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Wide Color Gamut Image Content Characterization:
Method, Evaluation, and Applications

Junghyuk Lee, Toinon Vigier, Patrick Le Callet, Fellow, IEEE, and Jong-Seok Lee, Senior Member, IEEE

Abstract—In this paper, we propose a novel framework to
characterize a wide color gamut image content based on per-
ceived quality due to the processes that change color gamut,
and demonstrate two practical use cases where the framework
can be applied. We first introduce the main framework and
implementation details. Then, we provide analysis for under-
standing of existing wide color gamut datasets with quantitative
characterization criteria on their characteristics, where four
criteria, i.e., coverage, total coverage, uniformity, and total
uniformity, are proposed. Finally, the framework is applied to
content selection in a gamut mapping evaluation scenario in order
to enhance reliability and robustness of the evaluation results.
As a result, the framework fulfils content characterization for
studies where quality of experience of wide color gamut stimuli
is involved.

Index Terms—Wide color gamut, color gamut mapping, con-
tent characterization, content selection, quality of experience.

I. INTRODUCTION

IN order to provide more realistic and higher visual qual-
ity of experience (QoE) of multimedia contents to view-

ers, technologies related to wide color gamut (WCG) have
emerged. Since the HDTV standard ITU-R Rec.709 [2], sev-
eral WCGs have been proposed. International Telecommuni-
cation Union (ITU) approved Rec.2020 [3] as the standard
color gamut for UHDTV, which covers the widest area of
the CIE 1931 space [4] (see Fig. 1). Recently, many devices
including mobile devices support WCGs as a process of
transition to Rec.2020 [5]. Considering various environments
of multimedia content consumption, gamut mapping is often
inevitable in order to match the original color to displaying
devices.

In this situation, several gamut mapping algorithms (GMAs)
have been proposed as well as the standard algorithms in
the CIE guideline [6]. Among them, gamut reduction aims
to reproduce details and color quality of WCG images in
smaller gamuts, and maps colors from a large source gamut
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to a smaller target gamut. For instance, a gamut reduction
algorithm proposed in [7] iteratively modifies the color of
each pixel based on adaptive local contrast according to the
Retinex theory [8]. In developing and evaluating methods
related to color representation of visual contents including
WCG and GMA, it is important to assess how the result
will be perceived by human observers. In order to assess
perceived QoE, subjective and/or objective studies are usually
conducted [9], [10], [11], [12], [13].

When subjective or objective QoE evaluation is conducted,
one of the primary steps is to select a representative and
compact set of source contents, whose processed versions are
assessed. This step, equipped with a proper content characteri-
zation method, is important not only to conduct an experiment
efficiently with limited resources (especially for subjective
evaluation) but also to draw reliable and reproducible con-
clusions. If the contents for an experiment are biased and not
representative in their characteristics, the results may be biased
and not be generalizable for other types of contents. Thus, it
is important to select representative contents according to the
purpose of a specific experiment. Towards this, it is necessary
to objectively measure the representativeness and suitability of
a set of contents.

In this paper, we propose a novel framework to characterize
WCG contents and its applications.1 We note that WCG
contents are frequently exposed to the gamut mapping pro-
cesses targeting diverse displaying environments. Therefore,
it is important to consider the perceptual difference caused
by gamut reduction for the WCG contents. Thus, our main
idea is to measure perceptual difference due to successive
gamut reduction in order to characterize a WCG content. We
also validate the framework by applying it to two applications
involving content characterization and selection in practical
WCG-related studies.

Our main contributions are summarized as follows:

1) We propose an objective framework for WCG content
characterization based on perceptual properties related
to differences due to color gamut change. We obtain
the perceptual difference due to gamut reduction by
predicting the subjective score with an objective metric.

2) In order to demonstrate its effectiveness, we apply the
framework to practical applications related to WCG. As
one of the applications, we propose multiple criteria
characterizing WCG datasets quantitatively based on the

1Our code is publicly available at https://github.com/junghyuk-lee/WCG-
content-characterization
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proposed perceptual difference. Using them, we conduct
analysis of existing WCG datasets.

3) In addition, we apply the framework in a scenario of
benchmarking GMAs. We demonstrate that the relia-
bility of the benchmarking is maximized by content
selection using the proposed framework.

Note that this paper has distinguished contributions compared
to our preliminary work [1] in various respects. While the pre-
liminary work only introduces the basic idea of the proposed
framework, this paper provides its detailed description and
further analysis along with the shared source code. In addition,
we present the two practical applications involving WCG
contents and demonstrate the effectiveness of our framework
for content characterization.

The rest of this paper is organized as follows. In Section II,
we briefly survey the related works. In Section III, we present
the proposed framework for WCG content characterization and
provides its implementation details. In Section IV, we describe
how the proposed framework is applied to quantify charac-
teristics of WCG datasets and provide analysis of existing
WCG datasets. In Section V, we describe another use case
of the proposed framework for comparison of GMAs. Finally,
Section VI provides concluding remarks.

II. RELATED WORKS

A. Gamut Mapping

In order to reproduce the original color of contents in
devices having smaller color gamuts, several GMAs have been
proposed. They can be categorized into global and local strate-
gies. The former changes all colors of out-of-gamut pixels
towards the inside of the target gamut by gamut compression
or clipping [14], [15], [16], [17], [18]. QoE of the gamut-
reduced image often decreases since the color may become
blurred around the pixels where the color changes. The latter
considers spatial relationship between pixels at the expense
of increased computational complexity in order to enhance
perceived quality of the gamut-reduced images [7], [19], [20],
[21], [22], [23], [24], [25].

B. QoE Assessment of Gamut Mapping

QoE of gamut-mapped contents is usually assessed by
conducting subjective or objective studies. In [26], a psy-
chophysical experiment is conducted to evaluate four GMAs,
where the subjective quality of the gamut-reduced images
is assessed. In [27], [28], [29], [30], [31], various color
image difference metrics are proposed to measure objective
quality of gamut-mapped images. In [32], subjective scores of
gamut-reduced images using different GMAs are obtained by
a psychophysical experiment, and are used to evaluate four
objective metrics.

However, in [33], it is concluded that the color differ-
ence measured by objective metrics and the perceived image
difference between original and gamut-reduced images do
not correlated well. There are attempts to improve objective
metrics by employing spatial filtering that simulates the human
visual system [34] and by extracting features based on percep-
tually important distortion [35]. On the other hand, studies

that consider measuring QoE of WCG contents are rare.
In [36], a physiological experiment is conducted to measure
electroencephalography during watching WCG video contents.

C. Content Characterization

Winkler [37] quantifies the characteristics of the contents
in existing image and video datasets, including spatial infor-
mation and colorfulness for color images, and motion vectors
for video contents, based on which the representativeness of
a set of contents can be evaluated [38], [39]. In [40], it is
suggested to consider attributes of the test material such as
brightness, colorfulness, amount of motion, scene cuts, types
of the content, etc. for subjective video quality assessment.
In [41], contrast, colorfulness, and naturalness are considered
to characterize tone-mapped images for HDR contents. In [42],
a content selection procedure for light field images is proposed
using high-level features consisting of depth properties, dispar-
ity range of pixels, refocusing features, etc. as well as general
image quality features.

In [43], however, it is argued that those simple charac-
teristics do not sufficiently cover the perceptual aspects of
visual contents when processing steps (i.e. tone-mapping) are
involved. Therefore, an approach is proposed to characterize
HDR contents in the viewpoint of whether an HDR content
is challenging for tone mapping operators. It focuses on the
perceptual change due to the dynamic range reduction that
is frequently applied to HDR contents. Using this character-
ization method, a framework to build a representative HDR
dataset is proposed in [44]. In a similar spirit, we propose a
novel characterization framework for WCG contents.

III. PROPOSED FRAMEWORK

A. General Algorithm

We propose a framework for WCG content characterization
based on the perceptual change caused by gamut mapping.
We define WCG content characteristics as degrees of the
perceptual differences due to successive gamut reduction. The
overall procedure of the proposed method is summarized in
Algorithm 1.

The framework in Algorithm 1 produces an N -dimensional
feature vector of perceptual difference for each WCG source
content. First, we obtain N gamut-reduced images by applying
a gamut reduction operator that converts the color gamut of the
reference image G0 into a target gamut Gn (n = 1, · · · , N ).
For each gamut-reduced image In, we apply an objective met-
ric that measures the perceptual difference from the reference
image I0. Finally, we obtain a feature vector D describing the
behavior of the WCG content in terms of perceptual difference
due to gamut reduction. We can utilize this feature in various
applications such as WCG dataset analysis, content clustering,
and selection, which will be presented in Sections IV and V.

B. Obtaining Ground Truth of Perceptual Difference

Hereafter, we provide implementation details of the pro-
posed framework. In Algorithm 1, we use an objective met-
ric PD to measure the perceptual difference due to gamut
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Algorithm 1 General framework for WCG content character-
ization

# Input I0: WCG source image
# Output D: vector of perceptual differences of I0
# N : number of target gamut spaces for gamut reduction
# G0: reference gamut space that covers all colors of I0
# Gn: n-th gamut space smaller than Gn−1 (n = 1, · · · , N )
# fGR(I,G): function that generates a gamut-reduced image
with all colors in gamut G from image I
# PD(I, I ′): function that measures the perceptual differ-
ence between images I and I ′

for n = 1 : N do
Generate In = fGR(In−1, Gn)
Calculate dn = PD(In, I0)

end for
Obtain D = [d1, d2, · · · , dN ]

ᵀ

reduction. Although various image quality metrics have been
proposed in literature, metrics specifically designed to measure
perceptual difference of images exposed to color gamut change
do not exist. Therefore, we conduct a subjective test in which
the mean opinion score (MOS) of the perceptual difference
between gamut-mapped images is measured. MOS is then used
to benchmark existing color metrics and optimize the best one
via nonlinear transformation.

1) Data: We collect 54 images consisting of scenes from
HdM-HDR-2014 [45] and Arri Alexa sample footage2, in
short, HdM and Arri, respectively. HdM contains videos filmed
in a professional cinematography environment with dynamic
ranges up to 18 stops and a color gamut close to Rec.2020.
Especially, it focuses on the WCG by containing videos with
highly saturated color and lights. The perceptual difference of
the videos is large when the gamut is reduced. Arri is a video
sample footage provided by the ARRI company. Contents of
the dataset are in various natural topics with up to the Rec.2020
color gamut. Compared to HdM, color differences are not large
when the gamut is not much reduced. The collected image set
is divided into training and validation sets of 30 and 24 images,
respectively. The HDR images from HdM are converted to the
standard dynamic range with a fixed value of exposure.

We use DCI-P3 as a reference WCG, which originates from
the cinema industry. And, we use two target gamuts for gamut
reduction (i.e., G1 and G2): Rec.709 and Toy. With widespread
displays abiding by the HDTV standard, gamut reduction
from P3 to Rec.709 frequently happens to WCG contents.
In addition, to cover a high degree of gamut reduction, we
employ an artificially created gamut, called Toy, which has
been used in the state-of-the-art WCG studies [7], [46]. It is
smaller than Rec.709 and produces large perceptual difference
when the gamut of a WCG image is reduced to it. The choice
of these two gamuts is based on our preliminary experiments,
where for the gamuts between P3 and Rec.709, the gamut-
reduced images are not visually distinguishable from those in
P3 nor Rec.709; in addition, gamuts smaller than Toy give rise

2https://www.arri.com/en/learn-help/learn-help-camera-system/camera-
sample-footage

TABLE I
RGB PRIMARY COLORS IN THE CIE 1931 COLOR SPACE

Gamuts
Red Primaries Green Primaries Blue Primaries

x y x y x y

DCI-P3 0.680 0.320 0.265 0.690 0.150 0.060
Rec.709 0.640 0.330 0.300 0.600 0.150 0.060
Toy 0.570 0.320 0.300 0.530 0.190 0.130

Fig. 1. Color spaces of color gamuts considered in this work on CIE 1931
chromaticity diagram.

to too much color distortion in the gamut-reduced images and
thus are not practically meaningful. For gamut reduction, we
consider a simple gamut mapping algorithm because complex
and time-consuming algorithms are not preferred in the content
characterization process. Hence, we use the gamut clipping
method that maps colors outside the target gamut at the nearest
boundary of the target gamut.

2) Subjective Test: We adopt the paired comparison test
methodology [47] for the subjective test, because the dif-
ference due to gamut reduction is mostly subtle perceptual
difference rather than large quality distortion. The reference
image in the P3 gamut and one of the gamut-reduced images
produced in Section III-B1 are shown in a side-by-side manner.
The images are compared in terms of color difference on a
three-point scale: no difference (0), slight difference (1), and
clear difference (2).

The test is conducted under the standardized test room
condition complying with the laboratory condition described
in ITU-R BT.500 such as luminance of the monitor, room
illumination, observers, etc. [48]. We use an EZIO ColorEdge
monitor that can display up to the P3 color gamut. We heuristi-
cally crop each image in half-width (960×1080 pixels) to show
both images side-by-side on a single monitor. Participants
are 51 healthy non-expert volunteer subjects consisting of 26
males and 25 females, who are screened by a color and vision
test. We obtain the MOS for each of the 60 images (30 source
images × two target gamuts) by taking the average value of
the ratings over the subjects.
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The test consists of an exercise and a test sessions. During
the exercise session, the test methodology is described to the
subjects with five exercise stimuli that are different from the
test stimuli. The test session proceeds sequentially for each
pair of images as follows. First, a reference image and one of
its gamut-reduced versions are displayed on the monitor up to
five seconds. Then, the monitor turns into a gray screen. At
anytime during these steps, the subjects can enter their rating
using a keyboard. Finally, the monitor turns into (or stays) gray
for one second for a break and then the next pair is shown. The
viewing order of the stimuli is set random for each subject.
The arrangement of the reference image or the gamut-reduced
image (i.e., left or right side) is also randomized for each pair.
At the beginning of the test session, three dummy pairs are
shown for stabilization, which are also different from the test
stimuli.

C. Fitting Objective Metric

In order to approximate the subjective score of the color
difference due to gamut reduction in an objective manner, we
employ the color extension of the structural similarity index
(cssim) [49], [50], which can effectively measure perceptu-
ally significant structural differences due to gamut reduction
between two color images. The preliminary study [1] shows
that it performs best with the highest accuracy among eight
commonly-used objective color difference metrics [51], [52],
[53], [54], [55], [56], [57].

For each pair of the reference and gamut-reduced image,
we measure the cssim score. The score is further fitted to the
MOS by a monotonic nonlinear function as described in [58]:

f(x) =
α

1 + 10β(γ−x)
, (1)

where the fitted values of the parameters are α = 2, β = −3.5,
and γ = 1.9. The result of fitting for the training dataset
is shown in Fig. 2. In order to evaluate the prediction per-
formance, we obtain MOS for the validation dataset from
20 subjects by following the same procedure described in
Section III-B2. The Pearson correlation coefficients (PCCs)
between the ground truth MOS and predicted MOS using the
fitting function are 0.92 and 0.80 for the training and valida-
tion sets, respectively. Therefore, we calculate the perceptual
difference in Algorithm 1 as

dn = PD(In, I0) = f(cssim(In, I0)). (2)

D. Validation

We validate the framework by applying it to a simple
content selection task. As mentioned in Section I, using
representative contents is crucial to draw reliable conclusion
in studies on QoE of WCG images. In the task, the main
objective is to select representative images that have diverse
behaviors in terms of the perceptual difference due to suc-
cessive gamut reduction. We use the framework to obtain
predicted perceptual differences due to gamut reduction to the
two target gamuts (Rec.709 and Toy) as two-dimensional fea-
tures characterizing the 24 candidate images in the validation

Fig. 2. Fitted sigmoid function to predict MOS of perceptual difference using
cssim. The ground truth and predicted MOS are shown as dots and a red
line, respectively.

dataset. Then, the k-means clustering algorithm is applied to
the predicted perceptual differences. The value of k determines
the number of representative clusters for content selection,
which should be chosen by the user according to the purpose
of content selection. In this experiment, we set the value of
k to five based on the distribution of the images in terms
of the predicted perceptual differences. One image for each
cluster is randomly selected to construct a representative image
set, which maximizes the coverage of the feature space. For
comparison, we also apply a random selection method where
five images are selected randomly in the same dataset.

The result for each selection method is shown in Fig. 3.
It can be seen that the selected images by our framework in
Fig. 3a are more spread than the randomly selected images.
In Fig. 3b, however, the selected images are biased to the
upper-side of the feature space. In this case, images having
small perceptual difference by severe gamut reduction are not
considered, and the obtained image set cannot be said to be
representative. Fig. 4 shows two example images (marked in
Fig. 3a) in different gamuts. In Fig. 4a, as predicted, large
perceptual differences are observed for both gamut-reduced
images compared to the reference P3 image, i.e., the overall
color of the scene and the green laser lights at the top area.
On the contrary, Fig. 4b hardly shows any difference between
gamut-reduced ones, which is also predicted in Fig. 3a. By
selecting images with diverse characteristics, a representative
dataset can be constructed by our framework.

We also evaluate robustness of content selection with our
framework. For each of the two methods (random selection
and our framework), the selection task is repeated two times
to obtain two sets of selected images, and the PCC between
the MOSs of the two sets is measured. We consider that a
high value of PCC by a selection method represents a high
level of robustness of the method, because it means that the
characteristics of the selected images are consistent regardless
of repetition or random effects. We repeat the procedure 100
times. Much higher PCC values are obtained by our framework
than random selection (0.83 vs. 0.15 on average), which is
found to be statistically significant via a t-test, t(137.1) =
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(a) (b)

Fig. 3. Example of content selection with (a) our framework and (b) random selection. The x- and y-axis are predicted perceptual differences of images from
the P3 to Rec.709 and Toy gamuts, respectively. Among the data points shown as blue dots, the selected images are marked with red circles. Note that the
lower-right area of each figure is empty because as the gamut is reduced more, the perceptual difference becomes larger, thus the value of the y-axis would
be always bigger than that of the x-axis.

(a)

(b)

Fig. 4. Selected images corresponding (a) 1© and (b) 2© of Fig. 3a in the P3, Rec.709, and Toy gamuts (left, middle, and right panels, respectively).

21.1, p < 0.0013.

IV. APPLICATION TO WCG DATASET CHARACTERIZATION

In this section, we apply the proposed framework to char-
acterization of WCG image datasets. We describe dataset

3The statistical significance of higher PCC values by our framework is
obtained in all cases with k from 2 to 10.

characterization criteria and analyze existing WCG datasets
based on them. Characterizing datasets helps an experimenter
to determine or construct a suitable dataset for studies related
to QoE of WCG contents.

A. Dataset Characterization Criteria
By extending the dataset characterization criteria presented

in [37], we propose to measure four statistics of perceptual
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difference measured by the framework as follows. In [37],
three statistics of various characteristics extracted from images
or videos in the dataset are proposed. They are two criteria
measuring the coverage and uniformity in each dimension, and
a multidimensional coverage criterion. In addition to these, we
also consider the multidimensional uniformity. Note that we
normalize the perceptual differences in each dimension to scale
the span of the criteria within [0, 1], i.e., d̃i = di/si, where si
is a normalization factor that is equal to the maximum possible
value of MOS (si = 2 in our case) because the minimum value
of MOS is zero.

1) Coverage: To quantify how wide the range of the
perceptual differences covered by the images of a dataset, we
measure the difference between the smallest and largest per-
ceptual difference values of the images. Specifically, coverage
Ci for gamut space i is calculated as

Ci = max(zi)−min(zi), (3)

where zi is a set of the normalized perceptual differences d̃i
of all images in the dataset when the gamut is reduced to
target gamut i from the reference gamut (i = 1, . . . , N ). The
maximum value of Ci is obtained when the dataset contains
images corresponding to both no-difference (MOS = 0) and
clear difference (MOS = 2) for the ith target gamut. In other
words, one image has less or no colors outside the ith gamut
space so that it does not cause perceptual difference by gamut
reduction, but the other image contains lots of colors outside
the space and thus its perceptual difference can be clearly
observed by gamut reduction.

2) Total Coverage: This is the relative area occupied by the
data points in the space of perceptual differences. It is similar
to Ci, but considers the interaction of different dimensions in
Z = {z1, z2, . . . , zN}. It is calculated as follows:

Ctotal =
N

√∫
convex(Z), (4)

where convex(Z) returns the convex hull for N -dimensional
vectors in Z. Ctotal becomes the largest when the dataset con-
sists of images having the maximum coverage of perceptual
difference for all target gamuts. Using a dataset having a large
value of Ctotal in an experiment implies that images having
extreme perceptual characteristics (i.e., both severe and little
perceptual differences) under gamut change are employed.

3) Uniformity: While the above coverage measures con-
sider the range of perceptual differences observed in the
images, uniformity measures how evenly the perceptual dif-
ferences are distributed within the range. For this, we use
the information entropy, which is popularly used to measure
the uniformity of a distribution. In other words, we construct
the histogram of zi, and then compute its entropy as follows
in order to quantify the uniformity of the distribution of the
perceptual differences.

Ui = −
B∑
k=1

pi,k logB pi,k, (5)

where B is the number of bins of the histogram and pi,k is the
ratio of the images of which perceptual differences are in the

range of the kth bin. The uniformity has the largest value of
1 when the perceptual differences of the dataset are uniformly
distributed. It becomes low when the dataset contains images
having similar perceptual differences, and reaches 0 when the
perceptual differences are the same for all images.

4) Total Uniformity: This measures the uniformity of per-
ceptual differences over the whole dimensions of reduced
target gamuts. In this case, we compute the N -dimensional
histogram of Z and its entropy, i.e.,

Utotal = −
1

N

N∑
i=1

B∑
k=1

qi,k logB qi,k, (6)

where B is the number of bins for each dimension of the
histogram and qi,k is the normalized count in the kth bin
(normalized over the whole dimension). It becomes the largest
value (i.e., 1) when a dataset contains diverse images in terms
of perceptual differences and the perceptual differences are
uniformly distributed over all target gamuts. On the other hand,
it has the lowest value of 0 when the dataset contains images
that show the same amount of perceptual difference for all
target gamuts. A dataset having a large value of Utotal is
beneficial to conduct experiments with images having diverse
perceptual characteristics under gamut change.

B. Analysis of Existing Datasets

We analyze the two existing WCG datasets, HdM and
Arri, in terms of the four criteria described above4. In this
experiment, we collect 38 and 11 images from each dataset,
respectively. We use the perceptual difference for the 49
images due to successive gamut reduction from the reference
P3 gamut to the Rec.709 and Toy gamuts as in Section III-C.
We then measure the four criteria of the two WCG datasets.
For (total) uniformity, we use 10 bins for each dimension
of the histograms (i.e., B = 10). The measured criteria are
summarized in TABLE II. In addition, the distributions of the
perceptual difference for the two datasets are shown in Fig. 5.

First, the coverages of the two datasets have different
behaviors depending on the target gamuts. The perceptual
differences of the images in the HdM dataset cover over
about a half of the scale for both target gamuts as shown
in Fig. 5a. For the case of gamut reduction to Toy, the
perceptual difference is biased to large values because most
images of HdM contain many pixels with highly saturated
colors, which produces large perceptual difference when the
gamut is reduced. On the contrary, pixels with highly saturated
color are few in the images of the Arri dataset, so the coverage
criterion for Rec.709 is low while that for Toy is high as shown
in Fig. 5b.

Similarly to the results of the dimension-wise coverage
criterion, the HdM dataset has a medium level of total coverage
of perceptual differences, showing the convex hull covering
almost the upper-half area in Fig. 5a. On the other hand,
although the coverage value for the Toy gamut is large as
shown in Fig. 5b, the total coverage of the Arri dataset is small
due to the extremely low coverage for Rec.709. Note that zToy

4These are the only publicly available datasets that support Rec.2020.
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TABLE II
RESULTS OF WCG DATASET CHARACTERIZATION

Criteria
HdM Arri

Toy Rec.709 Total Toy Rec.709 Total

Coverage 0.512 0.647 0.412 0.933 0.017 0.093
Uniformity 0.707 0.509 0.550 0.713 0.000 0.357

would be always higher than z709 for the same image because
the details of color are more distorted in Toy, so the practical
maximum possible value of total coverage is 0.707 (=

√
0.5).

In terms of uniformity, the perceptual differences caused
by the large gamut difference (i.e., the case of Toy) are
quite uniformly distributed for both datasets. For the small
gamut reduction (to Rec.709), the perceptual differences of the
HdM dataset are slightly biased to low values. The perceptual
differences of the Arri dataset are extremely biased, so all data
points are allocated in a single bin and the uniformity is zero.

In the case of total uniformity, there exist differences be-
tween the two datasets. The perceptual differences of the HdM
dataset are quite uniformly distributed on the two-dimensional
space in Fig. 5a, although the data points are slightly biased to
the upper region (where large perceptual differences occur due
to large gamut reduction). For the Arri dataset, the perceptual
differences are biased to the left-side in Fig. 5b, so the total
uniformity becomes low.

Overall, each of the two datasets has its own strengths and
limitations in a complementary manner. HdM has a relatively
small coverage of zToy, while Arri has limited characteristics
in the Rec.709 gamut. For example, if the Arri dataset is used
for an experiment involving gamut changes, the experiment
would draw biased conclusion for small gamut difference.
Based on this understanding, one can choose either of the
two datasets for particular research problems; for instance, the
Arri dataset could be more effective for the experiments that
focus on large gamut difference. Furthermore, one can obtain
an enhanced dataset by supplementing one of the two datasets
with particular contents having characteristics desired for the
given objective.

V. APPLICATION TO EVALUATION OF GAMUT MAPPING
ALGORITHMS

In this section, we present another practical application of
the proposed framework, which is the problem of evaluation
of GMAs. In this scenario, the proposed framework plays a
role to select image contents used for performance comparison
of different GMAs. We demonstrate the reliability of the
framework for selection of representative contents for fair
comparison.

A. Scenario

The main goal of the scenario is to benchmark performance
of GMAs. Each GMA is applied to a set of source image
contents having wide gamuts, and its performance is measured
by an objective quality metric in terms of perceptual color
information loss in the gamut-reduced images in comparison

to the original ones. Here, which image dataset is used is an
important issue. For instance, if images that do not have color
profiles challenging enough to reveal distinguished gamut
mapping performance, the GMAs may be evaluated to perform
similarly, which may not be the case if challenging images
are included. Therefore, careful selection of the images is
required to obtain unbiased benchmarking results, for which
the proposed framework can be used. Therefore, our objective
is to evaluate the reliability of the benchmarking results
between different source content selection methods.

We limit the number of GMAs for comparison to two in
order to validate the effectiveness of the proposed frame-
work clearly rather than to present extensive benchmarking
of many GMAs. One is the state-of-the-art gamut reduction
algorithm [7] that adaptively modifies local contrast of pixels
residing outside of the target gamut based on the Retinex
theory [8]. For the other one, we use the gamut compression
algorithm [6] that maps the entire color of the source image
inside the target gamut in the CIE 1931 space.

To evaluate the performance of gamut mapping, we use
the color image difference (CID) [35] that predicts perceptual
color difference between the reference and gamut-reduced
image, which is used to evaluate performance of the gamut
reduction algorithm in [7]. As the main objective of conducting
the scenario, we focus on the reliability and robustness of test
results with representative contents selected by our framework.
First, the selected dataset should sufficiently cover diverse
gamut characteristics so that it is representative. Second,
in terms of robustness, experiments with content selection
followed by the same procedure should produce consistent
results and conclusions regardless of repetition.

B. Content Selection

The pool of candidate source images consists of half-HD
(960 × 1080 pixels) WCG images from both the HdM and
Arri datasets. After excluding images containing no or too few
pixels in WCG (outside the Rec.709 gamut) from the data used
in Section IV-B, 35 candidate images are used. The reference
gamut is Rec.2020, and we use three target gamuts for gamut
mapping: P3, Rec.709, and Toy.

The proposed framework is applied to select representative
images from the pool. As described in Section III-C, each
candidate image is represented by a two-dimensional percep-
tual feature vector. Then, the k-means clustering algorithm
with k = 3 is used to group them into three clusters,
from each of which three images are randomly selected.
For comparison, content selection using an existing content
feature, colorfulness [53], is also conducted. It measures the
variety and intensity of colors in an image. The colorfulness
features computed for the candidate images are also clustered
into three groups and three images are randomly chosen from
each group. These content selection procedures are repeated
100 times with different random seeds.
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(a) HdM (b) Arri

Fig. 5. Measured perceptual differences and corresponding convex hulls for the (a) HdM and (b) Arri datasets.

C. Evaluation

In order to compare the two GMAs, we define CID gain gt
for target gamut t and for a source image as

gt = CID(I0,GC(I0, t))− CID(I0,GR(I0, t)), (7)

where I0 is the reference image, and GC(I0, t) and GR(I0, t)
are the gamut-compressed and gamut-reduced versions of I0,
respectively. gt becomes positive when the gamut reduction
algorithm performs better than the gamut compression al-
gorithm, and its absolute value indicates the degree of the
performance difference.

Using the CID gains for 100 repetitions, the two content
selection methods are compared with respect to two aspects:
robustness and representativeness. First, a content selection
method is considered to be robust when the CID gains remain
consistent, i.e., the averages and standard deviations of the
CID gains over the selected images are similar across the
repetitions. Second, a dataset of images chosen by a content
selection method is regarded as being representative if the
images have diverse color characteristics. Thus, the CID gains
lie in a wide range, resulting in a large average and standard
deviation over the images.

D. Results

Fig. 6 shows the average and standard deviation of CID
gains for the selected images with respect to the target gamut
and selection method. In all cases, the average CID gains are
positive, which indicates that the gamut reduction algorithm
produces gamut-reduced images with smaller difference from
the reference ones compared to the gamut compression algo-
rithm. When the three target gamuts are compared, a smaller
gamut yields larger CID gains because more color distortion
is introduced by the gamut compression algorithm than the
gamut reduction algorithm as the gamut difference becomes
larger.

The two selection methods show clearly distinct results.
First, the average and standard deviation of the CID gains
appear more similar across 100 trials when the proposed

framework is used, particularly when the target gamut is small.
In order to statistically assess this, we conduct one-sided F-
tests under the null hypothesis that the two populations (one
for the proposed framework and the other for the method
using colorfulness) of the average (or standard deviation)
values of the CID gains have the same variance. The results
are shown in TABLE III, which confirms that the cases
involving large gamut changes show statistically significant
difference (i.e., Rec.709 and Toy for the average and Toy for
the standard deviation). Note that for P3, the gamut difference
from Rec.2020 is small, so the average and standard deviation
of the CID gains are also small. These results demonstrate
that the selection method has an impact on the results of
GMA comparison, where content selection using the proposed
framework provides improved robustness.

Second, on average, the average and standard deviation
values are larger for the case using the proposed framework
than for the case using colorfulness. Since many images in the
pool are not challenging for GMAs as shown in Section IV-B,
for which the CID gain is small, a larger average or standard
deviation value indicates a more representative dataset. We
perform one-sided t-tests under the null hypothesis that the
two populations of the average (or standard deviation) values
of the CID gains have the same mean. As shown in TABLE III,
the null hypothesis is rejected in all cases, indicating that the
average and standard deviation values are significantly larger
for our method. This confirms representativeness of the dataset
obtained using our method and, consequently, reliability of the
results of the benchmarking.

For comparison, we provide further results using selection
features other than colorfulness. We use two no-reference
color quality metrics: contrast enhancement based contrast-
changed image quality measure (CEIQ) [59] and accelerated
screen image quality evaluator (ASIQE) [60]. The former is
a metric based on a learned support vector machine using
multiple features estimating contrast distortion, while the latter
assesses image quality considering four types of quality fea-
tures consisting of picture complexity, screen content statistics,
global brightness quality, and sharpness of details. We conduct
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(a) Framework (P3) (b) Framework (Rec.709) (c) Framework (Toy)

(d) Colorfulness (P3) (e) Colorfulness (Rec.709) (f) Colorfulness (Toy)

Fig. 6. CID gains for the images selected by the method using the proposed framework or the one using colorfulness. The average and standard deviation
values of the CID gains over the selected images are represented by the bars with dark color and the shaded area, respectively.

TABLE III
RESULT OF THE STATISTICAL TESTS COMPARING THE SELECTION

METHOD USING THE PROPOSED FRAMEWORK AND THE ONE USING
COLORFULNESS. THE DEGREES OF FREEDOM OF T-TESTS ON AVERAGE

AND STANDARD DEVIATION USING THE WELCH-SATTERTHWAITE
EQUATION ARE 181.8 AND 134.8, RESPECTIVELY. STATISTICAL

SIGNIFICANCE (BONFERRONI-CORRECTED FOR MULTIPLE COMPARISON)
IS MARKED IN BOLD.

Target gamut
Average Standard deviation

Statistics p-value Statistics p-value

F-tests
P3 F = 0.72 0.050 F = 0.94 0.385

Rec.709 F = 0.63 0.012 F = 0.72 0.053

Toy F = 0.54 0.001 F = 0.19 < 0.001

t-tests
P3 t = 7.40 < 0.001 t = 6.43 < 0.001

Rec.709 t = 8.79 < 0.001 t = 7.50 < 0.001

Toy t = 9.65 < 0.001 t = 9.43 < 0.001

statistical tests comparing the CID gains obtained by our
framework and the method using either CEIQ or ASIQE.
The results are shown in TABLE IV. Similar to the results
in TABLE III using colorfulness, statistical significance is
observed for F-tests in the cases of the large gamut change (i.e.
between Rec.709 and Toy) and for t-tests in all cases. Thus,
our framework can effectively select representative contents
reliably compared to the methods using these image quality
metrics.

TABLE IV
RESULT OF THE STATISTICAL TESTS COMPARING THE SELECTION

METHOD USING THE PROPOSED FRAMEWORK AND THE ONES USING
CEIQ AND ASIQE. STATISTICAL SIGNIFICANCE IS MARKED IN BOLD.

Target gamut
Average Standard deviation

Statistics p-value Statistics p-value

F-tests (CEIQ)
P3 F = 0.78 0.103 F = 0.83 0.170

Rec.709 F = 0.66 0.020 F = 0.57 < 0.001

Toy F = 0.49 < 0.001 F = 0.14 < 0.001

t-tests
P3 t = 10.73 < 0.001 t = 10.44 < 0.001

Rec.709 t = 12.04 < 0.001 t = 11.80 < 0.001

Toy t = 12.23 < 0.001 t = 12.78 < 0.001

F-tests (ASIQE)
P3 F = 0.76 0.082 F = 0.92 0.340

Rec.709 F = 0.57 0.002 F = 0.62 0.009

Toy F = 0.44 < 0.001 F = 0.11 < 0.001

t-tests
P3 t = 9.77 < 0.001 t = 9.27 < 0.001

Rec.709 t = 10.81 < 0.001 t = 11.00 < 0.001

Toy t = 10.90 < 0.001 t = 13.24 < 0.001

VI. CONCLUSION

We proposed a content characterization method for a WCG
image content and evaluated it in practical applications. The
main idea was to obtain perceptual color differences due
to successive gamut reduction as content characteristics for
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the WCG content. As one of the practical use cases of
the framework, we analyzed existing datasets by measuring
dataset characterization criteria on the WCG characteristics.
Four criteria consisting of coverage, total coverage, uniformity,
and total uniformity effectively characterized WCG datasets.
In addition, we validated WCG content characteristics as a
content selection feature in a GMA benchmarking scenario.
Using the framework, we were able to select representative
WCG contents, and draw robust and reliable benchmarking
results.

In the future, the proposed framework can be improved in
several ways. First, we employed cssim for objective quality
assessment due to its superiority. If metrics that perform
better than cssim are developed in the future, e.g., deep
learning-based methods, our framework could benefit from
employing such improved metrics. Second, the scope of the
framework could be extended to video contents by considering
the temporal dimension of color perception.
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