q

(x − α)q+j

(
xs−1

(x− 1)s−1(x− u)
+

s−1∑

k=1

γk
xk−1

(x− 1)k

)
dx

2πi
, (B.17)

where γk, k = 1, . . . , s− 1, are some constants in x. Note that detA(u) = detB(u).
For γk = us−1−k/(u− 1)s−k the pole at x = 1 disappears in the integral, since

s−1∑

k=1

γk
xk−1

(x − 1)k
=

us−1

(u− 1)s−1(x − u)
− xs−1

(x− 1)s−1(x− u)
. (B.18)

Therefore, with this choice of γk’s, and recalling (B.8), we have

Bjs(u) =
q!

(q + j − 1)!αj−1

ur+s−2

(u− 1)s−1

r−1∑

m=0

(
m+ q

q

)
(m)j−1

(α
u

)m
. (B.19)

Similarly to (B.12), introduce matrix B̃(u), with entries

B̃jk(u) =






Ãjk k 6= s
r−1∑

m=0

(
q +m

q

)
(m)j−1

(α
u

)m
k = s.

(B.20)

We have

detB(u) =
(q!)s

∏s−1
j=0(q + j)!

ur+s−2

α
s(s−1)

2 (u− 1)s−1
det B̃(u). (B.21)

In this case, the analogue of (B.14) is

det B̃(u) =

r−1∑

m1,...,ms=0

s∏

k=1

(
mk + q

q

)

×
s−1∏

k=1

(
r + k − 2−mk

k − 1

)∏

l<k

(mk −ml)
αm1+...+ms

ums

=
(−1)

(s−1)(s−2)
2

∏s−2
j=0 j!

r−1∑

m1,...,ms=0

s∏

k=1

(
mk + q

q

)∏

l<k

(mk −ml)

×
s−1∏

k=1

mk−1
k

αm1+...+ms

ums
. (B.22)
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Symmetrizing the summand with respect to permutations of m1, . . . ,ms and sub-
stituting everything in (B.6), we get

FN,r,s(w) =
(q!)s

s!
∏s−1

j=0(q + j)!
∏s−2

j=0 j!

(1 − α)s(s+q)

α
s(s−1)

2

wr−1 ur+s−2

(u− 1)s−1

×
r−1∑

m1,...,ms=0

s∏

j=1

(
mj + q

q

)∏

l<k

(mk −ml)α
m1+...+ms

×
s∑

p=1

(−1)p−1
∏

l<k
l,k 6=p

(mk −ml)u
−mp . (B.23)

Finally, rewriting the sum over p as a contour integral, we arrive at

FN,r,s(w) =
(q!)s

∏s−1
j=0(q + j)!

∏s
l=0 j!

(1− α)s(N−r)

αs(s−1)/2
wr−1IN,r,s(u) (B.24)

where the quantity IN,r,s(u) is defined in (3.6). Recalling (B.1), the statement of
the Proposition 3.1, representation (3.4), immediately follows.

We also mention that (B.23) can be written as

FN,r,s(w) =
(q!)s

∏s−1
j=0(q + j)!

∏s−2
j=0 j!

(1− α)s(s+q)

α
s(s−1)

2

wr−1 ur+s−2

(1− u)s−1
detH, (B.25)

where the s× s matrix H is

Hjk =






r−1∑

m=0

(
m+ q

q

)
mj+k−2αm k 6= s

r−1∑

m=0

(
m+ q

q

)
mj−1

(α
u

)m
k = s.

(B.26)

Note that, as w → 1 (that is, u → 1), the expected result (B.16) is reproduced from
(B.25) upon taking into account that detH has a zero of order (s− 1) at u = 1.

Appendix C. Arctic curve for Regime II, symmetric domain

Here we report explicit expression for the polynomial A(z1, z2) describing the
arctic curve, for the case Q = 0 of the model in Regime II (symmetric L-shaped
domain). The curve is given by the equation A(z1, z2) = 0 and it is of degree 6.

We first introduce properly scaled diagonal coordinates Z1 and Z2, defining
them by

z1 =
√
αZ1, z2 =

√
1− αZ2. (C.1)

Recall that the original diagonal coordinates are defined by (4.18). Note, that in
terms of the new coordinates the Arctic ellipse (2.9) just reads

Z2
1 + Z2

2 = 1. (C.2)

Next, we introduce the following parameterization for the scaling parameter
R ∈ [1, Rc]:

R =
1 +

√
αβ

1−√
αβ

, β ∈ [0, 1]. (C.3)

The meaning of this re-parametrization is to simplify further expressions for the
coefficients of the arctic curve, making them polynomials in α and β.
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At last, we introduce coefficients Cn1n2 which describe the polynomial A(z1, z2)
appearing in (4.22), in terms of the coordinates (C.1)

A(z1, z2) = (1− α)2α6
∑

0≤n1+n2≤6

Cn1n2Z
n1
1 Zn2

2 . (C.4)

Note that because of the symmetry of the L-shaped domain under reflection with
respect to the North-West/South-East diagonal, the arctic curve possesses the sym-
metry A(z1,−z2) = A(z1, z2), that is, it depends only on even powers of z2, i.e.,
Cn1n2 = 0 if n2 is odd (n2 = 1, 3, 5). This excludes 12 coefficients out of 28 in total,
which describe a generic degree 6 curve.

The nonzero 16 coefficients have the following expressions:

C60 = 64(1− α)2
(
1− 2αβ + αβ2

)2
,

C50 = 64(1− α)2
[
1− (5 + 2α)β + 18αβ2 − 2α(4 + 7α)β3 + 13α2β4 − 3α2β5

]
,

C42 = 128(1− α)2
[
1 + (2− 6α)β − 2

(
1− α− 3α2

)
β2 + 2(1− 3α)αβ3 + α2β4

]
,

C40 = 16(1− α)
[
1 + α−

(
22− 18α+ 8α2

)
β +

(
41 + 13α− 32α2 + 8α3

)
β2

− 4α
(
36− 25α− α2

)
β3 + α

(
52 + 63α− 85α2

)
β4 − 6α2(13− 11α)β5

+ (15− 13α)α2β6
]
,

C32 = 128(1− α)2
[
(1− 2(2 + α)β − (4− 18α)β2 +

(
4− 6α− 14α2

)
β3

− (4 − 13α)αβ4 − 2α2β5
]
,

C30 = 32(1− α)(1 − β)
[
α−

(
2 + 3α+ 2α2

)
β +

(
22− 21α+ 19α2

)
β2

− α
(
59− 48α+ 19α2

)
β3 + α

(
22 + 18α− 15α2

)
β4

− α2(28− 17α)β5 + α2(5 − 3α)β6
]
,

C24 = 64(1− α)2
[
1 + (8 − 12α)β − 2

(
4− α− 6α2

)
β2 + 4α(2− 3α)β3 + α2β4

]
,

C22 = −32(1− α)
[
1 +

(
12− 26α+ 8α2

)
β −

(
15− 3α− 35α2 + 8α3

)
β2

−
(
22− 96α+ 90α2 + 4α3

)
β3 +

(
12− 25α− 35α2 + 63α3

)
β4

− 2α
(
6− 26α+ 23α2

)
β5 − α2(6 − 7α)β6

]
,

C20 = 4(2− α)α − 16α
(
9− 8α+ α2

)
β + 4

(
24 + 78α− 36α2 − 42α3 + 4α4

)
β2

− 32
(
26− 41α+ 64α2 − 45α3 + 3α4

)
β3

+ 4
(
104 + 286α− 438α2 + 322α3 − 204α4

)
β4

− 4α
(
105− 96α+ 33α2 − 28α3

)
β5 + 2α

(
41 + 102α− 163α2 + 34α3

)
β6

− 8α2
(
16− 20α+ 5α2

)
β7 + α2

(
15− 18α+ 4α2

)
β8,

C14 = 64(1− α)2
[
1− (3 + 2α)β − (8− 18α)β2 + 2

(
4− 2α− 7α2

)
β3

− α(8 − 13α)β4 − α2β5
]
,

C12 = −32(1− α)
[
2− α−

(
6 + 3α− 2α2

)
β −

(
16− 58α+ 21α2

)
β2

+
(
14− 20α− 48α2 + 19α3

)
β3 +

(
14− 53α+ 78α2 − 4α3

)
β4

−
(
4− 3α− 16α2 + 36α3

)
β5 + α

(
4− 17α+ 20α2

)
β6 + α2(2− 3α)β7

]
,

C10 = 4
[
4(1− α)2β2 + α(1− β)4

][
α−

(
4− α+ 2α2

)
β +

(
28− 30α+ 12α2

)
β2

−
(
8 + 22α− 20α2

)
β3 + α(21− 16α)β4 − α(3 − 2α)β5

]
,
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C06 = 256(1− α)3(1 − β)β(1 − αβ),

C04 = 16(1− α)2
[
1− (26− 8α)β +

(
41 + 30α− 8α2

)
β2 − 4

(
1 + 21α+ α2

)
β3

−
(
8− 30α− 41α2

)
β4 + 2(4− 13α)αβ5 + α2β6

]
,

C02 = −8(1− α)(1 − β)
[
2− α−

(
18− 7α+ 2α2

)
β +

(
32 + 16α+ α2 + 2α3

)
β2

+
(
24− 138α+ 29α2 − 10α3

)
β3 +

(
10− 29α+ 138α2 − 24α3

)
β4

−
(
2 + α+ 16α2 + 32α3

)
β5 + α

(
2− 7α+ 18α2

)
β6 + α2(1− 2α)β7

]
,

C00 =
(
1− 6β + β2

) [
4(1− α)2β2 + α(1 − β)4

]2
. (C.5)

Note that the coefficients are polynomials in α of the degree at most 4, and in β
they are all, but C00, of the degree at most 8; the latter is of the degree 10.

In the limit β → 1, that is R → Rc, the arctic curve factorizes onto two
straight lines Z1 = 1, the usual Arctic ellipse (C.2), as expected, and the point
(Z1, Z2) = (1, 0) belonging to the Arctic ellipse:

A(z1, z2)
∣∣∣
β=1

= 64(1− α)6α6 (Z1 − 1)
2 (

Z2
1 + Z2

2 − 1
) [

(Z1 − 1)2 + Z2
2

]
. (C.6)

In the limit β → 0, that is R → 1, the arctic curve factorizes onto two straight
lines Z1 = −1, and two Arctic ellipses of radii 1/2:

A(z1, z2)
∣∣∣
β=0

= 16(1− α)4α6(Z1 + 1)2

[(
Z2 −

1

2
√
1− α

)2

+ Z2
1 − 1

4

]

×
[(

Z2 +
1

2
√
1− α

)2

+ Z2
1 − 1

4

]
, (C.7)

as expected.
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[30] J.-M. Stéphan, Return probability after a quantum quench from a domain wall initial state in

the spin-1/2 XXZ chain, J. Stat. Mech. Theory Exp. 2017 (2017), 103108, arXiv:1707.06625.
[31] M. Collura, A. De Luca, and J. Viti, Analytic solution of the domain wall nonequilibrium

stationary state, Phys. Rev. B 97 (2018), 081111, arXiv:1707.06218.
[32] L. Cugliandolo, Artificial spin-ice and vertex models, J. Stat. Phys. 167 (2017), 499–514,

arXiv:1701.02283.
[33] V. E. Korepin, Calculations of norms of Bethe wave functions, Commun. Math. Phys. 86

(1982), 391–418.
[34] F. Colomo and A. G. Pronko, The limit shape of large alternating-sign matrices, SIAM J.

Discrete Math. 24 (2010), 1558–1571, arXiv:0803.2697.
[35] F. Colomo, A. G. Pronko, and P. Zinn-Justin, The arctic curve of the domain-wall six-vertex

model in its anti-ferroelectric regime, J. Stat. Mech. Theory Exp. (2010), L03002, arXiv:
1001.2189.

[36] F. Colomo and A. Sportiello, Arctic curves of the six-vertex model on generic domains: the
tangent method, J. Stat. Phys. 164 (2016), 1488–1523, arXiv:1605.01388.

[37] F. Colomo and A. G. Pronko, Emptiness formation probability in the domain-wall six-vertex
model, Nucl. Phys. B 798 (2008), 340–362, arXiv:0712.1524.

[38] K. Johansson, Shape fluctuations and random matrices, Commun. Math. Phys. 209 (2000),
437–476, arXiv:math/9903134.

[39] A. G. Pronko, On the emptiness formation probability in the free-fermion six-vertex model
with domain wall boundary conditions, J. Math. Sci. (N. Y.) 192 (2013), 101–116.

[40] F. Colomo and A. G. Pronko, Third-order phase transition in random tilings, Phys. Rev. E
88 (2013), 042125, arXiv:1306.6207.

27

http://arxiv.org/abs/math/9801068
http://arxiv.org/abs/math/9801059
http://arxiv.org/abs/math/0107056
http://arxiv.org/abs/cond-mat/0212456
http://arxiv.org/abs/math-ph/0311062
http://arxiv.org/abs/math-ph/0311005
http://arxiv.org/abs/math-ph/0507007
http://arxiv.org/abs/math/0407171
http://arxiv.org/abs/math.PR/0405190
http://arxiv.org/abs/1402.4493
http://arxiv.org/abs/1202.3901
http://arxiv.org/abs/1304.7589
http://arxiv.org/abs/1504.05176
http://arxiv.org/abs/1604.01491
http://arxiv.org/abs/1711.03182
http://arxiv.org/abs/1803.11463
http://arxiv.org/abs/1707.06625
http://arxiv.org/abs/1707.06218
http://arxiv.org/abs/1701.02283
http://arxiv.org/abs/0803.2697
http://arxiv.org/abs/1001.2189
http://arxiv.org/abs/1605.01388
http://arxiv.org/abs/0712.1524
http://arxiv.org/abs/math/9903134
http://arxiv.org/abs/1306.6207


[41] F. Colomo and A. G. Pronko, Thermodynamics of the six-vertex model in an L-shaped do-
main, Comm. Math. Phys. 339 (2015), 699–728, arXiv:1501.03135.

[42] F. Colomo, A. G. Pronko, and A. Sportiello, Generalized emptiness formation probability in
the six-vertex model, J. Phys. A: Math. Theor. 49 (2016), 415203, arXiv:1605.01700.

[43] N. Elkies, G. Kuperberg, M. Larsen, and J. Propp, Alternating-sign matrices and domino
tilings, J. Algebraic Combin. 1 (1992), 111–132; 219–234, arXiv:math/9201305.

[44] J. Propp, Generalized domino-shuffling, Theoret. Computer Sci. 303 (2003), 267–301, arXiv:
math/0111034.

[45] J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, and P. D. Miller, Discrete orthogonal poly-
nomials: Asymptotics and applications, Ann. of Math. Stud., vol. 164, Princeton University
Press, Princeton, NJ, 2007.

[46] M.R. Douglas and V.A. Kazakov, Large N phase transition in continuum QCD2, Phys. Lett.
B 319 (1993), 219–230, arXiv:hep-th/9305047.

[47] P. Zinn-Justin, Universality of correlation functions of Hermitian random matrices in an
external field, Comm. Math. Phys. 194 (1998), 631–650, arXiv:cond-mat/9705044.

INFN, Sezione di Firenze, Via G. Sansone 1, 50019 Sesto Fiorentino (FI), Italy
E-mail address: colomo@fi.infn.it

Steklov Mathematical Institute, Fontanka 27, 191023 St. Petersburg, Russia
E-mail address: agp@pdmi.ras.ru
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