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Abstract  1 
Purpose 2 
Patients after surgical repair of Tetralogy of Fallot (rTOF) may suffer a decrease in left ventricular (LV) function. 3 
The aim of our study is to evaluate a novel method of assessing LV torsion in patients with rTOF, as an early 4 
indicator of systolic LV dysfunction.  5 
Methods 6 
Motion tracking based on image registration regularized by the equilibrium gap principle, known as equilibrated 7 
warping, was employed to assess LV torsion. Seventy-six cases of rTOF and ten normal controls were included. The 8 
group of controls was assessed for reproducibility using both equilibrated warping and standard clinical tissue 9 
tracking software (CVI42, version 5.10.1, Calgary, Canada). Patients were dichotomized into two groups: normal vs. 10 
loss of torsion. 11 
Results 12 
Torsion by equilibrated warping was successfully obtained in 68 of 76 (89%) patients and 9 of 10 (90%) controls. 13 
For equilibrated warping, the intra- and inter-observer coefficients of variation were 0.095 and 0.117, respectively; 14 
compared to 0.260 and 0.831 for tissue tracking by standard clinical software. The intra- and inter-observer 15 
intraclass correlation coefficients for equilibrated warping were 0.862 and 0.831, respectively; compared to 0.992 16 
and 0.648 for tissue tracking. Loss of torsion was noted in 32 of the 68 (47%) patients with rTOF. There was no 17 
difference in LV or RV volumes or ejection fraction between these groups. 18 
Conclusion 19 
The assessment of LV torsion by equilibrated warping is feasible and shows good reliability. Loss of torsion is 20 
common in patients with rTOF and its robust assessment might contribute into uncovering heart failure in an earlier 21 
stage.  22 
  23 
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Introduction 1 

Patients after surgical repair of Tetralogy of Fallot (rTOF) tend to have suboptimal left ventricular mechanics and 2 

may suffer a loss in left ventricular function [1–7]. Ventricular dysfunction has been associated with poor clinical 3 

outcomes, including death [1, 3–5]. There is literature to support the notion that pulmonary regurgitation and 4 

impaired right ventricular function result in impaired left ventricular mechanics [8]. Such findings would suggest 5 

that there is an insidious progression of left ventricular dysfunction beginning in childhood. Parameters that assess 6 

left ventricular mechanics have been associated with greater risk of sudden cardiac death [9]. Therefore, early 7 

identification of deteriorating left ventricular mechanics and function may guide clinical management in this 8 

population. 9 

 10 

Torsion, also known as twist, is a characteristic feature of the ventricular contraction [10]. It is often reported as the 11 

maximal net difference in rotation between the LV apex and base at peak systole [11–17] and is expressed in 12 

degrees. When divided by the distance between base and apex, the LV twist gradient (expressed in degrees per 13 

centimeter) is obtained to adjust for differences in LV dimensions between patients [13, 16]. In comparison to 14 

ventricular ejection fraction (a global indicator of ventricular systolic function) LV torsion is rarely reported in the 15 

clinic. However, it has the potential to detect the deterioration of cardiac function in earlier stages [10]. This 16 

substantiates the assessment of LV torsion in cardiac patients, both with acquired and congenital heart disease. In 17 

particular for the patients with repaired Tetralogy of Fallot, studies suggest that adverse ventricular-ventricular 18 

interactions may result in reduced LV torsion [12, 15, 16]. However, tissue tracking analysis performed in standard 19 

clinical software to calculate left ventricular torsion in this population have documented poor intraobserver and 20 

interobserver reliability, with high coefficient of variation and low intraclass correlation coefficient [13]. 21 

 22 

Image registration is the process of aligning two or more images. It can be used to extract the motion of moving 23 

structures in images, such as the motion of the left ventricle from cine sequences in cardiac MRI. Features of 24 

interest, such as the evolution of torsion over time, can be obtained by the analysis of extracted motion. The aim of 25 

our study is to evaluate a novel motion tracking method based on image registration regularized by biomechanical 26 

properties of myocardium, named equilibrated warping [18, 19]. Equilibrated warping is based on the finite element 27 

method for image registration and the mechanical equilibrium principle for regularization. Specifically, the image 28 
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intensity of points on the LV myocardium on cine sequences is used as the similarity metric to track trajectories 1 

between frames. At the same time, the deformation of the myocardium (represented by a finite element mesh) is 2 

constrained by the so-called finite strain equilibrium gap [18–20].  The intrinsic biomechanical tissue properties, 3 

represented by the rigidity (stiffness) of the hyperelastic model, prevents the LV myocardium from unphysiological 4 

deformations during the tracking of points within myocardial tissue.  5 

 6 

This study aims to use equilibrated warping to assess LV torsion in patients with rTOF and explore the relationship 7 

between LV torsion and other cardiac parameters obtained on routine cardiac MRI. We hypothesize that equilibrated 8 

warping will reliably obtain ventricular torsion and that the decrease or reversing of torsion will be associated with 9 

increased right ventricular end-diastolic volume, decreased right ejection fraction, and decreased left ventricular 10 

ejection fraction. 11 

 12 

Materials and Methods 13 

This was a single center retrospective study using anonymized data obtained from routine clinical scans. Seventy-six 14 

cases of repaired Tetralogy of Fallot and ten normal controls were included. Ventricular contours were manually 15 

segmented as a part of routine clinical work (Figure 1) by using standard clinical software (CVI42, version 5.10.1, 16 

Calgary, Canada). RV end-systolic volume (RVESV), RV end-diastolic volume (RVEDV), RV ejection fraction 17 

(RVEF), LVESV, LVEDV, LVEF were then exported for each subject. Additionally, end-diastolic LV endocardial 18 

and epicardial surfaces, generated from the manually segmented contours in CVI42, were saved as STL surface 19 

meshes using the export function built in the CVI42 software. The surface meshes and the short-axis cine MR 20 

images served as input into the equilibrated warping workflow (described below) to obtain the LV peak systolic 21 

twist (torsion) and peak systolic twist gradient (normalized by mesh length). 22 

 23 

The equilibrated warping method was implemented using the FEniCS (open source finite element library) and VTK 24 

(open source library for mesh and image manipulation) libraries, and are distributed as a freely available Python 25 

library [20]. The workflow of applying the equilibrated warping to our problem is depicted in Figure 2, where most 26 

steps have been automatized through a custom script. The inputs are ventricular short-axis cine images (in DICOM 27 
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format) and the end-diastolic LV endocardial and epicardial surface meshes (in STL format). Then, MeVisLab (an 1 

application framework for medical image processing and visualization, version 3.0.2, Bremen, Germany) was used 2 

to resample the DICOM images to an isotropic voxel size. The LV endocardial and epicardial surface meshes are 3 

then used to generate a volume mesh of LV myocardium by using GMSH (a free three-dimensional finite element 4 

mesh generator, version 3.0.6, Belgium). First, the endocardial and epicardial surfaces are re-meshed by GMSH, 5 

such that they are made of well-shaped (i.e, close to equilateral) triangles, which is required for finite element 6 

computations [21]. Then, a volume mesh of LV myocardium is created by using first order tetrahedra finite elements 7 

[22]. The volume mesh is then divided into ten equally spaced longitudinal (base to apex) sectors with the center of 8 

mass for each sector defined along the left ventricular axis.  Figure 3 demonstrates the final volume mesh overlayed 9 

on cine images of a selected patient. This mesh is then used for the torsion analysis. Equilibrated warping was then 10 

employed throughout the cardiac cycle to track tissue motion within the LV myocardium encompassed by the 11 

volume mesh in the short axis cine images and morph the end-diastolic volume mesh (Figure 2). ParaView 12 

visuzalization software (version 5.7.0, Clifton Park, NY, USA) was used as an intermediary for viewing and quality 13 

check of the meshes. The torsion of each of the mesh points was computed from the deforming volume meshes. 14 

Finally, the peak twist gradient was defined as the systolic basal rotation minus systolic apical rotation, normalized 15 

by the ventricular length. 16 

 17 

The cases analyzed by equilibrated warping that did not have enough signal to determine torsion were excluded 18 

from the final analysis (as defined by an unacceptably high standard deviation of rotation values with visually 19 

uninterpretable rotation curves). The patients with rTOF in which torsion was successfully analyzed were 20 

dichotomized into two groups by visual inspection of torsion over the cardiac cycle: those with normal systolic 21 

torsion (systolic basal clockwise rotation and apical counterclockwise rotation) and those with loss of systolic 22 

torsion, defined as a loss of normal systolic basal clockwise rotation. In the group of normal controls, torsion was 23 

calculated by equilibrated warping and standard tissue tracking software (using CVI42). Intra- and interobserver 24 

variability for both methods of torsion was calculated among patients in the control group. The comparison between 25 

normal and abnormal torsion was performed only among patients with repaired TOF. 26 

 27 
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Ventricular volumes were indexed to body surface area. Statistical analyses were performed with IBM SPSS 1 

Statistics 25 (IBM Corporation, Armonk, NY, USA). Continuous data are expressed as mean ± SD or as median 2 

(range) as appropriate. The Shapiro-Wilk test was used to assess for normal distribution. Coefficients of variation 3 

(SDs of differences between two measurements, divided by the respective means of two measurements) and 4 

intraclass correlation coefficients were calculated to describe intra- and interobserver variability of torsion obtained 5 

in the control group by both the tissue tracking analysis in standard clinical software (CVI42) and using equilibrated 6 

warping. In the patients with repaired TOF, ventricular parameters for the groups with and without normal torsion 7 

were compared by Mann-Whitney U tests for non-normally distributed variables and independent sample t-test for 8 

normally distributed variables. This study was approved by the University of Texas Southwestern Medical School 9 

Institutional Review Board. 10 

 11 

Results 12 

Torsion by equilibrated warping was successfully obtained in 68 of 76 (89%) patients with repaired TOF and 9 of 10 13 

(90%) normal controls. A representative example of normal torsion is shown in Figure 4 and a representative 14 

example of loss of torsion is shown in Figure 5. 15 

 16 

The median age of control patients was 23 years (range of 9 years to 30 years). For equilibrated warping, the intra- 17 

and inter-observer coefficients of variation were 0.095 and 0.117, respectively; compared to 0.260 and 0.831 for 18 

tissue tracking by standard clinical software. The intra- and inter-observer intraclass correlation coefficients for 19 

equilibrated warping were 0.862 and 0.831, respectively; compared to 0.992 and 0.648 for tissue tracking. 20 

 21 

Loss of systolic torsion was noted in 32 of the 68 (47%) patients with repaired TOF (Table 1). Patients with loss of 22 

torsion tended to be younger at the time of MRI. There was a significant difference in peak systolic twist gradient 23 

between patients with normal torsion and loss of torsion. There was no difference in RVESV, RVEDV, RVEF, 24 

LVESV, LVEDV, and LVEF between the groups.   25 

 26 

The patients with repaired TOF in whom equilibrated warping was not successful, were on average 11.9 years of age 27 

and were 9.8 years from their last pulmonary valve intervention (Table 2). Aside from right ventricular dilation, no 28 
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other significant abnormalities were noted on ventricular parameters at cardiac MRI. The average right ventricular 1 

dilation was lower than in the patients with rTOF for whom the motion tracking by equilibrated warping was 2 

successful. 3 

 4 

Discussion 5 

Motion tracking by equilibrated warping can be used to extract features of left ventricular deformation. It has been 6 

shown to be able to predict global torsion in cine images as well in 3D tagged or 3D echocardiography images, 7 

despite low contrast [18, 19]. In present work we applied the equilibrated warping to assess the LV torsion in 8 

patients with repaired Tetralogy of Fallot with a 90% success rate. LV torsion is known to be affected at an early 9 

stage in several cardiac diseases. The median age of patients with rTOF in whom we observed the loss of systolic 10 

LV torsion, was 11.7 years. This could correspond to an early sign of functional deterioration of their left ventricle. 11 

The equilibrated warping method of motion tracking may serve as a valuable tool by producing a robust non-12 

invasive marker for left ventricular mechanics in patients who may suffer insidious progression of left ventricular 13 

dysfunction beginning in childhood.  14 

 15 

There was no significant association between the loss of torsion and other ventricular parameters indicative of a 16 

worsening cardiac condition, such as increased right ventricular end-diastolic volume or a decreased ventricular 17 

ejection fraction. Long-term follow-up of this population is necessary to assess the relationship of loss of left 18 

ventricular torsion with worsening ventricular parameters and other poor clinical outcomes. 19 

 20 

We advocate that visual inspection of the graphical output of torsion over time is a necessary step in analyzing 21 

torsion. While the peak systolic twist gradient was lower in patients who were visually determined to have poor 22 

torsion, there are cases where the peak systolic twist gradient alone may not convey impaired left ventricular 23 

mechanics. For instance, cases in which there is loss of basal torsion and intact apical torsion may have a reasonable 24 

twist gradient (reference Figure 5). As loss of basal torsion implies impaired left ventricular mechanics, we included 25 

these cases in the loss of torsion group along with patients who had a loss of both basal and apical torsion and a 26 

resultant low peak systolic twist gradient.  27 

 28 
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On the present study we showed a good intraobserver intraclass correlation coefficient using the standard tissue 1 

tracking method albeit with unacceptably low interobserver intraclass correlation coefficient. This is, however, more 2 

testament to the fact that using the intraclass correlation coefficient alone is an imperfect way of showing agreement 3 

[22]. Our data does continue to show too high a coefficient of variance, suggesting poor overall interobserver and 4 

intraobserver agreement. This agrees with our previous work on this subject [12]. 5 

 6 

There are limitations in the equilibrated warping method workflow. First, it requires the creation of LV volume 7 

mesh out of the LV endocardium and epicardium surface meshes (exported from CVI42). This technical step was 8 

not fully automatized in present study and caused an increased time of post-processing and a more complex learning 9 

curve relative to other methods. Further automation (such as full automation of volume mesh creation from the 10 

segmented endo- and epicardial contours, reference Figure 2) will alleviate this issue and is a future step for the 11 

authors to translate this method into routine clinical practice.  12 

 13 

As evidenced by the 8 patients with rTOF (Table 2) and 1 normal control subject in whom the motion tracking by 14 

equilibrated warping failed, there are still issues with this motion tracking method. There was no clear anatomic or 15 

functional difference between these patients and the ones in which torsion by equilibrated warping was successful. 16 

These errors may be a result of interpolating short-axis cine stacks in the longitudinal direction. One possible 17 

solution to this is combining short-axis cine stacks with another series of images (such as long-axis cine slices). 18 

Secondly, the image similarity metrics to extract the motion in this work was simply based on the image intensity. 19 

Other metrics could be used as well, such as including a distance between contours [23] or involving a model of the 20 

imaging process [24]. Such components have the potential to improve the motion tracking and their implementation 21 

and assessment is our ongoing work.   22 

 23 

Overall, the motion tracking by equilibrated warping to estimate the LV torsion is feasible in patients with rTOF and 24 

shows good reliability. The input requires only the ventricular short axis cine DICOMS and the end-diastolic 25 

contours already segmented during routine clinical work. Therefore, the present workflow of advanced image 26 

processing could be used in addition to the standard clinical analysis (measurement of ventricular volumes) without 27 
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repeating the contouring of the endocardial and epicardial surfaces. This would prevent a possible error caused by 1 

re-contouring and has the advantage of no additional time for image segmentation. 2 

 3 

Tracking motion in tagged MR images, either by image registration based methods such as equilibrated warping 4 

[18] or by methods specific to a tagged pattern such as Harmonic Phase analysis (HARP) [25–27] or sine-wave 5 

modelling [28], would be likely to increase the accuracy of LV torsion.  While it is unlikely that analyzing tagged 6 

MRI would change the global classification of patients (with torsion vs. with loss of torsion), it might lead to a 7 

reduction of subjects in whom our workflow failed. While it is out of scope of the present work, in the future we 8 

intend to recruit a group of patients for whom short-axis stacks of cine and tagged MRI will be acquired and the 9 

torsion analyzed by the two methods.  10 

 11 

Our pilot study shows that loss of torsion is common in patients with rTOF. Additionally, there was no significant 12 

association between the loss of torsion and other ventricular parameters indicative of a worsening cardiac condition. 13 

Future studies committed to the long-term follow-up of this population are needed to assess the role of torsion in 14 

predicting ventricular dysfunction and death. Finally, while this study is performed on a cohort of patients with 15 

rTOF, the results could also apply to the assessment of torsion in other cardiac patients. The fundamental principle 16 

of our method, incorporating known physiologic and biophysical properties into image processing techniques, has 17 

the potential to improve image analysis such that it contributes to an earlier identification of derangements in cardiac 18 

function [29, 30]. Such an advancement may eventually result in an earlier institution of therapies that prevent a late 19 

deterioration in myocardial function.  20 

  21 
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 1 

Figure 1: Ventricular contours were manually segmented as a part of routine clinical work. An example of 2 
ventricular contours in a patient with repaired Tetralogy of Fallot is shown. Panel A demonstrates contours during 3 
ventricular diastole. Panel B demonstrates contours during ventricular systole. 4 
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 1 
Figure 2: Workflow used during this study to calculate ventricular torsion using the equilibrated warping method. 2 
The inputs are ventricular short axis cine DICOMS and the end-diastolic contours segmented during routine clinical 3 
work. MeVisLab (version 3.0.2, Bremen, Germany) is an application framework for medical image processing and 4 
visualization. GMSH (version 3.0.6, Belgium) is a three-dimensional finite element mesh generator. ParaView 5 
(version 5.7.0, Clifton Park, NY, USA) was used as an intermediary. The tools are freely available. 6 
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 1 

Figure 3: As part of the workflow for equilibrated warping, a volume mesh of the left ventricular myocardium is 2 
generated from the clinical contours of the ventricular short axis cines. A: The mesh is overlayed on a mid-3 
ventricular slice of the short axis cine. B and C: The mesh is overlaid on long-axis images that were reconstructed 4 
from the short axis cine. D: A 3-D representation of the mesh is shown on a reconstructed long-axis image.  5 
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 1 
Figure 4: Normal torsion in a patient with repaired Tetralogy of Fallot. The x-axis represents time (seconds) during 2 
the cardiac cycle and the y-axis represents torsion (degrees). During systole, the base undergoes clockwise rotation 3 
(negative y-axis values) while the apex undergoes counterclockwise rotation (positive y-axis values). Peak systolic 4 
twist is 9.16 degrees and occurs at 0.32 seconds. When normalized to mesh length, the peak systolic twist gradient is 5 
0.12 degrees/cm. 6 
 7 
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 1 
Figure 5: Reversal of normal basal systolic rotation in a patient with repaired Tetralogy of Fallot. During systole, 2 
both the base and apex undergo counterclockwise rotation. Peak systolic twist is 8.65 degrees and occurs at 0.36 3 
seconds. When normalized to mesh length, the peak systolic twist gradient is 0.10 degrees/cm. 4 
  5 
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Variable Normal torsion (n=36) Abnormal torsion (n=32) P-value 
Patients with shunt prior to initial 
repair 

5 (13.9%) 4 (12.5%) 1.000 

Age at MRI (years) 16.2 (1.9-39.6) 11.7 (3.4, 52.1) 0.012 
Time from pulmonary valve 
intervention to MRI (years) 

13.2 (0.7-37.6) 9.9 (2.9-49.6) 0.353 

Peak systolic twist (degrees) 10.19 (3.82-23.60) 6.42 (1.71-17.19) <0.001 
Peak systolic twist gradient 
(degrees/cm) 

0.16 (0.06-0.35) 0.01 (-0.08-0.28) <0.001 

RVEDVi (ml/m2) 135 +/- 36 134 +/- 37 0.880 
RVESVi (ml/m2) 66 (37-121) 68 (27-125) 0.731 
RVEF (%) 47.6 +/- 6.8 49.2 +/- 8.3 0.367 
LVEDVi (ml/m2) 75 +/- 12 78 +/- 15 0.485 
LVESVi (ml/m2) 32 +/- 8 34 +/- 10 0.540 
LVEF (%) 57 (49-68) 57 (41-72) 0.892 
RVEDV:LVEDV 1.8 +/- 0.4 1.8 +/- 0.5 0.712 
Patients with Pulmonary valve 
intervention <1 year after MRI 

13 (36.1%) 13 (40.6%) 0.804 

Normally distributed variables are reported as mean +/- standard deviation and non-normally distributed variables 
are reported as median (range). 

Table 1: Characteristics of patients with repaired Tetralogy of Fallot with normal torsion and reversal of 1 
basal clockwise rotation. Reversal of basal clockwise rotation is labeled abnormal torsion. Mann-Whitney U tests 2 
were performed for non-normally distributed variables and independent sample t-tests were performed for normally 3 
distributed variables. RV= right ventricle, LV= left ventricle, ESVi= end-systolic volume indexed to body surface 4 
area, EDVi= indexed end-diastolic volume, EF= ejection fraction.  5 
  6 
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Variable (n=8) 
Patients with shunt prior to initial 
repair 

4 (50%) 

Age at MRI (years) 11.9 +/- 8.6 (10.5, 2.1-27.7) 
Time from pulmonary valve 
intervention to MRI (years) 

9.8 +/- 9.1 (6.8, 1.5-27.7) 

RVEDVi (ml/m2) 111 +/- 36 
RVESVi (ml/m2) 55 +/- 21 
RVEF (%) 50 +/- 6 
LVEDVi (ml/m2) 69 +/- 12 
LVESVi (ml/m2) 28 +/- 8 
LVEF (%) 60 +/- 7 
RVEDV:LVEDV 1.7 +/- 0.6 
Patients with Pulmonary valve 
intervention <1 year after MRI 

2 (25%) 

Table 2: Descriptive characteristics of patients with repaired Tetralogy of Fallot removed from the analysis 1 
due to inadequate signal to determine torsion based on equilibrated warping. Normally distributed variables are 2 
reported as mean +/- standard deviation and non-normally distributed variables are reported as median (range). RV= 3 
right ventricle, LV= left ventricle, ESVi= end-systolic volume indexed to body surface area, EDVi= indexed end-4 
diastolic volume, EF= ejection fraction.  5 
 6 


