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The goal of this paper is to find, in a simple and rigorous way, all powers of three as the difference of two Fibonacci numbers, that is, we study a diophantine equation

n, m, and p where ( ) 0

is the Fibonacci sequence. The tools used to solve our main result are properties of continued fractions, linear forms in logarithms, and a version of the Baker-Davenport reduction method in diophantine approximation.

Introduction

The Fibonacci and Lucas numbers 1, 1, 2, 3, 5, 8, … and 2, 1, 3, 4, 7, 11, … respectively have fascinated mathematicians for over hundred years. respectively and belong to a list of particular member of a general family of sequences. The determination of perfect powers of Lucas and Fibonacci sequences does not date from today. They have many interesting properties and have been studied by many researchers. For a brief history of Fibonacci and Lucas sequences one can consult [START_REF] Debnath | A short history of the Fibonacci and golden numbers with their applications[END_REF]. Proprieties of Fibonacci and Lucas sequences, and the relationship between them, have been the focus of a considerable amount of research. The real contribution of determination of perfect powers of Lucas and Fibonacci sequences began in 2006. By classical and modular approaches of Diophantine equations, Bugeaud et al. [START_REF] Bugeaud | Fibonacci numbers at most one away from a perfect power[END_REF] defined all perfect powers of Lucas and Fibonacci sequences by solving the equations Motivated by the studies of Bravo and Luca [1, 2], our main focus is on the powers of 3 as a difference of two Fibonacci numbers. We consider the Diophantine equation

p m n F F 3 = - (1) 
in nonnegative integers 

Auxiliary Results

In this section, we recall some important results used by us. The wellknown Binet formulas provide closed form rules to calculate the Fibonacci and Lucas numbers, both incorporate the so-called golden ratio ( ) , 2 5 1 + hinting at a deep connection between the sequences:

5 n n n F β - α = and , n n n L β + α = where ( ) 2 5 1 + = α and 
( ) 2 5 1 - = β
are the roots of the characteristic

equation . 0 1 2 = - -x x
The relation between Fibonacci and Lucas numbers and α are:

, 1 n n n L F F = + + (2) , 2 2 - - α ≤ ≤ α n n n F for . 1 ≥ n ( 3) 
(3) can be proved easily by induction, and together with (2) allows us, in Section 3, to prove the following important inequality: .

1 n p < ≤ It can be seen that 2 1 < α < and . 0 1 < β < -
The following theorem due to Lucas and Patel is given in [4].
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,

p m n y F F = ± 2 ≥ p in integers ( ) p y m n , , , with 
( ) 2 mod m n ≡ have either { } 36 , max < m n or 0 = y and . m n =
Theorem 2 is a generalization of the following theorem due to Bugeaud et al. [START_REF] Bugeaud | Fibonacci numbers at most one away from a perfect power[END_REF].

Theorem 3. The only nonnegative solutions ( )

p y n , , of the equation p n y F = -1 with 2 ≥ p are . 2 1 , 1 1 , 0 1 1 2 5 3 2 1 = - = - = - = - F F F F
We also need the following theorem due to Matveev and Lemma due to Dujella and Pethö [START_REF] Matveev | An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II[END_REF][START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF].

Theorem 4 (Matveev [6] 

1 l b b B = and . 1 1 : 1 1 1 - ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ η = - η η = Λ ∏ = l i b i b l b i l Let l A A ..., , 1 reals numbers such that { ( ) ( ) } . 1 , 16 . 0 , log , max l j Dh A j j j ≤ ≤ η η ≥ Assume that , 0 ≠ Λ then we have ( ) ( )( ). log 1 log 1 1 30 3 log 1 2 5 . 5 4 nB D A A d l l l + + × × + × × - > Λ + Further, if L is real, then ( ) ( )( ). log 1 log 1 30 4 . 1 log 1 2 5 . 4 3 B D A A d l l l + + × × × × - > Λ +
During our calculations, we get upper bounds on our variables which are too large, so we have to reduce them. To do this, we use some results from the theory of continued fractions. In particular, for a non-homogeneous linear form with two integer variables, we use a slight variation of a result due to Dujella and Pethö [START_REF] Dujella | A generalization of a theorem of Baker and Davenport[END_REF]. For a real number X, we write = :

X { } Z ∈ - n n X : min
for the distance of X to the nearest integer.

Lemma 5 (Dujella and Pethö [7]). Let M a positive integer, let q p be the convergent of the continued fraction of the irrational number γ such that M q 6 > and let μ , , B A be real numbers such that 0

> A and . 1 > B Let . : q M q γ - μ = ε If 0 > ε , then the inequality , 0 k AB n m - < μ + - γ <
does not admit a solution in integers m, n and k such that M m ≤ and

( ) . log log B Aq k ε ≥
The following properties of the logarithmic height is used in the next section:

• ( ) ( ) ( ) . 2 log + η + γ ≤ η ± γ h h h • ( ) ( ) ( ). 1 η + γ ≤ γη ± h h h • ( ) ( ). γ = γ h s h s

Main Result

In this section, we give the proof of Theorem 1. The only solutions ( ) 

p m n , , of the Diophantine equation p m n F F 3 = - in nonnegative integers n m < and p are ( ) ( ) ( ) ( ) ( ), 1 , 0 , 4 , 0 , 2 , 3 , 0 , 1 , 3 , 0 , 0 , 2 , 0 , 0 , 1 ( ) ( ) ( ) ( ).
( ) ( ) ( ) { }. 0 , 2 , 3 , 0 , 1 , 3 , , ∈ p m n Now assume that { }. 2 , 1 ∈ -m n Then (1) becomes 2 3 - = n p F for 1 - = n m or 1 3 - = n p F for , 2 - = n m according to [4], ( ) = p m n , , ( ) ( ) ( ) ( ) ( ) ( ) 
≥ = - ≥ - = + + m m m m n p F F F F F (6)
using (2). From ( 5) and ( 6 We now assume that n and m have different parities.

. 2

1 5 5 3 5 3 + α < β + α < β + = - α ⇒ = - m n m n m p n p m n F F F Dividing both sides, by , 5 n α we get . 4 5 3 1 m n n p - - α < α - (7) 
Now applying Matveev's theorem with the following data: , : , : , 5 : , : , 3 :

2 1 3 2 1 n b p b - = = = γ α = γ = γ and . 1 : 3 = b Since ( ). 5 , , 3 2 1 Q ∈ γ γ γ
Then we can take ( ).

5 Q K = So, ( ) . 2 5 deg 2 = - = x D 1 5 3 1 - α = Λ -n p is nonzero. Otherwise, we get p m n n n n p p F F F F 3 1 5 5 3 = - > - > β + = α =
which is impossible.

or we can prove it is nonzero by using the conjugate of the relation . 5 3

p p α = Moreover ( ) ( ) ( ) . 5 log , log 2 1 , 3 log 3 2 1 = γ α = γ = γ h h h Then we can take, , 5 . 0 , 2 . 2 2 1 = = A A and . 7 . 1 3 = A Since , n p < it follows that { } . 1 , , max : n n p B = - =
Since all conditions are satisfied, then from Theorem 4, we have (  ) 

1 4 Λ > α -m n ( ( ) ( ) ) 7 . 1 5 . 0 2 . 2 log 1 2 log 1 2 3 30 4 . 1 exp 2 5 . 4 6 × × × + + × × × - > n hence ( ) 4 log log - α -m n ( )( ) 7 . 1 5 . 0 2 . 2 log 1 2 log 1 2 3 30 4 . 1 2 5 . 4 6 × × × + + × × × <
3 1 5 3 5 1 < β + β ≤ - α - α - m n p n m n hence ( ) n n n m p α < α α - - - - - 3 1 5 3 1 1 (9) because ( ) . 3 1 3 1 1 3 2 1 1 1 < α - ⇒ > α - ⇒ < α < α = α - - - - - n m n m m n n m
Q ∈ γ γ γ
Then we can take ( ). 

5 Q K = So, ( ) . 2 5 deg 2 = - = x D ( ) . 1 1 5 3 : 1 2 - α α - = Λ - - - n n m p Let prove that 0 2 ≠ Λ by contradiction. If , 0 2 = Λ then we have 5 5 5 3 m n m n p β = β ⇒ α - α = which is impossible since . m n > Similarly ( ) ( ) ( ) ( ) α - + ≤ γ α = γ = γ log 2 1 5 2 log , log 2 1 , 3 log 3 2 1 m n h h h × + × × × + + <
- ≤ - < < 80 1 1 0 1 1 1 1 or m n n p - α < + α - < 80 5 log log 3 log 0 Then 2 2 1 3 1 1 2 2 2 < ⇒ < α < - = - z n z z e e e
and therefore 

n n z z z z e e e z α < < ⇒ α < - = - < < 6 0 6 1 1 0 2 2 2 2 2 this is equivalent to ( ( ) ) n n m n p α < α - + α - < - - 6 

Fibonacci

  

  terms and later perfect powers in the Fibonacci and Lucas sequences have attracted the attention of the researchers. From there, many researchers tackled similar problems. It is important to recall that, in Corollary 1 of [1], Kebli et al. give the condition on all integer solutions of equation . The proof of their Theorem 2 is based on abc-conjecture (open problem). But it also uses an upper bound on m nwhich appears in the proof of Theorem 1 of [1] and rests on an application of lower bounds for linear forms in logarithms of algebraic numbers. One can consult [1] for more information. Our results, respect all conditions given in [1].
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