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Abstract—This work aimed at giving a comprehensive, in-
detailed and benchmark guide on the route to fine-tuning
Convolutional Neural Networks (CNNs) for glaucoma screening.
Transfer learning consists in a promising alternative to train
CNNs from scratch, to avoid the huge data and resources
requirements. After a thorough study of five state-of-the-art
CNNs architectures, a complete and well-explained strategy for
fine-tuning these networks is proposed, using hyperparameter
grid-searching and two-phase training approach. Excellent per-
formance is reached on model evaluation, with a 0.9772 AUROC
validation rate, giving arise to reliable glaucoma diagnosis-help
systems. Also, a baseline benchmark analysis is conducted, study-
ing the models according to performance indices such as model
complexity and size, AUROC density and inference time. This
in-depth analysis allows a rigorous comparison between model
characteristics, and is useful for giving practioners important
trademarks for prospective applications and deployments.

I. INTRODUCTION

Glaucoma is a neurodegenerative eye disease, causing grad-
ual vision loss and ending up to complete blindness [1].
Glaucoma is known as one of the most prevalent ocular dis-
eases worldwide, as up-to-date projections estimate glaucoma
burden to about 112 million people worldwide by 2040 [2].
Dispensing and ensuring early screening of the pathology
remains essential, to inhibit the development of the spreading
disease and avoid irreversible vision damages with in-time
treatment. Glaucomatous optic neuropathy is mainly featured
by structural changes within the optic nerve head (ONH), a
yellowish and bright circular region within the retina where
arteries and veins converge toward the brain. As the disease
develops, gradual alteration of the ONH and surroundings
occurs: prominence of the optic cup (OC) inside the optic
disc (OD), gradual narrowing of the neuro-retinal rim (NRR),
retinal nerve fiber layer (RNFL) loss, hemorrhages on the
retinal layer (see Figure 1). Hence, to effectively diagnose the
presence of the disease at the earlier stage, ophthalmologists
explore the retina via dedicated imaging tools [3], and analyse
the presence of such glaucomatous patterns.
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Fig. 1. Example of healthy (1) and glaucomatous (2) retinal images: (a)
retinal image with framed ONH region, (b) ONH sub-image.

Computer-aided diagnosis (CAD), in combination with
high-resolution digital imaging, has a great potential for as-
sisting clinicians in their work, bringing more effectiveness,
affordability and convenience in the task of early screening
and diagnosis of glaucoma [4]. The deployment of such
CAD systems constitutes a step forward in offering upgraded
glaucoma screening strategies, for the development of ocular
disease screening programs, widening the access to eye health.

In this work, we exploit powerful deep learning (DL)
algorithms to provide effective glaucoma assessment from
retinal fundus images. Here, a transfer learning strategy is
leveraged andto assess the capacity of DL models on gen-
eralizing glaucoma detection. Based on such thorough study,
a baseline benchmark analysis is conducted for comprehensive
comparison between the exploited models.

The remainder of the paper is organized as follows. Section
II introduces the existing works on glaucoma screening from
retinal images. Novel approach for fine-tuning CNNs for
glaucoma screening is detailed in Section IIl. Results are
presented in Section IV, followed by a benchmark analysis
in Section V. Discussion and conclusions are given in Section
VI and VIL



II. RELATED WORK

Glaucoma gives arise to structural changes within the ONH,
mainly characterized by a gradual increase in optic cup (OC)
size inside the optic disc (OD), and conversely, a gradual
narrowing of the neuro-retinal rim (NRR). Hence, most of
the existing approaches for glaucoma assessment rely on the
extraction of clinical measurements such as the cup-to-disc
ratio (CDR) [5], the NRR area [6] or the ISNT sectors [7], to
evaluate the morphological alterations occurring in the ONH.
Extracting these clinical measurements requires a preceding
segmentation of the OC and the OD areas. In one of the
most relevant works for early glaucoma screening from retinal
fundus images, Cheng et al. [8] proposed an energy-based
superpixel classification method to segment both OC and OD
areas. Diameter-based CDR calculation is then performed to
lead to glaucoma assessment. In the work by Mvoulana et al.
[9], authors exploited a non-supervised clustering method, in
combination with a model-based operator, to detect the regions
of interest then automatically compute area-based CDR. Both
approaches obtain excellent results on final glaucoma assess-
ment. However, reliability on glaucoma screening directly
depends on an accurate segmentation of the ONH, which is
known to be a challenging task in this biomedical imaging
context.

Early advancements on deep learning, a derivated field of
artificial intelligence, are at the core of a stunning revolution
in the domain of computer vision. Convolutional Neural
Networks (CNNs) have improved traditional algorithms
in many tasks, including object detection, segmentation
and pattern recognition, among various areas ranging from
autonomous driving, natural language processing, speech
recognition or medical image analysis [10]-[12]. CNNs
mainly consist in an ensemble of non-linear modules, capable
of extracting features from images at different levels of
representation. The key advantage of deep learning is that
the filters are automatically learned from data, using a
general-purpose learning procedure [13]. Thereupon, recent
studies have suggested the usefulness of exploiting CNNs
to automatically learn glaucomatous patterns from retinal
images, leading to the assessment of glaucoma disease. As a
forrunner study, Chen et al. [14] developed a novel six-layers
CNN architecture for glaucoma assessment, trained with
private ORIGA and SCES datasets. This work has improved
traditional state-of-the-art approaches for glaucoma screening,
paving the way to develop CNNs to screen the disease. Also,
Fu et al. [15] introduced a DENet architecture, consisting
of four modules retrieving different hierarchical aspects of
retinal fundus images (disc localization, ONH contextual
information, etc.), finally aiming to screen glaucomatous
neuropathy with high sensitivity. Nevertheless, specifying
such novel DL algorithms and effectively trained them
from scratch tends to be a complicated task, requiring great
amount of data, with consistent and trust-worthy labelling,
and substantial hardware resources. Instead, transfer learning
has been validated as a valuable alternative to fully training

CNNs, especially for designing intelligent systems for the
screening of pathologies when data requirements are often
deficient [16]. A promising path is to fine-tune CNN that
have been pre-trained on large general-purpose dataset
(ImageNet), i.e. restoring weights from a pre-trained model,
adapting the network for the new classes of interest, and
incrementally re-train its layers for better handling of the new
classes. Several methods have exploited fine-tuning for the
assessment of glaucoma, including the works in [17], [18],
each fine-tuning ResNet50 for the detection of glaucoma.
Distinguished results are obtained in these studies, however,
the lack on in-depth explanation on CNN training strategy,
and the use of private datasets make these medical-oriented
works hardly reproducible. As a baseline study, Diaz-Pinto
et al. [19] proposed an extensive validation of different DL
models, including VGG-16, ResNet50 or Inception-v3, each
fine-tuned for early screening of glaucoma. Explanation
on fine-tuning strategy, specification of hyperparameters
are given to further lead to glaucoma screening. Several
publicly-available datasets are used for testing and comparing
the ability of each model to screen the disease. However,
arbritrary specifications of hyperparameters, being the same
for all studied models, can jeopardize reliable convergence
and narrow global performance for glaucoma screening. Also,
a few explanation on computed architectures, and discussions
about pros and cons were given to discuss their global
generalization capacity, and other model characteristics such
as model complexity.

In this work, we aim to make the following contributions
for benchmarking well-known CNNs architectures to the task
of early glaucoma screening:

o we describe the different used pre-trained CNNs, in a
disseminated manner, and expose their advantages and
limitations;

« we give a well-explained strategy for fine-tuning different
ImageNet-trained CNNs, including optimal specification
of hyperparameters, explanation of a two-pass training
strategy for effective fine-tuning, and full exhibition of
implementation skills for reliable convergence;

o and propose an extensive analysis and discussion of
these architectures in terms of accuracy, accuracy density,
memory size, inference time, to give a comprehensive
report for further applications and deployments.

III. NOVEL APPROACH FOR FINE-TUNING CNNS FOR
GLAUCOMA SCREENING

A. Datasets

A thorough research of publicly-available datasets has been
conducted to further build, train and evaluate our models
for early glaucoma screening. Among many retinal images
datasets dedicated to glaucoma disease and exploited by re-
search works in the field, only a few are publicly available:
DRISHTI-GS1 [21], RIM-ONE [22], HRF [20], ACRIMA



Dataset Healthy  Glaucomatous  Total

HRF [20] 18 27 45
DRISHTI-GSI [21] 31 70 101
RIM-ONE [22] 194 261 455
ACRIMA [19] 309 396 705
KIM-EYE [23] 786 758 1544
TABLE 1

RETINAL IMAGES DATASETS FOR GLAUCOMA SCREENING.

[19] and KIM-EYE! [23]. A description of each dataset is
drawn in Table I. Among these datasets, KIM-EYE appears as
the most suitable choice to conduct DL training for glaucoma
assessment, as it contains substantial amount of images to train
and validate DL models, especially with the agreement of two
well-trained specialists for assessing referable glaucomatous
optic neuropathy. The dataset consists of 1544 retinal images,
including 786 healthy (H) images and 758 glaucomatous (G)
images divided into 289 glaucoma-early and 467 glaucoma-
advanced cases. In our undergoing work, no distinction be-
tween early and advanced cases is done and all glaucoma cases
are gathered in a same class.

B. Data preprocessing and augmentation

Before implementing DL architectures, prior preprocessing
of retinal images is required. First, since glaucoma disease
mainly manifests itself within and around the ONH, all images
are cropped around the ONH. We exploit here the method
proposed in [9] to effectively detect the ONH center, and crop
the retinal image around the detected center using a (224x224)
or a (299x299) window (depending on the default input size
required by the models). Relevant prior studies have assessed
the utility to operate this cropping, improving the ability of the
algorithm to feature the presence of the disease [24]. Second,
image normalization is computed to scale pixel intensities
from [0, 255] to [—1;1], as each pixel value X; in the image
X is rescaled following Eq. (1):

N(X;) = )f;(;(;( (1

with X image mean, o(X) image standard deviation, and
N(X;) the output normalized pixel.

Image normalization is crucial for optimal training: it allows
to maintain each learned feature in a specific range, preventing
from gradients going out of control when multiplying weights
with initial inputs. Third, one-hot encoding is performed on
the labels, passing from 1D vectors to 2D-representation of
the labels. Fourth, to conduct both training and validation of
the DL models, whole data is splitted into training (90%) and
validation (10%) folders. During training phase, training split
will thereafter be splitted for a 10-fold cross validation. Finally,
to enlarge training dataset for improving accuracy and proper
convergence, data augmentation is appplied: random geometric

'Kim-EYE refers to the name of the hospital where the dataset has been
elaborated. See reference for more information.

transformations such as rotation (range: 0-40 degrees), zoom-
ing (range: 0-20%), shear (range: 0-20%), and both horizontal
and vertical flips.

C. ImageNet-trained CNNs

In our study, five of the well-known state-of-the-art CNNs
architectures were selected for fine-tuning and benchmark
analysis. These networks have been selected according to their
differences across layer agencement or building block, giving
a wide range of network configurations to explore.

1) VGGI6: introduced by Simonyan et al. [25] at the
ILSVR2014, VGG16 is known as one of the first CNNs
proposed in the literature. The architecture is composed of
13 convolutional layers, interspersed with 5 pooling layers
and ending with 3 dense layers (see Figure 2). Because of
its intuitive sequential architecture, while achieving excellent
accuracy on a wide range of computer vision domains, VGG16
has been extensively exploited by the community and remains
a well-suggested CNN for benchmarking on a particular task.

2) ResNet50: developed by [26], ResNet50 is a 50-layer
CNN architecture mainly featured by residual blocks. A typical
residual block consists of 3 convolutional layers, mainstreamed
by skip connections to ”jump” over some layers. These short-
cuts remedy the problem of vanishing gradient, i.e. when the
loss function shrinks to zero after several iterations on deep
networks, resulting in accuracy degradation. With ResNets,
the gradients can flow directly through the skip connections
backwards from later layers to initial filters.

3) Inception-v3: proposed by Szegedy et al. [27] in
ILSVRC 2015, 48-layers Inception-v3 is the extension of
GoogLeNet. Inception module is a multi-level feature ex-
tractor, as convolutions of size 1x1, 3x3 and 5x5 are
computed within the same module. These modules allow to
solve the problem of overfitting, as well as computational
expense through dimensionality reduction with stacked 1 x
1 convolutions. The weights for Inception-v3 are smaller than
both VGG and ResNets.

4) DenseNetI2]: proposed by Huang et al. [28],
DenseNet121 is an extension of the previously-introduced
ResNets. DenseNets blocks are featured as having connections
to all following layers in the network. 121-layer DenseNet121
mainly consists of 4 DenseNet blocks, interspersed by
compression/transition to reduce the number of feature maps
exploited by the subsequent block. A fully-connected layer at
the end allows to achieve final classification. One of the main
advantage of DenseNet121 is the fewer number of parameters
compared to ResNet50, achieving comparable accuracy on
ImageNet dataset.

5) MobileNet: introduced by Howard et al. [29], the authors
aimed at developing efficient and lighter models for further
implementation of DL models on mobile platforms. Consisting
of 88 layers with depthwise convolutions, MobileNet is the
lighter model among the well-known ImageNet-trained DL
models across the state-of-the-art, with outstanding 89.5% top-
5 accuracy on ImageNet.
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Fig. 2. Flowchart of the transfer learning process for glaucoma screening, with VGG16 architecture: data processing, pre-trained model loading, fine-tuning
with a removal of the last fully-connected (FC) layers and softmax classifier, and a replacement with a global average pooling layer and the 2-output softmax
classifier. [0] and [1] corresponds to the healthy and glaucomatous classes respectively.

D. Fine-tuning and grid search of hyperparameters

Fine-tuning firstly consists in loading the pre-trained mod-
els, and designing them for the targeted classification. Hence,
we remove the last 1000-output fully-connected layer, corre-
sponding to the 1000 classes of ImageNet, and replace it with
a 2-output fully-connected layer, corresponding to our binary
classification between healthy and glaucomatous images. A
softmax classifier is computed to give the probabilities associ-
ated to each class. This last fully-connected layer is preceded
by an average pooling operation, to minimize overfitting by
reducing the total number of parameters in the model for
better generalization. The computed ”surgery” is illustrated in
Figure 2, with VGG-16 network. From there, the new network
can be fine-tuned. It starts with a “warm-up” phase, where
we train only the new last layer of the model, and set all
weights belonging to the previous layers as “non-trainable”.
This operation allows to preserve the powerful features learned
from pre-training on ImageNet and contained in the body of
the network, when backpropagating the gradient coming from
the random values in the new layers. Once the new layer
is pre-trained, fine-tuning can be operated by setting a few
layers from the network as trainable. Hence, the model is
trained a second time until reaching desired performance. In
this context, a recent study [16] has suggested the usefulness of
“deep tuning”, referring to fine-tuning all layers in the model.
Deep-tuning is recommended when it aims to exploit transfer
learning for a target application far from the ImageNet source
dataset, and setting all layers as trainable tends to improve
results compared to fine-tuning a sub-part of the model.

To obtain the best performance on training-validation steps
along both “warm-up” and “deep-tuning” phases, specifying
the best combination of hyperparameters is crucial. In this
direction, we perform a grid search of hyperparameters: it

Learning rate Optimizer =~ Momentum Decay
{le™5;5e7°;1e*} SGD 0.9 1e=©
Batch size Epochs Early stop.
‘Warm-up Fine-tuning
{8;12} <120 < 80 20
TABLE II

SPECIFIED HYPERPARAMETERS FOR OPTIMIZATION OF THE MODELS.

consists, for each hyperparameter, in specifying an interval
of values to scan. Then, we automatically compute training
step along all combinations of hyperparameters, according to
the values in each interval, and select the combination of
hyperparameters giving the best tradeoff between accuracy
and global generalization. Such grid searching allows to find
out the best hyperparameters for managing each architecture.
In our work, we focused on grid-searching learning rate
(LR) and batch size (BS) values, being the most impacting
hyperparameters for proper convergence of fine-tuned models
during training [16]. Grid search is operated along the sample
of values Irg = {le;5e~°;1e~*} for learning rate, as
low learning rate values allow to reliably follow loss land-
scape. Batch size is grid searched along the sample of values
Ips = {8,12}, giving a good balance between memory cost
and better generalization. Stochastic Gradient Descent (SGD)
is chosen as the optimizer for all our study, offering reliable
convergence (momentum = 0.9, decay = le~%). Number of
epochs is specified as 120 for warm-up phase, and 80 for
fine-tuning phase. Also, to enhance the reliable convergence
of our networks, early stopping is computed along both stages,
as the training phase is early interrupt after 20 epochs without
decreasing on validation loss. A summary of all specified
hyperparameters is given in Table II.
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ROC curve

Model AUROC Acc Sen Spe PPV NPV F1-score i L
VGG16 0.9772 0.9290 09130  0.9419  0.9265 0.9310 0.9197 08 e
ResNet50 0.9703 0.9161 0.9275 0.9070  0.8889 0.9398 0.9078 & /,”'
Inception-v3 0.9658 09189  0.9275 0.8837 0.8649 0.9383 0.8951 2 o6 ,.”’
DenseNet121 0.9681 0.9161 0.9275 0.9070  0.8889 0.9398 0.9078 H 0 _,-"
MobileNet 0.9626 0.9032 09565 0.8605 0.8462  0.9610 0.898 2 —— VGG16 (area = 0.9772)
Inception-v3 (area = 0 9658)
02 ~—— MabileNet (area = 0.9626)
—— ResNet50 {area = 0.9703)
TABLE I . DenseNet121 (orea = 0 9681)
EVALUATION RESULTS OF THE FINE-TUNED DL MODELS ON KIM-EYE o o " o 5 )
DATASET. False positive rate
Fig. 4. ROC curve for fine-tuned DL models, with AUROC-integrated legend:
IV. RESULTS

A. Framework configuration

All experiments were conducted using Keras deep learning
framework [30], including all implemented models with Ima-
geNet weights. Models were trained using a NVIDIA 1080 Ti
GPU, with a 11 Go RAM memory. Scripts were implemented
on Jupyter notebooks.

B. Experimental results

Our algorithms were evaluated using the Receiver Operating
Characteristic (ROC), illustrating the diagnostic quality of
our binary glaucoma classifiers across true positive and false
positive rates. The area under ROC (AUROC) curve is one
of the most important metrics for evaluating classification
performance, as it describes how much the model is capable
of distinguishing the two healthy and glaucomatous classes.
Also, accuracy, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV) and Fl-score were
calculated to feature the ability of the models to effectively
classify the retinal images. Model evaluation were operated
across the validation set (10% of total available data), consist-
ing of 155 retinal images with 86 healthy and 69 glaucomatous
images from KIM-EYE dataset.

In this direction, Figure 4 illustrates the ROC curve obtained
for each DL model. Plotted ROC curves demonstrate the high
capacity of implemented models to screen glaucoma, as they
get closer to the left-hand border and then the top border
along the ROC space. To emphasize model evaluation, Table
IIT summarizes the obtained results when evaluating the fine-
tuned models on KIM-EYE dataset. First, high-rate values
are achieved on AUROC, testifying the excellent performance
of DL models on glaucoma assessment across both classes.
Results between 0.9626 and 0.9772 are obtained, with a top-
value reached with VGG16 network. Second, global accuracy
achieves excellent performance on all fine-tuned models, rang-
ing from 0.9032 for MobileNet to about 0.93 for VGG16 and

VGG16, Inception-v3, MobileNet, ResNet50 and DenseNet121.

Inception-v3. According to sensitivity metric, associated to the
classification among glaucomatous subjects, top-rate values
across DL models are observed. A remarkable 0.9565 rate on
MobileNet illlustrates the ability of the model to effectively
detect glaucomatous patients. F1-score, which is a harmonic
average of both sensitivity and PPV metric, also shows off
great performance along the five models. In sum, fine-tuned
models obtain excellent performance on testing set, according
to performed metrics, which can attest their reliability on
screening glaucoma.

As a qualitative outcome, a sample of retinal images from
the testing set is presented, with the output prediction given
by the DL models (see Figure 3). The output probability
score comes from VGG16 network, and is associated to the
prediction rate allocated to the ground-truth class. Hence,
it allows to interpret the performed classification, where a
prediction value superior to 0.5 indicates a correct diagnosis.
Correctly classified examples, with high obtained prediction
scores, testify the trustworthiness of the algorithm on screening
the presence of the disease.

To enrich the evaluation of the fine-tuned models, a sup-
plementary evaluation phase has been performed on other
retinal image datasets. These datasets, which differ from the
former training-validation dataset in terms of image acquisition
settings, clinical cohort or expert labelling, allow to assess
the ability of DL models on generalizing glaucoma screening
from retinal images. In this direction, experimentation with
ACRIMA and DRISHTI-GS1 datasets has been carried out
to analyse each model’s ability on assessing glaucoma from
images with outlying conditions (for each, 50% for training
and 50% for testing). We performed two experiments: (1)
evaluation with the models trained on KIM-EYE train set, (2)
evaluation with the models trained on KIM-EYE, ACRIMA
and DRISHTI-GS1 train sets. In this direction, Figure 5



(a)

ROC curve

08

True positive rate

I " |— VGG16 (area = 0 8025)

il e Inception-v3 (area = 0.7822)
02 L MabileNet (area = 0.7524)
el —— ResNets0 (area = 0.7424)

00 DenseMet12] (area = 0.7731)

0o 02 04 06 08 10

(b)

ROC curve

7 —— VGGLE (area = 0.7438)
- Inceptian-v3 (area = 0.7853)
02 L MobileNet (area = 0 8088}
e —— ResNet5D {area = 0.7336)
00 4 DenseNet121 {area = 0.7539)

True positive rate

00 02 04 06 08 10

( 1 ) False positive rate False positive rate
Receiver operating characteristic example Receiver operating characteristic example
10
08 B -
H _#”" — VGG16 farea = 0.8909) 2 04 7 — VGG16 (area = 0.8848)
’f‘ Inception-v3 (area = 0.8754) ‘f" Inception-v3 (area = 0.6735)
02 g —— ResNets0 (area — 0.8836) 02 -~ —— ResNet50 (area — 0.8533)
," —— DenseNet121 (area = 0.9128) ,/t —— DenseNetlZ1 (area = 0.9002)
’I‘ MobileNet (area = 0.8871) ’I‘ MobileNet {area = 0.8792)
(2) DODG 02 04 06 08 10 DUBU 02 04 06 o8 10
False Positive Rate False Positive Rate
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g g exp
Dataset Model Experiment AUROC Acc Sen Spe PPV NPV F1-score
VGGI6 (D) 0.8025 0.6823 0.8990 0.4045 0.6139 0.8362 0.7607
?2) 0.8909 0.7801 0.8738  0.6602  0.7672  0.8032 0.8170
ResNet50 D 0.7424 0.6270 0.8611 0.3269 0.5319 0.8253 0.7217
‘ 2) 0.8836 0.7730 0.8611 0.6602 0.7646 0.7876 0.8100
(a) ACRIMA Incention-v3 (€)] 0.7822 0.7078 0.8662 0.5049 0.5710 0.8332 0.7691
P 2) 0.8754 0.7589 0.8434 0.6505 0.7557 0.7643 0.7971
DenseNet121 (D) 0.7731 0.6837 0.8485 0.4725 0.6724 0.8455 0.7508
2) 0.9128 0.7901 0.8864  0.6667  0.7731 0.8207 0.8259
MobileNet (D 0.7524 0.6723 0.8914 0.3916 0.4928 0.8741 0.7535
2) 0.8871 0.7702 0.8561 0.6602 0.7635 0.7816 0.8071
VGGI6 (D) 0.7438 0.7228 0.8143 0.5161 0.5801 0.7944 0.8028
2) 0.8848 0.7500 0.8158 0.6905 0.7045 0.8056 0.7561
ResNet50 (€)) 0.7336 0.7723 0.90 0.4839  0.5312  0.8754 0.8456
2) 0.8533 0.6750 0.7632 0.5952 0.6304 0.7353 0.6905
(b) DRISHTI-GS1 Incention D 0.7853 0.8020 0.8857 0.6129 0.6915 0.8510 0.8611
P 2) 0.8735 0.7250 0.8421 0.6190 0.6667 0.8125 0.7442
DenseNet121 (D) 0.7539 0.6931 0.7286 0.6129 0.5904 0.7188 0.7469
2) 0.9002 0.7500 0.8158 0.6905 0.7045 0.8056 0.7561
MobileNet (D 0.8088 0.7624 0.8286 0.6129 0.6430 0.8021 0.8286
2) 0.8792 0.7850  0.8158  0.7429  0.7739  0.7941 0.8381
TABLE IV

OBTAINED RESULTS ON MODEL EVALUATION, ALONG ACRIMA AND DRISHTI-GS1 DATASETS ACCORDING TO EVALUATION METRICS.

illustrates the obtained ROC curves on both ACRIMA (a) and
DRISHTI-GS1 (b) datasets, across the two experiments on the
five architectures. Also, Table IV summarizes the obtained re-
sults across the conducted experiments. These results globally
demonstrate top-level performance on glaucoma assessment
for both datasets. Especially, the main outcome relies on a
higher capacity on glaucoma screening with the models trained
on all datasets, allowing to enhance the global generalization
when screening for glaucomatous patterns. This outcome is
globally validated for all architectures, across ACRIMA and
DRISHTI-GS1 datasets.

V. BENCHMARK ANALYSIS

The goal of this benchmark study is to provide a thorough
analysis of each architecture into different implementation

aspects. The fine-tuned architectures for glaucoma screening
were compared using different performance indices:

1) Model depth: corresponds to the number of layers in the
network, including average pooling and final softmax layer

2) Model complexity: corresponds to the number of param-
eters (in millions) in the network

3) Memory size: corresponds to the size of the model (in
megabits) inside the disk

4) AUROC density: corresponds to the ratio between AU-
ROC on testing phase and the number of parameters. AUROC
density is important to measure the impact of the parameters
on classification accuracy. AUROC density is calculated from
the obtained AUROC on evaluation of the models trained with
KIM-EYE (see Table III).
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THESE RESULTS ARE BASED ON THE RESULTS OUTLINED IN TABLE III.

5) Inference time: corresponds to the time (in milliseconds)
for the architecture to give prediction on a sample image.
Inference time is measured by computing the prediction on all
test set, with batch size equal to 1, and divided total runtime
by the number of images. This experiment was conducted 10
times and the average inference time was calculated.

Hence, Table V reports the benchmark performance indices
from the five DL models. Also, Figure 6 illustrates reached
performance indices across inference time, with the number
of predicted images per second (x-axis), AUROC rate (along
y-axis), and model complexity (ball size). The figure empha-
sizes the performance of each model on glaucoma screening
with a top value for VGG16. Also, the chart suggests that
increased model complexity do not necessarily induce model
performance. Moreover, lighter and less complex models such
as MobileNet and VGG16 tend to have a shorter inference
time.

VI. DISCUSSION

In this study, we exploited transfer learning for glaucoma
screening from retinal fundus images. Specifically, we chose to
analyse five well-known state-of-the-art CNNs, each featured
by its proper layer agencement, building block, and other ar-
chitecture properties. We also proposed a benchmark analysis
of such networks, according to specific parameters, offering
important trademarks for applications and deployments.

The first goal was to provide a well-explained and in-
detailed guide for fine-tuning deep convolutional networks
for the purpose of glaucoma screening, using the strength of
these networks at extracting low- to high-level features from
digital images. The main challenge when exploiting transfer
learning is to reliably transpose acquired knowledge to the
targeted classification. It is even more the case when exploiting
knowledge acquired from a far away classification task, as our
study aimed at exploiting ImageNet-trained CNNs for medical
imaging purpose. In this direction, performing the best strategy
along data collection and preprocessing, hyperparameter spec-
ification and training routine is mandatory, on the pathway
to generalizing the assessment of glaucoma. To do so, we
firstly studied the different publicly available retinal images,
dedicated to the screening of glaucomatous condition. Among
a few available datasets, KIM-EYE has been chosen as a base-
line training-validation dataset, consisting of enough retinal
images to train our algorithms on, with trustworthy, consistant
labelling by trained ophthalmologists. As the former specialist

Inference time: # images per second

Fig. 6. Ball chart reporting inference time (images per second, along x-axis),
AUROC value (along y-axis) and model complexity (# parameters, ball size).

labelling has been conducted among healthy, moderate and se-
vere glaucoma condition, the both moderate and severe classes
have been gathered to form one class and equally balance the
different classes before performing binary classification. Also,
data preprocessing with image resizing and normalization,
accompanied by data augmentation to remedy the lack of
training data, allows to build a ready-to-use dataset for training
the DL networks. According to training-validation sets, a 90-
10 distribution has been considered to collect enough data
for CNNs training. Second, hyperparameter specification is
perhaps the most challenging and critical phase along fine-
tuning route. To answer to this difficulty, a fully-automated
grid search algorithm has been implemented, allowing to find
the best parameters for proper convergence. Grid-searching
has been conducted along two hyperparameters, learning rate
and batch size, appearing as the ones having the biggest
impact on reliable convergence. Grid-search of hyperparam-
eters induces a longer training phase, in comparison with a
traditional training phase, but worth the effort to find the most
adapted parameters. Also, to find a balance between accurate
choice of these hyperparameters and training consumption,
we defined restricted intervals of values to grid-search, with
a few but relevant values to scan. In our study, Stochastic
Gradient Descent (SGD) has been chosen as the preferred
optimizer compared to Adam, Nadam, Adagrad or RMSprop,
offering satisfying convergence of all architectures. According
to the obtained results, excellent performance has been reached
when evaluating the performed models on KIM-EYE testing
data. AUROC as well as global accuracy testify the ability
of the models on detecting glaucomatous patterns from the
images. When evaluating the models on different datasets,
encouraging but dropping results were found on glaucomatous
classification, as the evaluation in variant imaging conditions
seems to disrupt the KIM-EYE-trained CNNs. However, when
integrating samples from these abroad datasets, the models
appeared to perform better and greater capacity in screening
the pathology is observed.

The second goal of this study was to give a benchmark
analysis of the five architectures, explore their different im-
plementation characteristics and give a complete view for
researchers on the pathway to developing practical applications
or deploying such algorithms. Hence, different performance
indices such as architecture depth, model complexity, memory



size, AUROC density, and inference time were computed. One
of our main findings is that deeper and more complex networks
do not necessarily transfer the better. For example, VGG16
architecture has been found as the most accurate model when
designed for our task of early glaucoma screening. In terms
of memory size and model complexity, this study suggests
that MobileNet, followed by DenseNetl21, are the preferred
models to exploit when developing DL models for mobile
deployment. As a metric measuring the impact of each pa-
rameter in system accuracy, AUROC density highlights the
strength of MobileNet architecture in efficiently screen the
disease with a few number of parameters. Inference time,
which corresponds to the required time for giving prediction
on a sample image, is reached within a few milliseconds of
all architectures, opening the gate to real-time diagnosis-help
systems. Among all architectures, both VGG16 and MobileNet
predict glaucomatous neuropathy is around or less than 10 ms.

VII. CONCLUSION

In this paper, we proposed a novel approach for fine-
tuning Convolutional Neural Networks (CNNs) for glaucoma
screening from retinal fundus images. The study aimed at
giving a precise, well-explained guide to fine-tuning five of the
most known state-of-the-art CNNSs architectures. In this work,
a two-phase training strategy and a fully-automated hyperpa-
rameter grid-searching is operated, finally giving accurate and
reliable models designed for screening glaucomatous subjects.
Moreover, a benchmark analysis was conducted, highlighting
the different features of implemented models in terms of model
complexity, density or inference time. This thorough study
aims at giving researchers standards on developing DL models
for further applications and deployments.
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