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Abstract. This paper investigates the relationship between
the heterogeneity of the terrestrial carbon cycle and the op-
timal design of observing networks to constrain it. We com-
bine the methods of quantitative network design and carbon-
cycle data assimilation to a hierarchy of increasingly hetero-
geneous descriptions of the European terrestrial biosphere as
indicated by increasing diversity of plant functional types.
We employ three types of observations, flask measurements
of CO2 concentrations, continuous measurements of CO2
and pointwise measurements of CO2 flux. We show that flux
measurements are extremely efficient for relatively homoge-
neous situations but not robust against increasing or unknown
complexity. Here a hybrid approach is necessary, and we rec-
ommend its use in the development of integrated carbon ob-
serving systems.

1 Introduction

CO2 and methane are the most important anthropogenic
greenhouse gases. Their increasing concentration is the ma-
jor reason for global warming (Solomon et al., 2007). It is
thus of paramount interest to quantify and ultimately pre-
dict the exchanges of these gases between the terrestrial bio-
sphere and the atmosphere. At a number of points on the
globe, carbon and water fluxes are sampled directly (see,
e.g.http://www.fluxnet.ornl.gov). The interpolation of these
measurements to the globe (upscaling) requires external in-

formation about the uncertain spatio-temporal flux structure.
The same type of information is required by atmospheric
transport inversions (see e.g.Rayner et al., 1999; Gurney
et al., 2002; Enting, 2002) which infer surface fluxes from
atmospheric concentration measurements. The most sophis-
ticated tools for quantifying the structure and variability of
carbon fluxes are process models of the terrestrial carbon cy-
cle like those used for the assessments of the IPCC (Solomon
et al., 2007). Underlying these models is the assumption of
fundamental equations that govern the processes controlling
the terrestrial carbon fluxes. Uncertainty in the simulation of
these fluxes arises from four sources: first, there is uncer-
tainty in the forcing data (such as precipitation or temper-
ature) driving the terrestrial processes. Second, there is un-
certainty regarding the formulation of individual processes
and their numerical implementation (structural uncertainty).
Third, there are uncertain constants (process parameters) in
the formulation of these processes (parametric uncertainty).
Forth, there is uncertainty about the state of the terrestrial
biosphere at the beginning of the simulation.

Observational information helps to reduce these uncer-
tainties. Currently there are several initiatives to extend the
observational network of the carbon cycle. Europe’s Inte-
grated Carbon Observing System (ICOS, seehttp://www.
icos-infrastructure.eu/), for example, aims at setting up an in-
tegrated sampling network for land, ocean, and atmosphere.
Ideally, all data streams are interpreted simultaneously with
the process information provided by the model to yield a
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consistent picture of the carbon cycle that balances all the ob-
servational constraints, thereby taking the respective uncer-
tainty ranges into account. Data assimilation systems around
prognostic models of the carbon cycle are the ideal tools for
this integration allowing us to assimilate a wide range of
observations. They can, for example, be applied to system-
atically reduce parametric uncertainty (e.g.Kaminski et al.,
2002) or to expose structural errors (Rayner, 2010). In a first
step, they use the observations to constrain the uncertain pro-
cess parameters (calibration), and in a second step they use
the calibrated model for analysis and prediction. Ideally, both
steps include the propagation of uncertainties. This allows us
to derive uncertainty ranges on simulatedtarget quantities
that are consistent with the uncertainties in the observations
and the model. Examples of such target quantities are fluxes
of carbon on regional, continental, or global scale, integrated
over part of the assimilation period (diagnostic target quan-
tity) or some period before or after (prognostic target quan-
tity). With regard to a specified target quantity, such an as-
similation system can assess the performance of a given ob-
servational network. This performance is typically quantified
by the uncertainty range.

Quantitative Network Design (QND) aims at constructing
an observational network with optimal performance. The ap-
proach is based onHardt and Scherbaum(1994) who op-
timised the station locations for a seismographic network.
It was first applied to observational networks of the global
carbon cycle byRayner et al.(1996), who optimised the
locations of atmospheric CO2 and δ13C measurements. A
pioneering study for sensor design has been performed by
Rayner and O’Brien(2001) who established the required pre-
cision for observations of the column-integrated atmospheric
CO2 concentration from space.

The latter two studies investigated purely atmospheric net-
works. To assist the design of an integrated carbon observing
system, we need the capability of evaluating the complemen-
tarity of various observational data streams including those
of the terrestrial biosphere. As outlined byKaminski and
Rayner(2008) assimilation systems are the ideal tool for this
task. The Carbon Cycle Data Assimilation System (CCDAS,
seehttp://ccdas.org) can assimilate several observational data
streams and infers uncertainty ranges on diagnosed (Rayner
et al., 2005) or prognosed carbon (Scholze et al., 2007;
Rayner et al., 2011) and water (Kaminski et al., 2012) fluxes.
The first QND applications investigated the utility of space
borne observations of atmospheric CO2 (Kaminski et al.,
2010) or vegetation activity (Kaminski et al., 2012) in con-
straining various surface fluxes. Another study explores the
atmospheric in situ network and its ability to constrain the
productivity of the terrestrial biosphere (Koffi et al., 2012).

Kaminski and Rayner(2008) noted two general aspects of
QND studies. The first is the dependence on the target quan-
tity; clearly different networks are optimal for constraining
different things (Rayner et al., 1996). The second is the de-
pendence on prior knowledge brought to the problem. For

traditional inversions of fluxes this information takes the
form of the covariance of prior uncertainty. For CCDAS it
is determined by the process resolution of the underlying dy-
namical model (how many processes are modelled) and the
spatial detail at which these processes are allowed to vary in-
dependently. The level of heterogeneity of the biosphere is
a fundamental question which goes beyond CCDAS; it de-
termines how much any understanding of processes gained
locally can be more widely applied. However it is clear that
observing networks presupposing a given heterogeneity are
at some risk. Current earth system models map this spatial
heterogeneity by dividing the global vegetation into a small
number of plant functional types (PFTs).Groenendijk et al.
(2011) demonstrate through calibration of a terrestrial model
against direct flux measurements the limit of this approxima-
tion and the difficulty in deriving a realistic PFT classifica-
tion.

This paper uses the network designer, a CCDAS-based in-
teractive QND tool, to investigate the performance of several
networks composed of direct flux observations and flask or
continuous samples of the atmospheric carbon dioxide con-
centration. In particular we investigate the robustness of net-
work performance to various choices of target quantities and
levels of heterogeneity. The outline of the paper is as fol-
lows. Section2 describes our QND methodology and Sect.3
the networks we consider. Then Sect.4 will present and dis-
cuss the evaluations. Finally, in Sect.5 we summarise our
conclusions.

2 Methods

CCDAS is built around the Biosphere Energy Transfer HY-
drology scheme (BETHY,Knorr, 2000; Knorr and Heimann,
2001), a global model of the terrestrial vegetation. The ver-
sion used here is described inRayner et al.(2005). This sec-
tion gives brief descriptions of BETHY, the observational
data types, CCDAS and of the QND approach.

2.1 BETHY

FollowingWilson and Henderson-Sellers(1985) BETHY de-
composes the global terrestrial vegetation into 13 PFTs as
listed in Table1. Each grid cell can be covered by up to three
PFTs. Figure1 shows the distribution of the dominant PFT.
As in Scholze et al.(2007) we integrate the model over 21 yr
from 1979 to 1999 on a global 2 by 2 degree grid and use
observed meteorological driving data (Nijssen et al., 2001).

The process formulations within BETHY are controlled
by a set of process parameters (see Table2). For this study
we use the model version ofScholze et al.(2007) with the
extension of simulating hourly Net Ecosystem Productivity
(NEP). This is done by dividing the daily calculated het-
erotrophic respiration flux into 24 equal-sized hourly fluxes
and subtracting these fluxes from the hourly simulated Net
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Table 1. Plant Functional Types (PFTs) defined in CCDAS and their abbreviations, taken from Rayner et al.

(2005).

PFT No. PFT Name Abbreviation

0 Not vegetated

1 Trop. broadleaved evergreen tree TrEv

2 Trop. broadleaved deciduous tree TrDec

3 Temp. broadleaved evergreen tree TmpEv

4 Temp. broadleaved deciduous tree TmpDec

5 Evergreen coniferous tree EvCn

6 Deciduous coniferous tree DecCn

7 Evergreen shrub EvShr

8 Deciduous shrub DecShr

9 C3 grass C3Gr

10 C4 grass C4Gr

11 Tundra vegetation Tund

12 Swamp vegetation Wetl

13 Crops Crop

Fig. 1. Distribution of the dominant CCDAS Plant Functional Type (PFT) per grid cell, PFT labels are given in

Table 1, taken from Rayner et al. (2005).

18

Fig. 1. Distribution of the dominant CCDAS Plant Functional Type (PFT) per grid cell, PFT labels are given in Table1, taken fromRayner
et al.(2005).

Table 1.Plant Functional Types (PFTs) defined in CCDAS and their
abbreviations, taken fromRayner et al.(2005).

PFT No. PFT Name Abbreviation

0 Not vegetated
1 Trop. broadleaved evergreen tree TrEv
2 Trop. broadleaved deciduous tree TrDec
3 Temp. broadleaved evergreen tree TmpEv
4 Temp. broadleaved deciduous tree TmpDec
5 Evergreen coniferous tree EvCn
6 Deciduous coniferous tree DecCn
7 Evergreen shrub EvShr
8 Deciduous shrub DecShr
9 C3 grass C3Gr
10 C4 grass C4Gr
11 Tundra vegetation Tund
12 Swamp vegetation Wetl
13 Crops Crop

Primary Productivity (NPP). BETHY simulates 13 PFTs in-
cluding 21 different parameters. Three of these parameters
are PFT-specific and 18 are applied globally, i.e. they refer to
all PFTs. We thus have 18+3×13= 57 parameters. The role
of the individual parameters is described elsewhere (Rayner
et al., 2005; Scholze et al., 2007). In our context of network
design it is important to know to which parameters our re-
spective target quantities are sensitive. We will use regional
integrals of the NPP and the NEP as target quantities. The lat-
ter is net CO2 flux between the atmosphere and the biosphere
and defined as the difference of NPP and heterotrophic soil
respiration. Except for one atmospheric parameterc0, all pa-
rameters impact NEP. NPP is sensitive to all parameters, ex-
ceptc0 and the soil and carbon balance parameters.

2.2 Observational data types

In this study we use three types of observational data: di-
rect (NEP) flux measurements, flask and continuous samples
of the atmospheric CO2 concentration. Within the model, a
flux measurement is represented by a time series of hourly
NEP samples of the grid cell the site is located in. The atmo-
spheric data types require, as a so-called observation opera-
tor, an atmospheric transport model to transform the global
NEP field into atmospheric concentrations. Flask samples
are represented by a time series of monthly mean concen-
trations at the sampling location as simulated by the atmo-
spheric transport model TM2 (Heimann, 1995), which is run
at 8 by 10 degree horizontal resolution and with nine verti-
cal levels. As inCarouge et al.(2010a,b) continuous sam-
ples are represented by a time series of daily mean concen-
trations at the sampling location as simulated by the atmo-
spheric transport model LMDZ (Hauglustaine et al., 2004),
which is run at 3.75 by 2.5 degree resolution over most of
the globe but a zoomed 0.5 degree resolution over Europe.
For each data type the observational time series covers the
20 yr period from 1980 to 1999. By representing flask sam-
ples in the model as monthly means, much of the synoptic
signal is averaged out. Likewise by representing continuous
measurements by daily means the diurnal signal is averaged
out. This averaging reduces the information content of the
observations but is also less demanding of the models’ per-
formance, i.e. a conservative choice. A model setup with en-
hanced temporal representation of the flask or continuous
data types would probably provide stronger constraints on
the target quantities.

2.3 CCDAS

CCDAS uses a gradient method to adjust BETHY’s pro-
cess parameters in order to minimise a cost function. This
cost function quantifies the fit to all observations plus the
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deviation from prior knowledge on the process parameters:

J (x̃) =
1

2

[
(M(x̃) − d)T C(d)−1(M(x̃) − d)

+(x̃ − x0)
T C(x0)

−1(x̃ − x0)
]

(1)

whereM denotes the model considered as a mapping from
parameters to observations,d the observations with data un-
certainty C(d), x0 the prior parameter values with uncer-
taintyC(x0), and the superscriptT the transpose.

The second derivative (Hessian) of the cost function at the
optimumx is used to approximate the inverse of the covari-
ance matrixC(x) that quantifies the uncertainty ranges on the
parameters that are consistent with uncertainties in the obser-
vations and the model. In a second step, the linearisationN ′

(Jacobian) of the modelN used as a mapping from param-
eters to target quantities is used to propagate the parameter
uncertainties forward to the uncertainty in a target quantity
σ(y):

σ(y)2
= N ′C(x)N ′T

+ σ(ymod)
2 . (2)

σ(ymod) quantifies all uncertainty in the simulation of the tar-
get quantity except the uncertainty inx (which we resolve ex-
plicitly). If the terrestrial model was perfect,σ(ymod) would
be zero. In contrast, if the parameters were perfectly known,
the first term on the right hand side would be zero. Likewise
the data uncertaintyC(d) is the sum of the observational un-
certainty and all uncertainty in the simulation of the observa-
tions except the uncertainty in the parameter vector.

All derivative information is provided with the same nu-
merical accuracy as the original model in an efficient form
via automatic differentiation of the model code by the auto-
matic differentiation tool TAF (Giering and Kaminski, 1998).

2.4 QND

In network design mode, CCDAS is restricted to the uncer-
tainty propagation for candidate networks. It builds on the
optimal parameter set estimated from data of the available
network for the evaluation of the required first and second
derivatives. In our case the optimal parameter vector is taken
from the study ofScholze et al.(2007). For the evaluation of
potential networks, the Hessian is evaluated ford = M(x).
In this case the posterior target uncertainty solely depends
on the prior and data uncertainties and linearised model re-
sponses at observational locations and for target quantities.
The approach does not require real observations, and can thus
evaluate hypothetical candidate networks (seeKaminski and
Rayner, 2008; Kaminski et al., 2010). Candidate networks
are defined by a set of observations characterised by observa-
tional data type, location, and data uncertainty. In practise for
pre-defined target quantities and observational types and lo-
cations, model sensitivities can be pre-computed and stored.
A network composed of these pre-defined observations, can
then be evaluated in terms of the pre-defined target quanti-
ties without further model evaluations. Only matrix algebra

is required to combine the pre-computed sensitivities with
the data uncertainties.

This is the approach implemented in the network de-
signer (seehttp://imecc.ccdas.org), an interactive software
tool that evaluates networks composed of flask and contin-
uous samples of atmospheric CO2 and direct flux measure-
ments. Available target quantities are NPP and NEP over
three regions: Europe, Brazil, and Russia (see Fig.2). They
are provided in the form of annual mean values averaged over
the 20 yr assimilation period. Model sensitivities have been
pre-computed for a list of atmospheric sampling sites (see
Fig. 3 and Table4). For flux measurements, model sensitivi-
ties have been pre-computed for every terrestrial grid cell and
all PFTs that are available in the grid cell. When defining the
site, the user can specify a mix among these PFTs. Uncertain-
ties for data sampled at different sites and times are assumed
to be uncorrelated. The uncertainty for each site is quanti-
fied by a standard deviationσ(d), that reflects the combined
effect of observationalσ(dobs) and model errorσ(dmod):

σ(d)2
= σ(dobs)

2
+ σ(dmod)

2 (3)

The unit of the data uncertainties depends on the data type.
For flask and continuous samples of atmospheric CO2 it is
ppm, for eddy flux measurements it is gCm−2day−1 (where
gC stands for grams of carbon). The output of the network
designer is the list of posterior uncertaintiesσ(y) of the target
quantities according to Eq. (2). σ(ymod) can be specified by
the user as a percentage of the 20 yr average of annual mean
NPP.

3 Experimental setup

We will be evaluating several networks. To define these net-
works we have to select the sampling locations and the re-
spective data uncertainties. Data uncertainty is generally dif-
ficult to estimate, especially in advance of actual measure-
ments. In the following we give some motivation for our
choices and for some cases we will test the effect of an al-
ternative choice in Sect.4.

The thrust of our study is the interaction between the spa-
tial density of various classes of measurements and assumed
heterogeneity of the spatial biosphere. It is important there-
fore that our choice of data uncertainty does not overly in-
fluence the results. We therefore make the most neutral pos-
sible choice of a uniform data uncertainty for each class of
measurement. We also assume uncorrelated uncertainties in
space and time. This is partly justified by the reduction in
the underlying datasets to either daily or monthly means and,
more importantly, by the focus of our study. We note that,
in principle, systematic errors (biases) in the observations or
the model (which would give rise to uncertainty correlations
along the entire time series) can be removed or at least re-
duced by bias correction schemes. For example,Pillai et al.

Atmos. Chem. Phys., 12, 7867–7879, 2012 www.atmos-chem-phys.net/12/7867/2012/
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 Fig. 2. Regions for computation of target quantities: grid cells contributing to fluxes over Europe (blue), Russia (red), both (violet), and
Brazil (green).

Fig. 3.Observational networkflaskproviding atmospheric flask samples.

(2010) assess biases for the atmospheric data types and de-
rive a recipe for their reduction.

For the flux measurements we use an uncertainty of
10 gCm−2day−1. With respect to the minimum uncer-
tainty of 3× 10−6molm−2s−1

≈ 3.11gCm−2day−1 chosen
by Knorr and Kattge(2005) this is a factor of about

√
10

larger. This effective sample size of 10 corresponds to ignor-
ing half of the data because of nighttime sampling and allow-
ing another factor of 5 to account of correlated uncertainties.

For the atmospheric data types we assume the combined
error in the terrestrial and transport models to be the domi-

nant contribution to data uncertainty. For flask samples (rep-
resented by monthly mean values) we use a data uncertainty
of 1.0 ppm, above the average assigned byRödenbeck et al.
(2003) for the combined observational and transport model
error. For continuous observations, which are more difficult
to simulate, we use an uncertainty of 1.5 ppm. We can regard
the factor of 1.5 compared to flask samples as an inflation of
the data uncertainty, to achieve an effective sample size that
is reduced by a factor of 2. With roughly 30 times as many
measurements this still gives continuous observations greater

www.atmos-chem-phys.net/12/7867/2012/ Atmos. Chem. Phys., 12, 7867–7879, 2012
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Fig. 4.Observational networksflux (+) providing flux measurements andcont (X) providing continuous atmospheric samples.

weight than flask measurements but this is reasonable given
their greater ability to represent a monthly mean.

Next we have to define the sampling locations. For each
observational data type we define a base network:

– The atmospheric flask sampling networkflask, which
consists of the 41 monitoring stations listed in Table 2
of Kaminski et al.(2002) and shown in Fig.3.

– The atmospheric continuous sampling networkcont,
which consists of the 15 sites listed in Table4 and indi-
cated with symbol “X” in Fig.4.

– The eddy flux networkflux, which consists of a dedi-
cated site for each of the ten PFTs that are available to
the model over Europe (PFT numbers 3–5 and 7–13 of
Table1). Each site is defined such that it is covered to
100 % by the respective PFT. Table3 lists the sites and
Fig. 4 indicates their locations with the symbols “+”.

We evaluate the networks in terms of the uncertainty re-
duction (Kaminski et al., 1999) in six target quantities:

1−
σ(y)

σ (yprior)
, (4)

whereσ(yprior) denotes the uncertainty in the target quantity
without any observational constraint andσ(y) is taken from
Eq. (2). The prior uncertainties for our target quantities are
computed by propagating the prior parameter uncertainties
of Scholze et al.(2007) via the JacobianN ′ (Eq. 2). They

are 0.45 GtC, 1.45 GtC, and 1.13 GtC for NEP over Europe,
Russia, and Brazil, respectively, and 0.66 GtC, 1.08 GtC, and
4.86 GtC for NPP.σ(ymod) is an offset in Eq. (2). If the term
was very high it would dominate the posterior uncertainty. To
render the contrasts between the networks more drastic, we
use a value of zero, i.e. we only analyse the effect of the net-
works on the parametric uncertainty in the target quantities.
In fact, some of the parameters rather refer to the initial state,
i.e. this source of uncertainty is also covered, to a limited
extent, by our analysis.

In the above-described default set up BETHY runs with
13 PFTs. To investigate the robustness of the network per-
formance with respect to model complexity in terms of the
number of available PFTs, we extend the default set up as
follows: we split the global vegetation into several equal frac-
tions. Each fraction has its own set of 57 independent param-
eters with uncorrelated prior uncertainty. All fractions of a
PFT share the location of the original PFT. In other words,
a grid cell that in the default setup is populated by a single
PFT is now composed of equal subgrid patches, each with
their own PFT; the corresponding surface fluxes add up to
one grid cell flux to be used for the atmospheric networks
(hence the patches can be said to have the same location)
but they are separately monitored by the flux network. In the
following we will call the number of fractionsmultiplicity.
With multiplicity 4, for example, we have 4× 13= 52 PFTs
and 57× 4 = 228 parameters. A parameter that was global
in the default configuration now has its validity restricted
to one of the fractions of the global vegetation. A change

Atmos. Chem. Phys., 12, 7867–7879, 2012 www.atmos-chem-phys.net/12/7867/2012/
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Table 2.Process parameters, their symbols (2nd column), their description (3rd column), whether their scope is PFT specific or global (4th
column), whether NEP (5th column) or NPP (6th column) are sensitive to them.

Number Symbol Description scope NEP NPP

1 V 25
max maximum carboxylation rate (C3) PFT X X

2 aJ,V ratioV 25
max over max electron transportJ25

max PFT X X
3 αq photon capture efficiency (C3) global X X
4 αi quantum efficiency (C4) global X X
5 K25

C Michaelis-Menten constant CO2 global X X
6 K25

O Michaelis-Menten constant O2 global X X
7 a0,T temperature slope CO2 compensation point global X X
8 EKO activation energy, O2 global X X
9 EKC activation energy, CO2 global X X
10 EVmax activation energy, carboxylation rate (C3) global X X
11 Ek activation energy, carboxylation rate (C4) global X X
12 ERd activation energy, dark respiration global X X
13 fR,leaf leaf respiration ratio global X X
14 fR,growth growth respiration ratio global X X
15 fS fraction of fast soil decomposition global X
16 κ soil moisture exponential for soil respiration global X
17 Q10,f soil respiration temperature factor, fast pool global X
18 Q10,s soil respiration temperature factor, slow pool global X
19 τf fast pool soil carbon turnover time global X
20 β net CO2 sink factor PFT X
21 c0 atmospheric concentration offset global

Table 3. Network flux. First number in site name indicates model
grid cell and second number PFT.

Name Included Uncertainty lon lat
[gCm−2day−1]

site1413-3 yes 10.0 9.0 45.0
site1025-4 yes 10.0 35.0 53.0
site143-5 yes 10.0 19.0 69.0
site148-7 yes 10.0 29.0 69.0
site1495-8 yes 10.0 −5.0 43.0
site1731-9 yes 10.0 −5.0 37.0
site1578-10 yes 10.0 −5.0 41.0
site377-11 yes 10.0 −21.0 65.0
site388-12 yes 10.0 29.0 65.0
site621-13 yes 10.0 13.0 61.0

of multiplicity also affects the prior uncertainty in the tar-
get quantities. Introducing the multiplicitym means thatm
copies have to share the same area. Hence, compared to the
original flux y the flux yi from each copy (i counting the
copies) is reduced by a factor ofm. And with it the origi-
nal flux uncertaintyσ(yprior) is also reduced by a factor ofm

for each copyσ(yi,prior). Since there is no correlation of the
prior uncertainty among the copies, the total flux uncertainty
σ(yprior,m) is the square root of the sum of squares:

Table 4. Network cont of continuous atmospheric sampling sites
over Europe.

Name Included Uncertainty lon lat
[ppm]

CBW yes 1.5 4.9 52.0
CMN yes 1.5 10.7 44.1
DGR yes 1.5 22.07 54.15
FDA yes 1.5 25.3 45.47
HUN yes 1.5 16.6 46.9
MHD yes 1.5 −9.9 53.33
NGB yes 1.5 13.05 53.15
PAL yes 1.5 24.12 67.97
PRS yes 1.5 7.7 45.9
PUY yes 1.5 3.0 45.8
SAC yes 1.5 2.2 48.7
SBK yes 1.5 12.98 47.05
SCH yes 1.5 8.0 48.0
WES yes 1.5 8.0 55.0
WHF yes 1.5 10.77 52.8

σ(yprior,m) =

√ ∑
i=1,m

σ(yi,prior)2 =

√ ∑
i=1,m

(
σ (yprior)

m
)2

=
σ(yprior)

√
m

. (5)

www.atmos-chem-phys.net/12/7867/2012/ Atmos. Chem. Phys., 12, 7867–7879, 2012
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Fig. 5.Evaluation of two flux sites (blue and orange bars), of their combination (yellow bars), and of each site with data uncertainty reduced
by a factor of 100 (green and brown bars): Uncertainty reduction for NEP and NPP integrated over three regions.

This means, for example, quadrupling the multiplicity halves
the prior uncertainty.

4 Results and discussion

We start this section with evaluations of simple networks
composed of one or two flux sites. Then we move on to the
base networks defined in Sect.3 and, finally, study the effect
of increasing the number of PFTs that are available to the
model.

4.1 Simple configurations of flux sites

The selection of a site location for sampling a particular PFT
defines the Jacobian matrix that provides the link from the
model parameters (required for simulating that PFT) to the
simulated flux. To understand the effects which we will later
see in larger networks, it is instructive to evaluate first a series
of small networks consisting of one or two flux sites. We start
with the separate evaluation of two sites which both observe
PFT 9 (C3 grass) to 100 %, namely “site1731-9” in Southern
Spain and “site143-9” in Northern Scandinavia. Note that we
can populate any given location with up to three PFTs. For
the current experiment we take the location of “site143-5”
from Table3 but populate it to 100 % with PFT 9. For conve-
nience, for the remainder of this subsection, we will refer to
the sites just as “143” and “1731”. The respective uncertainty
reductions are displayed by blue (site “143”) and orange (site
“1731”) bars in Fig.5. First we note that flux measurements
over Europe can reduce the uncertainty of target quantities
over Russia and Brazil. This reflects our assumption of fun-
damental processes with a combination of universal and PFT-
specific parameters: an observation provides information be-
yond its sampling time and location helping to reduce un-
certainty everywhere. Figure6 shows for site “1731” the un-
certainty reduction in NEP per grid cell. This quantifies how
the observational information of the site is spread around the

globe. Comparing with Fig.1 we note high uncertainty re-
duction where the dominant PFT is C3 grass.

Among the two sites in terms of NEP site “1731” performs
only marginally better, but in terms of NPP it performs about
10 percentage points better1. Next we investigate the com-
plementarity between the two sites, i.e. we use a network that
consists of both sites and note a slight improvement for NPP
over Europe and Russia (yellow bar in Fig.5) compared to
the better site “1731” alone. For these two target quantities
the weaker site “143” is notredundantin this two site net-
work, because it brings at least a little bit of extra informa-
tion. In other words there is at least a slightcomplementarity
between the two sites with respect to the two target quanti-
ties.

For the analysis of the above effects, recall that each scalar
target quantity is (through the vectorN ′ of Eq. 2) influ-
enced by its own one-dimensional sub-space of the parame-
ter space, i.e. atarget directionin parameter space. Likewise
each scalar observation constrains a direction in parameter
space (observed direction). We can use the analogy of aper-
spectiveunder which the target direction is observed. If the
target and observed directions are orthogonal, the observa-
tion can not reduce the uncertainty in the target quantity. If
both directions are collinear, i.e. in the same subspace of the
parameter space, the observation can most efficiently reduce
the uncertainty in the target quantity. This means, for exam-
ple, that even a hypothetically perfect measurement that re-
moved all uncertainty for all parameters pertinent to one PFT
would not completely constrain any of our target quantities
(which are all influenced by several PFTs). In other words a
one-site flux network isincompletewith respect to our target
quantities. The strength of an observational constraint on a
target quantity depends (1) on the sensitivity of the observed

1The unitpercentage pointquantifies an absolute change in the
percentage value. For example, for a value of 40 % an increase by
50 percentage points yields 90 %. By contrast, an increase by 50 %
corresponds to 20 percentage points and yields 60 %.

Atmos. Chem. Phys., 12, 7867–7879, 2012 www.atmos-chem-phys.net/12/7867/2012/



T. Kaminski et al.: Observing the continental-scale carbon balance 7875

 Fig. 6.Uncertainty reduction in NEP per grid cell, for a network consisting of a single flux site (site 1731-9 in Table4).

quantity to a parameter change in the observed direction (sig-
nal size), (2) on how well the observed direction projects onto
the target direction (perspective), and (3) on the data uncer-
tainty. We use the same data uncertainty for both sites and
the same target directions. The observed direction and signal
size depend (1) on the PFT, (2) on the sampling time, and on
(3) the meteorological driving data. Our two flux sites pro-
vide measurements at the same times (hourly for 20 yr) and
of the same PFT. The only different factors are the meteo-
rological driving data. Indeed the meteorology in Southern
Spain is quite different from Scandinavia.

To isolate the effects of the perspective and the signal size
on performance of the individual sites we reduce their respec-
tive data uncertainties by a factor of 100 (green and brown
bars in Fig.5). This can compensate for a weaker signal but
does not change the perspective. Now both sites show ex-
actly the same performance, i.e the Scandinavian site has just
a smaller signal. In other words, we find the relevant infor-
mation at both sites, but at sites with a larger signal we can
afford a larger data uncertainty or, probably, a shorter obser-
vational period.

A common property between all networks evaluated in
Fig.5 is the larger uncertainty reduction for NPP compared to
NEP. This happens although we sample hourly NEP, i.e. we
should match the perspective for long-term NEP quite well.
On the other hand, the target space for NPP has fewer di-
mensions, because it depends on fewer parameters. The extra
parameters in NEP play an important role. This effect would
probably be even more pronounced if NEP was compared
with the Gross Primary Productivity (GPP) which is influ-
enced by even fewer parameters (Koffi et al., 2012). Another

point to note is that for Brazil the prior uncertainty in NPP
is about four times higher than for NEP, and thus easier to
reduce.

4.2 Base networks and their combinations

The performance of the three base networksflask(blue bars),
cont (orange bars), andflux (yellow bars) is shown in Fig.7.
Over Europe, the flux network achieves an uncertainty reduc-
tion of about 99 % for both NEP and NPP and outperforms
both atmospheric networks. The reason for the strong perfor-
mance offlux over Europe is its completeness with respect
to the European target quantities, i.e. the fact that for each
PFT over Europe it contains a dedicated site. With respect to
the Brazilian target quantities, in turn, the networkflux is in-
complete because it does not cover the tropical PFTs. This is
why flux is weaker than the global networkflask, in particu-
lar for NEP where the performance difference between both
networks is over 50 percentage points.

The above suggests we would always attempt complete
flux networks. In reality this will be hard to achieve, because
we do not know how many PFTs are required to simulate the
terrestrial carbon cycle, nor do we know their spatial distri-
bution (Groenendijk et al., 2011). Hence, it may happen that
we accidently miss a PFT in our flux network. We can test the
effect of this by removing from networkflux the site “1731-
9” (networkflux-C3). The performance over Europe drops by
about 69 percentage points for NEP and 58 for NPP (green
bars). Over Brazil the effect of missing the C3 grass site is
only marginal (performance drop of less than four percent-
age points for NEP and less than two for NPP).
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Fig. 7.Evaluation of three base networks, a flux networkflux-C3that is incomplete over Europe and the combinedflux-C3+ flasknetwork.

For the atmospheric networks,flaskoutperformscontover
Europe by 2 and 10 percentage points for NEP and NPP
despite the European focus ofcont. Obviously, for the at-
mosphere, the large-scale information matters. For Brazil or
Russia it is not surprising that the global networkflask is
more powerful than the networkcont. The most important as-
pect is that the atmospheric networks outperform the incom-
plete flux networkflux-C3. The only exception is NPP over
Brazil, where the loss of C3 had only a marginal effect on
the performance of the flux network andflux-C3 is stronger
thancontbut not thanflask. We note that the relatively coarse
resolution of TM2 may yield a slight overestimation in the
integrative capacity offlask. For any given monthly mean
sample, the higher resolution of LMDZ would resolve a finer
influence structure (footprint) within the TM2 grid cells. On
the other hand, our sampling period of 20 yr would probably
average out much of this time-dependent fine-scale structure,
a mechanism that tends to increase the footprint. Over that
period, it is not clear, per se, which of the transport mod-
els has a higher integrative capacity. We note, however, that
in an inversion study the use of a high resolution model is
favourable in order to minimise biases through resolution-
dependent effects caused, e.g. by orography (see, e.g.Pillai
et al., 2010). Increasing the data uncertainty ofcontby a fac-
tor of four (to a value comparable to the data uncertainty of
flask) yields only small performance reductions of 3 percent-
age points over Europe, 6–7 percentage points over Russia
and below one percentage point over Brazil (not shown).

To assess thecomplementarityof atmospheric and flux
networks, we combine the networksflux-C3andflask. Over
Europe the resulting networkflux-C3 + flaskperforms almost
as well as thecompleteflux networkflux, and over Brazil and
Russia even better. Both networks (flux-C3andflask) com-
plement each other. Given the experience from the two grass
sites we evaluated initially (Sect.4.1), we can think of the
atmospheric network as an observer of averages over multi-
ple sites. We can regard its addition to the flux network as an
insurance against theincompletenessof the flux network.

What can we do in the case where we can not afford
enough sites to sample all PFTs over our target region? Is
it useful to have a flux site which observes two PFTs? We
test this by removing the site “site1731-9” from the network
fluxand modify the PFT fractions at site “site143-9” to 50 %
each for PFTs 5 and 9. This network has the same number
of sites asflux-C3but much better performance (not shown).
Uncertainty reduction for NEP over Europe is 76 %, and for
the other target quantities the performance is only marginally
(less than one percentage point) inferior toflux. This perfor-
mance enhancement is based on the same principle as atmo-
spheric sampling, the integration of a multi-PFT signal. This
result seems surprising. It arises from the ability of a long
time series to observe the different dynamics of the two un-
derlying PFTs.

We can also investigate the complementarity of the base
networks. Since the uncertainty reduction for the network
flux is above 99 % already, in this set of assessments we
rather quantify the performance gain by the reduction in pos-
terior uncertainty relative to the posterior uncertainty offlux.
Adding both atmospheric networks to networkflux reduces
NEP uncertainty over Europe by over 30 % and NPP by
20 %. For the other regions the effect is much larger (up to
99 % reduction for NEP over Brazil).

4.3 Increased model complexity

The above network evaluations are based on the default
model setup with 13 PFTs. In the following we investigate
the robustness of the results with respect to model complex-
ity in terms of the number of available PFTs. To increase the
number of PFTs we use the procedure described in Sect.3.

For multiplicity 4, Fig. 8 shows the performance of the
three base networks. Among the atmospheric networksflask
is superior tocont for all target quantities, except for NEP
over Europe whereflaskis slightly inferior. The networkflux,
in turn, is superior toflaskexcept for NEP over Brazil and
Russia. We define the networkM4-1 flux, which is incom-
plete over Europe, by excluding one parameter copy out of
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Fig. 8. Evaluation for multiplicity 4 of three base networks, an incomplete flux network with one copy of each PFT unsampled, and the
combination of the incomplete flux network with theflasknetwork.

the 4 from the networkflux. This meansM4-1 fluxsamples
30 out of the 40 PFTs that are available over Europe. As in
the case of multiplicity 1, the incompleteness is reflected in
a strong drop in uncertainty reduction in particular over Eu-
rope, where the performance is roughly halved (green bars in
Fig. 8). CombiningM4-1 fluxwith flask is only marginally
superior toflaskalone. ApparentlyM4-1 flux is too incom-
plete to bring extra information. Put another way, the unob-
served parts of the domain dominate the final uncertainty.

For multiplicity 25 (not shown),flux achieves uncertainty
reductions close to 100 % over Europe and above 85 % else-
where. We define two incomplete flux networks over Europe,
one with one parameter copy out of 25 removed (over Europe
240 of 250 PFTs sampled) and the other one with two pa-
rameter copies out of 25 removed (230 PFTs sampled). Over
Europe, compared toflux, the first network suffers a perfor-
mance drop of about 20 percentage points, and the other one
of almost 30 percentage points. Over Europe theflask per-
formance (78 % for NEP and 74 % for NPP) lies in-between
both incomplete flux networks, which also holds for NPP
over Russia. Elsewhereflaskis better than the two networks.
Even with a highly increased number of PFTs, an incom-
plete flux network that misses only a small fraction of the
total PFTs is outperformed byflask. Combiningflask with
either one of the incomplete networks increases theflaskper-
formance over Europe by about ten percentage points for the
smaller flux network and by another three percentage points
for the larger network. This means both incomplete networks
exhibit enough complementarity toflaskto achieve a signif-
icant performance gain. Note that with multiplicity 25 the
prior uncertainty is reduced by a factor of five (see Eq.5).
For example, an uncertainty reduction of 80 % corresponds
to the same posterior uncertainty as an uncertainty reduction
of 96 % (100-(100-80)/5%) in BETHY’s default setup (i.e.
multiplicity 1). This means that the posterior uncertainty in
NEP over Europe offlask(uncertainty reduction of 78 %) is

similar to that in the default setup (uncertainty reduction of
94 %).

5 Conclusions

QND is well-suited to explore the performance of observa-
tional networks of the carbon cycle. The network designer is
a fast and easy-to-use QND implementation, that enables in-
teractive network evaluations, e.g. within a meeting. Its cur-
rent focus is on the continental-scale carbon balance. Fig-
ures 2, 3 and 5 in this paper are directly obtained from the
network designer.

As mentioned above, the particular performance values
are consequences of specific choices such as prior and data
uncertainty, or the complexity of the underlying terrestrial
model. There are, however, a set of general findings that fol-
low from the above-mentioned assumption of fundamental
equations that govern the processes controlling the terres-
trial carbon fluxes. First, for direct flux observations, it is
important to cover the full range of different PFTs and not
the range of climates to which a given PFT is exposed. An
incomplete flux network, i.e. one that misses a fraction of
the PFTs risks a considerable performance loss. Atmospheric
measurements are less prone to this problem, thus we can
say that flux networks are more powerful while concentra-
tion networks are more robust. The combination can provide
both qualities, i.e. atmospheric and flux networks comple-
ment each other.

The implications for the design of integrated observing
strategies for the continental carbon balance seem clear. The
baseline requirement is an atmospheric sampling network.
That way if we underestimate the heterogeneity we will not
find ourselves suddenly terribly undersampled. The strongest
constraint, however, will come by overlaying this with a flux
network which is as comprehensive as possible. Oversam-
pling important PFTs will also give a diagnostic of hetero-
geneity. If parameters retrieved from one flux site enable us
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to predict the fluxes at a second then these are properly con-
sidered the same PFT for CCDAS, otherwise we need to in-
crease the multiplicity.

The above assumption of fundamental equations that gov-
ern the processes controlling the terrestrial carbon fluxes
does not apply to atmospheric transport inversions, which
has an effect on the optimal sampling strategy. For example,
transport inversions can incorporate the response of the car-
bon fluxes to a difference in climate only to a limited extent
through their prior fluxes. Thus an optimal network for trans-
port inversions needs to be capable of sampling the “climate
space” if it wishes to capture this response.

This study addressed parametric and, to a certain extent,
initial value uncertainty. To resolve structural uncertainty, it
is important to build into the network the flexibility to detect
features that are not or badly included in the model, i.e. the
capability to discover surprises. Here, we have focused on
carbon dioxide fluxes, however, observational networks for
other trace gases, e.g. methane, can be evaluated with the
same approach. Also, it is possible to evaluate networks that
combine observations from space with in situ measurements
as shown byKaminski et al.(2010) and Kaminski et al.
(2012). Similarly the column integrated CO2 measurements
collected by the Total Carbon Column Observing Network
(TCCON,http://www.tccon.caltech.edu/) can be included, as
an extra data type, in the network designer. The approach can
also be extended to oceanic networks.
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