

Looking into the dynamics of molecular crystals of ibuprofen and terephthalic acid using 17O and 2H NMR analyses

Chia-Hsin Chen, Ieva Goldberga, Philippe Gaveau, Sébastien Mittelette, Jessica Špačková, Chuck Mullen, Ivan Petit, Thomas-Xavier Métro, Bruno Alonso, Christel Gervais, et al.

▶ To cite this version:

Chia-Hsin Chen, Ieva Goldberga, Philippe Gaveau, Sébastien Mittelette, Jessica Špačková, et al.. Looking into the dynamics of molecular crystals of ibuprofen and terephthalic acid using 17O and 2H NMR analyses. Magnetic Resonance in Chemistry, 2021, 59 (9-10), pp.975-990. 10.1002/mrc.5141. hal-03205685v2

HAL Id: hal-03205685 https://hal.science/hal-03205685v2

Submitted on 16 May 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SPECIAL ISSUE RESEARCH ARTICLE

Looking into the dynamics of molecular crystals of ibuprofen and terephthalic acid using ¹⁷O and ²H nuclear magnetic resonance analyses

Chia-Hsin Chen ¹ Ieva Goldberga ¹ Philippe Gaveau ¹			
Sébastien Mittelette ¹ Jessica Špačková ¹ Chuck Mullen ²	Ivan Petit ³		
Thomas-Xavier Métro ⁴ Bruno Alonso ¹ Christel Gervais ³	1		
Danielle Laurencin ¹			

Correspondence
Danielle Laurencin, ICGM, Univ
Montpellier, CNRS, ENSCM, Montpellier,

Email: danielle.laurencin@umontpellier.fr

Funding information

GENCI-IDRIS, Grant/Award Number: 097535; Horizon 2020, Grant/Award Number: 772204

Abstract

Oxygen-17 and deuterium are two quadrupolar nuclei that are of interest for studying the structure and dynamics of materials by solid-state nuclear magnetic resonance (NMR). Here, ¹⁷O and ²H NMR analyses of crystalline ibuprofen and terephthalic acid are reported. First, improved ¹⁷O-labelling protocols of these molecules are described using mechanochemistry. Then, dynamics occurring around the carboxylic groups of ibuprofen are studied considering variable temperature ¹⁷O and ²H NMR data, as well as computational modelling (including molecular dynamics simulations). More specifically, motions related to the concerted double proton jump and the 180° flip of the H-bonded (-COOH)₂ unit in the crystal structure were looked into, and it was found that the merging of the C=O and C-OH ¹⁷O resonances at high temperatures cannot be explained by the sole presence of one of these motions. Lastly, preliminary experiments were performed with a 2H-17O diplexer connected to the probe. Such configurations can allow, among others, ²H and ¹⁷O NMR spectra to be recorded at different temperatures without needing to tune or to change probe configurations. Overall, this work offers a few leads which could be of use in future studies of other materials using ¹⁷O and ²H NMR.

KEYWORDS

solid state NMR, deuterium, molecular crystals, oxygen-17, dynamics, GIPAW, diplexer, molecular dynamics, tautomerism, hydrogen bonding

Chia-Hsin Chen and Ieva Goldberga contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2021 The Authors. *Magnetic Resonance in Chemistry* published by John Wiley & Sons Ltd.

¹ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France

²PhoenixNMR, Loveland, Colorado, USA

³Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), UMR 7574, Sorbonne Université, CNRS, Paris, France ⁴IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France

1097458xa, 2021, 9-10, Downloaded from https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/mrc.5141 by Biu Montpellier, Wiley Online Library on [16/05/2024]. See the Terms and Conditions (https://online

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

1 | INTRODUCTION

The potential of solid-state nuclear magnetic resonance (NMR) techniques for helping study the structure and reactivity of complex (bio)molecular and materials systems has significantly increased in recent years, thanks to numerous developments made in terms of instrumentation (e.g., ultrahigh magnetic fields and ultrafast magic angle spinning—MAS—probes), [1-3] pulse sequence developments (e.g., ¹H-detected sequences, ultrawide line, and broadband acquisition methods), [2,4-8] more efficient and/or selective isotopic enrichment approaches, [9-12] and Dynamic Nuclear Polarization (DNP).[13,14] Studies on challenging quadrupolar nuclei of low receptivity are increasingly being reported, including for some of the most « exotic » ones, [15,16] like ⁴³Ca, ⁶¹Ni, ⁸⁷Sr and ⁹⁰Zr, just to name a few. Moreover, investigations aiming at understanding the dynamics occurring at different timescales within (bio)molecular and materials systems are seen as highly important, not only because of the impact they can have on the NMR spectra and their acquisition conditions, but also and more importantly because of the insight they can provide on the properties of a given (bio)molecule or material. [17-21]

When it comes to studying dynamics in materials involving small organic molecules, ²H and ¹⁷O are both attractive quadrupolar nuclei. [22-29] This is notably true in crystals composed of molecules with carboxylic acid groups associated as dimers. Indeed, the dynamics of protons « hopping » between the H-bonded C=O and C-OH groups have been the object of much research, including using ²H and ¹⁷O magnetic resonance techniques. ^[24,30–32] Among recent ²H studies, Schmidt and Sebastiani's work showed by ab initio calculations that the ²H quadrupolar parameters in strongly H-bonded systems could not be directly transposed into structural data such as bond lengths, due to the importance of non-linear effects and collective motions.[32] Regarding ¹⁷O, Wu and co-workers' investigations are worth highlighting: they demonstrated by using variable temperature ¹⁷O NMR analyses that it is possible to study the concerted doubleproton jumping, and estimate the energy asymmetry between the two H-bonded tautomers experimentally. [24] More generally speaking, when looking at the available literature, it appears that the information arising from ²H

and ¹⁷O NMR analyses can potentially provide complementary information on the dynamic processes taking place within carboxylic acid dimers.

Considering the above context, the purpose of this article is to expand the possibilities for studying dynamics within molecular crystals by ²H and ¹⁷O NMR. Our studies were performed on two molecules: terephthalic acid and ibuprofen. Because of the very low natural abundance of both isotopes (Table 1), analyses were performed on enriched samples. First, improved ¹⁷O-labelling protocols based on mechanochemistry^[33] are described for both molecules. They were used to produce two doubly labelled compounds (enriched in ²H and ¹⁷O), referred to as **D-TA*** and **D-IBU***, which were isolated as molecular crystals (Scheme 1). Second, a variable temperature 17O MAS NMR study of D-IBU* is presented. The ¹⁷O NMR spectra are discussed using complementary computational modelling studies, including molecular dynamics simulations and ab initio calculations of NMR parameters. Lastly, preliminary NMR investigations involving a ²H-¹⁷O diplexer connected to the NMR probe are presented. This system was used in the case of **D-TA***, enabling some of the ²H and ¹⁷O NMR experiments to be performed at different temperatures in a back-to-back fashion with no need to retune the probe. This configuration is not standard considering the very similar Larmor frequencies of both nuclei (Table 1). Overall, the results presented in this manuscript will be of interest for future investigations of structure and dynamics using ¹⁷O and/or ²H NMR.

2 | EXPERIMENTAL SECTION

2.1 | Isotopic labelling procedures for terephthalic acid and ibuprofen

The following reagents were used as received: ibuprofen $(C_{13}H_{18}O_2)$, Sigma Aldrich, $\geq 98\%$ purity, racemic form, noted here IBU), terephthalic acid $(C_8H_6O_4)$, Janssen Chemicals, 98% purity, noted here TA), and deuterated terephthalic acid $(C_8D_4H_2O_4)$, with full deuteration on the aromatic cycle, 98% purity, Cambridge Isotope Laboratories, noted here D-TA) 1,1'-carbonyldiimidazole $(C_7H_6N_4O)$, TCI, >97% purity, noted here CDI).

	¹H	2 H	¹⁷ O
Spin	1/2	1	5/2
Natural abundance	99.98%	0.015%	0.037%
Larmor frequency ν_0 (MHz) at 14.1 T	600.1	92.1	81.4
Quadrupole moment Q $(\times 10^{-30} \text{ m}^2)^{[34]}$	1	2.86	-25.58

TABLE 1 Nuclear spin properties of ¹H, ²H and ¹⁷O

SCHEME 1 Structures of the doubly labelled ¹⁷O and ²H molecules: terephthalic acid (left) and ibuprofen (right). The ¹⁷O-labelling procedure by mechanochemistry leads to the predominant labelling of one oxygen per carboxylic group, but with both O atoms having the same probability to be enriched (which is why they are both highlighted in red)

¹⁸O-labelled water was purchased from Eurisotop (isotopic composition indicated in the certificate of analysis: 97.1% 18 O, 1.1% 17 O and 1.8% 16 O) or CortecNet (isotopic composition indicated in the certificate of analysis: 99.3% 18 O, 0.2% 17 O and 0.5% 16 O), and used for the optimisation of the enrichment protocols of terephthalic acid and ibuprofen, respectively, as detailed below.

¹⁷O-labelled water was purchased from CortecNet. The isotopic composition indicated in the certificate of analysis was 8.6% ¹⁸O, 90.4% ¹⁷O and 1.0% ¹⁶O for the $\sim 90\%^{17}$ O-enriched H₂O, and 43% ¹⁸O, 41% ¹⁷O and 16% ^{16}O for the $\sim 40\%$ ^{17}O H₂O.

 D_2O (> 99.96%, CAS 7789-20-0) was purchased from Sigma-Aldrich.

Reagent grade solvents were used in all purification protocols.

2.1.1 | ¹⁷O-enrichment of terephthalic acid and deuterated terephthalic acid by mechanochemistry

The enrichment procedure was first optimised using ¹⁸Oenriched water, due to its lower cost compared to ¹⁷Oenriched water. Terephthalic acid (50 mg, 0.30 mmol and 1.0 eq) and CDI (107 mg, 0.66 mmol and 2.2 eq) were introduced in a stainless-steel grinding jar (10 ml inner volume) with two stainless steel balls (10 mm diameter). The jar was closed and subjected to grinding for 60 min in the MM400 mixer mill operating at 25 Hz. ¹⁸O-labelled water (16 μ l, 0.88 mmol and \sim 3 eq) was then introduced in the jar, and the mixture was subjected to further grinding for 60 min at 25 Hz. To help recover the product, non-labelled water (1 ml) was introduced in the jar, and the medium was subjected to grinding for 2 min at 25 Hz. Then, it was transferred to an Erlenmeyer flask (together with 2×1 ml of non-labelled water, used here to rinse the grinding jar). The medium was acidified to pH ~ 1 by adding a few drops of concentrated HCl $(6 \text{ mol.L}^{-1} \text{ aqueous solution}, \sim 15 \text{ drops})$. The white

precipitate was immediately filtered on a glass frit, washed with 4×0.5 ml of a 1 mol.L⁻¹ aqueous solution of HCl, and then with 0.5 ml of ultrapure water. The recovered solid was dried overnight under vacuum. Average yield (n = 3, n representing the number of independent labelling experiments performed): 43 mg, 86%. Average ¹⁸O-enrichment level per oxygen, as determined by MS $(n = 3) = 46 \pm 1\%$.

For the preparation of the ¹⁷O- and ²H-enriched phase (noted D-TA*), D₄-terephthalic acid was used as a precursor, and the ¹⁷O-labelling step was performed following the optimised ¹⁸O-enrichment protocol described above using $\sim 40\%$ ¹⁷O-labelled water for the hydrolysis step instead (yield: 42 mg; average ¹⁷O-enrichment level per oxygen, as determined by MS = 20 + 1%). The ¹H and 13C solution NMR spectra, ESI-MS spectrum and Xray powder diffraction (XRD) powder pattern of D-TA* are shown in supporting information (Figures S1–S3).

2.1.2 | ¹⁷O-enrichment of ibuprofen by mechanochemistry

The enrichment procedure was first optimised using ¹⁸O-enriched water, due to its lower cost compared to ¹⁷O-enriched water. Ibuprofen (120 mg, 0.58 mmol and 1.0 eq) and CDI (103 mg, 0.64 mmol and 1.1 eq) were introduced into a Retsch MM400 stainless steel grinding jar (10 ml inner volume) containing two stainless steel balls (10 mm diameter). The jar was closed and subjected to grinding for 30 min in the MM400 mixer mill operating at 25 Hz. ¹⁸O-labelled water (99.3%, 16 μl, 0.87 mmol and 1.5 eq) was then added into the jar, and the mixture was subjected to further grinding for 30 min at 25 Hz. To help recover the product, non-labelled water (2 ml) was added into the jar, and the content was subjected to grinding for 2 min at 25 Hz. Then, the medium was transferred to a beaker (together with a sufficient amount of non-labelled water [8 ml] used here to rinse the jar). The medium was then acidified to pH ~1 with an aqueous solution of HCl (6 mol.L⁻¹, \sim 18 drops). The white precipitate was filtered on a glass frit, and 2 × 5 ml of non-labelled water was used to help recover the rest of the product from the beaker. The product was washed with a 1 mol.L⁻¹ aqueous solution of HCl and ultrapure water (3 × 1 ml of each), and then dried under vacuum. Average synthetic yield (n = 3): 89 mg, 75%. Average ¹⁸O-enrichment level per oxygen, as determined by MS (n = 3): 45 \pm 2%.

For the preparation of the ¹⁷O-enriched phase (noted IBU*), the ¹⁷O-labelling step was first performed following the optimised ¹⁸O-enrichment protocol described above, but using $\sim 90\%$ ¹⁷O-labelled water (16 µl and 1.5 eq.) for the hydrolysis step. Synthetic yield: 96 mg,

1097458xa, 2021, 9-10, Downloaded from https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/mrc.5141 by Biu Montpellier, Wiley Online Library on [16/05/2024]. See the Terms and Conditions (https://onlinelibrary.wiley and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

79%. Average 17 O-enrichment level per oxygen, as determined by MS = $36 \pm 2\%$ (average of five measurements). The 1 H and 13 C solution NMR spectra, ESI-MS spectrum, and XRD powder pattern of IBU* are shown in supporting information (Figures S4–S6).

2.1.3 | ²H-enrichment of ¹⁷O-labelled ibuprofen

The deuteration step was performed by mixing 59.4 mg of ¹⁷O-labelled ibuprofen (IBU*) with 0.5 ml of D₂O $(\sim 95 \text{ eg})$ in a 1.0-ml Eppendorf tube. The sample was sonicated for 1 min to ensure good mixing of the reagents. The mixture was then left for 3 days on a laboratory rocker shaker (Stuart SSL4-Rocker), with 70 oscillations per minute at room temperature. The mixture was spun down at 20,000 rpm for 15 min, and the excess water was discarded. The sample was then freeze-dried under vacuum for 6 h to remove the rest of the water. Synthetic yield: 56.4 mg, 95%. The IR and XRD powder patterns of the doubly labelled product D-IBU* can be found in supporting information (Figures S4 and S8). A similar ²H-labelling protocol was also applied to nonlabelled ibuprofen, on which complementary ²H MAS NMR experiments were performed.

2.2 | General characterisation protocols of the enriched compounds

Infrared (IR) spectra were recorded on a Perkin Elmer Spectrum 2 FT-IR instrument. The attenuated total reflectance (ATR) measurement mode was used (diamond crystal), and measurements were performed in the 400 to 4000 cm⁻¹ range.

Powder XRD analyses were carried out on an X'Pert MPD diffractometer using Cu K α_1 radiation ($\lambda=1.5406$ Å) with the operation voltage and current maintained at 40 kV and 25 mA, respectively. Diffractograms were recorded between 5° and 50° (or 60°) in 2θ , with a step size of 0.017°, and a time per step of 20 to 40 s.

Mass spectrometry (MS) analyses were performed on a Waters Synapt G2-S apparatus, using electrospray ionisation in negative mode in a range of 50–1500 Da. Capillary and cone voltages were set to 3000 and 30 V, respectively. The source temperature was 100°C, and the desolvation temperature was set to 250°C. Data were processed by MassLynxV4.1 software. For each product, a solution was prepared (in ethanol or DMSO, depending on the solubility), which was analysed five times by ESI-MS.

 1 H and 13 C solution NMR spectra were recorded on an Avance III Bruker 600 MHz spectrometer equipped with a TCI Prodigy cryoprobe, using DMSO- d_6 as a solvent. Chemical shifts were referenced to the residual solvent peaks at 2.50 ppm (1 H NMR spectra) and 39.52 ppm (13 C NMR spectra).

The melting points of ibuprofen (IBU) and its enriched counterparts (IBU* and D-IBU*) were measured on a Büchi B-540 Melting Point Apparatus. Samples were heated up to 70° C, and then with a ramp of 1° C min⁻¹ up to 80° C. All measurements were done in triplicate (n=3) and are reported in Table S1. The ²H and ¹⁷O NMR spectra of melted D-IBU* are shown in Figure S9.

2.3 | Solid-state NMR experiments

Solid-state NMR experiments were performed on a Varian VNMRS 600 MHz (14.1 T) spectrometer, using, in the vast majority of cases, a PhoenixNMR HXY probe equipped with a 3.2 mm probe head. The PhoenixNMR probe was tuned to ¹H (599.82 MHz), ²H (92.07 MHz) and ¹⁷O (81.33 MHz), using a ²H-¹⁷O diplexer. Conversion from multiple to single port tuning required a 'special' tuning plug-in and diplexer built specifically for ²H and ¹⁷O. Radio-frequency (RF) for ²H and ¹⁷O from the NMR console goes through a PhoenixNMR diplexer that provides >100 dBc isolation and then into the probe on a single channel. The PhoenixNMR probe is adapted to provide an over-coupled double resonant structure for the ²H and ¹⁷O frequencies, which in conjunction with the diplexer can allow the observation of one channel while irradiating on the other. Spectra were recorded under static or MAS conditions, with spinning speeds ranging from 5 to 18 kHz, depending on the sample. In the case of the ²H-enriched ibuprofen (not labelled in ¹⁷O), complementary ²H MAS NMR experiments were performed on a Varian T3 HX probe, tuned to ²H and ¹H, and spinning at 5 kHz.

¹⁷O NMR experiments were recorded using DFS (double frequency sweep) pulse sequence with a rotor-synchronised echo of one rotor period. The parameters were as follows: DFS pulse of 500 μs (ν_{RF} [17 O] \sim 7.4 kHz), with a sweep between 70 and 200 kHz, followed by a 17 O excitation pulse of 2 μs, echo delay of 55.55 μs, and a π pulse of 4 μs. All experiments were performed with a MAS frequency of 18 kHz and recycle delay of 0.5 s, and the number of transients acquired was 2400 for D-TA* and 4000 for D-IBU*. 17 O NMR chemical shifts were referenced to D₂O at -2.7 ppm (which corresponds to tap water at 0 ppm). The 17 O nutation experiment was also recorded using D₂O at room temperature (with a natural abundance of 17 O).

1097458xa, 2021, 9-10, Downloaded from https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/mrc.5141 by Biu Montpellier, Wiley Online Library on [16/05/2024]. See the Terms and Conditions (https://online ditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

The 2H NMR experiments performed on the PhoenixNMR probe were carried out using a solid echo pulse sequence with a $\pi/2$ pulse length of 3.7 μ s. 2H MAS NMR experiments on D-TA* were performed with a MAS frequency of 5 kHz and rotor-synchronised echo delay of one rotor period (200 μ s), and spectra were acquired using 14,000 transients and recycle delay of 0.5 s. Static experiments were performed on D-IBU*, using an echo delay of 30 μ s, and acquiring 122,500 transients with a recycle delay of 0.5 s. 2H chemical shifts were referenced to pure D₂O at 4.6 ppm. The 2H nutation experiment was also recorded using D₂O at room temperature.

The ¹H nutation experiment was recorded using adamantane at room temperature with a MAS frequency of 10 kHz.

Variable temperature studies were carried out under static or magic-angle spinning conditions (spinning at 5 or 18 kHz). In each situation, the temperature was calibrated using Pb(NO₃)₂. [35] When working under MAS conditions, careful attention was paid to the setting of the magic angle using KBr (⁷⁹Br resonance). The accuracy of the magic-angle at each temperature of analysis could be verified on D-TA*, by the absence of symmetric splitting of the ²H resonance and sidebands under magic angle spinning (see Figure S10). If judged necessary, the magic angle was carefully reset at the temperature of interest using KBr.

2.4 | Computational details

The NMR chemical shift calculations were performed within the density functional theory (DFT formalism using the QUANTUM-ESPRESSO (QE))[36] software. The PBE generalised gradient approximation^[37] was used, and the valence electrons were described by normconserving pseudopotentials^[38] in the Kleinman-Bylander form.^[39] The wave functions were expanded on a plane wave basis set with kinetic energy cutoff of 80 Ry. The shielding tensor was computed using the Gauge Including Projector Augmented Wave (GIPAW)[40] approach, which permits the reproduction of the results of a fully converged all-electron calculation. Absolute shielding tensors are obtained. The isotropic chemical shift δ_{iso} is defined as $\delta_{iso} = -[\sigma - \sigma^{ref}]$, where σ is the isotropic shielding and σ^{ref} is the isotropic shielding of the same nucleus in a reference system as previously described. [11] The principal components $V_{\rm xx}$, $V_{\rm yy}$ and $V_{\rm zz}$ of the electric field gradient (EFG) tensor are obtained by diagonalisation of the tensor. The quadrupolar interaction can then be characterised by the quadrupolar coupling constant C_Q and the asymmetry parameter η_Q , which are defined as $C_{\rm O} = eQV_{\rm zz}/h$ and $\eta_{\rm O} = (V_{\rm yy} - V_{\rm xx})/$ $V_{\rm zz}$. The experimental values of the quadrupole moments

of 17 O $(Q = -25.58 \times 10^{-30} \text{ m}^2)$ and 2 H $(Q = +2.86 \times 10^{-30} \text{ m}^2)^{[41]}$ were used to calculate $C_{\rm O}$.

Two crystallographic structures of racemic ibuprofen (CCDC 1041383 and 128796) were tested as starting points. The geometry optimisation of all atomic positions (keeping cell parameters fixed to experimental values) was performed for both low- and high-energy tautomers using the VASP code $^{[42]}$ and a Monkhorst–Pack k-space grid size of 2 \times 3 \times 2. NMR parameters were then calculated keeping the relaxed atomic positions.

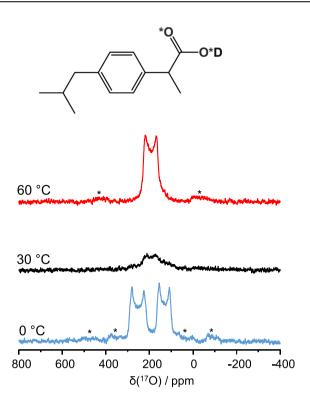
For the evaluation of the rotational barrier energy of the H-bonded (–COOH) $_2$ dimeric unit in ibuprofen, the crystalline structure # CCDC 128796 was used as a starting point (because the ibuprofen dimer is at the centre of the unit cell, thereby facilitating the application of a geometrical torsion). The dihedral angle C_{ar} – $C_{(H)}$ –C–O was varied and constrained, while the geometry of the rest of the molecule was optimised, and the energy subsequently calculated.

AIMD (Ab initio Molecular Dynamics) simulations were carried out with the CP2K code [43] consisting in the Born–Oppenheimer MD (BOMD) with PBE electronic representation, including the Grimme (D3) correction for dispersion, [44] GTH pseudopotentials, [45] combined plane wave, and triple-zeta valence with polarization (TZVP) basis sets. [46] The BOMD was performed using the NVT ensemble. The Nose–Hoover thermostat was used to control the average temperature at 300 K. Trajectories were accumulated over \sim 20 ps with a time step of 0.5 fs. $^2\mathrm{H}$ and $^{17}\mathrm{O}$ NMR calculations were performed with QE every 400 steps, that is, every 200 fs.

3 | RESULTS

3.1 | Improved ¹⁷O-enrichment protocols and preparation of doubly labelled molecules

Due to the very low natural abundance of ^{17}O and ^{2}H (Table 1), isotopic labelling is needed in order to be able to perform variable temperature solid-state NMR analyses in a reasonable time. While the deuteration of the carboxyl group can be easily achieved by exposure of the molecules to an excess of D_2O , the ^{17}O -labelling of the carboxylic oxygen atoms is not as straightforward, notably due to the high cost of ^{17}O -enriched water (1 ml of 90% ^{17}O -enriched water can cost up to $\sim 2000~\rm €$). A previous study showed that terephthalic acid and ibuprofen could be enriched in ^{17}O using mechanochemistry in a cost-efficient and userfriendly way. $^{[11]}$ However, our enrichment levels only averaged to $\sim 3\%$ –8% per carboxylic oxygen for these molecules, which is ~ 2.5 to 7 times less than the maximum


enrichment we could have expected based on the reactions and precursors involved. Hence, as part of this work, we first re-optimised the ¹⁷O-enrichment protocols for these two molecules.

The ¹⁷O-labelling procedure we have developed involves two ball-milling steps, which are performed back-to-back and followed by IR spectroscopy[11,47]: an activation of the carboxylic function using 1,1'carbonyldiimidazole (CDI), followed by the hydrolysis of the acyl-imidazole intermediate using ¹⁷O-enriched water. If either of these steps is incomplete, the final enrichment level decreases. We retested the reaction conditions for TA and IBU using ¹⁸O-enriched water (due to its lower cost compared to ¹⁷O-enriched water) and found that longer milling times (30-60 min, instead of 5-10 min) were needed to ensure a better mixing of the reagents and full completion of activation and hydrolysis (see Figure S7 for illustrations in the case of IBU). We verified the reproducibility of the newly optimised enrichment protocols and then used them for the 17Olabelling of terephthalic acid and ibuprofen. In the case of terephthalic acid, the optimised ¹⁷O-enrichment protocol was applied to a deuterated form of the molecule (D-TA, fully deuterated on the aromatic cycle), while for ibuprofen, it was applied to the non-labelled form of the molecule. The average ¹⁷O-enrichment level per carboxvlic oxygen achieved was \sim 20% for D-TA* (when using \sim 40% 17 O-labelled water for the hydrolysis) and \sim 36% for IBU* (when using $\sim 90\%$ ¹⁷O-labelled water for the hydrolysis). The mass spectra of the ¹⁷O-labelled molecules can be found in the supporting information, together with other analyses that demonstrate the purity and crystallinity of the isolated molecules (1H NMR, 13C NMR and powder X-ray diffraction) (see Figures S1–S6).

For ibuprofen, the ¹⁷O-enriched compound was then suspended in the presence of an excess of D₂O in order to exchange the carboxylic O–H group by O–D and form the doubly-labelled compound D-IBU*. This reaction was followed by IR spectroscopy by looking at the O–H vibration modes' replacement by O–D ones (see Figure S8). It is worth noting that after completion of the reaction, the NMR rotor was immediately packed and stored under vacuum in the freezer to avoid back exchange of the carboxylic deuterium upon exposure to atmospheric humidity.

3.2 | Variable temperature ¹⁷O MAS NMR of ibuprofen: Experiments and computational modelling

The ^{17}O MAS NMR spectra of D-IBU* were recorded at 14.1 T, while regulating the temperature between $0^{\circ}C$

FIGURE 1 Variable temperature ¹⁷O MAS NMR spectra of D-IBU*. All ¹⁷O NMR spectra shown here were recorded using the same acquisition conditions (including the same number of scans). The temperatures indicated correspond to the sample temperature inside the rotor at each spinning speed, as determined from calibrations using Pb(NO₃)₂. Tentative fits of the 0°C and 60°C spectra can be found in supporting information (Figure S11). «* » symbols correspond to spinning sidebands

and +60°C (Figure 1). The ¹⁷O spectra show two secondorder quadrupolar lineshapes at 0°C, which correspond to the C=O and C-OH groups. These signals progressively merge as the temperature is increased, leading to a single resonance with a characteristic second-order quadrupolar lineshape at 60°C. A similar observation had been made in our previous ¹⁷O NMR study of nondeuterated ibuprofen.[11] Fits of the spectra recorded at 0°C and 60°C can be found in supporting information (Figure S11). The fitted parameters (i.e., $\delta_{iso} = 308 \pm 2 \text{ ppm}$ and $|C_O| = 7.9 \pm 0.1 \text{ MHz}$ for the C=O, and with $\delta_{iso} = 179 \pm 2 \text{ ppm}$ $|C_{\rm O}| = 7.3 \pm 0.1$ MHz for the C-OH) were in line with those reported previously for non-deuterated ibuprofen, and with results from GIPAW-DFT calculations on the crystal structure.[11] A tentative fit of the data recorded at 60° C was also performed, resulting in intermediate δ_{iso} and $|C_{\rm O}|$ values $(\delta_{\rm iso})$ $= 244 \pm 2 \text{ ppm}$ $|C_{\rm O}| = 7.6 \pm 0.1 \text{ MHz}$).

Although several polymorphs of racemic ibuprofen have been reported, [48] the most stable form was obtained here, for which no polymorphic change is expected over the temperature range investigated by NMR. The changes

1097458xa, 2021, 9-10, Downloaded from https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/mrc.5141 by Biu Montpellier, Wiley Online Library on [16/05/2024]. See the Terms and Conditions (https://onlinelibrary.

und-conditions) on Wiley Online Library for rules of use; OA articles

in ¹⁷O solid-state NMR spectra around room temperature could, however, be due to (i) variations in the relative populations of the two tautomeric forms undergoing double proton jumps (Scheme 2a),^[24] and/or (ii) 180° flips of the (-COOH)₂ units (Scheme 2b),^[49] the latter motion having been suggested to exist for ibuprofen by Geppi and co-workers.^[50] Both of these motions were further analysed, using additional computational simulations to help rationalise the observations made by ¹⁷O NMR.

First, the possible influence of concerted double proton jumps between the two tautomeric forms of ibuprofen on the ¹⁷O MAS NMR data was looked into. Based on Wu and co-workers' recent work on a series of molecular crystals involving H-bonded carboxylic dimers, these motions can result in changes in ¹⁷O NMR spectra with temperature, depending on the relative population of the tautomeric forms. [24] Such proton exchanges occur on the ps timescale and can participate in the averaging of ¹⁷O NMR parameters between the two tautomeric forms. Here, a molecular dynamics simulation of racemic ibuprofen at 300 K was performed over a duration of 20 ps. This simulation brings evidence of the concerted double proton jumps and shows the evolution of the calculated average ¹⁷O NMR parameters of each oxygen (Figure 2), which appear to all progressively evolve towards averaged values. Nevertheless, a full averaging of the ¹⁷O NMR parameters could not be reached within the 20 ps timescale studied here.

For concerted double-proton jumps, the extent of averaging of the NMR parameters between both tautomers depends on the energy difference between the two forms and the analysis temperature. [24] In the case of racemic ibuprofen, Kolesov et al. reported an energy difference between both tautomers $\sim 7.7~\rm kJ~mol^{-1}$, based on Raman spectroscopy measurements. [51] In our case, starting from the crystalline structure of racemic ibuprofen, [52] the energy difference between the tautomeric forms was calculated by DFT, yielding a value $\sim 8.8~\rm kJ~mol^{-1}$, which is of the same order of magnitude as the experimental value of Kolesov. A similar energy

difference was found when performing calculations on structures in which the initial OH positions before geometry relaxation were varied, when starting from different cristallographic files (corresponding to neutron or X-ray data), and when modifying the dispersion energy parameters in VASP. Using these energy differences and the DFT-calculated ¹⁷O NMR parameters of each tautomer (Figure 3a), an approach similar to the one recently described by Wu and co-workers was then applied, [24] in order to see how the ¹⁷O NMR parameters may vary with temperature (Figure 3b). The most significant variations were observed for the isotropic chemical shifts. Yet, based on these calculations, a change of less than 10 ppm would have been expected for the « C=O » and « C-OH »-like resonances over the temperature range studied here (green-shaded region, Figure 3b), regardless of the energy difference chosen (8.8 or 7.7 kJ mol⁻¹). Similar conclusions would also have been expected for deuterated ibuprofen, for which an intermediate energy difference $\sim 6.7 \text{ kJ mol}^{-1}$ between the two tautomeric forms has been derived from Raman spectroscopy analyses. [51] Overall, this implies that no merging of the two ¹⁷O signals as observed in Figure 1 would have been expected to arise from concerted double ¹H-jumps only, on the basis of the calculated ¹⁷O NMR parameters of the two tautomers and their energy difference.

The motion related to a concerted rotation of the $(-COOH)_2$ group was then looked into. As mentioned above, the presence of this 180° flip had already been proposed in racemic ibuprofen on the basis of comprehensive 1H and ^{13}C NMR analyses. $^{[50]}$ Moreover, it is worth noting that the observations of the evolution of the variable temperature ^{17}O MAS NMR spectra of ibuprofen recall those reported by Wu and co-workers for nicotinic acid, in which the 180° rotation of an H-bonded –COOH unit was studied between $\sim -20^{\circ}C$ and $100^{\circ}C$ (although in the latter case, it is a single –COOH moiety H-bonded to N which undergoes the 180° flip). Here, in contrast to the double proton jumps, the 180° flip motions in ibuprofen could not be made evident by molecular dynamics

SCHEME 2 Illustration of dynamics that can occur between H-bonded carboxylic acids, leading to interconversion between the two tautomeric forms: (a) concerted double proton jump and (b) concerted 180° flips of the H-bonded (-COOH)₂ units

(b)
$$R \xrightarrow{O-H------} R \qquad \Longleftrightarrow \qquad R \xrightarrow{O-H-------} R$$

FIGURE 2 Molecular dynamics simulation of the structure of racemic ibuprofen, performed at 300 K, for a duration of 20 ps, with steps of 0.5 fs, with a focus on calculated ^{17}O NMR data. (a) Evolution of the H···O bond distances (in Å) in the dimer of the unit cell for which a concerted double ^{1}H jump was observed over the timescale of the calculation performed here (for the other dimer, no jump was observed). (b) Evolution of the DFT-calculated averaged ^{17}O NMR parameters for each oxygen site in this dimer (NMR parameters were calculated every 400 steps, i.e., every 200 fs; and for each new point calculated along the MD, the new value was averaged with the previous ones)

0.50

5000

10000 15000

20000

MD step

25000 30000 35000

0.40 0.35 0.30 0.25

simulation due to the « short » timescale of our MD calculations. Nevertheless, the activation energy associated with this motion was evaluated by DFT, using an approach similar to the one proposed by Wu and coworkers for nicotinic acid. [22] More specifically, starting from the published structure of racemic ibuprofen, the (-COOH)₂ dimeric fragment was rotated (keeping all

other atomic positions constant), and the energy difference for each torsion angle was then calculated after the relaxation of all atomic positions (except for those defining the dihedral angle). Some of the calculated geometries are shown in Figure 4. In doing so, it was found that the energy barrier is ~ 75 –100 kJ mol⁻¹ (the value depending on the direction chosen for the rotation

1097458xa, 2021, 9-10, Downloaded from https

nlinelibrary.wiley.com/doi/10.1002/mrc.5141 by Biu Montpellier, Wiley Online Library on [16/05/2024]. See the Terms

litions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

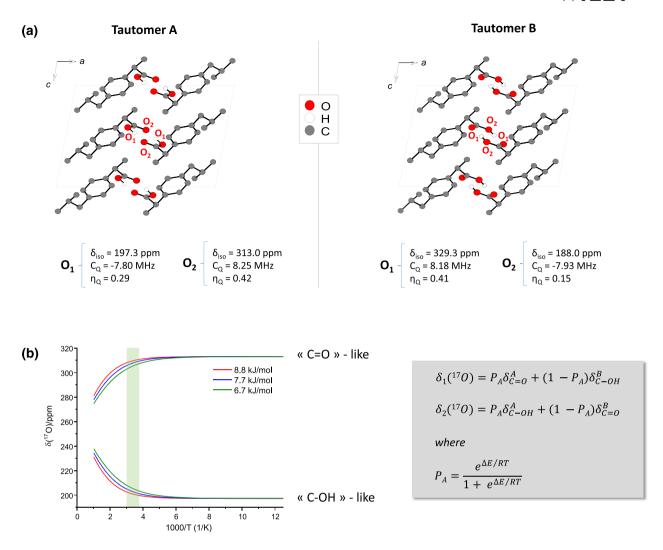


FIGURE 3 (a) Representation of the two tautomeric forms of ibuprofen and their DFT-calculated 17 O NMR parameters (for the (-COOH) $_2$ dimer) (not all atoms in the unit cell are shown here for clarity). (b) Temperature dependency of the 17 O isotropic chemical shifts of the two tautomeric forms, for ΔE values of 8.8 kJ mol $^{-1}$ (as calculated here by DFT for protonated ibuprofen) and of 7.7 and 6.7 kJ mol $^{-1}$ (as determined experimentally by Raman for protonated and deuterated ibuprofen, respectively). The region shaded in green corresponds to the temperature range studied here by 17 O NMR (i.e., between 0 °C and 0 °C). The equations used for the plot are recalled in the grey-shaded box 124 (in which the DFT-calculated values of 0 C=0 and 0 C-OH of the two tautomeric forms given just above (Figure 3a) were used)

of the $(-COOH)_2$ unit). These values are very different from the one reported by Geppi on the basis of 1H and ^{13}C NMR analyses, which had estimated the barrier to $\sim 13 \text{ kJ mol}^{-1}$. However, they are still consistent with the energy barrier reported for $(-COOH)_2$ 180° flips in other carboxylic dimers, for which values ranging from 50 to 85 kJ mol $^{-1}$ have been reported. [30,53] Part of the difference with the value reported by Geppi may come from the fact that computationally, we are probing the rotation of the carboxylic group by « freezing » the rest of the structure, while in the experimental study, other motions are occurring within the crystal structure, [50,54,55] which may indirectly facilitate the rotation of the carboxylic dimer. Overall, although the experimental and computational data shown here does not yet achieve a complete

picture of the (-COOH)₂ 180° flip and double proton exchange processes occurring in racemic ibuprofen, it nevertheless demonstrates the added value of performing high-resolution ¹⁷O NMR analyses and computational simulations to try to help understand these movements.

3.3 | Variable temperature analyses using a $^{1}H^{-2}H^{-17}O$ tuning configuration

To complement the ¹⁷O MAS NMR study of the H-bonded carboxylic groups dynamics in D-IBU*, ²H NMR experiments were carried out. Here, the possibility of performing ²H and ¹⁷O NMR analyses in a back-to-back fashion was investigated, using a diplexer connected to

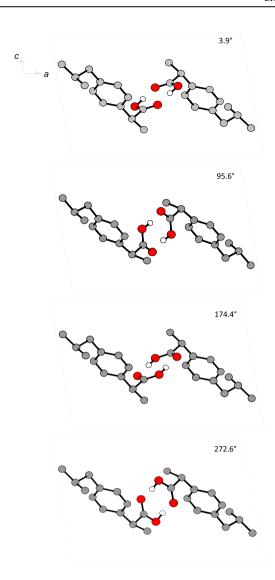
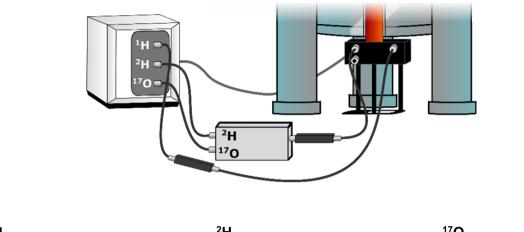


FIGURE 4 DFT evaluation of the activation energy for the rotation of the (-COOH)₂ dimeric unit in crystalline racemic ibuprofen (using the CCDC crystal structure # 128796). Illustrations of some of the torsion angles are shown on the right (with C, O and H in grey, red and white, respectively; not all atoms in the unit cell are displayed here for clarity)


the probe for $^{1}\text{H}-^{2}\text{H}-^{17}\text{O}$ tuning. Indeed, being able to analyse ^{2}H and ^{17}O local environments at any given temperature without changing the NMR probe configuration can be attractive, especially to avoid hysteresis effects that can occur upon heating or cooling some crystalline phases.

A schematic illustration of the mode of connection of the diplexer to the NMR probe is shown in Figure 5a, with further details being provided in the experimental section. The nutations obtained upon calibration of RF pulses using D_2O for 2H and ^{17}O , and adamantane for 1H , are shown in Figure 5b. The loss in sensitivity of this triple resonance mode compared to the double resonance configuration was found to be reasonable (see Figure S12).

This probe configuration was first tested on the doubly labelled D-TA* phase due to its higher weight

percentage in both ¹⁷O and ²H. The ²H and ¹⁷O MAS NMR spectra were recorded between -30°C and +60°C (Figure 6). No significant changes were observed in the ²H NMR. Although ²H relaxation measurements may have led to observable differences, these were not performed at this stage.

In the case of ¹⁷O NMR, only subtle variations with temperature were observed. A tentative deconvolution of the spectra is shown in Figure S13 (supporting information), considering the presence of 2 resonances corresponding to « C=O » and « C-OH » like environments, in agreement with the previous ¹⁷O NMR work reported for non-deuterated terephthalic acid. ^[11] Due to the overlap of both resonances, MQMAS experiments at each temperature of analysis (or variable temperature analyses at a second magnetic field) would have been needed to confirm the fitted parameters. Nevertheless,

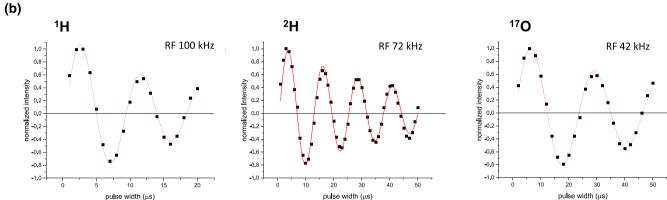
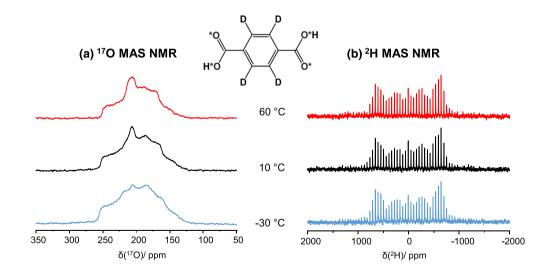



FIGURE 5 (a) Schematic representation of the connection mode of the diplexer to the NMR probe and (b) nutations achieved on the ¹H, ²H and ¹⁷O channels in triple resonance mode. The 810°/90° intensity ratio determined here for ²H is 0.51

FIGURE 6 Variable temperature ¹⁷O and ²H NMR spectra of D-TA*, recorded under magic angle spinning conditions. The temperatures indicated correspond to the sample temperature inside the rotor, as determined from calibrations at different MAS speeds using Pb(NO₃)₂

the small variations observed for D-TA* over this temperature range may reflect effects of H-bonding tautomerism and/or polymorphic changes of terephthalic acid. [56-62] Indeed, on the one hand, previous studies in the literature have shown that the H-bonded carboxylic protons of terephthalic acid are dynamically disordered at room

temperature, undergoing concerted double-proton jumps (Scheme 2a). [56,61,63] The fact that the free enthalpy difference between both tautomeric forms has been estimated experimentally to only $\sim 2 \text{ kJ mol}^{-1}$ for terephthalic acid^[61] implies that small changes should be observable over the temperature range studied here

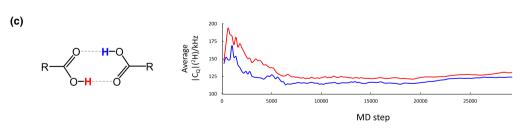


FIGURE 7 (a) Fit of the experimental static 2 H NMR spectrum of D-IBU* at 30°C, after symmetrisation of the 2 H lineshape (experimental spectrum in black, and its fit in red, considering two contributions, with in blue the H-bonded –(COOD)₂ dimeric unit of D-IBU*, and in green the sharp mobile species. (b) Molecular dynamics simulation of the structure of racemic ibuprofen, performed at 300 K, with steps of 0.5 fs (shown here over duration of \sim 15 ps), with a focus on calculated 2 H NMR data. Evolution of the H···O bond distances (in Å) in the dimer of the unit cell for which a concerted double proton jump was observed over the timescale of the calculation, and evolution of the « instantaneous » DFT-calculated 2 H quadrupolar coupling constant C_Q for this dimer (NMR parameters calculations were performed as a first approximation from the MD structures of protonated ibuprofen, every 200 steps, up to step # 14000, and then every 400 steps). (c) Evolution of the average calculated $|C_Q|$ values along with the MD timescale, showing that the 2 H $|C_Q|$ converges towards an average value

25000

MD step

1097458xa, 2021, 9-10, Downloaded from https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/mrc.5141 by Biu Montpellier, Wiley Online Library on [16/05/2024]. See the Terms and Conditions (https://onlinelibrary.wiley and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

(because this value is of the same order of magnitude as those reported for cinnamic acid and aspirin). [24]

On the other hand, the variations in the ¹⁷O MAS NMR spectra may also reflect the existence of several polymorphic forms of terephthalic acid. Out of the three polymorphs reported to date for this molecule, triclinic forms (I) and (II) have been the object of much attention. [57-60,62,64] Both consist of chains of terephthalic acid molecules, in which each molecule is hydrogen-bonded to two others through carboxylic acid dimer motifs. These chains are further assembled into 2D layers, which pack differently from one polymorph to the other. Moreover, when looking at the terephthalic acid motif itself, slightly different dihedral angles are found between the carboxylic function and the aromatic cycle when both polymorphs are compared. [62] Although both forms can be observed under ambient temperature and pressure, form (I) appears to be the least stable. Its transformation into form (II) has been studied both experimentally and computationally. [57,58,60] More specifically, this transformation was found to occur above 70°C, to be sensitive to pressure and to be caused by a « surface-mediated nucleation » type of process, triggered by the movement of the supramolecular chains of terephthalic acid at the surface of the crystallites. [58-60] In our case, given that D-TA* was obtained here as polymorph (I) (see Figure S1), it is possible that the subtle modifications in the ¹⁷O NMR spectra upon heating are indicative of the onset of transformation into form (II), caused by the increase in temperature and possibly also pressure (due to the spinning). More specifically, ¹⁷O NMR may indicate that changes in the local environment of the carboxylic functions precede more significant movements of the supramolecular chains. Although the observations made in ¹⁷O NMR for D-TA* were not further investigated at this stage, they point to the interest of analysing molecular crystals by this technique, notably to help understand polymorphic transformations.

Using this $^2\text{H}^{-17}\text{O}$ probe configuration, preliminary ^2H NMR studies were also performed in the case of D-IBU*. The static ^2H NMR spectra revealed the presence of two main resonances (Figure 7a): one broad signal with a characteristic deuterium quadrupolar lineshape and a much sharper signal at the centre of the spectrum, the relative intensity of which was found to increase with temperature, under the measurement conditions used here (Figure S14). The fitting of the broad ^2H NMR signal at each temperature was performed, yielding similar quadrupolar parameters between 0°C and 60°C, with $|C_{\rm Q}| \sim 170$ kHz and $\eta_{\rm Q} \sim 0.1$ (Figure S14). These values are close to those reported previously for supercooled and glassy states of deuterated ibuprofen, [65] as well as for other crystal structures of organic molecules involving H-

bonded carboxylic dimers. [66] Hence, this 2 H resonance is characteristic of $(-COOD)_2$ dimeric structures in crystalline D-IBU*, with the 2 H NMR parameters being averaged between the two interconverting tautomeric forms of ibuprofen. The MD simulations and DFT calculations of 2 H NMR parameters associated with these double proton jumps are provided in Figure 7b,c. In agreement with previous observations made by Schmidt and Sebastiani [32] for H-bonded carboxylic acids, these calculations show that the « instantaneous » C_Q values tend to follow the evolution of the longer $O\cdots$ H distance (Figure 7b, dashed vertical lines).

The sharp central ²H NMR resonance, on the other hand, is very weak at 0°C, where it is centred at 5.2 ppm. At 60°C, it becomes increasingly sharp and intense and shifts to 9.4 ppm. Based on the observed chemical shifts and the ²H NMR measurements also performed on melted D-IBU* (see Figure S9), this resonance appears to arise from different species: it is consistent with a small amount of residual liquid (mobile) water at $\sim 0^{\circ}$ C, and to the predominant presence of highly mobile ibuprofen at 60°C (in a melt-like state, the melting temperature of ibuprofen being $\sim 75^{\circ}$ C). It is worth noting that in comparison to previous variable temperature ²H NMR studies on supercooled and glassy ibuprofen, [65] the fully motionally narrowed ²H NMR signal is observed here at a higher temperature (80°C in Figure S9, vs. 36°C in the work by Bauer et al. [65]). Overall, it is clear that ²H and ¹⁷O NMR spectra provide complementary information regarding the dynamics occurring around the carboxylic groups in racemic ibuprofen. It can be hypothesised that the progressive increase in mobility within ibuprofen crystals with temperature (especially around the carboxylic function) allows some molecules to behave as in a melt-like state, which may favour dynamics like the 180° (-COOH)₂ flip to occur with energy barriers lower than the ones calculated by DFT, thereby explaining the observations made by ¹⁷O NMR. However, more extensive investigations would be needed to confirm this.

4 | CONCLUSION

In this article, three different aspects related to the structural analysis of molecular crystals containing carboxylic functions have been looked into. First, improved ¹⁷O labelling protocols based on mechanochemistry have been developed. This has allowed average enrichment levels exceeding 20% in ¹⁷O per carboxylic oxygen to be reached for two key molecules: (i) ibuprofen, a non-steoridal anti-inflammatory drug, which is seen as a « golden standard » for numerous investigations in pharmaceutical sciences aiming at improving drug

1097458xa, 2021, 9-10, Downloaded from https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/mrc.5141 by Biu Montpellier, Wiley Online Library on [16/05/2024]. See the Terms

conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

formulations, and (ii) terephthalic acid, which is one of the most commonly used ligands for the design of metalorganic frameworks (MOFs). In the latter case, the ¹⁷O labelling was performed here on a deuterated version of the terephthalic acid precursor (with deuteration on the aromatic ring), thereby leading to the formation of a doubly labelled molecule, which would be of key interest for studying the structure and reactivity or a variety of MOFs, including the most complex ones. Such ligands should enable studying both the dynamics related to the 180° flips of the aromatic ring (using ²H NMR) and the binding properties to metal cations in a given system (using ¹⁷O NMR).

Second, the experimental and computational study of ¹⁷O and ²H enriched ibuprofen has shed light on the interest in looking at both of these nuclei when studying the dynamics occurring around the carboxylic groups. Although further investigations would be needed to fully understand the experimental observations, this work nevertheless complements previous studies on racemic ibuprofen crystals involving ¹H and ¹³C NMR, by underscoring the complexity of the molecular motions around the carboxylic functions. More generally, this study shows how the NMR study of quadrupolar nuclei like ¹⁷O and ²H may provide new opportunities for investigating polymorphic transitions of ibuprofen, [67] as well as its confined or « supercooled » states. [65,68,69] Indeed, the polarity and H-bonding capability of carboxylic functions imply that these are often key to interactions between molecules and with materials surfaces, meaning that direct insight into the local environment of the carboxylic atoms (among which oxygen) is important for detailed structure characterization purposes.

Lastly, we have presented some of the possibilities provided by combining ²H-¹⁷O diplexers to NMR probes for studying by NMR the ²H and ¹⁷O nuclei at any given temperature, without having to change probe configurations. The RF performance of the probe used along with the diplexer was shown to be suitable for such applications, as illustrated for both terephthalic acid and ibuprofen. While the experiments shown here were mainly performed in a back-to-back fashion, we will look into recording them using « double receiver » setups in future studies. Moreover, beyond these possibilities, the next step will consist of using such hardware configurations to perform multi-channel ²H and ¹⁷O correlation experiments. This pair of nuclear spins has not yet been studied due to the very similar Larmor frequencies of the two isotopes but could offer new opportunities for helping understand further the structure of a variety of molecular and materials systems, considering that H and O are two atoms, which are very often present. This is a point we will be looking into in the near future. Such

instrumental developments will add to the ongoing effort to broaden the scope of heteronuclear correlations accessible to NMR spectroscopists with spin pairs of similar Larmor frequencies (e.g., ¹³C-²⁷Al, ^[70,71] ¹³C-⁴⁵Sc, ^[71] ¹³C-⁸¹Br ... ^[72]).

ACKNOWLEDGEMENTS

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 772204; 2017 ERC-COG, MISOTOP project). NMR spectroscopic calculations were performed using HPC resources from GENCI-IDRIS (Grant 097535). Powder X-ray diffraction, mass spectrometry and solution NMR characterizations were performed with the support of the local Balard Plateforme d'Analyses et de Caractérisation (PAC Balard).

ORCID

Chia-Hsin Chen https://orcid.org/0000-0001-5151-1765

Ieva Goldberga https://orcid.org/0000-0003-4284-3527

Sébastien Mittelette https://orcid.org/0000-0003-2471-1088

Jessica Špačková https://orcid.org/0000-0001-6255-8788
Thomas-Xavier Métro https://orcid.org/0000-0003-2280-3595

Bruno Alonso https://orcid.org/0000-0002-3430-1931 Christel Gervais https://orcid.org/0000-0001-7450-1738 Danielle Laurencin https://orcid.org/0000-0002-7445-0528

REFERENCES

- Z. Gan, I. Hung, X. Wang, J. Paulino, G. Wu, I. M. Litvak, P. L. Gor'kov, W. W. Brey, P. Lendi, J. L. Schiano, M. D. Bird, I. R. Dixon, J. Toth, G. S. Boebinger, T. A. Cross, J. Magn. Reson. 2017, 284, 125.
- [2] Y. Ishii, A. Wickramasinghe, I. Matsuda, Y. Endo, Y. Ishii, Y. Nishiyama, T. Nemoto, T. Kamihara, J. Magn. Reson. 2018, 286, 99.
- [3] S. Penzel, A. Oss, M.-L. Org, A. Samoson, A. Böckmann, M. Ernst, B. H. Meier, *J. Biomol. NMR* 2019, 73(1), 19.
- [4] A. V. Wijesekara, A. Venkatesh, B. J. Lampkin, B. VanVeller, J. W. Lubach, K. Nagapudi, I. Hung, P. L. Gor'kov, Z. Gan, A. J. Rossini, *Chem-Eur J.* 2020, 26(35), 7881.
- [5] R. Zhang, K. H. Mroue, A. Ramamoorthy, Acc. Chem. Res. 2017, 50(4), 1105.
- [6] K. J. Sanders, A. J. Pell, S. Wegner, C. P. Grey, G. Pintacuda, Chem. Phys. Lett. 2018, 697, 29.
- [7] F. A. Perras, A. Venkatesh, M. P. Hanrahan, T. W. Goh, W. Huang, A. J. Rossini, M. Pruski, J. Magn. Reson. 2017, 276, 95.
- [8] L. A. O'Dell, Ultra-wideline Solid-State NMR: Developments and Applications of the WCPMG Experiment, in *Modern*

- Magnetic Resonance, (Ed: G. A. Webb), Springer International Publishing, Cham **2017**, pp. 1–22.
- [9] S. Gupta, R. Tycko, J. Biomol. NMR 2018, 70(2), 103.
- [10] V. W. C. Wong, D. G. Reid, W. Y. Chow, R. Rajan, M. Green, R. A. Brooks, M. J. Duer, J. Biomol. NMR 2015, 63(2), 119.
- [11] T.-X. Métro, C. Gervais, A. Martinez, C. Bonhomme, D. Laurencin, Angew. Chem. Int. Ed. Engl. 2017, 56(24), 6803.
- [12] M. A. Hope, B. Zhang, B. Zhu, D. M. Halat, J. L. MacManus-Driscoll, C. P. Grey, *Chem. Mater.* 2020, 32, 7921.
- [13] A. S. Lilly Thankamony, J. J. Wittmann, M. Kaushik, B. Corzilius, Prog. Nucl. Magn. Reson. Spectrosc. 2017, 102-103, 120.
- [14] R. W. Hooper, B. A. Klein, V. K. Michaelis, Chem. Mater. 2020, 32(11), 4425.
- [15] C. Leroy, D. L. Bryce, Prog. Nucl. Magn. Reson. Spectrosc. 2018, 109, 160.
- [16] D. L. Bryce, Dalton Trans. 2019, 48(23), 8014.
- [17] I. Matlahov, P. C. A. van der Wel, Methods 2018, 148, 123.
- [18] V. S. Mandala, J. K. Williams, M. Hong, Annu. Rev. Biophys. 2018, 47(1), 201.
- [19] J. V. Milić, J.-H. Im, D. J. Kubicki, A. Ummadisingu, J.-Y. Seo, Y. Li, M. A. Ruiz-Preciado, M. I. Dar, S. M. Zakeeruddin, L. Emsley, M. Grätzel, Adv. En. Mater. 2019, 9(20), 1900284.
- [20] M. T. Dunstan, D. M. Halat, M. L. Tate, I. R. Evans, C. P. Grey, Chem. Mater. 2019, 31(5), 1704.
- [21] Y.-X. Xiang, G. Zheng, G. Zhong, D. Wang, R. Fu, Y. Yang, Solid State Ion. 2018, 318, 19.
- [22] J. Lu, I. Hung, A. Brinkmann, Z. Gan, X. Kong, G. Wu, Angew. Chem. Int. Ed. Engl. 2017, 56(22), 6166.
- [23] G. Wu, Prog. Nucl. Magn. Reson. Spectrosc. 2019, 114-115, 135.
- [24] G. Wu, I. Hung, Z. Gan, V. Terskikh, X. Kong, J. Phys. Chem. A 2019, 123(38), 8243.
- [25] J. Catalano, A. Murphy, Y. Yao, N. Zumbulyadis, S. A. Centeno, C. Dybowski, Solid State Nucl. Magn. Reson. 2018, 89, 21.
- [26] D. I. Kolokolov, H. Jobic, A. G. Stepanov, V. Guillerm, T. Devic, C. Serre, G. Férey, Angew. Chem. Int. Ed. Engl. 2010, 49 (28), 4791.
- [27] A. E. Khudozhitkov, D. I. Kolokolov, A. G. Stepanov, J. Phys. Chem. C 2018, 122(24), 12956.
- [28] X. Jiang, H.-B. Duan, M. J. Jellen, Y. Chen, T. S. Chung, Y. Liang, M. A. Garcia-Garibay, J. Am. Chem. Soc. 2019, 141(42), 16802.
- [29] Y. Dai, V. Terskikh, A. Brinkmann, G. Wu, Cryst. Growth Des. 2020, 20(11), 7484.
- [30] W. Scheubel, H. Zimmermann, U. Haeberlen, J. Magn. Reson. 1988, 80(3), 401.
- [31] X. Kong, M. Shan, V. Terskikh, I. Hung, Z. Gan, G. Wu, J. Phys. Chem. B. **2013**, 117(33), 9643.
- [32] J. Schmidt, D. Sebastiani, J. Chem. Phys. 2005, 123(7), 074501.
- [33] T. Friščić, C. Mottillo, H. M. Titi, Angew. Chem. Int. Ed. Engl. 2019, 59, 1018.
- [34] P. Pyykkö, Mol. Phys. 2018, 116(10), 1328.
- [35] A. Bielecki, D. P. Burum, J. Magn. Reson., Ser. A 1995, 116 (2), 215.
- [36] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,

- L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, *J. Phys. Condens. Matter* **2009**, *21*(39), 395502.
- [37] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77 (18), 3865.
- [38] N. Troullier, J. L. Martins, Phys. Rev. B 1991, 43(3), 1993.
- [39] L. Kleinman, D. M. Bylander, Phys. Rev. Lett. 1982, 48(20), 1425
- [40] C. J. Pickard, F. Mauri, Phys. Rev. B 2001, 63(24), 245101.
- [41] P. Pyykkö, Mol. Phys. 2008, 106(16-18), 1965.
- [42] J. Hafner, J. Comput. Chem. 2008, 29(13), 2044.
- [43] J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 2005, 167 (2), 103.
- [44] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132(15), 154104.
- [45] S. Goedecker, M. Teter, J. Hutter, Phys. Rev. B 1996, 54(3), 1703.
- [46] J. VandeVondele, J. Hutter, J. Chem. Phys. 2007, 127(11), 114105.
- [47] J. Špačková, C. Fabra, S. Mittelette, E. Gaillard, C.-H. Chen, G. Cazals, A. Lebrun, S. Sene, D. Berthomieu, K. Chen, Z. Gan, C. Gervais, T.-X. Métro, D. Laurencin, J. Am. Chem. Soc. 2020, 142(50), 21068.
- [48] E. Dudognon, N. T. Correia, F. Danède, M. Descamps, *Pharm. Res.* 2013, 30(1), 81.
- [49] B. Filsinger, H. Zimmermann, U. Haeberlen, Mol. Phys. 1992, 76(1), 157.
- [50] E. Carignani, S. Borsacchi, M. Geppi, *ChemPhysChem* **2011**, *12* (5), 974.
- [51] A. G. Demkin, B. A. Kolesov, J. Phys. Chem. A 2019, 123(26), 5537.
- [52] K. Ostrowska, M. Kropidłowska, A. Katrusiak, Cryst. Growth Des. 2015, 15(3), 1512.
- [53] S. Idziak, Mol. Phys. 1989, 68(6), 1335.
- [54] E. Carignani, S. Borsacchi, A. Marini, B. Mennucci, M. Geppi, J. Phys. Chem. C 2011, 115(50), 25023.
- [55] M. Geppi, S. Guccione, G. Mollica, R. Pignatello, C. A. Veracini, *Pharm. Res.* 2005, 22(9), 1544.
- [56] B. A. Kolesov, J. Phys. Chem. Solids 2020, 138, 109288.
- [57] D. J. Goossens, E. J. Chan, Acta Crystallogr. Sect. B 2017, 73 (1), 112.
- [58] G. T. Beckham, B. Peters, C. Starbuck, N. Variankaval, B. L. Trout, J. Am. Chem. Soc. 2007, 129(15), 4714.
- [59] M. Śledź, J. Janczak, R. Kubiak, J. Mol. Struct. 2001, 595(1), 77.
- [60] R. J. Davey, S. J. Maginn, S. J. Andrews, S. N. Black, A. M. Buckley, D. Cottier, P. Dempsey, R. Plowman, J. E. Rout, D. R. Stanley, A. Taylor, J. Chem. Soc. Faraday Trans. 1994, 90(7), 1003.
- [61] B. H. Meier, R. R. Ernst, J. Solid State Chem. 1986, 61(1), 126.
- [62] M. Bailey, C. J. Brown, Acta Crystallogr. 1967, 22(3), 387.
- [63] E. A. Pritchina, B. A. Kolesov, Spectroc. Acta A 2018, 202, 319.
- [64] J. J. McKinnon, F. P. A. Fabbiani, M. A. Spackman, Cryst. Growth Des. 2007, 7(4), 755.
- [65] S. Bauer, M. Storek, C. Gainaru, H. Zimmermann, R. Böhmer, J. Phys. Chem. B. 2015, 119(15), 5087.
- [66] I. J. F. Poplett, J. A. S. Smith, J. Chem. Soc., Faraday Trans. 2 1981, 77(8), 1473.

- [67] E. Dudognon, F. Danède, M. Descamps, N. T. Correia, *Pharm. Res.* 2008, 25(12), 2853.
- [68] K. Adrjanowicz, K. Kaminski, M. Dulski, P. Wlodarczyk, G. Bartkowiak, L. Popenda, S. Jurga, J. Kujawski, J. Kruk, M. K. Bernard, M. Paluch, J. Chem. Phys. 2013, 139(11), 111103.
- [69] F. Tielens, N. Folliet, L. Bondaz, S. Etemovic, F. Babonneau, C. Gervais, T. Azaïs, J. Phys. Chem. C 2017, 121(32), 17339.
- [70] F. Pourpoint, J. Trébosc, R. M. Gauvin, Q. Wang, O. Lafon, F. Deng, J.-P. Amoureux, *ChemPhysChem* 2012, 13(16), 3605.
- [71] L. van Wüllen, H. Koller, M. Kalwei, Phys. Chem. Chem. Phys. 2002, 4(9), 1665.
- [72] M. Makrinich, M. Sambol, A. Goldbourt, Phys. Chem. Chem. Phys. 2020, 22, 21022.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Chen C-H, Goldberga I, Gaveau P, et al. Looking into the dynamics of molecular crystals of ibuprofen and terephthalic acid using ¹⁷O and ²H nuclear magnetic resonance analyses. *Magn Reson Chem.* 2021;59:975–990. https://doi.org/10.1002/mrc.5141