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Abstract

We investigate a simple quantitative genetics model subjet to a gradual environmen-
tal change from the viewpoint of the phylogenies of the living individuals. We aim to
understand better how the past traits of their ancestors are shaped by the adaptation
to the varying environment. The individuals are characterized by a one-dimensional
trait. The dynamics -births and deaths- depend on a time-changing mortality rate that
shifts the optimal trait to the right at constant speed. The population size is regulated
by a nonlinear non-local logistic competition term. The macroscopic behaviour can be
described by a PDE that admits a unique positive stationary solution. In the station-
ary regime, the population can persist, but with a lag in the trait distribution due to
the environmental change. For the microscopic (individual-based) stochastic process,
the evolution of the lineages can be traced back using the historical process, that is,
a measure-valued process on the set of continuous real functions of time. Assuming
stationarity of the trait distribution, we describe the limiting distribution, in large pop-
ulations, of the path of an individual drawn at random at a given time T . Freezing
the non-linearity due to competition allows the use of a many-to-one identity together
with Feynman-Kac’s formula. This path, in reversed time, remains close to a simple
Ornstein-Uhlenbeck process. It shows how the lagged bulk of the present population
stems from ancestors once optimal in trait but still in the tail of the trait distribution
in which they lived.
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1 Introduction

An increasing number of studies have demonstrated rapid phenotypic changes in invasive
or natural populations that are subject to environmental changes, such as climate change
or habitat alteration due for instance to human activities [10, 65, 44, 45, 14, 2, 73]. Such
fast evolution may result in adaptation for these populations facing changing environment,
as observed in evolutionary experiment [36, 37, 20, 39]. Important theoretical progress has
been made to predict phenotypic evolution in a changing environment since the pioneer
works of [57, 58, 13, 54], see [52] for a review.
A major prediction of these models is that when the optimal phenotype changes linearly
with time, the phenotypical distribution of individuals is moving at the same speed to keep
pace of the change, but is lagged behind the optimum. The equilibrium value of the lag
depends on the rate of the change, on the genetic variance and on the strength of selection.
Above a critical rate of change of the optimal phenotype with time, this lag becomes so
large that the fitness of the population falls below the value that allows its persistence and
the population is doomed to extinction. In the case of small enough lag such that the pop-
ulation persists under constant adaptation, we study, in the present paper, the genealogies
of its individuals. Our aim is to understand how individual dynamics build the macroscopic
adaptation of the population via the quantitative description of the typical ancestral lineage.

We consider a population dynamics where individuals are characterized by a trait x ∈ R
and that give birth and die in continuous time. During their life the individual trait vari-
ations are modelled by a diffusion operator with variance σ2. The environment in which
the population lives is shifted at constant speed σc > 0 that drives the adaptation of the
population. The constant c > 0 can be interpreted as the speed of environmental change.
Two complementary descriptions of the dynamics are opted for: (i) a macroscopic, deter-
ministic, description of the phenotypic density, and (ii) a microscopic, stochastic, description
of the individual phenotypes. We believe that the later is better suited for the analysis of
the lineages.

The macroscopic dynamics of the phenotypic density in the moving environment is
described by the following partial differential equation (PDE) for the density with respect
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to the one-dimensional trait:

∂tu(t, x) =
σ2

2
∂2
xxu(t, x) +

(
1− 1

2
(x− σct)2 −

∫
R
u(t, y)dy

)
u(t, x). (1)

Here, u(t, x) denotes the density of population at time t and trait x ∈ R. Due to the
environmental change, the optimal trait with regards to the growth rate 1 − (x − σct)2/2
is x∗t = σct. The choice of the scaling of the speed is discussed after Theorem 1.1 below.
The nonlinear term involving the total mass of the population accounts for the mean field
competition between individuals at time t.

It is well known (cf. [15, 16, 34]) that equation (1) can be derived from a stochastic sys-
tem describing the random individual dynamics. More precisely, we consider the following
branching-diffusion process with interaction. An individual, at trait x ∈ R at time t ≥ 0,
gives birth to a new individual at the same trait with rate 1. Each individual dies with rate
(x− σct)2/2 +Nt/K, where Nt is the total population size at time t and K is the carrying
capacity of the system. The natural death rate (x−σct)2 reflects the gradual environmental
change, as in the PDE. The term Nt/K in the death rate corresponds to density-dependent
competition. Changes in the trait during the lives of individuals are driven by independent
Brownian motions, accounting for infinitesimal changes of the phenotypes. It is standard
to rigorously prove that the empirical measure on the individual traits weighted by 1/K
satisfies a semi-martingale decomposition, which is a stochastic equation analogous to (1)
(and given later), and that it converges weakly to the solution of the PDE when K tends
to infinity (provided the initial conditions are scaled suitably).

Due to the environmental change, the behavior of the population is naturally observed in
the moving frame. In what follows, we will always work in this setting, defining the density
in the moving frame as f(t, x) = u(t, x+ σct). As such, we obtain an additional transport
term in the PDE (associated with a drifted Brownian motion in the individual-based model):

∂tf(t, x) =
σ2

2
∂2
xxf(t, x) + σc ∂xf(t, x) +

(
1− x2

2
−
∫
R
f(t, y)dy

)
f(t, x). (2)

The unique positive stationary state of this equation can easily be computed. It can
exist if, and only if, 1 − σ/2 − c2/2 > 0, which is the persistence condition on the speed
c. Under this condition, the stationary state is a weighted Gaussian density centered on
−c, with variance σ, hereafter denoted by F (see Section 2.2). The shift by c relative to
the fitness optimum at x = 0 can be interpreted as a lag in the process of adaptating to
a moving environment. Indeed individuals try keeping pace of the gradual change, so that
they can never be optimal in average. This maladaptation can be measured by the shift c
which is associated with a load in the fitness of value c2/2.

Additionally, this model predicts that the population collapses when the speed of envi-
ronmental change is above a certain threshold c∗ = (2 − σ)1/2. Here, we consider that the
speed c is below c∗, as already mentioned above.
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Our purpose here is to provide more insight on this phenomenon by studying the trait
ancestry of the individuals at a given time T , i.e. the sequence of traits of their ancestors in
the past. We assume that, in the moving frame, the population dynamics are nearly station-
ary, starting from the equilibrium F . In particular, the solution f(t, x) of the deterministic
PDE (2) remains constant in time, equal to this equilibrium. Consequently, the stochastic
process will stay close to this equilibrium on finite time intervals in the regime of large
population. In the stationary regime the dynamics of the PDE is trivial but the dynamics
of the lineages are not, as can be seen on numerical simulations of the individual-based
models (cf. Fig. 1, both in the original variables, and in the moving frame).

(a) (b)

Figure 1: Ancestral lineages of the present population. To an individual of trait x living at time

T , its lineage corresponds to the function that associates with each time t < T the trait of this

individual if it was already born, or else the trait of its closest ancestor at that time (its parent if the

latter was born, otherwise its grand-parent etc.). The traits in the population (ordinate) are shown

with respect to time (abscissa). The extinct lineages are in gray, whereas the lineages of the living

particles are in black. As can be seen, the trait distribution is nearly stationary (gray background

on the right image), whereas the lineages follow an Ornstein-Uhlenbeck process (see our main result,

Theorem 1.1). (a): fixed frame. (b): moving frame. The parameters are c = 1, σ = 0.32, K = 250.

We observe the following pattern: a stabilized cloud of points representing the stationary
state and solid lines representing the lineages, highlighting the response to environment.
One observes that the individuals alive at the final observation time are all coming from
past individuals whose traits were far from being representative in the past distribution but
who were better fitted.

More precisely, we will describe the approximate dynamical lineage of a fixed individual
sampled uniformly in a large population at a time T > 0. We will show the following
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Theorem 1.1 stating that in backward time, these trajectories are asymptotically (when the
carrying capacity K tends to infinity), Ornstein-Uhlenbeck processes.

Theorem 1.1. In the moving framework, assuming the trait distribution of the population
stationary, the backward in time process describing the lineage of an individual sampled in
the living population at time T > 0 converges, when K → +∞, to the following time homo-
geneous Ornstein-Uhlenbeck process driving the ancestral trajectories around 0, according to
the equation

dŶs = −σŶsds+ σdWs, (3)

for a Brownian motion W .

This result is made more precise in Theorem 4.10. A similar conclusion was derived
for a similar model, independently of this work, by another approach in [33]. The latter
analysis remains on a macroscopic level and follows the tracking of neutral fractions in the
PDE, as initiated in [69].

It is an immediate observation that the Ornstein-Uhlenbeck process is independent of
the speed c. This is indeed due to our choice of scaling the speed of change c by the standard
deviation σ in (1) and (2). This is to say that the speed of change is measured relatively
to how many units of standard mutational deviation are shifted per time unit. With this
scaling, the lag load c2/2 is independent of the mutational variance rate σ2. In particular
it does not vanish as the mutational variance goes to zero.

Although we cannot handle the long time asymptotics with our methodology, we can
still notice that the stationary distribution of the backward Ornstein-Uhlenbeck process is
another Gaussian distribution centered at the origin, with variance σ/2. Hence, individuals
sampled at time T come from ancestors that were close to being optimal in the past, but
not representative in the distribution at that time (see also Fig. 1).
Notice that in the extreme case of a vanishing variance σ2 → 0, a simple long time scaling
s′ = σs in the SDE (3) makes it close to the deterministic ODE dŶs′ = −Ŷs′ds′. The
solution of the latter equation converges in long time to 0.
This study shows how important it is in ecology or agriculture to preserve the trait diversity,
as the subpopulation with the majority trait may not be the one ensuring the survival of
the species in case of environmental shift. In cancer therapy or for understanding antibi-
otic resistances, our results show that the eradication of such majority trait with gradual
effects of drugs or antibiotics may not be enough to fight against the persistence of tumors
or bacterial strains. We also refer to [39] for similar consideration in experimental evolution.

The proof of Theorem 1.1 is now sketched. Our approach mixes here two points of view
based on the stochastic individual-based model: on the one hand, the spinal approach as
developed for branching diffusion in [3, 41, 42, 60, 61] and on the other hand, the historical
processes, as introduced in Dawson and Perkins [21, 66, 67] and Dynkin [28], and then
developed in Méléard and Tran [62] (with a correction, see [50, 74]).
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The historical process taken at a time t describes the history of each individual in the
population stopped at time t. Since the individual death rate depends on the total size of
the population, the historical process cannot be reduced to an accumulation of independent
trajectories. Nevertheless, assuming that the initial condition converges to the stationary
solution of (2), an important step in our approach is to replace (up to a negligible error that
we can control) the nonlinearity in the stochastic population process (the total number of
individuals) by the mass of the stationary distribution. The birth-and-death process with
diffusion becomes a branching-diffusion process and computation becomes rather easier. By
coupling techniques, we can therefore capture the dynamics of the historical process using
reasoning proper to branching-diffusion processes and we can easily prove in this context
formulas based on the so-called many-to-one formulas describing the distribution of the
ancestry (in forward time) of a typical individual in the population living at time T , as
it is done in a general context in [61] with a more complicate proof (since more general).
Furthermore, the coupling also allows to justify the use of the well known spinal theory to
obtain the law of an individual chosen uniformly at random at time T .

The process that we obtain involves the expectation of the number m(t, x) of individuals
at time t issued from one individual with trait x. This quantity is obtained as expectation
of an additive functional of a drifted Brownian motion and can be explicitly computed
by tricky arguments based on Girsanov transform and inspired by [32]. Note that this
computation allows to obtain the explicit value of the solution of

∂tm(t, x) =
σ2

2
∂2
xxm(t, x)− σc∂xm(t, x) +

(
1− x2

2
− ‖F‖1

)
m(t, x) (4)

m0(x) = 1.

The many-to-one formula allows to characterize the forward lineage dynamics as obtained
from an auxiliary non-homogeneous Markov process. In this specific case, we obtain the
exact trajectory of the trait lineage and prove that they are Gaussian at any time. The
last step consists in using the results by Haussmann and Pardoux [43] on time reversed dif-
fusion processes. We prove that the time reversed paths are Ornstein-Uhlenbeck processes
attracted by 0 as stated by Theorem 1.1. This proves how the genealogical tree is strongly
unbalanced in our case, as observed in Fig. 1.

For alternative points of view, let us mention that there has been a large literature
related to our work. First, there has been a considerable amount of studies dealing with
simple models of waves advancing a fitness landscape in an asexual reproducing population,
starting from the seminal papers [75, 49], see also [70] for a similar model with a nonlinear
diffusion operator. In these models, the trait is the fitness itself (i.e. the growth rate per
capita) centered by its average on the population, so that new mutants can outcompete
the resident population if their fitness is higher than the mean. We also refer to analogous
studies in the absence of deleterious mutations, by [23] (including experimental evidence
supporting the theory), [4] in the context of oncogenesis, and [64] for a review article.
Mathematical results in this direction were obtained in [27], then [71]. Several authors
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also investigated the structure of the genealogies in stochastic models, exhibiting coales-
cent structures. For coalescent processes in modelling genealogies for populations without
competition or interaction non-linearities, we refer to [8] for a review. For directed selec-
tion, when the population at latter stages is issued from individuals at the tip of the wave,
strongly asymmetric genealogical trees arise (see [12, 11, 24, 63, 72, 7]). In [55], the genealo-
gies in an adaptive dynamics time scale are described with a forward-backward coalescent.
For structured populations with competition, other approaches include the look-down pro-
cesses [25, 26, 30] or the tree-valued descriptions as in [5, 38, 51]. Let us emphasize that,
here, we focus on typical lineages rather than coalescent analysis. This is left for a future
work.
Finally, let us cite other mathematical contributions with spatial displacement and com-
petition local in space (contrary to (1) where it is global in trait) [56, 68, 6, 1]. However,
these studies focus on the ability of the species to keep pace of the climate change, i.e. the
conditions of persistence for the species, rather than on lineages dynamics.

In Section 2, we introduce and study the individual-based stochastic measure-valued
process underlying the PDE (2). The stationary solution of this PDE, which will play a
central role in what follows, is also carefully detailed. The stochastic processes associated
with (2) are non-linear because of the competition term. However, when we are close to the
equilibrium, a coupling with a linear birth-death process (with a time-varying growth rate)
is possible. This coupling holds for the trait distribution at a given time T but also for the
historical picture, i.e. for the ancestral paths of the individuals alive at T . This is explained
in Section 3. For the linear birth-death process, we can apply a Feynman-Kac formula. This,
together with fine stochastic calculus techniques, allows us to compute the exact solution
of (4). In Section 4, we use a many-to-one formula together with the expression of mt(x)
obtained previously and the coupling of historical processes to obtain the approximating
stochastic differential equation (SDE) satisfied by the ancestral path of an individual chosen
at random in the population at a given time T . This SDE is non-homogeneous in time but
its time-reverse SDE is a simple time-homogeneous Ornstein-Uhlenbeck process.

2 The partial differential equation and the population pro-
cess in the moving framework

2.1 The underlying measure-valued stochastic process

As explained in the introduction, we are interested in the dynamics of the population density
in the moving framework. We have seen that it is given by (2). This equation is well posed.
Existence of a weak solution will be obtained from the study of the underlying stochastic
process and uniqueness by use of the associate mild equation.

Let us introduce the stochastic process associated with Equation (2). On a probability
space (Ω,F ,P), we consider a random process (ZKt )t∈R+ with values in the set of point
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measures on R, and defined by

ZKt =
1

K

∑
i∈V Kt

δXi(t), (5)

where V K
t is the set of labels of individuals alive at time t and where Xi(t) denotes the

position of the i-th individual at time t. Individual labels can be chosen in the Ulam-Harris-
Neveu set I = ∪n∈NNn (e.g. see [35]) where offspring labels are obtained by concatenating
the label of their parent with their ranks among their siblings. Note that the size NK

t

of the population at time t satisfies NK
t = |V K

t | = K〈ZKt , 1〉, where the brackets are the
notation for the integral of the constant function equal to 1 with respect to the measure
ZKt (dx). More generally, for a finite measure µ and a positive measurable function ϕ,
〈µ, ϕ〉 =

∫
R ϕ(x)µ(dx) denotes the integral of ϕ with respect to µ.

In the sequel, we will denote by MF (R) the set of finite measures on R equipped with
the topology of weak convergence. The process ZK belongs to D(R+,MF (R)), the space of
left-limited and right-continuous processes with values in MF (R), that we equip with the
Skorokhod topology (see e.g. [9]).

When times vary, the process (ZKt )t∈R+ defines a Markov process whose transitions are
as follows. For an individual at position x in the population of N individuals, its birth
rate is 1 and its death rate is x2/2 + (N − 1)/K. Between the jumps, the positions Xi(t)
behave as a drifted Brownian motions σ Bt− c σ t started at their positions after the jump.
All individual births and deaths events and the diffusions between jumps are independent
but the interaction between individuals to survive is modeled at the individual level by the
additional death rate (N − 1)/K.

Following Champagnat-Méléard [17], we can construct the process ZK as the unique
solution of a stochastic differential equation driven by a Poisson point measure and Brownian
motions indexed by I. (see Appendix A.1). From this representation, and using stochastic
calculus for diffusions with jumps (e.g. [46]), we can derive the following moment estimates,
proved in Appendix B:

Lemma 2.1. We assume that the initial condition ZK0 satisfies for ε > 0 that:

sup
K∈N∗

E
(
〈ZK0 , 1〉2+ε

)
< +∞ and sup

K∈N∗
E
(
〈ZK0 , x4〉1+ε

)
< +∞. (6)

Then, for any T > 0, we have

sup
K∈N∗

E
(

sup
t∈[0,T ]

〈ZKt , 1〉2+ε
)
< +∞ and sup

K∈N∗
E
(

sup
t∈[0,T ]

〈ZKt , x2〉1+ε/2
)
< +∞. (7)

It is also standard to write the semi-martingale decomposition of the process (〈ZKt , ϕ〉)t∈R+
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for a function ϕ ∈ C2
b (R), under the assumption (6):

〈ZKt , ϕ〉 = 〈ZK0 , ϕ〉

+

∫ t

0

∫
R

{(
1− 1

2
x2 − 〈ZKs , 1〉

)
ϕ(x)− σcϕ′(x) +

σ2

2
ϕ′′(x)

}
ZKs (dx) ds+MK,ϕ

t , (8)

where the process MK,ϕ is a square integrable martingale with predictable quadratic vari-
ation process given by

〈MK,ϕ〉t =
1

K

∫ t

0

∫
R

{(
1 +

x2

2
+ 〈ZKs , 1〉

)
ϕ2(x) + σ2(ϕ′)2(x)

)}
ZKs (dx)ds. (9)

In the next section we will need a mild version of this equation. To do that, we introduce
the semigroup (Pt)t∈R+ of the process σBt − cσt and we define, for a fixed t > 0 and for
ϕ ∈ C2

b (R),
ψ(s, x) = Pt−sϕ(x). (10)

Using the trajectorial representation of ZKt (cf. Appendix A.1) and integrating these func-
tions, we show in Appendix A.3 that:

〈ZKt , ϕ〉 = 〈ZK0 , Ptϕ〉+

∫ t

0

∫
R

(
1− x2

2
− 〈ZKs , 1〉

)
Pt−sϕ(x) ZKs (dx) ds+MK,ϕ

t , (11)

where MK,ϕ
t is a square integrable martingale computed explicitly in Appendix A.3.

Theorem 2.2. Let us assume that the initial condition (ZK0 (dx))K satisfies (6) and that
(ZK0 (dx))K converges in probability (weakly as measures) to the deterministic finite measure
ξ0(dx). Let T > 0 be given. The sequence of processes (ZKt )t∈[0,T ] converges in probabil-
ity and in L2, in D([0, T ],MF (R)) to a deterministic continuous function (ξt, t ≤ T ) of
C([0, T ],MF (R)), satisfying for each t > 0 that 〈ξt, 1 + x2〉 < +∞ which is the unique
solution of the weak equation: ∀ϕ ∈ C2

b (R),

〈ξt, ϕ〉 = 〈ξ0, ϕ〉+
∫ t

0

∫
R

{(
1− 1

2
x2 − 〈ξs, 1〉

)
ϕ(x)− σcϕ′(x) +

σ2

2
ϕ′′(x)

}
ξs(dx) ds. (12)

More precisely:
lim
K→∞

E(sup
t≤T
|〈ZKt , ϕ〉 − 〈ξt, ϕ〉|2) = 0. (13)

Moreover, for any t > 0, the measure ξt is absolutely continuous with respect to Lebesgue
measure and its density f(t, x) is solution of (2) issued from ξ0.

Proof We break the proof into several steps.
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Step 1: Let us first prove the uniqueness of ξ solution of (12). For a test function
ψ ∈ C1,2

b (R+ × R) of s and x, we have by standard arguments that:

〈ξt, ψ(t, .)〉 = 〈ξ0, ψ(0, .)〉

+

∫ t

0

∫
R

{
∂sψ(s, x) +

(
1− 1

2
x2 − 〈ξs, 1〉

)
ψ(s, x)− σc∂xψ(s, x) +

σ2

2
∂2
xxψ(s, x)

}
ξs(dx) ds

Now, we define for a fixed t > 0, for ϕ ∈ C2
b (R), the C1,2

b (R) function ψt by

ψt(s, x) = Ex
(
ϕ(Yt−s) exp

(
−
∫ t−s

0

Y 2
u

2
du
))
,

where Y is the drifted Brownian motion dYt = σ(dBt − cdt). Then

∂s(ψ
t)(s, x) +

(
1− 1

2
x2 − 〈ξs, 1〉

)
ψt(s, x)− σc∂x(ψt)(s, x) +

σ2

2
∂2
xx(ψt)(s, x)

= (1− 〈ξs, 1〉)ψt(s, x), (14)

since Ex
(
ϕ(Yt−s)

)
is solution of the backward “heat” equation. Noting that ψt(t, x) = ϕ(x),

and coming back to (14) with this function, we obtain

〈ξt, ϕ〉 = 〈ξ0, ψ
t(0, .)〉+

∫ t

0

∫
R

(
1− 〈ξs, 1〉

)
ψt(s, x)ξs(dx) ds.

Notice that if ‖ϕ‖∞ ≤ 1, then ‖ψt(s, .)‖∞ ≤ 1. By a Gronwall argument we easily prove
(see for example Fournier and Méléard [34]) that two solutions in C([0, T ],MF (R)) of this
equation started with the same initial condition coincide.

Since the transition semi-group (Pt) of the process (Yt) is absolutely continuous with
respect to Lebesgue measure for any t > 0, we also deduce by using Fubini’s theorem that
the same property holds for ξt. Then we write

ξt(dx) = f(t, x)dx

and the function f is the unique weak solution of (2) issued from ξ0.

Step 2: The proof of the convergence is obtained by a compactness-identification-uniqueness
argument and the tightness is deduced from the uniform moments obtained in Lemma 2.1.
It is postponed in Appendix.

Step 3: Since the sequence of processes is proved to converge in law in D([0, T ],MF (R))
to a deterministic function, it also converges in probability. The limit is continuous in time
and thus the convergence is also a uniform convergence (see [9, p. 124]). Then we have
proved that for any T > 0, for any continuous and bounded function ϕ, for any ε > 0,

lim
K→∞

P(sup
t≤T
|〈ZKt , ϕ〉 − 〈ξt, ϕ〉| > ε) = 0.

Moreover, uniform moment estimates yield uniform integrability and then we also have (13).
�
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2.2 A unique positive stationary distribution

For Equation (2), computation is simple and the existence and explicit value of a stationary
state are easy to obtain. Uniqueness is more delicate. In the next sections, we will be
interested in considering as initial condition ξ0 the stationary state of Equation (2).

Proposition 2.3. There exists a unique non zero positive stationary distribution of (2) if
and only if

c2

2
+
σ

2
< 1. (15)

In this case, the equilibrium is given by

F (x) =
λ√
2πσ

exp

(
−(x+ c)2

2σ

)
, (16)

with

‖F‖1 = λ = 1− c2

2
− σ

2
. (17)

Let us note that under Condition (15), the population will persist in long time and its
long time density admits a mode in −c. This value differs from the optimal trait 0, which
can be interpreted as a lag in the adaptation to environmental change. See Fig. 2. Indeed,
in long time, the solution u of (1) behaves as F (x− cσt) optimal at −c+ cσt.

−4 −2 0 2 4

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

De
nsi

ty o
f F

Figure 2: Density of the stationary solution F of (2). The mode of this density is −c = −1 here,

and the variance of F is σ = 0.32, so that λ = 0.34.

Proof The announced proposition can be obtained from general results in the literature,
as the ones of Cloez and Gabriel [19]. We give here a simple proof. Deriving twice the

11



function F defined in (16) and replacing in (2) proves that

σ2

2
F ′′ + cσF ′ +

(
1− 1

2
x2 −

∫
R
F (y)dy

)
F = 0, (18)

if and only if λ = 1− c2

2 −
σ
2 . Then under this condition, F is a stationary state.

Let us define the operator A on C2
b (R) by

Aφ = −σ
2

2
φ′′ − cσφ′ + 1

2
x2 φ,

for φ ∈ C2
b (R,R). Then F is solution of AF = αF , with α = 1−

∫
F . Let us also notice that

if F̃ is defined as F but replacing in (16) c by −c, then A∗F̃ = αF̃ . Let us now consider
(µ, ϕ) a solution of Aϕ = µϕ for a positive function ϕ satisfying ‖ϕ‖1 = λ. Then we have∫

AϕF̃ −
∫
A∗F̃ϕ = 0 =

∫
(α− µ)ϕF̃ ,

with positive functions ϕ, F̃ and then µ = α.
Let us now prove that ϕ = F . Straightforward computation with ψ =

√
F ϕ yields

Aψ − αψ = −σ
2

8

(ϕ′F − ϕF ′)2

ψ3
≤ 0.

Further, we note that ∫
AψF̃ =

∫
ψA∗F̃ = α

∫
ψF̃ .

Then , if D = −σ2

8
(ϕ′F−ϕF ′)2

ψ3 , then
∫
DF̃ = 0, with DF̃ ≤ 0 and we deduce that D = 0

(since D is continuous). Then we obtain ϕ′F = ϕF ′ and finally that (
√

ϕ
F )′ = 0, which

implies that ϕ and F are proportional. Since they are both positive with the same L1 norm,
they are equal.

�

The next corollary is then an obvious consequence of (13).

Corollary 2.4. Let us assume that the initial measures ZK0 converge weakly to F (x)dx
when K tends to infinity, then for any continuous and bounded function ϕ

lim
K→∞

E(sup
t≤T
|〈ZKt , ϕ〉 − 〈F,ϕ〉|2) = 0. (19)

3 Feynman-Kac approach for an auxiliary branching-diffusion
process

3.1 Coupling of the process ZK with a branching-diffusion process

Let us assume in all what follows that the initial measures ZK0 weakly converge to F (x)dx
when K tends to infinity as in the Assumption of Corollary 2.4.

12



As explained in introduction, we are interested in capturing the genealogies of our particle
system. Recall that the ancestral lineage or past history of an individual living at time
T consists in the succession of ancestral traits: it is obtained by the concatenation of the
(diffusive) paths of this individual with the path of their parent before their birth, then with
the path of their grand-parent before the birth of their parent etc. To sum up, the lineage
of an individual alive at time T is the path that associates with each time t ≤ T the trait
of its most recent ancestor at this time. Because of the interactions between individuals,
the shape of the lineages of living individuals reflects the competition terms in the past,
with lineages that might be extinct. Thus, obtaining an equation describing the ancestry
of a “typical individual” chosen at random in the population at T is difficult to obtain. See
for example the developments of Perkins [66] but with assumptions that exclude logistic
competition or see the attempts in [62]. Corollary 2.4 suggests us to replace the interaction
logistic term 〈ZKt , 1〉 by the constant ‖F‖1 =

∫
F (x)dx. The new process is a much more

tractable branching particle system.

Therefore we couple ZK with an auxiliary measure-valued process (Z̃Kt )t≥0, started from
the same initial condition ZK0 and with the same transitions, except that the logistic term
is frozen at λ = ‖F‖1 (see Appendix A.1).

For the auxiliary process, (8) becomes, for any ϕ ∈ C2
b (R),

〈Z̃Kt , ϕ〉 = 〈ZK0 , ϕ〉+
∫ t

0

∫
R

{(
1− 1

2
x2 − λ

)
ϕ(x)− cσϕ′(x) +

σ2

2
ϕ′′(x)

}
Z̃Ks (dx) ds+M̃K,ϕ

t ,

(20)

where M̃K,ϕ is a square integrable martingale with predictable quadratic variation

〈M̃K,ϕ〉t =
1

K

∫ t

0

∫
R

{(
1 +

x2

2
+ λ)ϕ2(x) + σ2(ϕ′)2(x)

)}
Z̃Ks (dx)ds. (21)

Let us remark that with the same arguments as in Theorem 2.2, we can prove that for
any T > 0, the measure-valued process Z̃K converges in D([0, T ],MF (R)) uniformly and
in probability to the unique weak solution (ξ̃t, t ≥ 0) of

∂tξ̃(t, x) =
σ2

2
∆ξ̃(t, x) + cσ∂xξ̃(t, x) +

(
1− 1

2
x2 − λ

)
ξ̃(t, x). (22)

starting from the initial data ξ̃(0, x) = F (x). By an analogous argument as previously,
the measure ξ̃t has a density for any t > 0 whose uniqueness is classical. Further F is
also its unique positive stationary distribution (with given norm). We also have a similar
convergence as in (19): for any continuous and bounded function ϕ,

lim
K→∞

E(sup
t≤T
|〈Z̃Kt , ϕ〉 − 〈F,ϕ〉|2) = 0. (23)

As an immediate corollary, we can couple the process ZK and the branching-diffusion
process Z̃K , using that |〈Z̃Kt , ϕ〉 − 〈ZKt , ϕ〉| ≤ |〈Z̃Kt , ϕ〉 − 〈F,ϕ〉|+ |〈ZKt , ϕ〉 − 〈F,ϕ〉|.

13



Proposition 3.1. Assume that the initial conditions (ZK0 )K satisfy (6) and that ZK0
w−−−−→

K→∞
F . Then for any continuous and bounded function ϕ,

lim
K→+∞

E(sup
t≤T
|〈ZKt , ϕ〉 − 〈Z̃Kt , ϕ〉|2) = 0.

We can now work with the process (Z̃Kt )t≥0. The main improvement with this process
is that the nonlinearity has been tackled. Therefore the process satisfies the branching
property and we are authorized to use some classical tools for these processes.

3.2 Coupling of the historical processes

Until now, we described the evolving distributions of the trait, but the individual dimension
is lost when the population becomes large. In the sequel, we will also investigate the large
population dynamics of the historical processes, which at a time t describes the trait an-
cestry of individuals alive at that time. Recall the definition of the lineage of an individual
given in Section 2.1. For an individual i ∈ V K

T , let us define their lineage Xi. In (5), the
labels are taken in the Ulam-Harris-Neveu set I and we can define by � the usual partial
order on I: j � i means that j ∈ I is the ancestor of i ∈ I i.e. that there exists k ∈ I such
that i = (j, k), the concatenation of the labels j and k. If the individual i ∈ V K

T was living
at time t, then Xi(t) still denotes the position of i at t. But if the individual i was not born
at time t, then, Xi(t) = Xj(t) where j ≺ i is the most recent ancestor of i living at t.
Since an offspring inherits their parent’s trait at birth, and since the trait evolves con-
tinuously according to a diffusion during an individual’s life, such lineage is a continuous
function on R. The path is extended after time t by the trait value at time t, so that this
continuous function can be defined from R to R (and not from [0, t] to R).

Here, we will adopt the approach developed in Dawson and Perkins [21] or Méléard and
Tran [62]. Let us define the historical process HK as the following càdlàg process with
values in MF (C(R+,R)):

HK
t =

1

K

∑
i∈V Kt

δXi
.∧t
, (24)

where (Xi
s∧t, s ∈ R+) is the lineage of the individual i ∈ V K

t . To investigate the asymptotic
behavior of this process, we introduce (as in Dawson [22] or Etheridge [29]) the class of test
functions on paths of the form: ∀y ∈ C(R+,R),

ϕ(y) =

m∏
j=1

gj(ytj ), (25)

for m ∈ N∗, 0 = t0 ≤ t1 < · · · < tm and ∀j ∈ {1, · · · ,m}, gj ∈ C2
b (R,R). As proved in [22],

this class is convergence determining.
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If y is a continuous path stopped at time t (as the trajectories chosen according HK
t (dy)),

then

ϕ(y) =

m∏
j=1

gj(ytj∧t) =

m−1∑
k=0

1l[tk,tk+1)(t)
( k∏
j=1

gj(ytj )

m∏
j=k+1

gj(yt)
)
.

and, we introduce:

D̃ϕ(t, y) =

m−1∑
k=0

1l[tk,tk+1)(t)
( k∏
j=1

gj(ytj )
( m∏
j=k+1

gj
)′

(yt)
)

(26)

and

∆̃ϕ(t, y) =
m−1∑
k=0

1l[tk,tk+1)(t)
( k∏
j=1

gj(ytj )∆
( m∏
j=k+1

gj
)
(yt)

)
(27)

With this notation, the next lemma is obtained by a direct adaptation of the results in [17]
and can be founded in Appendix:

Lemma 3.2. Assume that

sup
K∈N∗

E(〈HK
0 , 1〉2+ε + 〈HK

0 (dy), y2
0〉1+ε) = sup

K∈N∗
E(〈ZK0 , 1〉2+ε + 〈ZK0 , x2〉1+ε) < +∞.

For ϕ defined in (25),

〈HK
t , ϕ〉 =〈HK

0 , ϕ〉+

∫ t

0

∫
C(R+,R)

(σ2

2
∆̃ϕ(s, y)− σcD̃ϕ(s, y)

+
(
1− y2

s

2
− 〈HK

s , 1〉
)
ϕ(y)

)
HK
s (dy) ds+MK,ϕ

t , (28)

where MK,ϕ
t is a square integrable martingale with predictable quadratic variation process:

〈MK,ϕ〉t =
1

K

∫ t

0

∫
C(R+,R)

((
1 +

y2
s

2
+ 〈HK

s , 1〉
)
ϕ2(s, y)+σ2(D̃ϕ(s, y))2

)
HK
s (dy) ds. (29)

We extend here the mild formula (11). For t > 0 fixed, for m ∈ N∗, 0 ≤ t1 < · · · < tm
and ∀j ∈ {1, · · · ,m}, gj ∈ C2

b (R,R), we define for 0 ≤ s < t and y ∈ C(R+,R) a generalized
version of the semigroup as

ψt(s, y) =

m−1∑
k=0

1l[tk,tk+1)(s)
( k∏
j=1

gj(ytj )S
tk+1∧t

( m∏
j=k+1

gj
)
(s, ys)

)
, (30)

where St(g)(s, x) = Ex
(
g(Ỹt−s) exp(−

∫ t−s
0

Ỹ 2
u
2 du)

)
and Ỹt = x + σ(Bt − ct). Note that

ψt(t, y) = ϕ(y) and that

−y
2
s

2
ψt(s, y) + ∂sψ

t(s, y) +
σ2

2
∆̃yψ

t(s, y)− σcD̃yψ
t(s, y) = 0.

The next lemma follows from this property and from Appendix A.2 (see (77) and (78)).
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Lemma 3.3. Under the same assumptions as in Lemma 3.2,

〈HK
t , ϕ〉 = 〈HK

0 (dy), ψt(0, y)〉+

∫ t

0

∫
C(R+,R)

(
1− 〈HK

s , 1〉
)
ψt(s, y)HK

s (dy) ds+ RKt,t (31)

where for RKu,t is defined for u ≤ t by:

RKu,t =
1

K

∫ u

0

∑
i∈V Ks

σ∂xψ
t(s,Xi

(.∧s))dB
i
s +

1

K

∫ u

0

∫
I

∫
R+

1l{i∈V Ks−}

[
ψt(s,Xi

(.∧s))1l{θ≤1}

− ψt(s,Xi
(.∧s))1l{1<θ≤1+

(Xis)
2

2
+〈HK

s−,1〉}

]
Ñ(ds, di, dθ). (32)

For any T > 0, there exists a positive constant CT such that for all 0 ≤ s ≤ t ≤ T

E
(

sup
u≤t

(RKu,t)
2
)
<
CT
K
. (33)

Note that the process t 7→ RKt,t is not a local martingale, as seen in the proof.

Proof Using Lemma 2.1 and noticing that 〈HK
s , 1〉 = 〈ZKs , 1〉 and 〈HK

s , y
2
s〉 = 〈ZKs , x2〉,

we have for any T > 0 that

sup
K≥1

E
(

sup
t∈[0,T ]

〈HK
t , 1〉2+ε + 〈HK

t (dy), y2
t 〉1+ε

)
< +∞. (34)

Using (77) in appendix, we can write (31)-(32). The process t 7→ RKt,t is not a martingale,

but the process u 7→ RKu,t, defined for u ≤ t, is a martingale. Then we can apply Doob’s
inequality and write

E
(

sup
u≤t

(RKu,t)
2
)

≤ 1

K
E
( ∫ t

0

∫
C(R+,R)

((
1 +

y2
s

2
+ 〈HK

s , 1〉
)
(ψt)2(s, y) + σ2(∂xψ

t(s, y))2

)
HK
s (dy) ds

)
.

The function ϕ defining ψt being bounded, we can conclude with (34). �

As in the previous section, we can freeze the nonlinearity in the competition term to λ
and couple the historical process HK with the historical process H̃K associated with the
process Z̃K (this coupling can be done using the same Poisson point measures, Brownian
motions and initial condition as ZK and Z̃K , see Appendix A.2).

Proposition 3.4. Assume that (6) hold and that ZK0
w−−−−→

K→∞
F . Then for any continuous

and bounded function ϕ of the form (25),

lim
K→+∞

E(sup
t≤T
|〈HK

t , ϕ〉 − 〈H̃K
t , ϕ〉|2) = 0.
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Proof Using Appendix A.2, we have for H̃K a similar decomposition as (31) with 〈HK
t , 1〉

replaced by λ. We now use the mild equation (31) for HK and the analogous equation for
H̃K , involving a term R̃Kt,t similar to (32) but with again 〈HK

t , 1〉 replaced by λ. Recall that
both processes are built on the same probability space with the same initial condition. For
M > 0, let us introduce the stopping times:

τKM = inf
{
t ∈ R+, 〈HK

t , 1〉 = 〈ZKt , 1〉 > M
}
,

and τ̃KM = inf
{
t ∈ R+, 〈H̃K

t , 1〉 = 〈Z̃Kt , 1〉 > M
}
. (35)

Let ε > 0 be fixed. Because the processes (〈ZKt , 1〉)t∈R+ and (〈Z̃Kt , 1〉)t∈R+ converge to
deterministic continuous and bounded processes, there exists M = M(ε), independent from
K, such that

P(τKM ∧ τ̃KM ≤ T ) < ε.

Then, using (31) for a bounded cylindrical test-function ψt as in (25):

∣∣〈HK
t∧τKM∧τ̃

K
M
, ϕ〉 − 〈H̃K

t∧τKM∧τ̃
K
M
, ϕ〉
∣∣

≤
∣∣∣ ∫ t∧τKM∧τ̃

K
M

0

∫
C(R+,R)

(
1− 〈HK

s , 1〉
)
ψt(s, y) HK

s (dy) ds

−
∫ t∧τKM∧τ̃

K
M

0

∫
C(R+,R)

(
1− λ

)
ψt(s, y)H̃K

s (dy) ds
∣∣∣+
∣∣RK

t∧τKM∧τ̃
K
M ,t

∣∣+
∣∣R̃K

t∧τKM∧τ̃
K
M ,t

∣∣
≤|1− λ|

∫ t

0
sup

u≤s∧τKM∧τ̃
K
M

∣∣〈HK
u (dy)− H̃K

u (dy), ψt(u, y)〉
∣∣ ds

+

∫ t∧τKM∧τ̃
K
M

0

∣∣〈ZKs , 1〉 − λ∣∣× ∣∣〈HK
s (dy), ψt(s, y)〉

∣∣ ds+ sup
s≤t

∣∣RK
s∧τKM∧τ̃

K
M ,t

∣∣+ sup
s≤t

∣∣R̃K
s∧τKM∧τ̃

K
M ,t

∣∣
≤|1− λ|‖ϕ‖∞

∫ t

0
sup
u≤s
‖HK

u∧τKM∧τ̃
K
M
− H̃K

u∧τKM∧τ̃
K
M
‖TV ds

+ T‖ϕ‖∞M sup
s≤T

∣∣〈ZKs , 1〉 − λ∣∣+ sup
s≤t

∣∣RK
s∧τKM∧τ̃

K
M ,t

∣∣+ sup
s≤t

∣∣R̃K
s∧τKM∧τ̃

K
M ,t

∣∣,
where ‖.‖TV denotes the norm in total variation. Taking the supremum with respect to
ϕ of the form (25) and with norm ‖ϕ‖∞ ≤ 1 in the left hand side, and then taking the
expectation, we have by (33):

E
(

sup
s≤t
‖HK

s∧τKM∧τ̃
K
M
− H̃K

s∧τKM∧τ̃
K
M
‖TV

)
≤ |1− λ|

∫ t

0
E
(

sup
u≤s
‖HK

u∧τKM∧τ̃
K
M
− H̃K

u∧τKM∧τ̃
K
M
‖TV

)
ds

+ TM E
(

sup
s≤T

∣∣〈ZKs , 1〉 − λ∣∣)+ 2

√
CT
K
.
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Using Gronwall’s lemma:

E
(

sup
s≤t
‖HK

s∧τKM∧τ̃
K
M
− H̃K

s∧τKM∧τ̃
K
M
‖TV

)
≤
(
TM E

(
sup
s≤T

∣∣〈ZKs , 1〉 − λ∣∣)+ 2

√
CT
K

)
e|1−λ|T .

Then, note that

E
(

sup
t≤T
‖HK

t − H̃K
t ‖TV

)
≤ E

(
sup
t≤T
‖HK

t∧τKM∧τ̃
K
M
− H̃K

t∧τKM∧τ̃
K
M
‖TV

)
+
√
P(τKM ∧ τ̃KM ≤ T )

√
2E
(

sup
t≤T
〈ZKt , 1〉2 + 〈Z̃Kt , 1〉2

)
≤
(
TM E

(
sup
t≤T

∣∣〈ZKt , 1〉 − λ∣∣)+ 2

√
CT
K

)
e|1−λ|T +

√
ε
√

2 sup
K≥1

E
(

sup
t≤T
〈ZKt , 1〉2 + 〈Z̃Kt , 1〉2

)
,

(36)

for M > Mε. Then, choosing K sufficiently large, the first term in the right hand side is
upper bounded by a constant times ε, by (23). This, with (7), concludes the proof. �

3.3 Feynman-Kac approach for the law of the branching-diffusion process

As the process (Z̃Kt , t ≤ T ) is a branching process without interaction, the genealogies
started from the initial individuals evolve independently from each other, with the same
law. It follows that

E
[
〈Z̃Kt , ϕ〉

]
=

∫
R
Eδx

[
〈Z̃t, ϕ〉

]
ZK0 (dx).

where Z̃ is a branching process satisfying Equation (20) started from Z̃0 = δx. For the
reasons mentioned above, we consider from this point a particle system starting from a
single particle with trait x.

The formulas/theory used below come from [53, 59] further developed for instance in [3, 18,
41, 61]. Here we give original and simpler proofs.

Lemma 3.5. Let ϕ in Cb(R). Then, for any positive time t, for any x ∈ R, we have

Eδx
[
〈Z̃t, ϕ〉

]
= Ex

[
exp

(∫ t

0

(
1− 1

2
X2
s − λ

)
ds

)
ϕ(Xt)

]
, (37)

where X is the drifted Brownian motion

dXt = σ(dBt − c dt). (38)

Proof Let us give a very simple proof based on Itô’s formula.

Let us first note that the measure νt(dy) = Eδx
(
Z̃t(dy)

)
defined for any ϕ in Cb(R) by
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〈νt, ϕ〉 = Eδx
[
〈Z̃t, ϕ〉

]
is the unique weak solution of{

∂tνt = ∆νt + σc∂xνt + (1− x2

2 − λ)νt

ν0 = δx
. (39)

Indeed, it is enough to take expectation in (20). Uniqueness of such a solution has been
proved in Theorem 2.2.

Let us now show that the right hand side term of (37) also satisfies (39). Uniqueness will
yield the result.

Let ϕ in C2
b (R) and apply Itô’s formula to the semimartingale

exp

(∫ t

0

(
1− 1

2
X2
s − λ

)
ds

)
ϕ(Xt).

We have

exp

(∫ t

0

(
1− 1

2
X2
s − λ

)
ds

)
ϕ(Xt) = ϕ(X0)+

∫ t

0
exp

(∫ s

0

(
1− 1

2
X2
u − λ

)
du

)
σϕ′(Xs)dBs

+

∫ t

0
exp

(∫ s

0

(
1− 1

2
X2
u − λ

)
du

) {(
1− 1

2
X2
s − λ

)
ϕ(Xs)+

σ2

2
ϕ′′(Xs)−cσ ϕ′(Xs)

}
ds.

Taking the expectation, we obtain that

Ex
[
exp

(∫ t

0

(
1− 1

2
X2
s − λ

)
ds

)
ϕ(Xt)

]
= ϕ(x)+Ex

[ ∫ t

0
exp

(∫ s

0

(
1− 1

2
X2
u − λ

)
du

)
×
{(

1− 1

2
X2
s − λ

)
ϕ(Xs) +

σ2

2
ϕ′′(Xs)− cσ ϕ′(Xs)

}
ds

]
. (40)

If we define the measure µt for any test function ϕ ∈ C2
b (R) by

〈µt, ϕ〉 = Ex
[
exp

(∫ t

0

(
1− 1

2
X2
s − λ

)
ds

)
ϕ(Xt)

]
,

we obtain from (40) that

〈µt, ϕ〉 = 〈δx, ϕ〉+

∫ t

0

〈
µs, (1−

x2

2
− λ)ϕ(x) +

σ2

2
ϕ′′(x)− cσ ϕ′(x)

〉
ds.

This proves that the flow (µt, t ≥ 0) is a weak solution of (39) and the conclusion follows
by uniqueness. �
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Corollary 3.6. Let us define for any t ≥ 0 and x ∈ R the expectation of the number of
individuals at time t in the branching process Z̃t started from one individual wih trait x,

mt(x) = Eδx(〈Z̃t, 1〉). (41)

Then we have

mt(x) = Ex
[
exp

(∫ t

0

(
1− 1

2
X2
s − λ

)
ds

)]
. (42)

We deduce that the function (t, x) 7→ mt(x) belongs to C1,∞
b ([0, T ]× R).

Proof Equation (42) is obvious by applying Lemma 3.5 to ϕ = 1.
Since the process X is a drifted Brownian motion, we can write

mt(x) = E0

[
exp

(∫ t

0

(
1− 1

2
(x+Xs)

2 − λ
)
ds

)]
.

Lebesgue’s Theorem allows us to conclude. �

Remark: From (42) and Feynman-Kac formula (see [31, 47, 48]), we deduce that the
function (mt(x), x ∈ R, t ≥ 0) is the unique strong solution of{

∂tm = σ2

2 ∂xxm− σc∂xm+ (1− x2

2 − λ)m

m0(x) = 1.
(43)

Let us also note that (43) and the stationarity of F (see Eq. (18)) imply that t →∫
mt(x)F (x)dx is constant and then∫

R
mt(x)F (x)dx =

∫
R
F (x)dx = λ. (44)

Our aim is now to generalize (37) to trajectories. In what follows, for a time T , we label
individuals by i ∈ ṼT where ṼT denotes the set of individuals alive at time T and started
from one individual with trait x at time 0. For a time t < T , we will introduce the notation
X̃i(t) to denote the historical lineage of the individual i ∈ ṼT at time t.

Lemma 3.7. Let ϕ in Cb(R). Then, for any positive times t and T such that t ≤ T , for
any x ∈ R, we have

Eδx

∑
i∈ṼT

ϕ(X̃i
t)

 = Ex
[
exp

(∫ T

0

(
1− 1

2
X2
s − λ

)
ds

)
ϕ(Xt)

]
, (45)

where X is the drifted Brownian defined in Lemma 3.5.
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Proof The case where t = T results from Lemma 3.5. To obtain formula (45) from (37)
when t < T , one can proceed as follows. For every individual i alive at time T , and for
every t ≤ T , there exists a unique j ∈ I such that (j, t) belongs to the ancestral path of i.
Thus, we have ∑

i∈ṼT

ϕ(X̃i
t) =

∑
i∈ṼT

∑
j∈Ṽt

1l(j,t)�(i,T )ϕ(X̃j
t ),

where X̃i
t = X̃j

t since (j, t) � (i, T ). Thus,∑
i∈ṼT

∑
j∈Ṽt

1lj�iϕ(X̃i
t) =

∑
j∈Ṽt

ϕ(X̃j
t )
∑
i∈ṼT

1lj�i =
∑
j∈Ṽt

ϕ(X̃j
t )Ñ(j)t,T ,

where Ñ(j)t,T denotes the number of descendents at time T of an individual j alive at time

t (with the convention that Ñ(j)t,T = 0 if j /∈ Ṽt, i.e. if j does not exist at time t). Thus,

denoting by (Ft, t ∈ R+) the natural filtration associated with Z̃, we have that

E

∑
i∈ṼT

ϕ(X̃i
t)

∣∣∣∣∣Ft
 =

∑
j∈Ṽt

ϕ(X̃j
t )E

[
Ñ(j)t,T

∣∣∣∣Ft] =
∑
j∈Ṽt

ϕ(X̃j
t )mT−t(X̃

j
t )

= 〈Z̃t, ϕmT−t〉, (46)

where mt has been defined in Corollary 3.6.

We now apply Lemma 3.5 to (46) for the function x 7→ ϕ(x)mT−t(x). That gives

Eδx
[
〈Z̃t, ϕmT−t〉

]
= Ex

[
exp

(∫ t

0

(
1− 1

2
X2
s − λ

)
ds

)
ϕ(Xt)mT−t(Xt)

]
.

Then, from the expression of mt given in (42) and one obtains by the Markov property that

Eδx
[
〈Z̃t, ϕmT−t〉

]
= Ex

[
exp

(∫ T

0

(
1− 1

2
X2
s − λ

)
ds

)
ϕ(Xt)

]
.

That concludes the proof. �

We are now interested in trajectorial extension of the previous formulae.

Proposition 3.8. Let ϕ in Cb(Rn,R). Then, for any positive times t1 < t2 < . . . < tn < T ,
for any x ∈ R, we have

Eδx

∑
i∈ṼT

ϕ(X̃i
t1 , . . . , X̃

i
tn)

 = Ex
[
exp

(∫ T

0

(
1− 1

2
X2
s − λ

)
ds

)
ϕ(Xt1 , . . . , Xtn)

]
, (47)

where X is the drifted Brownian defined in Lemma 3.5.
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Proof By usual arguments, it is enough to prove the result for product functions

ϕ(x1, · · · , xn) =

n∏
i=1

ϕi(xi).

The proof of this result follows the same lines as the proof of Lemma 3.7 conditionning first
by Ft1 , and then by Ft2 and so on. We leave the remaining of the proof to the reader. �

Let us recall that H̃ is the historical process associated with Z̃.

Lemma 3.9. We have that for T > 0, Φ : C([0, T ],R) → R a continuous and bounded
function and x ∈ R:

Eδx
[
〈H̃T ,Φ〉

]
= Eδx

∑
i∈ṼT

Φ(X̃i
s, s ≤ T )


= Ex

[
exp

(∫ T

0

(
1− 1

2
X2
s − λ

)
ds

)
Φ(Xs, s ≤ T )

]
, (48)

where X is the drifted Brownian motion defined in Lemma 3.5.

Proof Let us consider the linear interpolation In : Rn → C([0, T ]) such that, for all
j ∈ {0, . . . , n− 1}, for all t ∈ [jT/n, (j + 1)T/n) and (u1, . . . un) ∈ Rn+1,

In(u0, . . . , un)(t) = (uj+1 − uj)
n

T

(
t− j

n
T
)

+ uj .

Thus, we have for x ∈ C([0, T ],R),

∥∥In(x(0), . . . , x(jT/n), . . . , x(T )
)
− x
∥∥
∞ ≤ 2

n∑
j=0

1lt∈[jT/n,(j+1)T/n)ω(x, T/n) = 2ω(x, T/n),

where ω(x, .) is the modulus of continuity of x. Thus, the functions In(x(0), . . . , x(jT/n), . . . , x(T ))
converge uniformly on [0, T ] to x, as n tends to infinity. The result then follows from
Lebesgue’s theorem, Lemma 3.8 and the continuity of x. �

3.4 Computation of mt(x)

In this Brownian framework, one can explicitely compute mt(x) from (42) by a method
adapted from Fitzsimmons Pitman and Yor [32].

Proposition 3.10. For any x ∈ R and t ∈ [0, T ], we have

mt(x) =
√

1 + tanh(σt) exp

(
−
(
x+ e−σtc

)2
2σ

(1 + tanh(σt)) +
(x+ c)2

2σ

)
. (49)
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Proof Recall that Xt = σBt−cσt (see (38)). By notational simplicity we assume that the
Brownian motion B starts from x, then X0 = σx and we will compute mt(σx). Equation
(42) gives

mt(σx) = Eδσx
[
〈Z̃t, 1〉

]
= Ex

[
exp

(∫ t

0

(
1− σ2

2
(Bs − cs)2 − λ

)
ds

)]

= e(1−λ)tEx
[
exp

(
−σ

2

2

∫ t

0
(Bs − cs)2ds

)]
=: e(1−λ)tI. (50)

Let us compute explicitly I, the expectation appearing in the right hand side of (50). Recall
that our probability space is endowed with the probability measure P. Let (FBt )t≥0 be the
filtration of the Brownian motion B and define the new probability Q by

dQ
dP
| FBt = exp(cBt −

c2

2
t− cx)

using Girsanov theorem to kill the drift. Under Q, Wt = Bt − ct is a Brownian motion.
Hence,

I =EQ
x

[
exp

(
−σ

2

2

∫ t

0
(Bs − cs)2ds

)
exp(−cBt +

c2

2
t+ cx)

]
=EQ

x

[
exp

(
−σ

2

2

∫ t

0
W 2
s ds

)
exp(−cWt −

c2

2
t+ cx)

]
=ecx−

c2

2
tEQ
x

[
exp

(
−σ

2

2

∫ t

0
W 2
s ds− cWt

)]
. (51)

Now, we want to compute the expectation in this last term. We use that Mt = σ
2 (W 2

t −
t)− σx2

2 = σ
∫ t

0 Ws dWs is a martingale with

〈M〉t = σ2

∫ t

0
W 2
s ds.

Let (FWt )t≥0 be the filtration of W and set:

dQ′

dQ
| FWt = exp

(
1

2
σW 2

t −
1

2
σt− σ2

2

∫ t

0
W 2
s ds

)
e−

σx2

2 .

We have

EQ
x

[
exp

(
−σ

2

2

∫ t

0
W 2
s ds− cWt

)]
= EQ′

x

[
exp

(
−1

2
σW 2

t − cWt

)]
e
σx2

2
+σt

2 . (52)

On the other hand, we have that under Q′,

W ′t = Wt − σ
∫ t

0
Ws ds
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is a Q′-Brownian motion, and

Wt = σ

∫ t

0
Ws ds+W ′t

is an Ornstein-Uhlenbeck process. Hence, for a given t ≥ 0, Wt under Q′ is distributed as

N
(
eσtx,

1

2σ
(e2σt − 1)

)
.

This allows us to compute (52). For Y a standard Gaussian random variable N (0, 1),

Ψ(u, v) := E
[
euY

2+vY
]

=
exp

(
v2

2(1−2u)

)
√

1− 2u
,

when u < 1
2 . For Y any N (m, δ2) random variable,

E
[
eaY

2+bY
]

= e(bm+m2a)Ψ(aδ2, δ(2am+ b)),

when aδ2 < 1/2.

Here we have m = eσtx, δ2 = (e2σt − 1)/(2σ), a = −σ/2 and b = −c. Thus,{
aδ2 = −1

4

(
e2σt − 1

)
δ(2am+ b) =

√
(e2σt−1)

2σ

(
−σxeσt − c

)
,

and applying the above computation yields for the expectation in the r.h.s. of (52):

EQ′
x

[
exp

(
−1

2
σW 2

t − cWt

)]
=e(−cxeσt−σ

2
x2e2σt) 1√

1
2 + 1

2e
2σt

exp

(
(e2σt−1)

2σ

(
σxeσt + c

)2
1 + e2σt

)

=

√
2

1 + e2σt
e−

1
2σ

(
σxeσt+c

)2
e
c2

2σ exp

(
(σxeσt + c)2

2σ
tanh(σt)

)
=

√
2

1 + e2σt
e
c2

2σ exp

(
−(σxeσt + c)2

2σ

(
1− tanh(σt)

))
(53)

where the second line has been obtained by using that

exp
(
− 1

2σ
(σ2x2e2σt + 2cxσeσt + c2 − c2)

)
= exp

(
− 1

2σ
((σxeσt + c)2 − c2)

)
,

and that

e2σt − 1

e2σt + 1
= tanh(σt).
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Gathering (53) with (51) and (52), we obtain that:

I = ecx−
c2

2
te

σx2

2
+σt

2 e
c2

2σ

√
2

1 + e2σt
exp

(
−
(
σxeσt + c

)2
2σ

(1− tanh(σt))

)

= e−
c2t
2

+σt
2

√
2

1 + e2σt
exp

(
(σx+ c)2

2σ
−
(
σxeσt + c

)2
2σ

(1− tanh(σt))

)
.

Plugging this result into (50) gives:

mt(σx) = e(1− 1
2
c2+σ

2
−λ)t

√
2√

1 + e2σt
exp

(
(σx+ c)2

2σ
−
(
σxeσt + c

)2
2σ

(1− tanh(σt))

)

=e(1− 1
2
c2−σ

2
−λ)t

√
2√

1 + e−2σt
exp

(
(σx+ c)2

2σ
−
(
σxeσt + c

)2
2σ

(1− tanh(σt))

)

=
√

1 + tanh(σt) exp

(
(σx+ c)2

2σ
−
(
σxeσt + c

)2
2σ

(1− tanh(σt))

)
,

where we use (17) and 2/(1 + e−2x) = 1 + tanh(x) for the third equality. Replacing in the
above expression x with x/σ yields the announced expression for mt(x). �

4 A spinal approach - The typical trajectory

4.1 The spinal process

Recall that the stochastic population process is assumed starting from the stationary dis-
tribution F . We want to characterize the behavior of the ancestral path of an individual
uniformly sampled at time T . To this aim, the spinal approach [40, 41, 3] consists in consid-
ering the trajectory of a “typical” individual in the population whose behavior summarizes
the behavior of the entire population. The next theorem, will allow to describe the trait
process along the spine and can be found in [61] in a more general context. To make the
paper easy to read, a proof in our context is given in Appendix B.

Theorem 4.1. Recall that mt(x) = Ex(Ñt) has been defined in (42). For T > 0, x ∈ R
and Φ a continuous bounded function on C([0, T ],R), we have

Eδx

∑
i∈ṼT

Φ(X̃i
s, s ≤ T )

 = mT (x)Ex [Φ(Ys, s ≤ T )] , (54)

where Y is an inhomogeneous Markov process (depending on t) and with infinitesimal gen-
erator at time t given for φ ∈ C2

b (R) by

Gtφ(x) =
L(mT−tφ)(x)− φ(x)LmT−t(x)

mT−t(x)
, (55)
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where L is the infinitesimal generator of the process (Xt, t ≥ 0) associated to Z̃ and defined
in (38).

Note that the law of the spinal process is biased by the population size at each time,
described by the function m, which makes the process inhomogeneous. This highlights the
form of the generator given in (54).
The next proposition allows to relate (54) to the distribution of an individual chosen uni-
formly at random among the population alive at time t (i.e. in the empirical distribution)
when the population is large.

Proposition 4.2. For any Φ continuous and bounded,

lim
K→+∞

E

 1

ÑK
T

∑
i∈Ṽ KT

Φ(X̃i
s, s ≤ T )

∣∣∣∣ X̃i
0 = x,∀i ∈ Ṽ K

0

 =
Eδx

[∑
i∈ṼT Φ(X̃i

s, s ≤ T )
]

mT (x)
,

where ÑK
T = K〈Z̃KT , 1〉 and Ṽ K

T is the set of individuals alive at time T .

Proof By the branching property, the trees started from each of the K individuals
with trait x are independent with same law. Then by the law of large numbers, the two

sequences (
ÑK
T
K )K and (

∑
i∈Ṽ K

T
Φ(X̃i

s, s≤T )

K )K converge almost surely respectively to mT (x)

and Eδx
[∑

i∈ṼT Φ(X̃i
s, s ≤ T )

]
. The result follows. �

Notice that a corollary of Theorem 4.1 and Proposition 4.2 is that:

Corollary 4.3. When (ZK0 ) satisfies (6) and converges weakly and in probability to the
measure ξ0 when K → +∞,

lim
K→+∞

EZK0

[
〈H̃K

T ,Φ〉
〈H̃K

T , 1〉

]
= lim

K→+∞
E

 1

ÑK
T

∑
i∈Ṽ KT

Φ(X̃i
s, s ≤ T )

∣∣∣∣ ∑
i∈Ṽ K0

δ
X̃i

0
= KZK0


=

∫
RmT (x)Ex [Φ(Ys, s ≤ T )] ξ0(dx)∫

RmT (x)ξ0(dx)
, (56)

where Y is the process with generator (55).

The explicit computation of mt(x) yields the generator of Y :

Proposition 4.4. The generator of the spine Y describing in forward time the path of
particle chosen at random in Ṽ K

T is given for x ∈ R and 0 ≤ t ≤ T by

Gtf(x) =
σ2

2
f ′′(x)− σx tanh(σ(T − t))f ′(x)− σc

cosh(σ(T − t))
f ′(x). (57)
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Proof We have

mT−t(x)Gtf(x) =
σ2

2

(
mT−tf

)′′
(x)− cσ

(
mT−tf

)′
(x)− f

(σ2

2
m′′T−t − cσm′T−t

)
(x)

=
σ2

2

(
2m′T−t(x)f ′(x) +mT−t(x)f ′′(x)

)
− cσmT−t(x)f ′(x).

Since, by a derivation of (49),

∂xmt(x) =
1

σ

(
−
(
x+ ce−σt

)
(1 + tanh(σt)) + x+ c

)
mt(x)

=
1

σ

(
−x tanh(σt)− c

(
e−σt(1 + tanh(σt))− 1

))
mt(x),

we obtain that for x ∈ R and 0 ≤ t ≤ T ,

Gf(x) =
σ2

2
f ′′(x) + σ

(
−x tanh(σ(T − t))− c

(
1

cosh(σ(T − t))
− 1

))
f ′(x)− σcf ′(x)

=
σ2

2
f ′′(x)− σx tanh(σ(T − t)f ′(x)− σc 1

cosh(σ(T − t))
f ′(x).

�

Let us highlight that{
Gf ' σ2

2 f
′′ − σxf ′, for |T − t| >> 1

σ

Gf ' σ2

2 f
′′ − σcf ′, for |T − t| << 1

σ .

We have two regimes depending on the distance between t and the final observation time
T . For a small t and large T , the generator is close to the one of an Ornstein-Uhlenbeck
process fluctuating around 0 and for t close to T , the generator is close to the one of the
drifted Brownian motion Y driving the population to the neighborhood of −c, as observed
in the simulations.

At this point, we can give the law of the history of an uniformly sampled individual
when the initial condition was F . From the explicit value of the generator given in (57),
one can deduce that there exists a Brownian motion (Bt)t independent of Y0 such that for
0 ≤ t ≤ T , the process Y satisfies the stochastic differential equation:

dYt = −σ tanh(σ(T − t))Ytdt−
σc

cosh(σ(T − t))
dt+ σdBt. (58)

Proposition 4.5. The Markov process Y with generator (57) is a Gaussian process which
can be expressed explicitly for 0 ≤ t ≤ T :

Yt =
cosh(σ(T − t))

cosh(σT )
Y0 + c cosh(σ(T − t))

(
tanh(σ(T − t))− tanh(σT )

)
+ σ cosh(σ(T − t))

∫ t

0

dBs
cosh(σ(T − s))

. (59)
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Proof Because (58) looks like an Ornstein-Uhlenbeck process, we define for all t ≤ T ,

Zt = e
∫ t
0 σ tanh(σ(T−s)) dsYt. (60)

Applying Itô’s formula to (60), one obtains that:

Zt = Y0 −
∫ t

0

σc

cosh(σ(T − s))
e
∫ s
0 σ tanh(σ(T−u)) duds+

∫ t

0
σe

∫ s
0 σ tanh(σ(T−u)) dudBs. (61)

Since the primitive of tanh(x) is log cosh(x), we obtain that:∫ t

0
σ tanh(σ(T − s)) ds =

[
− log cosh(σ(T − s))

]t
0

= log
( cosh(σT )

cosh(σ(T − t))

)
. (62)

Thus, it is possible to rewrite (60) as

Zt =
cosh(σT )

cosh(σ(T − t))
Yt, (63)

and we obtain moreover from (61) that

Zt =Y0 −
∫ t

0

σc cosh(σT )

cosh2(σ(T − s))
ds+

∫ t

0

σ cosh(σT )

cosh(σ(T − s))
dBs

=Y0 + c cosh(σT )
[

tanh(σ(T − s))
]t

0
+ σ cosh(σT )

∫ t

0

dBs
cosh(σ(T − s))

, (64)

by using that a primitive of 1/ cosh2(x) is tanh(x). Equations (63) and (64) give the
announced result. �

4.2 Return to the initial population process

The spinal process Y obtained in Theorems 4.1 and with generator given in (57) is associated
to the auxiliary branching-diffusion process Z̃K . We have now to prove that it is close to its
analogous for the initial population process ZK . By Corollary 3.1, we know that when we
start from the stationary measure, these two processes are uniformly (in time) close when
K is large, at least on a finite time interval. From this fact, we can obtain a similar result
for ZK as the one enounced for Z̃K in Corollary 4.3.

Proposition 4.6. When (ZK0 ) satisfies (6) and converges weakly and in probability to the
stationary measure F defined in (16), then for any Φ continuous and bounded,

lim
K→+∞

EZK0

[
〈HK

T ,Φ〉
〈HK

T , 1〉

]
= lim

K→+∞
E

 1

ÑK
T

∑
i∈Ṽ KT

Φ(X̃i
s, s ≤ T )

∣∣∣∣ ∑
i∈Ṽ K0

δ
X̃i

0
= KZK0


=

∫
R
mT (x)Ex [Φ(Ys, s ≤ T )]

F (dx)

λ
. (65)
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Proof The right expression is obtained from Corollary 4.3 with ξ0 = F and by using (44).
Let us consider ε > 0. It is possible to find a cylindrical test-function ϕ of the form (25)
such that:

sup
y∈C(R,R)

∣∣Φ(y)− ϕ(y)
∣∣ ≤ ε. (66)

By (56), the right hand side of (65) is the limit when K tends to infinity of

E

 1

ÑK
T

∑
u∈Ṽ KT

Φ(X̃u
s , s ≤ T )

∣∣∣∣ ∑
i∈Ṽ K0

δ
X̃i

0
= KZK0

 = EZK0

[
〈H̃K

T ,Φ〉
〈H̃K

T , 1〉

]
. (67)

To prove the proposition, it is hence sufficient to prove that the left hand side of (65) and
(67) have the same limit. For this, we write:∣∣∣〈HK

T ,Φ〉
〈HK

T , 1〉
−
〈H̃K

T ,Φ〉
〈H̃K

T , 1〉

∣∣∣ ≤ ∣∣∣〈HK
T ,Φ〉

〈HK
T , 1〉

−
〈HK

T , ϕ〉
〈HK

T , 1〉

∣∣∣+
∣∣∣〈HK

T , ϕ〉
〈HK

T , 1〉
−
〈H̃K

T , ϕ〉
〈H̃K

T , 1〉

∣∣∣
+
∣∣∣〈H̃K

T , ϕ〉
〈H̃K

T , 1〉
−
〈H̃K

T ,Φ〉
〈H̃K

T , 1〉

∣∣∣. (68)

Notice that each of the fraction is upper-bounded by ‖Φ‖∞ or ‖ϕ‖∞ (with the convention
0/0 = 0) so that each of the terms in the right hand side is bounded. For the first term on
the right hand side of (68), we have by (66):

EZK0

[∣∣∣〈HK
T ,Φ〉

〈HK
T , 1〉

−
〈HK

T , ϕ〉
〈HK

T , 1〉

∣∣∣] ≤EZK0
[

1

〈HK
T , 1〉

∣∣〈HK
T ,Φ− ϕ〉

∣∣]
≤‖Φ− ϕ‖∞ ≤ ε.

Proceeding similarly, we can show that the third term is also upper bounded by ε. For the
second term, let us first introduce the following stopping times, for 1 >η > 0:

τKη = inf
{
t ∈ R+, 〈HK

t , 1〉 /∈ (η, 1/η)
}
, τ̃Kη = inf

{
t ∈ R+, 〈H̃K

t , 1〉 /∈ (η, 1/η)
}
.

Because the processes (〈HK
t , 1〉)t∈R+ = (〈ZKt , 1〉)t∈R+ and (〈H̃K

t , 1〉)t∈R+ converge to λ (see
Proposition 3.4, Corollary 2.4 and Equation (44)), we have that for η small enough:

lim
K→+∞

P(τKη ≤ T ) = lim
K→+∞

P(τ̃Kη ≤ T ) = 0.

Thus, it is possible to choose η such that both probabilities are smaller than ε. Then,∣∣∣〈HK
T , ϕ〉

〈HK
T , 1〉

−
〈H̃K

T , ϕ〉
〈H̃K

T , 1〉

∣∣∣ ≤∣∣〈H̃K
T , ϕ〉

∣∣× ∣∣∣ 1

〈H̃K
t , 1〉

−
1lτKη >T 1lτ̃Kη >T

〈ξT , 1〉

∣∣∣
+
∣∣∣1lτKη >T 1lτ̃Kη >T

〈ξT , 1〉

∣∣∣× ∣∣〈H̃K
T , ϕ〉 − 〈HK

T , ϕ〉
∣∣∣

+
∣∣〈HK

T , ϕ〉
∣∣× ∣∣∣ 1

〈HK
t , 1〉

−
1lτKη >T 1lτ̃Kη >T

〈ξT , 1〉

∣∣∣.
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For the first term in the right hand side, we use that:∣∣〈H̃K
T , ϕ〉

∣∣× ∣∣∣ 1

〈H̃K
t , 1〉

−
1lτKη >T 1lτ̃Kη >T

〈ξT , 1〉

∣∣∣ ≤ 1lτKη ∧τ̃Kη ≤T ‖ϕ‖∞ +
1

η2〈ξT , 1〉

∣∣∣〈HK
T , 1〉 − 〈ξT , 1〉

∣∣∣,
and taking the expectation:

EZK0
[∣∣〈H̃K

T , ϕ〉
∣∣× ∣∣∣ 1

〈H̃K
t , 1〉

−
1lτKη >T 1lτ̃Kη >T

〈ξT , 1〉

∣∣∣] ≤ 2‖ϕ‖∞ε+
1

η2〈ξT , 1〉
E
[∣∣〈H̃K

T , 1〉 − 〈ξT , 1〉
∣∣].

A similar upper-bound can be obtained for the third term. Gathering the latter bounds:

EZK0
[∣∣∣〈HK

T , ϕ〉
〈HK

T , 1〉
−
〈H̃K

T , ϕ〉
〈H̃K

T , 1〉

∣∣∣] ≤ 4‖ϕ‖∞ε+
1

η2〈ξT , 1〉
E
[∣∣〈H̃K

T , 1〉−〈ξT , 1〉
∣∣+∣∣〈HK

T , 1〉−〈ξT , 1〉
∣∣]

+
1

〈ξT , 1〉
E
[∣∣〈H̃K

T , ϕ〉 − 〈HK
T , ϕ〉

∣∣].
We can now conclude with Corollary 2.4 and Proposition 3.4. �

4.3 The spinal time reversed equation

Our purpose in this section is to recover the trait ancestor of an individual sampled in F
at time T , that is, in the population at time T when the initial condition is the stationary
solution F . For this, we need to reverse the time in the equation of the spinal process,
and we will use to this purpose a result by Haussmann and Pardoux [43]. Their formula to
reverse the diffusion (59) requires the computation of the density of Yt for every time t ≥ 0.

First, notice that:

Proposition 4.7. The approximating (for K → +∞) distribution at time 0 of a trait
chosen uniformly in the population at time T according to the stationary measure F comes
from a biased initial condition, 1

λmT (x)F (x) and not 1
λF (x). Conditionally to YT  F ,

Y0 ∼ N
(
−ce−σT , σ

1 + tanh(σT )

)
. (69)

Proof Applying (65) with Φ(xs, s ≤ T ) = f(x0), we obtain that the random variable Y0

has the distribution 1
λmT (x)F (x)dx. Computing this measure yields that Y0 has a Gaussian

law whose expectation and variance are respectively −ce−σT and σ/(1 + tanh(σT )). �

Remember that F is a Gaussian distribution centered in −c. The biaised distribution 1
λmTF

describes the traits at time 0 of the individuals producing individuals alive at T . When T
is large, its support is in the tail of the distribution F .

We are now able to compute the density of Yt, using Proposition 4.5.
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t = 2∆t

t = 3∆t

t = 4∆t

t = 5∆t

t = 6∆t
(a) (b)

Figure 3: Evolution of the ancestral lineages of the present population, for various times t = k∆t

with ∆t = 20/3 and k ∈ {2, . . . 6}. The traits in the population (ordinate) are shown with respect

to time (abscissa). The extinct lineages are in gray, whereas the lineages of the living particles are

in block. (a): fixed framework. (b): mobile framework.

Proposition 4.8. For any 0 ≤ t ≤ T , the random variable Yt is a normal variable with law

Yt ∼ N
(
−ce−σ(T−t),

σ

1 + tanh(σ(T − t))

)
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whose density p(t, x) is given by

∂x log p(t, x) = −x+ ce−σ(T−t)

σ
(1 + tanh(σ(T − t))) .

Proof From (59) and (69), we deduce that Yt has a normal law.

E[Yt] = −ce−σT cosh(σ(T − t))
cosh(σT )

+ c cosh(σ(T − t)) {tanh(σ(T − t))− tanh(σT )}

= c cosh(σ(T − t))
(
− e−σT

cosh(σT )
− tanh(σT ) + tanh(σ(T − t))

)
.

Since

tanh(σT )− 1 =
eσT − e−σT − eσT − e−σT−

eσT + e−σT
= − e−σT

cosh(σT )
, (70)

we have

E[Yt] = c cosh(σ(T − t)) (tanh(σ(T − t))− 1)

= −c cosh(σ(T − t))

(
e−σ(T−t)

cosh(σ(T − t))

)
= −ce−σ(T−t).

Additionally,

var(Yt) = cosh(σ(T − t))2

(
σ

cosh2(σT ) (1 + tanh(σT ))
+ σ2

∫ t

0

1

cosh2(σ(T − s))
ds

)
= cosh(σ(T − t))2

(
σe−σT

cosh(σT )
+ σ (tanh(σT )− tanh(σ(T − t)))

)
= cosh(σ(T − t))2 σ(1− tanh(σ(T − t)))

= σ cosh(σ(T − t))e−σ(T−t) =
σ

1 + tanh(σ(T − t))
.

The result follows. �

We are now able to obtain the time reversed equation giving the trajectory leading from
the trait of a “typical” individual living at time T in the stationary distribution F , to its
ancestor.

Proposition 4.9. The time reversed process of the spinal process Y is the time homoge-
neous Ornstein-Uhlenbeck process driving the ancestral trajectories around 0, satisfying the
equation

dŶs = −σŶsds+ σdWs, (71)

for a Brownian motion W .
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Proof To reverse time in the equation (58), we apply an explicit formula given in [43].
The reverse process will be a diffusion process with the same diffusion coefficient σ and with
a new drift term

br(t, x) = −b(T − t, x) + σ2∂x log p(T − t, x),

where p(t, .) is the density of Yt and b(t, x) is the drift term in (58):

b(t, x) = −σ tanh(σ(T − t))x− σc

cosh (σ(T − t))
.

We obtain

br(t, x) =σ tanh(σt)x+
σc

cosh (σt)
−σx (tanh(σt))− σx− σce−σt (1 + tanh(σt))

=− σx,

by using (70). The reverse process is then a very simple time homogeneous Ornstein-
Uhlenbeck process driving the ancestral trajectories around 0, satisfying Equation (71) for
a Brownian motion W . �

As a consequence of Propositions 4.6 and 4.9, we can now summarize our results in the
following.

Theorem 4.10. Let UK be a random variable whose conditional distribution with respect
to HK

T is uniform on V K
T and consider the processes (Ŷ K

s )0≤s≤T defined by

Ŷ K
s = XUK

T−s, ∀s ∈ [0, T ].

Then, under the hypotheses of Proposition 4.6, the processes Ŷ K converges, as K goes to
infinity, weakly to Ŷ in C([0, T ],R).
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A SDEs for the stochastic birth-death particle system and
the historical particle system

A.1 Pathwise representation of the population process

We recall here the pathwise representation of our mesure-valued processes, as solution of
stochastic differential equations driven by inependent Poisson point measures and Brownian
motions. We refer to [17] and [62] for more details.

To model the random occurrence of birth and death events, let us consider a Poisson
point process N(ds, di, dθ) on R+ × I ×R+, with intensity measure ds⊗ n(di)⊗ dθ, where
n(di) is the counting measure on the set of labels I =

⋃
n∈NNn.

We also introduce a family of independent standard Brownian motions
(
Bi, i ∈ I

)
indexed

by I that will drive the particle motions.

The atoms of the Poisson point process determine birth and death events. These events
modify the set of individuals alive, V K

t . Between these events, the position of a particle
alive, say i, is modelled by a drifted diffusion

dXi
t = σ(dBi

t − c dt). (72)

Let us consider a test function f ∈ C1,2
b (R+ × R). We will use the notation ft(x) = f(t, x).

Between two jump times, the set of living individuals is fixed and we can apply Itô’s formula
to the diffusion processes (72) related to the individuals i alive. At a jump time τ , if we
have a birth of individual i, a new offspring appears at the same position and the process
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increases from fτ (Xi
τ ). If we have a death of individual i, the process decreases of fτ (Xi

τ ).
Then the measure-valued population process ZK acts on the test function f as:

〈ZKt , ft〉 = 〈ZK0 , f0〉

+
1

K

∫ t

0

∫
I

∫
R+

1l{i∈V Ks−}

[
fs(X

i
s)1l{θ≤1} − fs(Xi

s)1l{1<θ≤1+
(Xis)

2

2
+〈ZKs−,1〉}

]
N(ds, di, dθ)

+
1

K

∑
i∈I

∫ t

0
1l{i∈V Ks }σ∂xfs(X

i
s)dB

i
s

+
1

K

∑
i∈I

∫ t

0
1l{i∈V Ks }

(
∂sfs(X

i
s)− cσ∂xfs(Xi

s) +
σ2

2
∂2
xxfs(X

i
s)
)
ds, (73)

and where the set of living individuals is changing as follows.

• V K
0 = {1, . . . ,K} and |V K

0 | = K〈ZK0 , 1〉.

• For each atom (s, i, θ) of N such that i ∈ V K
s− and θ ≤ 1, there is a new birth by

individual i, and the label of the new offspring is j = (i, k) where k is the rank of the
new individual among the daughters of i.

• For each atom (s, i, θ) of N such that i ∈ V K
s− and 1 < θ ≤ 1 + (Xi

s)
2/2 + |V K

s−|/K,

there is a death and the label i is removed from V K
s− .

Introducing the compensated martingale measure of the Poisson point measure, we
obtain that

〈ZKt , ft〉 = 〈ZK0 , f0〉+MK,ϕ
t +

∫ t

0

∫
R

{(
1− 1

2
x2 − 〈ZKs , 1〉

)
fs(x)

+∂sfs(x)− σc∂xfs(x) +
σ2

2
∂2
xxfs(x)

}
ZKs (dx) ds, (74)

where the process MK,ϕ is a square integrable martingale with quadratic variation process
given by

〈MK,ϕ〉t =
1

K

∫ t

0

∫
R

{(
1 +

x2

2
+ 〈Zc,Ks , 1〉

)
f2
s (x) + σ2(∂xfs)

2(x)
}
ZKs (dx)ds. (75)

A.2 Pathwise representation of the historical population process

Let us consider test functions ϕ defined on R+ × C(R+,R) with a similar form as in (25),
i.e. for any s, y ∈ R+ × C(R+,R),

ϕ(s, y) = ϕs(y) =

m∏
j=1

gj(s, ytj ),
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for m ∈ N∗, 0 ≤ t1 < · · · < tm and ∀j ∈ {1, · · · ,m}, gj ∈ C1,2
b (R+ × R,R). Note that

ϕ(s, y.∧s) =
m∏
j=1

gj(s, ytj∧s) =
m−1∑
k=0

1l[tk,tk+1)(s)
( k∏
j=1

gj(s, ytj )
m∏

j=k+1

gj(s, ys)
)
.

It is possible to write a stochastic differential equation for the historical process HK defined
in (24) that is driven by the same Poisson point measures and Brownian motion as the
process ZK . With the notation (26) and (27) introduced in Section 3.2, we have

〈HK
t , ϕt〉 = 〈HK , ϕ0〉+

1

K

∑
i∈I

∫ t

0
1l{i∈V Ks }σD̃ϕs(X

i
s)dB

i
s

+
1

K

∫ t

0

∫
I

∫
R+

1l{i∈V Ks−}

[
ϕs(X

i
(.∧s))1l{θ≤1} − ϕs(Xi

(.∧s))1l{1<θ≤1+
(Xis)

2

2
+〈HK

s−,1〉}

]
N(ds, di, dθ)

+
1

K

∫ t

0

∑
i∈V Ks

(
∂sϕs(X

i
.∧s)− cσD̃ϕs(Xi

(.∧s)) +
σ2

2
∆̃ϕs(X

i
(.∧s))

)
ds. (76)

Then introducing the compensated martingales measures associated with the Poisson
point processes, we obtain that

〈HK
t , ϕt〉 = 〈HK , ϕ0, 〉+

1

K

∫ t

0

∑
i∈V Ks

σD̃ϕs(X
i
(.∧s))dB

i
s

+
1

K

∫ t

0

∫
I

∫
R+

1l{i∈V Ks−}

[
ϕs(X

i
(.∧s))1l{θ≤1} − ϕs(Xi

(.∧s))1l{1<θ≤1+
(Xis)

2

2
+〈HK

s−,1〉}

]
Ñ(ds, di, dθ)

+
1

K

∫ t

0

∑
i∈V Ks

(
1− (Xi

s)
2

2
+ 〈HK

s−, 1〉
)
ϕs(X

i
(.∧s))ds

+
1

K

∫ t

0

∑
i∈V Ks

(
∂sϕs(X

i
(.∧s))− cσD̃ϕs(X

i
(.∧s)) +

σ2

2
∆̃ϕs(X

i
(.∧s))

)
ds

= 〈HK , ϕ0, 〉+MK
t (ϕ)

+

∫ t

0

∫
C(R+,R)

((
1− y2

s

2
− 〈HK

s , 1〉
)
ϕ(s, y) + ∂sϕs(y) +

σ2

2
∆̃ϕ(s, y)− σcD̃ϕ(s, y)

)
HK
s (dy) ds.

(77)

The process is a square integrable local martingale with quadratic variation

〈MK(ϕ)〉t =
1

K

∫ t

0

∫
C(R+,R)

((
1 +

y2
s

2
+ 〈HK

s , 1〉
)
ϕ(s, y) + σ2(D̃ϕ(s, y))2

)
HK
s (dy) ds.

(78)
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A.3 Stochastic mild equation

Recall that (Pt)t≥0 is the semi-group defined in (10). For a fixed t > 0 and a test function
ϕ ∈ C2

b (R), choosing f(s, x) = Pt−sϕ(x), we obtain from (73) a mild stochastic equation:

〈ZKt , ϕ〉 = 〈ZK0 , Ptϕ〉

+
1

K

∫ t

0

∫
I

∫
R+

1l{i∈V Ks−}

[
Pt−sϕ(Xi

s)1l{θ≤1} − Pt−sϕ(Xi
s)1l{1<θ≤1+

(Xis)
2

2
+〈ZKs− ,1〉}

]
N(ds, di, dθ)

+
1

K

∑
i∈I

∫ t

0
1l{i∈V Ks }σ∂xPt−sϕ(Xi

s)dB
i
s

=〈ZK0 , Ptϕ〉+

∫ t

0

∫
R

(
1− x2

2
− 〈ZK , 1〉

)
Pt−sϕ(x)ZKs (dx) ds+MK,ϕ

t (79)

where MK,ϕ
t is the following square integrable martingale:

MK,ϕ
t =

1

K

∫ t

0

∫
I

∫
R+

1l{i∈V Ks−}

[
Pt−sϕ(Xi

s)1l{θ≤1}

− Pt−sϕ(Xi
s)1l{1<θ≤1+

(Xis)
2

2
+〈ZKs− ,1〉}

](
N(ds, di, dθ)− ds⊗ n(di)⊗ dθ

)
+

1

K

∑
i∈I

∫ t

0
1l{i∈V Ks }σ∂xPt−sϕ(Xi

s)dB
i
s. (80)

The predictable quadratic variation of MK,ϕ
t is

〈MK,ϕ〉t =
1

K

∫ t

0

(
1 +

x2

2
+ 〈ZKs , 1〉

)
(Pt−sϕ(x))2 ZKs (dx) ds

+
1

K

∫ t

0
σ2
〈
ZKs ,

(
∂xPt−sϕ

)2〉
ds. (81)

B Moment estimates for ZK: proof of Lemma 2.1

We prove a more precise form of Lemma 2.1.

Lemma B.1. We assume that the initial condition ZK0 satisfies for ε > 0 that:

sup
K∈N∗

E
(
〈ZK0 , 1〉2+ε

)
< +∞ and sup

K∈N∗
E
(
〈ZK0 , x2〉1+ε

)
< +∞. (82)

Then, for any T > 0, we have

sup
K∈N∗

E
(

sup
t∈[0,T ]

〈ZKt , 1〉2+ε
)
< +∞ and sup

K∈N∗
sup
t∈[0,T ]

E
(
〈ZKt , x2〉1+ε

)
< +∞. (83)

40



Under the additional assumption that:

sup
K∈N∗

E
(
〈ZK0 , x4〉1+2ε

)
< +∞, (84)

we also have that:
sup
K∈N∗

E
(

sup
t∈[0,T ]

〈ZKt , x2〉1+ε
)
< +∞. (85)

Using classical computation (see e.g. [34]), several moment estimates can be derived
under Assumption (82). Recall that T > 0 and assume (82), i.e. that the initial condition
ZK0 satisfies for ε > 0 that:

sup
K≥1

E
(
〈ZK0 , 1〉2+ε

)
< +∞ and sup

K∈N∗
E
(
〈ZK0 , x2〉1+ε

)
< +∞.

Step 1: Let us introduce the stopping time, for M > 0 and for K ≥ 1:

τKM = inf
{
t ≥ 0, 〈ZKt , 1〉2+ε > M or 〈ZKt , x2〉1+ε > M

}
. (86)

Choosing the test function ϕ ≡ 1 and neglecting the natural death term of rate x2/2
gives in (74):

〈ZK
t∧τKM

, 1〉 ≤ 〈ZK0 , 1〉+

∫ t∧τKM

0

(
〈ZKs , 1〉 − 〈ZKs , 1〉2

)
ds+MK,1

t∧τKM
.

Taking the expectation and using the convexity of x 7→ x2, it follows that

E
(
〈ZKt , 1〉

)
≤E
(
〈ZK0 , 1〉

)
+

∫ t

0

[
E
(
〈ZK

s∧τKM
, 1〉
)
− E

(
〈ZKs , 1〉

)2]
ds

≤
E
(
〈ZK0 , 1〉

)
E
(
〈ZK0 , 1〉

)
+
(
1− E

(
〈ZK0 , 1〉

))
e−t

,

since we recognize the logistic equation. Because the upper-bound does not depend on M ,
a direct consequence is that τKM tends a.s. to infinity when M → +∞ and that:

sup
t∈R+

E
(
〈ZKt , 1〉

)
< +∞. (87)

Step 2: Now, choosing the test function ϕ(x) = 1, using Itô’s formula (see e.g. [46, p.66])
and neglecting the death terms:

〈ZK
t∧τKM

, 1〉2+ε ≤〈ZK0 , 1〉2+ε +

∫ t∧τKM

0

∫
I

∫
R

1li∈V Ks−

((
〈ZKs−, 1〉+

1

K

)2+ε − 〈ZKs−, 1〉2+ε
)

1lθ≤1N(ds, di, dθ)

≤〈ZK0 , 1〉2+ε +

∫ t∧τKM

0

∫
I

∫
R

1li∈V Ks−

C

K
〈ZKs−, 1〉1+ε1lθ≤1N(ds, di, dθ),
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for a constant C > 0 and using that(
x+

1

K

)2+ε−x2+ε = x2+ε
[

exp
(
(2+ε) ln

(
1+

1

Kx

))
−1
]
K→+∞∼ x2+ε× 2 + ε

xK
=

(2 + ε)x1+ε

K
.

(88)
Introducing the supremum in the right hand side, then in the left hand side and taking the
expectation provides that:

E
(

sup
s≤t
〈ZK

s∧τKM
, 1〉2+ε

)
≤E
(
〈ZK0 , 1〉2+ε

)
+ C

∫ t

0
E
(

sup
u≤s
〈ZKu , 1〉2+ε

)
ds,

from which we obtain by Gronwall’s lemma that:

E
(

sup
s≤t
〈ZK

s∧τKM
, 1〉2+ε

)
≤E
(
〈ZK0 , 1〉2+ε

)
exp

(
Ct
)
,

where the upper bound does not depend on M nor on K. Then, letting M → +∞ provides
the first estimate of (83).

Notice that a similar computation would have yielded that:

sup
K∈N∗

E
(

sup
s≤t
〈ZKs , 1〉1+ε

)
< +∞. (89)

Step 3: Let us now consider the test function ϕ(x) = x2. Using Itô’s formula and neglecting
the death terms, we obtain from (74):

〈ZK
t∧τKM

, x2〉1+ε ≤ 〈ZK0 , x2〉1+ε

+

∫ t∧τKM

0

∫
I

∫
R+

1l{i∈V Ks−}
1l{θ≤1}

((
〈ZKs−, x2〉+

(Xi
s)

2

K

)1+ε − 〈ZKs−, x2〉1+ε
)
N(ds, di, dθ)

+
1

K

∑
i∈I

∫ t∧τKM

0
1l{i∈V Ks }2σ(1 + ε)〈ZKs , x2〉εXi

s dB
i
s +

1

K2

∑
i∈I

∫ t∧τKM

0
1l{i∈V Ks }

ε(1 + ε)

〈ZKs , x2〉1−ε
2σ2(Xi

s)
2 ds

+
1

K

∑
i∈I

∫ t∧τKM

0
1l{i∈V Ks }(1 + ε)〈ZKs , x2〉ε

(
σ2 − 2cσXi

s

)
ds

〈ZK
t∧τKM

, x2〉1+ε ≤ 〈ZK0 , x2〉1+ε +
1

K

∑
i∈I

∫ t∧τKM

0
1l{i∈V Ks }2σ(1 + ε)〈ZKs , x2〉εXi

s dB
i
s

+

∫ t∧τKM

0

∫
I

∫
R+

1l{i∈V Ks−}
1l{θ≤1}〈ZKs−, x2〉1+ε

((
1 +

(Xi
s)

2

K〈ZKs−, x2〉
)1+ε − 1

)
N(ds, di, dθ)

+ε(1 + ε)
2

K
σ2

∫ t

0
〈ZK

s∧τKM
, x2〉εds+ (1 + ε)

∫ t∧τKM

0
〈ZKs , x2〉ε ×

(
σ2〈ZKs , 1〉 − 2cσ〈ZKs , x〉

)
ds

(90)
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First, because x ≤ 1 + x2, we have that:∣∣〈Zks , x2〉ε ×
(
σ2〈ZKs , 1〉 − 2cσ〈ZKs , x〉

)∣∣ ≤2cσ〈ZKs , x2〉1+ε + (σ2 + 2cσ)〈ZKs , x2〉ε〈ZKs , 1〉
≤(σ2 + 4cσ)〈ZKs , x2〉1+ε + (σ2 + 2cσ)〈ZKs , 1〉1+ε.

Then, notice that a computation similar to (88) gives that for a constant C > 0 sufficiently
large,

〈ZKs−, x2〉1+ε
((

1 +
(Xi

s)
2

K〈ZKs−, x2〉
)1+ε − 1

)
≤ 〈ZKs−, x2〉εC(1 + ε)

K
(Xi

s)
2.

Gathering these results in (90):

〈ZK
t∧τKM

, x2〉1+ε ≤〈ZK0 , x2〉1+ε + 2σ2ε(1 + ε)t+ (1 + ε)
(
C + σ2 + 4cσ

) ∫ t

0
〈ZK

s∧τKM
, x2〉1+εds

+(σ2 + 2cσ)T sup
s≤T
〈ZKs , 1〉1+ε +MK

t∧τKM
(91)

where (MK
t∧τKM

)t≥0 is a square integrable martingale. Taking the expectation, using Gron-

wall’s lemma and (89) implies that:

sup
t∈[0,T ]

E
(
〈ZK

t∧τKM
, x2〉1+ε

)
≤ sup
K∈N∗

(
E
(
〈ZK0 , x2〉1+ε

)
+ 2σ2ε(1 + ε)T + (σ2 + 2cσ)T sup

s≤T
〈ZKs , 1〉1+ε

)
×

× exp
(
T (1 + ε)

(
C + σ2 + 4cσ

))
. (92)

Because the right hand side does not depend on M for K, we obtain:

sup
K∈N∗

sup
t∈[0,T ]

E
(
〈ZKt , x2〉1+ε

)
< +∞. (93)

A similar computation yields that under the additional assumption (84), we also have:

sup
K∈N∗

sup
t∈[0,T ]

E
(
〈ZKt , x4〉1+ε

)
< +∞. (94)

Step 4: Now, let us take the supremum in (91):

sup
s≤t
〈ZK

s∧τKM
, x2〉1+ε ≤〈ZK0 , x2〉1+ε + 2σ2ε(1 + ε)t+ (1 + ε)

(
C + σ2 + 4cσ

) ∫ t

0
sup
u≤s
〈ZK

u∧τKM
, x2〉1+εds

+(σ2 + 2cσ)T sup
s≤T
〈ZKs , 1〉1+ε + sup

s≤t
MK
s∧τKM

(95)
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The bracket of the martingale (MK
t∧τKM

)t≥0 is:

〈MK〉t∧τKM =
4σ2(1 + ε)2

K

∫ t∧τKM

0
〈ZKs , x2〉1+2εds

+

∫ t∧τKM

0

∑
i∈V Ks

((
〈ZKs−, x2〉+

(Xi
s)

2

K

)1+ε − 〈ZKs−, x2〉1+ε
)2
ds

≤
∫ t∧τKM

0

(4σ2(1 + ε)2

K
〈ZKs , x2〉1+2ε +

C2(1 + ε)2

K
〈ZKs , x2〉2ε〈ZKs , x4〉

)
ds

≤
∫ t∧τKM

0

((4σ2(1 + ε)2

K
+
C2(1 + ε)2

K

)
〈ZKs , x2〉1+2ε +

C2(1 + ε)2

K
〈ZKs , x4〉1+2ε

)
ds.

(96)

Thus, using Doob’s lemma:

E
(

sup
s≤t

MK
s

)
≤4E

(∫ t∧τKM

0

((4σ2(1 + ε)2

K
+
C2(1 + ε)2

K

)
〈ZKs , x2〉1+2ε +

C2(1 + ε)2

K
〈ZKs , x4〉1+2ε

)
ds
)

≤C(T )

K
, (97)

by (93) and (94). Now, taking the expectation in (95), and using Gronwall’s inequality with
(89) and (97) yields that

sup
K∈N∗

E
(

sup
t∈[0,T ]

〈ZKt , x2〉1+ε
)
< +∞. (98)

C Proof of Theorem 4.1

Proof We denote here h(x) = 1− x2

2 −λ. Notice that the proof here holds for any function
h that is upper bounded (but not necessarily lower bounded).

For x ∈ R, T > 0 and t ≤ T , let us define the following measure for a test function Φ
continuous and bounded on C([0, T ],R), where Y is the diffusion process defined in (38):

〈µT,xt ,Φ〉 =
Ex
(

exp
( ∫ T

0 h(Xs)ds
)
Φ(Xs, s ≤ t)

)
Ex
(

exp
( ∫ T

0 h(Xs)ds
)) . (99)

Let us prove that under µT,xt , the canonical process is an inhomogeneous Markov process
with infinitesimal generator (55).

44



Denoting EµT,x the expectation under µT,x, we have that, for some real numbers t and
u s.t. t ≥ u ≥ 0,

Eµ
T,x

[
f(Xt)

∣∣∣∣Fu] =

E
[
f(Xt) exp

(∫ T
0 h(Xs)ds

) ∣∣∣∣Fu]
E
[
exp

(∫ T
0 h(Xs)ds

) ∣∣∣∣Fu] . (100)

Markov property for X under Px and Formula (42) entail that

E

[
exp

(∫ T

0
h(Xs) ds

) ∣∣∣∣∣Fu
]

= mT−u(Xu) exp

(∫ u

0
h(Xs) ds

)
. (101)

We also have

E

[
f(Xt) exp

(∫ T

0
h(Xs)ds

) ∣∣∣∣∣Fu
]

= E

[
f(Xt) exp

(∫ T

0
h(Xs)ds

) ∣∣∣∣∣Ft
∣∣∣∣∣Fu
]

= exp

(∫ u

0
h(Xs) ds

)
E

[
f(Xt) exp

(∫ t

u
h(Xs) ds

)
mT−t(Xt)

∣∣∣∣∣Fu
]
. (102)

Now, as f and m are smooth (cf. Corollary 3.6) and X is a Markov process with generator
L (see Lemma 3.5), we have for any 0 ≤ u ≤ t,

f(Xt)mT−t(Xt) = f(Xu)mT−u(Xu) +

∫ t

u

(
L(fmT−s)(Xs)− f(Xs)∂tmT−s(Xs)

)
ds+Mt,

(103)
where M is some P-martingale started at 0. Thus, applying Itô’s formula, we get

f(Xt)mT−t(Xt) exp

(∫ t

u
h(Xs)ds

)
= f(Xu)mT−u(Xu)

+

∫ t

u

(
f(Xs)∂tmT−s(Xs) + L(fmT−s)(Xs)− f(Xs)mT−s(Xs)h(Xs)

)
exp

(∫ s

u
h(Xv) dv

)
ds

+

∫ t

u
exp

(∫ s

u
h(Xv) dv

)
dMs.
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Using (43) gives

f(Xt)mT−t(Xt) exp

(∫ t

u
h(Xs)ds

)
= f(Xu)mT−u(Xu)

+

∫ t

u

(
L(fmT−s)(Xs)− f(Xs)LmT−s(Xs)

)
exp

(∫ s

u
h(Xv) dv

)
ds

+

∫ t

u
exp

(∫ s

u
h(Xv) dv

)
dMs.

Using (101) and notation (55), we finally obtain

E

[
f(Xt)mT−t(Xt) exp

(∫ t

0
h(Xs)ds

) ∣∣∣∣∣Fu
]

=f(Xu)mT−u(Xu) exp

(∫ u

0
h(Xs) ds

)
+ E

[∫ t

u
Gsf(Xs)mT−s(Xs) exp

(∫ s

0
h(Xv) dv

)
ds

∣∣∣∣∣Fu
]

=f(Xu)E

[
exp

(∫ T

0
h(Xs) ds

) ∣∣∣∣∣Fu
]

+ E

[∫ t

u
Gsf(Xs)E

[
exp

(∫ T

0
h(Xv) dv

) ∣∣∣∣∣Fs
]
ds

∣∣∣∣∣Fu
]
.

Thus, using (100) and (102), we have

Eµ
T,x

[
f(Xt)

∣∣∣∣∣Fu
]

= f(Xu) + Eµ
T,x

[∫ t

u
Gsf(Xs)

∣∣∣∣∣Fu
]
.

This ends the proof. �
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